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Abstract
We prove that if P is a set of n points in C2, then either the points in P
determine Q(n'~¢) complex distances, or P is contained in a line with slope
+i. If the latter occurs then each pair of points in P have complex distance 0.

1 Introduction

In 1946, Erdés [6] posed the question: how few distinct distances can be determined
by a set of n points in the plane? The Erdés distinct distances problem has become
a central question in combinatorial geometry, and an entire book has been dedicated
to the question [7]. In 2010, Guth and Katz [12] nearly resolved the conjecture by
establishing the following lower bound.

Theorem 1.1. Every set of n points in R? determines Q(n/logn) distinct distances.

This lower bound nearly matches the conjectured lower bound Q(n/+/logn), which
can be achieved by taking points of the form (j, k) with j and k integers between 1
and y/n. Theorem 1.1 bookends decades of progress on the Erdés distinct distances
problem, such as [4, 24, 26]. The problem has also been studied in other fields and
under different distance norms [3, 25, 17]. See [21] for a survey of recent results.

In this paper we obtain an analogue of Theorem 1.1 for sets of points in C2. If
p,q € C* we define the (squared) complex distance A(p,q) = (pr — ¢z)* + (py — qy)*
For P C C2?, we define

A(P) ={A(p,q): p.q € P, p # q}.

In contrast to the situation in R?, the set A(P) can contain the distance 0. Indeed, it is
possible that A(P) = {0} even when P is large. We say that a line L C C? is isotropic
if it has a slope of &=i. If two points p, ¢ € C? are contained in a common isotropic line,
then A(p,q) = 0. Thus, if all points of P are contained in a common isotropic line
then A(P) = {0}. The next theorem says that this is the only obstruction preventing
A(P) from having large cardinality.
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Theorem 1.2 (Distinct distances in C?). For every € > 0, there exists ¢ > 0 that
satisfies the following. Let P be a set of n points in C?, not all on the same isotropic
line. Then

IA(P)| > cn'e.

Theorem 1.2 yields new sum-product type estimates for finite sets of complex
numbers.

Corollary 1.3. For everye > 0, there exists c that satisfies the following. Let A C C.
Then
{(ay — a2)* + (a3 — aq)?: ay, a9, a3, a4 € A}| > c|A* ¢,

Corollary 1.3 follows by applying Theorem 1.2 to the set P = Ax Aor P = AxiA.
When A C R, these estimates were previously known. The case of a ‘+’ sign follows
immediately from Theorem 1.1. The case of a ‘-” sign was proved by Roche-Newton
and Rudnev in [18].

1.1 From distinct distances to incidence geometry

To prove Theorem 1.1, Guth and Katz used the so-called Elekes-Sharir-Guth-Katz
framework. This framework reduces Theorem 1.1 to an incidence geometry problem
about lines in R3. In the result that follows, we say that a point p is r-rich with
respect to a set of lines £ if at least r lines from £ contain p. We write P.(L) to
denote the set of points that are r-rich with respect to L.

Theorem 1.4. Let L be a set of at most n lines in R, and suppose that at most
n'/2 lines are contained in a common plane or doubly-ruled surface.® Then for each
2 <r<nl/?

(L) = O(n**r72).

When r = 2, Guth and Katz’s proof of Theorem 1.4 is purely algebraic, and it
has since been extended to arbitrary fields [13, 15]. For larger values of r, the only
known proof of Theorem 1.4 requires topological arguments that are specific to R.
Specifically, Guth and Katz developed a new tool called polynomial partitioning.

Theorem 1.5 (Polynomial partitioning). Let P be a set of m points in R? and let
r > 1. Then there exists a nonzero polynomial f € Rlxy, ..., x4] of degree at most r,
such that each connected component of R1\ Z(f) contains O(mr=?) points of P.

Since its introduction in 2010, Theorem 1.5 has reshaped the field of incidence
geometry and has led to striking progress on problems in discrete geometry, theoret-
ical computer science, and harmonic analysis. See [10] for a partial survey of these
developments. Many of the incidence geometry problems in Euclidean space that
have been solved using Theorem 1.5 can also be posed in vector spaces over other
fields such as C or F,. Since we do not have an analogue of Theorem 1.5 in these
settings, many of these problems remain open. Up to an ¢ loss in the exponent, the
following theorem is a complex analogue of Theorem 1.4.

'For rigorous definitions of a surface, a doubly-ruled surface, irreducible varieties, and other
technical terms, see Section 2.



Theorem 1.6. For every € > 0, there exists C' that satisfies the following. Let L be
a set of at most n lines in C*, and suppose that at most n'/? lines are contained in a
common plane or doubly-ruled surface. Then for each 2 < r < n'/2,

1P.(L)| < Cnd/2rer—2,

When r = 2, Theorem 1.6 follows from the more general results in [13, 15]. A key
difficulty when proving Theorem 1.6 for larger values of r is that the complex analogue
of Theorem 1.5 is false—if f € C[zy,..., 74| is a polynomial with Z(f) C C¢, then
CAZ(f) is connected, so Z(f) does not “cut” C? into multiple connected components.
In the next section we discuss our strategy for overcoming this problem.

1.2 A structure theorem for lines in three dimensions

In [8], Guth used Theorem 1.5 to obtain the following structure theorem about sets
of lines in R3. For a set £ of lines and a variety W, we denote by Ly the set of lines
of £ that are contained in W.

Theorem 1.7. For every € > 0, there exist C' and D that satisfy the following. Let
L be a set of n lines in R?, let 2 < r < 2n'/2, and let r' = [9r/10]. Then there exists
a set S of algebraic surfaces in R® with the following properties.

FEvery surface W € S is an irreducible surface of degree at most D.
Each surface contains at least n*/>¢ lines of L.

S| < 2nt/2—=,

Pr(L)\ Upes Prr(Lw)| < Cn®2Fer2,

Guth then showed that Theorem 1.7 implies a slightly weaker version of Theorem
1.4, which in turn implies a slightly weaker version of Theorem 1.1. Specifically, the
bound Q(n/logn) is replaced by Q(n'~¢). We use a similar strategy to prove Theorem
1.6 and Theorem 1.2. In particular, we prove the following complex analogue of
Theorem 1.7.

Theorem 1.8. For ecvery € > 0, there exists C that satisfies the following. Let L be
a set of n lines in C3, let 2 < r < 2n'/2, and let r' = max(2,7/3). Then there exists
a set S of algebraic surfaces in C* with the following properties.

e [fr >3 then every surface in S is a plane. If r = 2 then every surface in S is
wrreducible and has degree at most two.

o Every surface W € S contains at least rn'/>* lines of L.

o |S| < 2n!/?Ept,

o [Pr(L)\ Upes Prr(Lw)| < CnP/2rer=2,

Note that Theorem 1.6 is an immediate corollary of Theorem 1.8, since the as-
sumptions of Theorem 1.6 imply that S = (). The proof of Theorem 1.2, our main
result, relies on Theorem 1.8.

Our choice of 7’ in Theorem 1.8 is slightly different than the choice used in Theorem
1.7. This is a minor technical issue, and it does not limit the usefulness of Theorem
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1.8. For a theorem of this type to be useful, we require that ' = 2 when r = 2, and
that 7" grows linearly as a function of r; Our choice of /3 is somewhat arbitrary and
can be improved slightly, though our arguments do not allow us to select ' = [9r/10]
as in the statement of Theorem 1.7.

Guth proved Theorem 1.7 by induction on n using a divide and conquer approach.
Given a set of lines £, Guth used Theorem 1.5 to find a polynomial f with the
following properties. The set R3*\Z(f) is a union of many connected regions, each
containing a small fraction of the points from P, (L), and most intersecting a small
fraction of the lines from £. He then applied the induction hypothesis (Theorem
1.7 with fewer lines) to each of these regions individually. Finally, he combined the
sets of algebraic surfaces associated to each region into a single, slightly larger set of
algebraic surfaces and thereby closed the induction.

An important technical difficulty in Guth’s proof is that some of the r-rich points
and some of the lines might be contained in the “boundary” Z(f) of the partition.
Luckily, the boundary Z(f) is itself a variety, and irreducible components of this
variety that contain many lines can be added to the set S.

We now briefly describe our strategy for proving Theorem 1.8. As noted above,
the complex analogue of Theorem 1.5 is false. This is problematic because Theorem
1.5 played a critical role in Guth’s proof of Theorem 1.7. One strategy for proving
incidence geometry problems in complex space is to identify C? with R?? and to
apply the polynomial partitioning theorem in R??. This was the approach used by
the authors in [22] to establish new point-curve incidence results in C?, and we use a
similar strategy to prove Theorem 1.8.

To execute this strategy, we identify C* with RS, and each complex line becomes
a real plane. With a slight abuse of notation, we continue to call these sets complex
lines. Some of the steps in Guth’s proof of Theorem 1.7 can still be used to prove
Theorem 1.8: We prove the theorem by induction on n and find a real polynomial f
with the following properties. The set R®\ Z(f) is a union of many connected regions,
each containing far fewer r-rich points and intersecting far fewer complex lines than
the original problem. As in the proof of Theorem 1.7, it is possible that many r-rich
points are contained in the boundary Z(f) of the partition.

One possibility is that rich points on Z(f) are incident to many lines that have one-
dimensional intersection with Z(f). We handle this situation with a new structure
theorem for complex lines that properly intersect a real hypersurface. In brief, if many
complex lines properly intersect a real hypersurface and span many r-rich points,
then these complex lines must cluster into complex planes. A precise version of this
statement is given in Lemma 6.3.

A second possibility is that rich points on Z(f) are incident to many lines that
are contained in Z(f). Unfortunately, Z(f) might not be a complex variety, so we
are not permitted to add it to S. Instead, we study the incidence geometry of points
and complex lines contained in a real hypersurface in R®. Our main result in this
direction is the following incidence theorem, which is proved in Section 5. Before
stating our result, we require a definition. We say that a variety U C RS is almost
ruled by complex planes if for each regular point p € U, there is a complex plane
IT C U that contains p. If such a plane exists and L C U is a complex line incident
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to p, then L C II.

Proposition 1.9. Let U C R® be an irreducible variety defined by polynomials of
degree at most D. Then at least one of the following two statements holds.

e U is almost ruled by complex planes.

o U contains at most 2D*(D — 1) complex planes. If L is a set of n complex lines
that are contained in U but not contained in any of these planes, then for each
r > D? we have

|Ureg N Pr(£)| = OD(n3/27”_5/2 + nr_l),

Proposition 1.9 allows us to deal with the situation where many points and com-
plex lines are contained in Z( f); this is the final missing piece in the proof of Theorem
1.8.

1.3 Structure of the paper

In Section 2 we introduce a number of tools from algebraic geometry and real al-
gebraic geometry that appear frequently in our proof. We also introduce the ruled
surface theory developed by Guth and the second author in [13]. Proposition 1.9 is
a statement about complex lines, and the theory of surfaces ruled by complex lines
is quite classical. However, some of the intermediate steps in the proof require struc-
ture theorems about surfaces ruled by more general types of curves. Thus, the full
strength of the ruled surface theory developed in [13] is required.

In Section 3 we show how existing algebraic techniques can be used to prove a
special case of Theorem 1.8 when r is small—as discussed above, Theorem 1.8 is
only novel when 7 is large. This is helpful because Proposition 1.9 is only effective
when r is large. In Section 4 we discuss how a slight variant of Guth’s Theorem 1.7
also applies to curves in R?. This result will help us understand complex lines that
properly intersect the boundary of the partition.

In Section 5 we prove Proposition 1.9 and in Section 6 we use this proposition to
prove Theorem 1.8. Finally, in Section 7 we combine Theorem 1.8 with the Elekes-
Sharir-Guth-Katz framework to prove Theorem 1.2
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2 Preliminaries

2.1 Varieties

We now briefly recall standard definitions and results involving affine varieties. For
more information, see for example [2, 14]. Let F be a field; in practice we will
only be interested in the fields R and C. The variety defined by the polynomials
fi,.oy fx € Flay, ..., z4] is the set

Z(fi,-o s fu) ={p€F : filp)=0,.... fx(p) =0}.

We say that a set U C F? is a variety if there exist polynomials fi,..., fr €
Flxy,...,2q] such that U = Z(f1,..., fr). If each of these polynomials has degree
at most D then we say that U is is defined by polynomials of degree at most D. In
particular, lines, planes, and hyperplanes are defined by polynomials of degree at
most one. We call varieties of this type flats, or k-flats when we wish to emphasize
the dimension. Note that if U is defined by polynomials of degree at most D, then it
is also defined by polynomials of degree at most D’ for every D' > D.

If U is a variety, a proper subvariety of U is a proper subset of U that is also a
variety. A variety U is reducible if it can be expressed as the union of two proper
subvarieties of U. Otherwise, U is irreducible. Every variety U can be uniquely
expressed as a union of irreducible varieties, none of which is contained in another.
These subvarieties are the irreducible components of U.

If X C F? the Zariski closure of X, denoted X, is the smallest variety in F? that
contains X . In particular, every variety in F? that contains X must also contain X.

Dimension. If U C F? is an irreducible variety, we define the dimension of U to be
the smallest integer k for which there exists a sequence

UocUycUycC---CcU,=U.

Here, all the containments are proper and all the U; are irreducible. If U is reducible,
we define its dimension to be the maximum dimension of its irreducible components.
We will write dim U to denote the dimension of U, or sometimes dimp U if we wish
to emphasize the underlying field.

We say that a variety is equidimensional if each irreducible component has the
same dimension. We define a curve to be an equidimensional variety of dimension
one, a surface to be an equidimensional variety of dimension two, and a hypersurface
to be an equidimensional variety of co-dimension one.

Regular and singular points. Let U C F? be an equidimensional variety of
dimension d’. Let I(U) be the ideal of polynomials in F[xy,...,z,4] that vanish on
every point of U. Let fi,..., f; be polynomials that generate I(U). We say that
p € U is a regular point of U if

Vfi(p)

rank

| =d-d. (1)
Vfi(p)
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We define Uyg be the set of regular points of U. If U C R? and p € U,eq, we define
the tangent space T,U to be the set of vectors orthogonal to V fi(p), ...,V fi(p).

If p € U is not a regular point of U, then p is a singular point of U. We denote
this set by Using. The following lemma says that most points of U are regular points.

Lemma 2.1. Let U C F? be a variety defined by polynomials of degree at most D.
Then Usng 1s a variety of dimension strictly smaller than dimU that is defined by
polynomials of degree Oqp(1).

A proof of Lemma 2.1 can be found in Section 2.2 of [22]. See also Proposition

4.4 of [23].

2.2 Polynomial partitioning and real algebraic geometry

As discussed in the introduction, the polynomial partitioning theorem plays an im-
portant role in the proof of Theorem 1.8. In addition to Theorem 1.5, we also need
the following generalization that was proved by Guth in [9].

Theorem 2.2 (Polynomial partitioning for varieties). Let V be a set of n varieties
in RY, each of dimension k and defined by polynomials of degree at most E. Then
for each integer D > 1 there exists a nonzero polynomial f € Rlzy,..., x4 of degree
at most D, such that each connected component of RE\ Z(f) intersects Og(n/ D)
varieties from V.

In the arguments that follow, we will study incidence problems involving config-
urations of points and varieties. By multiplying the partitioning polynomials from
Theorem 1.5 and 2.2, we obtain a partitioning polynomial that is simultaneously
adapted to both sets.

Corollary 2.3. Let P be a set of m points in R? and let V be a set of n varieties
in R?, each of dimension at most k and defined by polynomials of degree at most E.
Then for every D > 1 there exists a nonzero polynomial f € Rxy, ..., x4| of degree
at most D, such that each connected component of R\ Z(f) intersects Og(n/D**)
varieties from V and contains O(mr=?) points from P.

Remark 2.4. One technical annoyance when working with real varieties is that if
f € Rlzy,...,z4] is a nonzero polynomial, we need not have dim(Z(f)) = d — 1.
Indeed, Z(f) can be empty, or it can have any dimension between 0 and d — 1.
Luckily, this issue need not be a problem when performing polynomial partitioning.
As discussed in [32, Section A.3], we can always replace a polynomial f € Rxy, ..., z4]
with a new polynomial ¢ (possibly of lower degree) so that Z(f) C Z(g) and Z(g) is
equidimensional and has codimension one.

To make use of Theorems 1.5 and 2.2, we need to control the size of a number of
quantities related to the partitioning polynomials described above. In particular, we
need to bound the number of connected components in U\Z(f), where U is a (not
necessarily proper) subvariety of R



Lemma 2.5 (Warren’s theorem on a variety [1]). Let U C R? be a variety of di-
mension d defined by polynomials of degree at most E. Let f € Rlxy,...,z4] be a
polynomial of degree D. Then U\ Z(f) has Og(D¥ E4~") connected components.

Lemma 2.6 (irreducible components of a variety). Let U C R¢ be a variety defined
by polynomials of degree at most D. Then U has O4(D?) irreducible components.
Each of these components is defined by polynomials of degree Op 4(1).

When d = 2 the expression Oy4(D?) from Lemma 2.6 can be sharpened somewhat.
First, Bézout’s inequality controls the number of intersection points between two
plane curves that do not share a common component.

Lemma 2.7 (Bézout’s inequality). Let f and g be bivariate polynomials that do not
share a common factor. Then Z(f,g) contains at most (deg f)(deg g) points.

Second, Harnack’s inequality control the number of connected components of a
plane curve.

Lemma 2.8 (Harnack’s theorem). Let f be a bivariate polynomial of degree D. Then
Z(f) has at most (D —1)(D — 2)/2+ 1 < D? connected components.

Corollary 2.9. Let U C R? be a zero-dimensional variety defined by polynomials of
degree at most D. Then |U| < D%

Proof. Write U = Z(f1,..., fr), where each of fi,..., fi has degree at most D.
Without loss of generality we can suppose that each polynomial is squarefree, and no
two polynomials share a common factor. If £ = 1 then the result follows by applying
Lemma 2.8 to fi. If & > 2 then U C Z(f1, f2), and the result follows by applying
Lemma 2.7 to f; and fs. ]

We also require the following corollary of Bézout’s inequality (for example, see
[11]).

Corollary 2.10. Let f,g € Clxy,xo, 3] have degrees k and m, respectively. If the
intersection Z(f) N Z(g) contains more than km lines then f and g have a common
factor.

2.3 Orthogonal projections and general position

For integers 0 < e < d, the Grassmannian Gr(e,F?) is the set of all e-dimensional
linear subspaces of F¢. When e = d — 1, we can identify each nonzero vector v € F¢
with the orthogonal subspace v+ € Gr(d — 1,F%). In particular, if V C F¢ is a proper
linear subspace of F¢, then {v!: v € V'} is a proper subset of Gr(d — 1,F?) (indeed,
if we give Gr(d — 1,F?) the structure of a variety then the above set is a proper
subvariety of Gr(d — 1,F%)).

We associate every element V € Gr(e,F?) with the orthogonal projection of F¢
onto the corresponding e-dimensional space. We denote this projection as 7y : F¢ —
Fe. If U C F? is a variety and V € Gr(e,F?9), then 7 (U) need not be a variety.
However, the next lemma shows that 7, (U) is contained in a well-behaved variety.

8



Lemma 2.11. Let F be the field R or C. Let 0 < e < d, let V € Gr(e,F?9), and let
U C F¢ be a variety defined by polynomials of degree at most D. Then wy(U) is a
variety of dimension at most dim(U) that is defined by polynomials of degree Oy p(1).

Lemma 2.11 is proved in [14, Theorem 3.16] and in [16, Chapter 2.6, Theorem 6]
for the case of F = C.2 The proof is constructive and thus provides an upper bound
on the degree of the polynomials that define the constructible set.

When F = R, Lemma 2.11 is a consequence of the (effective) Tarski-Seidenberg
theorem. See for example [2, Section 2]. The Tarski-Seidenberg theorem states that
mv(U) is a semi-algebraic set of complexity Oy p(1) whose Zariski closure has dimen-
sion at most dim(U).

At several points in our proof, we orthogonally project a finite arrangement of
varieties onto a lower dimensional subspace. When applying such a projection, it
is important not to accidentally introduce additional algebraic dependencies among
these varieties. For example, if £ is a set of n lines in R* such that every polynomial
of degree at most two vanishes on at most m lines, then we want to apply a projection
7: R* — R3 that preserves this property. We call such an orthogonal projection non-
degenerate. A precise definition is given in Appendix A. The following proposition
says that non-degenerate projections always exist.

Proposition 2.12 (Existence of non-degenerate projections, informal version). Let
0<e<dandletV be a set of varieties of dimension at most e in RY. Then there
exists a non-degenerate orthogonal projection from R? to Re.

If each variety in V has dimension smaller than e/2, then there exists a non-
degenerate orthogonal projection that does not introduce any additional intersections
between these varieties. In particular, if UW €V are disjoint, then the projections
of U and V' are also disjoint.

The proof and the precise statement of Proposition 2.12 require lengthy technical
details that are not used elsewhere in this paper. To avoid interrupting the flow of
our main proof, we defer these details to Appendix A.

2.4 Ruled surface theory

Let F be a field of characteristic 0, let S C F? be an irreducible surface, and let
D > 1 be an integer. We say that S is doubly ruled by curves defined by polynomials
of degree at most D if the following holds. There is a proper subvariety 7' C S such
that for all p € S\T, at least two irreducible curves 7,7 C S contain p (and are
defined by polynomials of degree at most D).

Let f € Flz,y, z] have degree at most E and let S = Z(f). Let v C S be an
irreducible curve defined by polynomials of degree at most D. We say that v is
an exceptional curve if at least CpE points p € ~ satisfy the following. There is
an irreducible curve 4" # v defined by polynomials of degree at most D such that

2Both references state that my (U) is a constructible set (a set defined by a Boolean combination
of algebraic equalities and non-equalities) whose Zariski closure has dimension at most dim(U).



p € v C S. Note that the definition of exceptional curves depends on the choice of
Cp. We set this constant to be as in the following lemma (see [13]).

Lemma 2.13. For each D > 1, there exists Cp that satisfies the following. Let
f € Flx,y,z] have degree E and let S = Z(f). If S contains more than CpE?
exceptional curves defined by polynomials of degree at most D, then S is doubly ruled
by curves defined by polynomials of degree at most D. In this case E = Op(1).
Furthermore, if D =1 then E < 2.

Remark 2.14. Lemma 2.13 also holds in characteristic p, provided FE is not too large
compared to D and p.

3 The r =2 and r = 3 case: Kollar’s bound

As discussed in the introduction, the proof of Theorem 1.4 when r = 2 is purely
algebraic, and it extends to other fields. The main tool is the following theorem due
to Kollar [15]. See also [13].

Theorem 3.1. Let L be a set of n lines in C3, such that every plane and degree two
surface contains at most n'/? lines from L. Then

[P2(L)] = O(n*?).

To use Theorem 3.1 we will also need a simple result that controls the number of
planes and degree two varieties that contain many lines.

Lemma 3.2. Let £ be a set of n curves in F® and let A > 2E?*n'/?. Let S be a set of
irreducible surfaces in T2, each of which is defined by polynomials of degree at most
E and each of which contains at least A curves from L. Then |S| < 2nA~1.

Proof. Let S = {5S1,...,Sk}. The intersection of two surfaces defined by polynomials
of degree at most E and sharing no common components contains at most E? curves
(for example, see [13, Theorem 5.7]). Since the surfaces in S are irreducible, each
pair of distinct surfaces can contain at most E? common curves from £. Thus for
each 7 > 1 we have

J
Us.
/=1

Assume for contradiction that |S| > 2n/A. Set j = [2nA~'] and note that

J
>3 Lol = Y ILs,NLs,|>A-j—E*j(j—1)/2
/=1

1<t<m<j

E* (j—1)/2< E>nA~ <n'?/2 < AJ4.

Thus '
j
U Ls,| > (A= E*(j+1)/2)j > (3/4)A-j >n,
=1
which is a contradiction. O
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With these tools, we can now prove the “algebraic” part of Theorem 1.8.

Proof of Theorem 1.8, r =2 and r = 3 case. Let 81 be the set of all planes that con-

tain more than 2n'/? lines of £. Let S, be the set of all irreducible degree two surfaces

that contain more than 8n'/2 lines of £. Lemma 3.2 implies that |S[,|Sz| = O(n'/?).
Let £ = L\ Uges,us, £5- Theorem 3.1 implies that

[Po(L)] = O(n??).

(Theorem 3.1 requires at most n'/? lines in a surface, while we have at most 8n'/2.

This is not a serious problem; for example, we can slightly increase n by adding
generic lines to £'.) A line L € L intersects each surface S € §; U S, that does not
contain L in at most two points. Thus, at most 2|£[|S; US,| = O(n*/?) points p € C?
are incident to a line L € £ and a surface S € S§;US, satistying L ¢ Lg. We conclude
that

|Pa2(L) \ U Pa(Ls)| = O(n*?).

SeS1US2
We define S as the set of surfaces of S; U S, that contain at least r - n'/2¢ lines
of £. Lemma 3.2 implies that |S| < 2n'/27¢/r. For 1 < j < log(rn®), let S} denote
the set of surfaces of S; U S, that contain at least n'/227 lines of £ and fewer than
n'/227%1 such lines. By Lemma 3.2, for every such j we have that |Si| = O(n'/2277).
This implies that

log(rn®)
O\ P(Ls)] =00+ > |8 -n2¥*?
Ses j=logn

log(rn®)

3/2 Z O 3/22] O(n3/2+5).

j=logn

By taking a sufficiently large constant C', we obtain Theorem 1.8 when r = 2.

We now consider the case of r = 3. We revise S to be the set of planes in &
and S, to be the set of quadratic surfaces in S. Similarly, let £ = £\ Jges £s5- By
considering every type of irreducible quadratic surface in R3, we note that at most
one point in such a quadratic S is incident to three lines that are contained in S. This
implies that g |P3(Ls)| = O(n!/27%). There are three other ways for a point p
to be in P3(L): (1) p € Ps3(L'), (ii) p € P3(Ls) for some S € Sy, and (iii) p is the
intersection of a line L € £ and a surface S € §; U S, satisfying L € Lg. Since the
arguments above bound the number of line—surface intersections, we have that

‘P?’(‘C) \ U 'Pg(ﬁg)l = O(n3/2+€>‘

SeS
Setting S = &; concludes the proof of Theorem 1.8 when r = 3. O

One of the hypotheses of Theorem 1.8 is that » < 2n'/2. In the regime r > 2n'/?, a
much simpler argument shows that |P,(£)| < 2n/r, and this is tight up to a constant
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factor. This bound has little to do with the geometry of lines in C3?; it only relies
on the fact that each pair of lines intersect in at most one point. We record this
observation below.

Lemma 3.3. Let X be a family of subsets of a ground set X, and suppose each pair
of sets in X intersect in at most one element. Let r > 2|X|"? and let P C X be the
set of elements contained in at least v sets from X. Then |P| < 2|X|r 1.

The proof of Lemma 3.3 is very similar to the proof of Lemma 3.2 when F = 1.
We do not repeat this proof.
We also require a complex variant of the Szemerédi-Trotter theorem [27, 31, 23].

Theorem 3.4. Let L be a set of n lines in C?. Then for every r > 2, we have

Pl=o (% +2).

r

4 Guth’s structure theorem: curves in R

In [8], Guth proved Theorem 1.7, which is a structure theorem for sets of lines in R3.
As discussed in the introduction, Guth proved his result by induction on the number
of lines. He used polynomial partitioning (Theorem 1.5) to break the collection of
lines into several significantly smaller sub-collections.

Guth stated his result for lines, which are the primary objects of interest when
studying the distinct distances problem in the plane. However, his proof relies only
on a few properties that are specific to lines:

1. A special case of Lemma 3.2 where F =R and F = 1.

2. Lemma 3.3.

3. A variant of Bézout’s theorem: Let f be a polynomial of degree D. Then a line

not contained in Z(f) intersects Z(f) in at most D points.

4. The Szeméredi-Trotter theorem: Any set of n lines in R? determines O(n?r—3 +

nr~1) r-rich points, for each r > 2.

We formulated Lemmas 3.2 and 3.3 in a way that holds for arbitrary curves in R3.
The third item could be replaced with Lemma 2.5: If v C R? is an irreducible curve
defined by polynomials of degree at most E and f € Rz, y, z] of degree D satisfies
v ¢ Z(f), then |[yN Z(f)| = Og(D). Finally, the Szeméredi-Trotter theorem has the
following generalization [5].

Lemma 4.1. Let T be a set of n irreducible curves in R?, each defined by polynomials
of degree at most E. Suppose that for every pair of distinct points p,q € R?, at most
M curves from I' are incident to both p and q. Then for each r > 2, the number of
r-rich points determined by T is Og p(n?r=> +nr—1).

Keeping these minor changes in mind, Guth’s theorem can be restated as a struc-
ture theorem for curves in R3.
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Lemma 4.2. For every e > 0 and E,M > 1, there exists C' that satisfies the fol-
lowing. Let T be a set of n irreducible curves in R3, each defined by polynomials of
degree at most E. Suppose that for every pair of distinct points p,q € R, at most M
curves from T' are incident to both p and q. Let 2 < r < 2n'/? and let ' = [9r/10].
Then there exists a set S of surfaces in R® with the following properties.

FEvery surface in S is defined by polynomials of degree at most C.
Every surface W € S contains at least rn'/?>¢ curves from T.

S| < 2nt/2—ep~t

[Pr(T)\ Upes Pr(Tw)| < Cn?/2Fer2,

Using Proposition 2.12, we can extend Lemma 4.2 to curves in RY.

Lemma 4.3. For everye >0,d > 3 and E,M > 1, there exists C' that satisfies the
following. Let T be a set of n irreducible curves in R?, each defined by polynomials of
degree at most E. For every pair of distinct points p,q € R, at most M curves from
I are incident to both p and q. Let 2 < r < 2n'/? and let v’ = [9r/10]. Then there
exists a set S of surfaces in R? with the following properties.

e Fuvery surface in S is defined by polynomials of degree at most C'.
o Every surface W € S contains at least rn'/>*¢ curves from T.

o |S| < 2nt/?Ept,

o [Pr(I)\ Upes Pr(Tw)| < Cn?/2tep=2,

Proof. Use Proposition 2.12 (as formulated precisely in Appendix A) to find a pro-
jection 7 : R? — R? that is non-degenerate with respect to the set of varieties
X ={U,er7v: " CT'}. Set I'ps = {7(y) : v € TI'}. By the second part of Propo-
sition 2.12, for every pair of distinct points p,q € R3, at most M curves from I'gs
are incident to both p and ¢. We apply Lemma 4.2 to I'gs to obtain a set Sgs of
surfaces, each defined by polynomials of degree at most C' = C(g, E). Since 7 is
non-degenerate, for each Sgs € Sgs, there is a corresponding surface S C R defined
by polynomials of degree at most E with the following property: For each v € I" with
7(7y) C Sgs, we have that v C S. Let S be the set of surfaces in R? that correspond
to the surfaces of Sps. Then this set of surfaces satisfies the requirements of the
lemma. O

5 Complex incidence geometry inside a real hy-
persurface

5.1 Complex lines in a real variety

In this section we study the set of complex lines that can be contained in a real variety
in RS. Throughout this section, we identify C with R? using the map (z+1iy) — (z,y).
We similarly identify C* with R6. We call a subset of R® a complex line if it is the
image of a complex line in C* under this identification. We call a subset of R® a
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complex plane if it is the image of a complex plane under this identification. We often
abuse notation and refer to a complex line as a subset of C® or of R®.

The set of all complex lines in C3 can be identified with an algebraic structure
called a quasi-projective variety. For our purposes, however, it will be simpler to
restrict attention to a large subset of the set of complex lines. We say that a line
L c C3? is standard if it is not parallel to the complex 223 plane. Every standard
line L can be expressed in the form (0,a,b) + ¢ - (1, ¢, d) with fixed a,b,c,d € C and
a parameter t € C. We define

G(L) = (Re(a),Im(a), Re(b), Im(b), Re(c), Im(c), Re(d), Im(d)).

Note that G is a bijection between the standard complex lines and R8.
When working with standard lines, it will be useful to define the map

o(a1,az,b1,bo,c1,¢2,d1,ds, s, 1)
= (s,t,a; + sc; — teg, ag + sco + teg, by + sdy — tdy, by + sdy + tdy).

That is, ¢(ay, ag, b1, be, ¢1, Ca, dy, do, s, 1) is the image of the point (0, aj +iaz, by +ibs) +
(s +1t)(1,c1 + icy, dy + id) under the identification of C* with RS.

For a variety U C R®, we define L(U) to be the set of standard complex lines
contained in U. Abusing notation slightly, we define G(U) = G(L(U)) C R®.

The following observation plays a crucial role in the arguments that follow. If
U C RS is a variety, p € Uyeg, and H C U is a plane that contains p, then H must be
contained in the tangent space T,U. If L C U is a complex line that contains p and is
contained in U, then more is true. In addition to L being contained in T,U, it must
also be contained in a certain subspace of 7,,U that is compatible with the complex
structure of L. To make this precise we define the operator J: RS — R as

J (w1, Y1, 02, Yo, T3, T3) = (=Y1, T1, —Y2, T2, —Y3, T3). (2)
If we identify R® with C?, then J corresponds to multiplication by . For p € Uyeg we
define the complex tangent space

VP(U) = Tp(U) N ‘](TPU)' (3)

This is (a translate of) the largest complex linear subspace of C? that is contained in
T,U. Observe that V,U must have an even dimension. In particular, if U is a proper
subvariety of R® then V,U has dimension at most four.

With these definitions, we can begin to study the set of complex lines contained
in a real variety.

Lemma 5.1. Let U C R® be a variety defined by polynomials of degree at most D.
Then G(U) is a variety defined by polynomials of degree at most D.

Proof. Let f1,..., fr be polynomials of degree at most D such that U = Z(f1,..., fx)-
For each index j, consider the polynomial

<a17a27b17b27017C27d17d2757t) = fj<¢(a17a27b17b27017627d17d2757t))
= Z Qjupar, az,ba,ba, c1, o, dr, d2)s"t". (4)

0<u<v<D
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A standard line L with G(L) = (a1, ag, by, by, ¢1, ¢2,dy, d2) vanishes identically on
Z(fj) if and only if Qjﬂw(al,ag,bl,b2,cl,02,d1,d2) = 0 for each 0 S Uu S v S D. We

conclude that
ﬂ (N Z2(Qjuw). (5)

Jj=10<usv<D

Each of these polynomials has degree at most D. O

If IT C R® is a complex plane, then by Lemma 5.1, the variety G(II) C R® is defined
by polynomials of degree one. In fact, if IT is not parallel to the z5z3 plane then G(I1)
is a four-dimensional linear variety in R®. Under the standard identification of R3
with C*, the variety G(II) is a complex plane. Furthermore, if IT and IT" are complex
planes in R® then G(IT) and G(IT') are either disjoint (when IT and II' are parallel),
or they intersect at a single point (corresponding to the complex line IT N IT").

For p € R® we define G, C R® to be the (image of the) set of standard complex
lines that contain p. Again, G, is a four-dimensional linear variety in R®. Under
the standard identification of R® with C*, the set G, is a complex plane. If p and p/
are distinct, then either G, and G, are disjoint (when the complex line containing
p and p’ is parallel to the complex z523 plane), or they intersect at a single point
(corresponding to the complex line containing p and p').

Lemma 5.2. Let U be a proper subvariety of RS defined by polynomials of degree at
most D and let p € Uyeg. If G, N G(U) is finite, then it has cardinality at most D?.
If it is infinite, then it has dimension one or two. If G, N G(U) has dimension two
then there is a complex plane I C U that contains p.

Proof. If L is a complex line with p € L C U, then L must be contained in the
complex plane II = V,U. This means that the set of all such complex lines is given by
G(U) NG, N G(II). This variety has dimension at most two. The dimension is two if
and only if G,NG(II) C G(U), in which case Il C U. Since G, NG(II) is a real plane,
we can think of G(U) NG, N G(II) as a variety in R?. By Lemma 5.1 this variety is
defined by polynomials of degree at most D. By Corollary 2.9, if G(U) NG, N G(II)
is finite then it has cardinality at most D2 O

For a standard complex line L C R®, we define H(L) to be the set of images of
the standard complex lines that intersect H. We refer to H(L) as the hairbrush of
L. A hairbrush is a six-dimensional variety in R® defined by polynomials of degree
two. If L and L' are standard complex lines that intersect at a point p and span the
complex plane II, then H(L) N H(L') = G, U G(II).

Lemma 5.3. Let IT C R® be a complex plane and let U C G(II) be a variety of
dimension at least two. Then there does not exist a real proper subvariety X C 11
such that every complex line corresponding to a point of U is contained in X.

Proof. Assume for contradiction that there exists X C II as stated in the lemma.
Since dim X, < 2, the set of complex lines from G(II) that have an infinite intersec-
tion with Xgye is of dimension at most one. Similarly, the set of such lines that are
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contained in X is of dimension at most one. Recall that two generic lines from G(II)
intersect. Combining the above, we conclude that a generic line Ly € G(II) satisfies
dim(Lo N Xyeg) < 1, dim(Lp N Xging) < 0, and dim(H(Ly) N U) > 2. Fix a line Ly
that satisfies these three properties.

We claim that every point p € Lo N Xgne satisfies dim(G, N U) < 1. Indeed, if
dim(G, NU) = 2 then G, N G(II) C U, which implies that the union of the lines in
U is II. This contradicts the assumption about X being a proper sub-variety of II.

For a point p € Ly N X,ee we have that dim V,X < 2 (since this dimension must
be even). In this case, at most one complex line L C X satisfies p € L. This implies
that the set of lines L C X with L N Ly C X, is contained in a subvariety of U of
dimension at most one. We conclude that dim(H (Lg) N U) < 1, which contradicts
the definition of L. O

Corollary 5.4. Let U C R® be a variety defined by polynomials of degree at most D.
Let T C RS be a complex plane that is not contained in U. Then dim(G(U)NG(I1)) <
1

Proof. Suppose to the contrary that dim(G(U) N G(II)) > 2. Then for each w €
G(U) N G(II), the line L,, is contained in U N1I, which is a proper subvariety of II.
This contradicts Lemma 5.3. O

Combining Lemma 5.2 and Corollary 5.4, we obtain the following.

Lemma 5.5. Let U C R® be a variety defined by polynomials of degree at most D.
Let II C RS be a complex plane that is not contained in U. Then with the exception
of O(D*) points, every p € U N1l is incident to at most D* complex lines that are
contained i U N 1I.

Proof. By Corollary 5.4, G(U)NG(II) is of dimension at most one. We identify IT with
R*, considering the intersection G(U)NG(II) as a variety in R* defined by polynomials
of degree at most D. If p € UNII satisfies dim(G, NG(UNII)) = 1, then we call it an
exceptional point. Since |G, NG| < 1 whenever p and p’ are distinct, the number of
exceptional points is at most the number of irreducible components of G(U) N G(II).
By applying Lemma 2.6 in R*, we get that this number is O(D?*). If p is not an
exceptional point then G, N G(U N1I) is finite. Since G, N G(II) can be identified
with R?, we can use Corollary 2.9 to conclude that |G, N G(U N1I)| < D2 O

5.2 Real varieties ruled by complex planes

Recall that a variety U C R is almost ruled by complex planes if for each regular
point p € U, there is a complex plane II C U that contains p. If U = R then
U is almost ruled by complex planes; this situation is not very interesting. If U is
a non-empty proper subvariety of R® that is almost ruled by complex planes, then
dim(U) > 4. If dim(U) = 4 and U is ruled by complex planes then U must be a finite
union of complex planes. Finally, if dimU = 5 and U is ruled by complex planes,
then for each p € U,eg, the complex plane V,U is the unique complex plane satisfying
pellCU.

eg»
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Lemma 5.6. Let U = Z(f) C RS be an irreducible hypersurface with deg f < D.
Then either U is almost ruled by complex planes or U contains at most 2D*(D — 1)
complex planes.

Proof. Without loss of generality we can assume that Vf # 0 on U,,. Let p € U
and suppose that Vf # 0. For each index j = 1,...,6, let e; be the j—th unit basis
vector of R®. The vector obtained by projecting e; onto the complex tangent plane
Vo(U) is

¢j- Vfp) ej- J(Vf(p)

R e P/ IERRANEALY
L I oy eSS
R T AR A T R

Motivated by this observation, for each p € R% and each index j = 1,...,6, define

Eif(p)=¢;- IVFf* = (e - V)V I(p) — (e - J(Vf(p))J(V[(p)).

For each index j, if V f(p) is zero then Ej ;(p) = 0. Otherwise, the vector E; ;(p) has
the direction obtained by projecting e; onto the complex tangent plane V,(U). This
vector is 0 when e; is orthogonal to V,(U). Note that E; ;(p): R® — RS is a tuple of
polynomials of degree at most 2(D — 1).

Set E;(p) = (E14(p), ..., Es(p)). Let W: R® x R® — R be defined as

W(p,v) = f(p+v-Ez(p)).

For p € U define W, : R® — R as W,(v) = W(p,v). If Vf(p) = 0 then W,(v)
is the zero polynomial. Otherwise, W,(v) is the zero polynomial if and only if the
complex plane V,(U) is contained in U. Note that W (p,v) has degree at most D in
the variables vy, ..., v5. Thus, we may write

Wo(v) = 3 Qu(p)v’,

where the sum is over all multi-indices I = (ji,...,jg) of weight at most D, and
Q(p) is a polynomial in p of degree at most 2D (D — 1). Define

U'=Un (Z@Q).

Then U’ C R is the union of Uy with the set of points p € U for which the complex
tangent plane V,(U) is contained in U. If U’ = U then U is almost ruled by complex
planes.

If U’ is a proper sub-variety of U, then it has dimension at most four and is defined
by polynomials of degree at most 2D(D — 1). Every complex plane contained in U
is also contained in U’ (including those complex planes contained in Uy, ), and thus
by Lemma 2.6, U contains O(D'?) complex planes. In the following paragraph we
obtain a stronger bound.
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A generic complex line in R® intersects each complex plane in U at a distinct
point. Since U’ has dimension four, such a generic line also has a zero-dimensional
intersection with U’. We consider such a line L that is not contained in U. Then
dim(L N U) < 1. We identify L with R? and define f € R[z,y] as the polynomial
obtained by restricting f to L. Similarly, there exist fi,..., fi € R[z,y| of degree
at most 2D(D — 1) such that U' N L = Z(f, f1,..., fx). Without loss of generality,
we can suppose that f, fi,--., fx do not share any common factors. If £ = 0 then
Lemma 2.8 implies |U' N L| < D. If k > 1 then applying Lemma 2.7 to f and fi
leads to |[U' N L| < 2D?(D — 1). We conclude that U contains at most 2D?*(D — 1)
complex planes. O

5.3 Point-line incidences inside a real hypersurface: prelim-
inary bounds

In this section we prove several preliminary bounds on the number of point-line inci-
dences inside a real hypersurfaces. In the next section we use these results to prove
Proposition 1.9.

Lemma 5.7. Let U be a proper subvariety of RS defined by polynomials of degree at
most E. Let S C R® be an irreducible surface defined by polynomials of degree at
most D. Let P C Ueg be a set of m points. Let L be a set of n complex lines that are
contained in U but not in any complex plane that is contained in U. Furthermore,
suppose G(L) € S for each L € L. Then

I(P, L) = Op p(m +n). (6)

Proof. Consider a point p € P that is contained in a complex plane II C U. Then
IT = V,U and every complex line L C U that is incident to p is also contained in II.
This implies that no line of £ is incident to p, so we can safely discard it from P. We
thus assume that no point of P is incident to a complex plane that is contained in U.

For each p € P, define v, = G, N G(U). If dim(y, N S) < 0 then Lemma 2.6
implies |y, N S| = Op (1). The number of incidences formed by points of this type
is OD,E(m).

Set Py = {p € P: dim(y,NS) = 1}. Assume that S ¢ G(U). In this case, |Py] is
at most the number of irreducible one-dimensional components of SN G(U). Lemma
2.6 implies that |P;| = Op g(1), which in turn leads to I(P1, L) = Op g(n). This
establishes (6).

Next, assume that S C G(U). We consider a complex line L € £ and recall that
G(L) € S. We claim that either S C H(L) or |P N L| = Op(1). Indeed, every
p € PN L satisties G, C H(L), so G,NS C H(L)NS. If p,q € P are distinct then
|G, NG, <1, which implies that |P N L| is at most the number of irreducible curves
in H(L)NS. If S ¢ H(L), then by Lemma 2.6 this quantity is Op(1).

Assume that there exist two lines L, L’ such that G(L),G(L') € S and S C
H(L)N H(L). Since G(L') € S C H(L), the lines L and L’ intersect at some point
p € R and span a complex plane II. This implies that S € H(L)NH (L") = G,NG(II).

18



Recall that for distinct p and ¢ we have |G, N G,| < 1. Thus, S C G,, leads to
P, C {p}. In this case I(Py, L) < n, which establishes (6).

Finally, suppose that at most one line L satisfies G(L) € S and S C H(L). This
line contributes at most m incidences. By the above, every L' € £\ {L} is incident
to Op(1) points from P;. Once again, (6) holds. O

Lemma 5.8. Let U C RS be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U but are not in
any complex plane contained in U. Let ro = D* + 1. Then

[Py (£)] = Op(n?).

Proof. Let H be the set of complex planes H C C® that contain at least 2n'/? lines
from £. By Lemma 3.2 we have |H| < n'/2. Since no line from £ is contained in
a complex plane H C U, for each H € H the intersection H N U is a variety of
dimension at most 3 defined by polynomials of degree at most D. By Lemma 5.5,

Pro (L)l = Op(1).

Let W be the set of complex irreducible degree two surfaces W C C? that contain
at least 8n'/2 lines from £. By Lemma 3.2 we have |[W| < n'/2. Since the lines in an
irreducible degree two surface determine at most one 3-rich point, for each W € W
we have

|Pry (Lw)| < [Ps(Lw)| < 1.

If L € £ is not contained in a plane from H then L intersects each plane from
‘H at most once. Similarly, if L € L is not contained in a surface from W then L
intersects each surface from W at most twice. Let £’ be the set of lines that are not
contained in a plane from H nor a surface from . Using Theorem 3.1 to control the
contribution from £’, we conclude that

[Pro (L) < [Po(L)]+[LI(1H] +2DV]) + Op([H]) + V|
< O(?’L3/2> +7,L(nl/Q + 2n1/2) + OD(nl/Q) +n1/2
= OD(TLS/Q).
[

A routine random sampling argument allows us to bound the number of lines that
are r rich for larger values of r. For details, see for example [30, Section 3].

Corollary 5.9. Let U C R® be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U but are not in
any complex plane contained in U. Then for each r > D?,

P.(L)] = Op(n®?r~3/2).
P (L) (

Corollary 5.10. Let U C R® be an irreducible variety defined by polynomials of
degree at most D. Let P be a set of m points in RS. Let L be a set of n complex lines
that are contained in U but are not in any complex plane contained in U. Then

I(P,L£) =0p (n*?+m).
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Proof. Let jo be the smallest integer such that 29 > D?. By Corollary 5.9,

I(P,L) <2(D*+ )m+ Y 277 Pyy (L)

Jj=Jjo

<2(D*+ )m+ Op(n®?) )y "2 - 279/7
=0
= Op(n*? 4+ m).

5.4 Proof of Proposition 1.9

We are now ready to prove Proposition 1.9. The crucial step is to establish the
following incidence result for points and curves in R3. The following proof is closely
modeled on the arguments in [30] by the second author, which are in turn based on
arguments of Sharir and Zlydenko [20].

Before stating the next result, it will be helpful to introduce a definition. Let P be
a set of points and let ' be a set of curves in R®. Let K: N — R be a non-decreasing
function. We say that P and [ have K-good incidence geometry inside surfaces if for
every irreducible polynomial f € R[z,y, 2], point set P’ C PN Z(f), and set [ C T’
of curves contained in Z(f), we have

I(P".I") < K(deg [)(IP'| + I"]).

In brief, P and I" have good incidence geometry inside surfaces if there do not exist
large subsets of P and I' that cluster into low degree surfaces and generate many
incidences therein.

Lemma 5.11. Let E,B > 1 and let K: N — R be a function. Let P be a set
of n points in R® and let T’ be a set of m irreducible curves in R®, each defined
by polynomials of degree at most E. Suppose that P and I' have K-good incidence
geometry inside surfaces, and that for all sets P' C P and I'" C T', we have

I(P',T") < B(|P']"? + |')). (7)
Then
I(P,T) < C(m*"n3® + m+n),
where the constant C' depends on B, E, and K (t) for some t = Og(1).

Proof. In what follows all implicit constants may depend on B and E. We prove the
result by induction on m. The base case of the induction is m < myg, where mg is a
constant specified below. This base case holds by taking C' to be sufficiently large.
Next, suppose that m? > cn3, where c is a constant specified below. In this case,
(7) implies
I(P,L) =0 (n**+m) =0 (m**n** +m),
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where the implicit constant depends on ¢. If C' is sufficiently large compared to ¢ and
B, then the induction closes and we are done. Henceforth we will assume that

mo < m < c?n??,

Partitioning the space. We refer to the case where m > n?/3 as Case 1 and to
the case where m < n?/3 as Case 2. In Case 1 we set D = |cn®°m~2/°] and in Case
2 we set D = |em!/?]. It can be easily verified that D < cn'/? in both cases. At this
point we fix mg = [¢2]; this ensures that D > 1. To recap, in both Case 1 and Case
2 we have

1< D<en'/?,

In addition, in both Case 1 and Case 2 we have
D < em!/?,

We apply Corollary 2.3 to obtain a nonzero polynomial f € R[xq, x9, 23] of degree
at most D that satisfies the following. Each connected component of R?\ Z(f) inter-
sects O(mD™?) varieties from I" and contains O(nD~?) points from P. As discussed in
Remark 2.4, we may suppose that Z(f) is a surface (that is, Z(f) is equidimensional
and each irreducible component has dimension two).

Recall that R*\ Z(f) is a union of O(D?) cells. For each index j = 1,...,0(D?),
let P; be the set of points of P in the j-th cell and let I'; be the set of elements of I’
that intersect the j-th cell. We also set Py = P N Z(f), no = |Pol, and n’ = n — ny.
By definition, for each index j we have |P;| = O(nD~?) and |T';| = O(mD~?). Note
that n' = . [P;].

We first bound I(P \ Py, I'). In Case 1, by applying (7) separately in each cell,
we obtain

I(P\Po,T) = 3 OB+ 15]) = O(D* - ((555) ™" + 755))
’ (8)
n3/2
= O(2 5 +m- D) = O(m"n)
In Case 2, the number of elements of T' that intersect a cell is O(mD~%) = O(1).
Since each such cell contains O(nD~3) points, we obtain

I(P\Po,T) <Z!7’HF|—ZO [Pil) = On'). (9)

Handling curves on the partition. It remains to derive an upper bound on
I(Py,T'). As discussed above, we can assume that each irreducible component of
Z(f) has dimension two. Denote these two-dimensional components as Uy, ..., Up,
where D' < D. For each 1 < j < D'| let f; be a minimum degree polynomial
satisfying Z(f;) = U

We set I(Py,I") = I' + I" as follows. Let p € Py be incident to v € I". If there is
an index 1 < j < D’ so that p € U; and dim(U; N~) = 0, then the incidence (p, )
contributes to I’. Otherwise (p,~y) contributes to I”.
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Since each element of I' is defined by polynomials of degree at most FE, if vy € T’
is not contained in U; then Lemma 2.5 implies |y N U;| = O(D;). In particular, each
curve v € I' can contribute O(D) incidences of the form I’. Thus

I' = O(Dm) = O(m3/>n3/?). (10)

It remains to bound I”. Let P} denote the set of points p of Py such that p € U;
and p & Uy for each j' < j. Let I'; denote the set of curves v € I' for which v C Uj
and v ¢ Uy for each j' < j. For every incidence (p,~y) contributing to I” there is an
index j such that p € Pj and v € I',.

For each index j, applying Lemma 2.13 to U; implies the following. Either Uj
contains O(D?) exceptional curves defined by polynomials of degree O(1), or U; is
doubly ruled by such curves. In the latter case deg(f;) = O(1), where the implicit
constant depends only on F. By re-indexing, we can suppose that Uj,...,U, are
doubly ruled by curves defined by polynomials of degree O(1), and Uy, ...,Up: are
not. (If no U; is doubly ruled then we set h = 0. If all U; are doubly ruled then we
set h=D".)

Since P and I' have K-good incidence geometry inside surfaces, for each index
j=1,...,h we have

I(P;, 1) = O(|Pj] + [I]),

where the implicit constant only depends on K(t) with t = Og(1). Thus

h

S 1(PLTY) (ZW\ +Z\F’) (11)

j=1

It remains to control incidences (p,~) where p € P} and « € I'; for some h + 1 <
J < D'. We call a point p € P} rich if it is incident to at least two curves from I';.
Otherwise p is poor. For each index j = h+1,... D", let P; ;,, and P; ,, be the set
of rich and poor points of P}, respectively. Deﬁne

rlch U rlch and PPOOT = U J poor*

Jj=h+1 j=h+1

Set Npoor = | Ppoor| and Nyich = |Pricn|- Note that npeer + Muich < ng. We have

D/
Z (PJ/ poor? F, < 2 Z | 7 poor 2npoor~ (12)
J=h+1 j=h+1

/
In a similar vein, let I . o tonal

be the set of non-exceptional curves. Define

be the set of exceptional curves in F;-, and let
1“/

J,plebeian
D’ D’
— ! L /
Fexceptional - U Fj,exceptional and Fplebelan - U Fj,plebeian'
j=h+1 j=h+1

22



/

Since each curve v € T’ is incident to O(1) rich points, we have

J,plebeian
D’ D’
Z ]( ]/',richJ F;‘,plebeian) - Z O(|F;’,plebeian|)' (13>
j=h+1 j=h+1

Finally, Lemma 2.13 implies

.
Cexceptionat] = Y O((deg f;)*) = O(D?) = O(c*m).

j=h+1

If the constant c is selected sufficiently small compared to E, then

‘Fexceptional| < m/2
We can now apply the induction hypothesis to conclude that

1 (Prich7 I‘exceptional) S C’(|’Prich| |Fexceptional|3/5 + |Prich| + |Fexceptional|> ( 1 4)
< C(mP5n35 )25 4 nygen +m/2).

Wrapping up. In the above, we partitioned the incidences of P x I' into several
cases. The incidences inside the cells of the partition are bounded in (8) and (9).
The number of incidences with points on the variety of the partition was split into
I’ and I”. In (10) we bounded I’. The incidences of I” were further partitioned and
bounded in (11), (12), (13), and (14). Combining all these bounds gives

I(P,L)=0 (m3/5n3/5 +m+n') + 2npoor + C(m35n3/5 235 4 sy +m)2),

where the implicit constant depends on B, E, and K (t) with ¢ = Og(1). Recall that
Nrich + Npoor + 7' = n. By taking C to be sufficiently large with respect to B, E, and
K(t), we obtain

I(P,L)<C (m3/5n3/5 +m+n).

This closes the induction and finishes the proof. n

Lemma 5.12. Let U C RS be an irreducible variety defined by polynomials of degree
at most E that is not almost ruled by complex planes. Let P C Uy be a set of m
points. Let L C RS be a set of n complex lines that are contained in U but not in any
complez plane contained in U. Then

I(P, L) < C(m*°n®® + m +n).

Proof. We first claim that each point p € P satisfies dim(G(U) N G,) < 1. Indeed,
assume that there exists p € P such that dim(G(U) N Gp) > 1. By Lemma 5.2, the
complex lines of G(U) N G, are contained in the complex plane V,U. We may then
repeat the first paragraph in the proof of Lemma 5.7.
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For each p € P, define 8, = G(U) N G,; this is a variety in R® of dimension at
most one. We have

[(P,L) = I({G(L): L € £},{B,: p € P}}.

Let Y={G(L): L e L}YU{B,: p € P} and let

x={Jv:ycy}

Yey’

That is, X is the family consisting of all finite unions of points from {G(L): L € L}
and curves from {8,: p € P}.

Use Proposition 2.12 to select a projection 7: R® — R3 that is non-degenerate
with respect to X'. Let Q = {m(G(L)): L € L} and let I" be the set of all irreducible
curves v C R? with v C 7(f,) for some p € P. By Lemma 2.6, |I'| = O(n), and each
curve v € I' is defined by polynomials of degree O(1).

We claim that

I(P,L) <I(Q,I') 4+ O(m). (15)

Indeed, if p € P is incident to L € L, then either there is an irreducible curve
v C w(By) with G(L) € v, or G(L) is a zero-dimensional component of ,. By
Lemma 2.6, 3, has O(1) irreducible components, so there are O(m) incidences of this
type.

Since the projection m non-degenerate, it does not introduce new incidences. By
Corollary 5.10, there is a constant B depending on E such that for all sets @ C Q
and IV C T,

1(Q.I") < B(Q* +1")).

Again, since 7 is non-degenerate, Lemma 5.7 implies that Q and I' have K-good
incidence geometry inside surfaces, where K: N — R is a function that depends only
on E. Applying Lemma 5.11 to Q and I', we conclude that

1(Q,T) = O(m*n3/> + m +n). (16)
The result now follows by combining (15) and (16). O

Using Lemma 5.12, we can now prove Proposition 1.9. We first recall the statement
of this proposition.

Proposition 1.9. Let U C R® be an irreducible variety defined by polynomials of
degree at most D. Then at least one of the following two statements holds.

e U is almost ruled by complex planes.

e U contains at most 2D*(D — 1) complex planes. If L is a set of n complex lines
that are contained in U but not contained in any of these planes, then for each
r > D? we have

|Ureg N Pr(£)| = OD(n3/2T_5/2 + n?”_l),
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Proof. If U is almost ruled by complex planes then the first item holds and we are
done. Suppose that U is not almost ruled by complex planes. Then by Lemma 5.6,
U contains at most 2D%(D — 1) complex planes. Let £ be a set of complex lines
contained in U that are not contained in any complex plane contained in U. Let
r > D? and let C' = C(D) be the constant from Lemma 5.12.

We first consider the case of r < 2C'. We address this case by imitating the proof
of Lemma 5.8. Let S be the set of complex planes that contain at least 2n'/? lines
from £. We also insert into § every irreducible degree two surface that contains at
least 8n'/2 lines from £. Lemma 3.2 implies |S| = O(n'/?). By Lemma 5.5, for each
plane S € S the number of r-rich points formed by lines in Lg is Op(1). The lines
contained in an irreducible degree two surface form at most one 3-rich point. The
total contribution from all elements in S is Op(n'/?). A line L € L intersects a
surface of & that does not contain L in at most two points. Summing this over all
lines of £ and all surfaces of S leads to O(n*?) intersection points. Thus, removing
from L all lines that are contained in at least one surface of S decreases the number
of r-rich points by O(n%/?).

After the above pruning of £, we can apply Theorem 3.1 on £. The theorem
states that P,(L£) = Op(n®/?). By the above, after bringing back the removed lines
the number of 7-rich points remains Op(n/?). Since r < 2C, we have that Op(n®/?) =
OD(n3/2/r5/2).

We move to consider the case of r > 2C. Set P = U,eg N'P-(L). Applying Lemma
5.12, we have

re [Pl < I(P,L) < C(|PP*n*° +|P| +n).

Since r > 2C, after subtracting C|P| from both sides we obtain
r-|Pl/2 < C (PP +n).

Rearranging yields the bound in the statement of the proposition. O]

6 A structure theorem for lines in C?

In this section we prove Theorem 1.8. As discussed in the introduction, the theorem is
proved by induction on the number of lines. We use Theorem 2.2 to partition RS into
open connected cells, and apply the induction hypothesis inside each cell. The main
difficulty occurs when many of the r-rich points are contained in the boundary Z(f)
of the partition. If an r-rich point p is contained in Z(f), then either many complex
lines incident to p are contained in Z(f), or many such lines properly intersect Z(f).
In Section 6.1 we develop tools to understand the former case, and in Section 6.2 we
develop tools to understand the latter. Finally, in Section 6.3 we use these tools to
prove Theorem 1.8.
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6.1 A structure theorem for complex lines inside a real vari-
ety

Lemma 6.1. Let U C RS be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U. Let r be
sufficiently large compared to D. Then there is a set S of complex planes in C* such
that each S € S contains at least 2rn'/?*¢ lines from L, and

(Ureg N PALN PT(ES)‘ — Op(n®* =2 4 Y, (17)
SeS

Proof. We first consider the case where U is almost ruled by complex planes. In this
case, for each p € Ueg NP,(L), every line from £ that contains p is contained in V,U.
Let S be the set of planes contained in U that contain at least 2rn'/2*¢ lines from L.
Let S’ be the set of planes contained in U that contain between 1 and 2rn'/?*¢ lines
from £. By Theorem 3.4, we have

> PuLs) =Y O(Ls]r ™ +|Lslr™)

Ses’ Ses’
= O(rn*/**= . Z |Ls|r™3 + Z ILs|r™) = O(n**5r=2 4 nrY).
ses Ses’

We conclude that

U N PAON U PrlLs)| < 30 PoLs)

Ses Ses’
= O(n** 52 47 h).

We now consider the case where U is not almost ruled by complex planes. By
Proposition 1.9, the variety U contains at most 2D?(D — 1) complex planes. Let Sy
be the set of complex planes in U. Let S be the set of planes in &y that contain at
least 2n'/2*er lines from L.

Consider p € U, that is contained in a plane S € &y. Then every line from £ that
is incident to p is contained in Lg. By repeating the above argument that involves
Theorem 3.4, we have

> P(Ls)| = O 4. (18)

SeSo\S

Let £ = L\ Uges, L£s- By Proposition 1.9 we have
1P.(L)| = O(n* =52 4 ). (19)

Combining (18) and (19) yields (17) and finishes the proof. O
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6.2 A structure theorem for complex lines intersecting a real
variety

In this section we analyze the structure of complex lines that properly intersect a
real variety U C R® and determine many r-rich points therein. The basic idea is as
follows. Suppose that £ is a set of complex lines in RS that properly intersect U. For
each L € L, the intersection LN U is a union of isolated points and real curves in RS.
Ignoring the isolated points, we can use Lemma 4.3 to obtain a structure theorem
for the set of curves {LNU: L € L}. Lemma 4.3 gives us a collection of irreducible
real surfaces in R that cover most of the 7-rich points inside U. Lemma 6.2 shows
that, for every irreducible surface S C R® that contains many real curves of the form
LNU, there is a complex surface in C? that contains the corresponding lines from L.

Before getting to Lemma 6.2, we introduce terminology and results concerning
the interplay between real and complex varieties. We now identify R? with the real
part of C¢. That is, we think of p = (py,...,ps) € R? as (py1,...,ps) € C4 The
complexification U* of a variety U C R? is the smallest variety in C? that contains U.
In other words, U* is the Zariski closure of the embedding of U in C¢. We have that
dimc U* = dimg U. In the opposite direction, for a variety W C C? we define W (R) to
be the set of points of W that have real coordinates. We have dimg W (R) < dim¢ (W),
and strict inequality is possible. Further information can be found in [29].

If U C R? is defined by polynomials of degree at most D, then U* C C? is defined
by polynomials of degree at most D. Similarly, if W C C¢ is defined by polynomials
of degree at most D, then W (R) C R? is defined by polynomials of degree at most
D. (Indeed, we can split each polynomial that defines W into two polynomials of
Rlxy, ..., z4], by separately considering the real and imaginary parts.)

As in the previous sections, we also identify C? with R?? using the bijection

L(xl +iy1> e, Tg t Zyd) = ($17y17 B axdvyd)v
where x1,y1,...,24,ys € R.

Lemma 6.2. Let U C R?*? be an irreducible variety defined by polynomials of degree
at most D. Then there exists an irreducible variety W C C¢ defined by polynomials
of degree Op 4(1) such that dim¢ W < dimg U and U C (V).

Proof. We define the linear functions 7 : C?¢ — C? as
(@1, Y15+ -5 Tay Ya) = (1 + @Y1, T2 + Y2, ..., Ta + 1Ya, T1 — WY1, T2 — Y2, - - Ta — 1Yd)-

Since the expressions xy + iy1, ..., Tq + 1Yq, T1 — Y1, - . ., Tq — 1Yq are linearly in-
dependent, we may use them as another coordinate system. Using these coordinates,
we consider the projection 7 : C2¢ — C? defined by

(X1 + iy, ., g+ 1Wa, T1 — W, - Tg — 1Yq) = (T1 + Y1, - -, Tqg + 1Yag)-

Recall that the complexification U* is defined by polynomials of degree Op 4(1).
By Lemma 2.11, there exists a variety W C C¢ defined by polynomials of degree
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Op.a(1) such that w(7(U*)) C W. Projections, Zariski closures, complexifications,
and linear transformations do not increase dimensions. We thus have that dim¢ W <
dimg U. It remains to show that U C «(W). Consider a point p € U and write

b= (plaCII? s 7pdan) S RQd-

Let p* be the point in C?? having the same coordinates as p. Note that

T(p*> = (pl +iQ17 <oy Dd +iQdap1 - Z-q17 cvosPd — ZQd) € (CQd-

This implies that
m(r(p*)) = (p1 +iqu, ..., pa+iqq) € C,

t((m(T(p™))) = (p1,q1, - - -+ Pds Ga)-

Since «(7(7(p*))) = p, we have that p € «(W). That is, U C «(W). Since U is
irreducible, every component of ((W) either contains U or intersects U in a lower-
dimension variety. Thus, at least one irreducible component of ¢(WW') contains U. To
complete the proof, select a component of (1) that contains U. O

Lemma 6.3. Let U C RS be a variety that is defined by polynomials of degree at most
D. Let L be a set of complex lines that are not contained in U. Let r be sufficiently
large compared to D. Then there is a set S of complex planes in C3 such that each
S € S contains at least 2rn'/?*¢ lines from L and

‘U NP0\ P%T(ES)‘ — Op(n?2+e2).
SeS

Proof. Define I" to be the set of all irreducible curves v C R® such that v ¢ LNU
for some L € £. By Lemma 2.6, [I'| = Op(n), and each curve in I' is defined by
polynomials of degree Op(1).

Let Py be the set of points incident to at least /100 lines from £ at an isolated
point of U N L. Using Lemma 2.6 again, for each L € L, the intersection L N U has
Op(1) isolated points. This implies that |Py| = O(nr~!). Note that

UNP(L) C P, (I') UP.

We apply Lemma 4.3 to I' with %r in place of r, and let S’ be the resulting set
of irreducible real surfaces of degree Op (1) in R®. We have

_ OD,s<n3/2+€7’_2)-

P, (D\ J Ps,(Ts)

100"
S'eS’

Apply Lemma 6.2 to each surface S € &', to obtain an irreducible complex variety
of dimension at most two. Let S” be the set of the resulting irreducible complex
varieties. Note that |S”| = Op.(n'/?=°r~!). Each variety of S&” has an infinite
intersection with a complex line and is thus two-dimensional. A surface of §” contains
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each complex lines that it has an infinite intersection with. Thus, when p € P, (I's/)
for some S" € &', there is a complex surface S” € §” such that p € P%T(ﬁsu)d. This
implies
UNPUON Py, (Ls)| = Open®/Hr72),
ses”

Let S be the set of surfaces S € §” that are complex planes containing at least
2n'/2ter lines from £. We claim that

D IPu(Ls)| = Op(n®Fr ™ 4 7). (20)

Ses\S

Indeed, if S € S” is a plane containing fewer than 2n'/?*¢

3.4,

r lines, then by Theorem

P, (Ls)| = O(m* 1)

Since there are O(n'/2=¢r~1) such planes, their total contribution is O(n%2+r=2).
Consider S € S” that is not a plane. Since S contains at least 2n'/?*<r lines, it
must be a ruled surface. The lines in a ruled surface that is not a plane form at most
one 3-rich point. (For these claims about ruled surfaces in C?, see for example [15].
In particular, see the part titled “Special ruled surfaces”.) The total contribution
from surfaces of this type is O(n/2=5r=!) = O(n*?r=2). This establishes (20), which
in turn completes the proof of the lemma. O

6.3 Proof of Theorem 1.8

Armed with Lemmas 6.1 and 6.3, we are now ready to prove Theorem 1.8. For the
reader’s convenience we first recall the statement of the theorem.

Theorem 1.8. For every € > 0, there exists C' that satisfies the following. Let L be
a set of n lines in C3, let 2 < r < 2n'/2 and let r' = max(2,7/3). Then there exists
a set S of algebraic surfaces in C* with the following properties.

o [fr >3 then every surface in S is a plane. If r = 2 then every surface in S is
wrreducible and has degree at most two.

o Every surface W € S contains at least rn'/>* lines of L.

o |S| < 2n!/FEpt,

o |P(L)\ UWES Pr(Lw)| < Cnd/>er=2,

Proof. The cases of r = 2 or r = 3 are proved in Section 3. By taking C to be
sufficiently large and using the bound from the r = 3 case, we obtain the result for
any constant r. We may thus assume that r > r. for a sufficiently large r. depending
on ¢. In particular, we can assume that " = r/3.

With ¢ and r fixed, we prove the result by induction on n. By selecting the
constant C sufficiently large, we can suppose that n > n. for a fixed value n. of
our choosing. Suppose now that the result has been proved for all sets of lines of
cardinality smaller than n, and let £ be a set of complex lines of cardinality n.
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Since each complex line L € £ is also a two-dimensional real variety in R®, we
can apply Theorem 2.2 to £ with a value of D = D(e) to be specified below. We
obtain a polynomial f € R[xq,...,x¢| of degree at most D such that each connected
component of R®\ Z(f) intersects O(nD~*) complex lines from £. We denote these
open connected components as €y, ..., 8, with s = O(D®). Let U = Z(f), and for
each index j let £; be the set of lines from £ that intersect €2;.

We set n;j = |L£;|. For every index j that satisfies r > Qn;/g, we define S; = ). By

1/2

applying Lemma 3.3 and recalling the assumption » < 2n'/, we obtain that

1P(L) N Q| < |Po(L5)] < 2nyrt < 2007t < 4n®/?r72, (21)

Recall that D depends only on e. If n, is selected sufficiently large compared to ¢
then
477/3/27"72 < Cn3/2+€T72D76746' (22)

For each index j with r < Zn}/ 2, apply the induction hypothesis to £; with the
same values for € and r. We obtain a set §; of complex planes, such that

|Sj| S 2nj1‘/2*5 — O(D72+4sn1/276>.

Define ,
s'=Js;
j=1

Note that |S'| = Op (n'/?7¢). Since P,(£) N Q; C P.(L;), we have
(Po(L) N Q) \ Uses, Prr(Ls)| < On* 572 = O(Cn* D074 72) . (23)

Combining (21), (22), and (23) and taking D to be sufficiently large compared to
€ gives

<PT(£)\U) \ U Pr/(ﬁs)‘ = O(D6 . C’n3/2+€D—6—4€T—2)
Ses’
— O(Cn3/2+sD74sr72> (24>
C

S _n3/2+€7,,—2‘

4

Let S” be the set of complex planes S € S’ that contain at least 2n/?*¢r lines
from L. We repeat the last part of the proof of Lemma 6.3, which involved Theorem
3.4 and ruled surfaces. By the same argument

> PulLs)] < Sn¥ (25)
SeSN\S”

It remains to derive an upper bound on the size of P,.(£L) NU. Let U; = U, and
for each j = 2,...,6 let U; = (Uj_1)sing- By Lemma 2.1 each of the sets Uy, ..., Us
are defined by polynomials of degree Op(1); Us is finite (possibly empty), and U =
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U?‘:l(Uj)reg' In particular, if p € P.(L) N U then there is an index j such that
P € (Uj)reg- Such a point p is either incident to at least /2 lines L € L that are
contained in Uj, or to at least r/2 lines L € £ that are not contained in U; (or both).

For each index j = 1,...,6, we apply Lemma 6.1 and Lemma 6.3 to U;; we
obtain sets S;, S} of complex planes contained in Uj, with [Lg| > 2n'/?+er for each
S € §;US]. For each index j we have

€ - C €
](Uj)reg mp,,/g(ch)\SLg Pr/gws)) = 024772 4 r!) < T2 (o)
€9;

and

[(Uees N Pep( L\ L\ | Py (£s)| = Op (352 4 s ) < %n3/2+er—2, (27)

S€S§

r
2

Let .
S=8"ulJs;us).

j=1

Each plane S € S contains at least 2n'/?¢r lines from £, so by Lemma 3.2 we have

|S| < n'/?75r~1. Combining (24), (25), (26), and (27), we obtain

‘Pr(ﬁ) \ U Pr/g(ﬁs)‘ < Ond/Prep2,

Ses

This closes the induction and completes the proof. O

7 The distinct distances problem

We now study distinct distances in C%. In [12], Guth and Katz used the Elekes-
Sharir-Guth-Katz framework to convert an upper bound for incidences of lines in R?
into a lower bound for distinct distances in R?. In [18], Roche-Newton and Rudnev
used a similar strategy to obtain a lower bound for the number of distinct “Minkowski
distances” spanned by a set of points in R2. If p and ¢ are points in R?, then the
square of their Minkowski distance is the signed area of the rectangle with oppose
corners p and ¢. In contrast to the situation with Euclidean distances, it is possible
for a pair of distinct points to have Minkowski distance zero. Roche-Newton and
Rudnev introduced new arguments to tackle this situation. We will use similar ideas
in order to use the incidence bound from Theorem 1.8 to prove Theorem 1.2.

7.1 The ESGK framework: from distinct distances to line
intersections

The first step in the ESGK framework is to reduce the problem of counting distinct
distances to that of counting quadruples a,b,c,d € C* with A(a,b) = A(e,d). For
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finite sets P, P’ C C?, let A(P,P’) be the set of distances spanned by pairs of points
from P x P’. We also define

QP,P') ={(a,bc,d) € (PxP)?: Ala,b) = Ac,d) and (a,b) # (c,d)}.

Lemma 7.1. Let P and P’ be finite sets in C?, each of size at least n. If no pair of
points from P x P’ is on the same isotropic line, then

4

Proof. Recall that two points p,q € C? satisfy A(p,q) = 0 if and only if there exists
an isotropic line that contains both. Indeed, if p = (p,,p,) and ¢ = (¢s,qy), then
AP, q) = (Pe— ¢2)* + Py — ¢)%, 50 A(p, ¢) = 0 if and only if (p, —2)* = —(py — qy)*.
This can occur if and only if (p, — ¢;) = £i(py — qy).

Since no pair of points from P x P’ is on the same isotropic line, we have that
0¢ A(P,P'). Weset t = |A(P,P')| and write A(P,P’) = {61,...,0:}. For every
1 <j <t weset Nj = {(a,;b) € PxP : A(a,b) = &} Since every pair
(a,b) € P x P’ contributes to exactly one N;, we get that Z;Zl N; > n.

By Cauchy—Schwarz, we have that

2
e P)=23 () zizN;E( E ) S
j=1 Jj=1

The second step in the ESKG framework is to reduce the problem of counting
quadruples in Q(P) to that of counting line-line intersections in C3. Given two
distinct points a = (ay, a,) and d = (d,, d,) in C?, we denote by £, 4 the line in C?
that is defined by the equations

2z = (a, +dy) + (ay, — dy)z,
2y = (ay + dy) + (dy — az)z. (28)

Lemma 7.2. Let a,b,c,d € C*. Then A(a,b) = A(c,d) if and only if the lines £, 4
and . are coplanar.

Lemma 7.2 is proved in [8, Lemma 4.2] for the case of points in R?%. An identical
proof works for points in C?. Rudnev and Selig [19] provide an alternative proof,

which is more involved but provides additional intuition for the situation.
For finite P, P’ C C?, we define

L(P,P")={lya : (a,d) € (PxP)}.

We note that (a,b,c,d) € Q(P,P’) if and only if ¢, 4 intersects the line ¢ .. Thus,
|Q(P,P’)| is the number of pairs of coplanar lines in L(P,P’) x L(P',P).

Lemma 7.3. Let P and P’ finite sets in C*, such that |P|+|P’| < n and no pair from
P x P is on one isotropic line. Let L = L(P,PYUL(P',P) and let p = (py, py, ) €
C3. Then the following holds.
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(a) If p, # i then p is incident to at most n lines from L.

(b) If p, = Li then either p is not incident to any line from L(P,P") or p is not
incident to any line from L(P',P) (or both).

(c) When no point of PUP’ is on the lines defined by y = t+ix, every plane contains
at most 2n lines from L.

(d) Every irreducible surface of degree 2 contains at most 6n lines from L.

Proof. Parts (a) and (b). Let a,d,d € C? be three distinct points. By Lemma
7.2, the lines ¢, 4 and ¢, 4 are coplanar if and only if A(d,d') = 0. That is, if and
only if d and d' are on the same isotropic line.

Fix a point a € C? and an isotropic line £*. We now show that all lines ¢, 4 with
d € ¢* have a common intersection point. Assume that ¢* is defined by y = ix + k
for some k € C. By writing d = (d,, id, + k) and inspecting (28), we note that ¢, 4 is
incident to the point

ag —1ay +1ik tay +ay,+k
= —1 ).
p 2 Y 2 ?

The coordinates of p do not depend on d. We note that p, + ip, = 7k and that
Pz — Py = Gy — lay. In other words, the coordinates of p uniquely determine £
and the isotropic line of the form y = —iz + k' that contains a. Thus, all lines ¢, 4
with fixed a and with d on an isotropic line ¢* intersect at the same point. The
common intersection point p has a z-coordinate equal to —i. When ¢* is of the form
y = —ix + k, then the z-coordinate becomes 1.

Let p € C? satisfy p, # £i. By the above, for every a € P U P’ there exists at
most one d € C? such that p € , 4. Since |P| + |P’| < n, at most n lines from L are
incident to p. This completes the proof of part (a).

Let p € C? satisfy p, = 4i. By the above, there exists a unique isotropic line ¢’
such that lines of the form ¢, 4 are incident to p only when a € ¢'. Since no pair from
P x P’ is on one isotropic line, we get part (b) of the lemma.

Part (c). Consider a plane IT C C?. For a € C?, we set L, = {l,q : d € C3}.
By inspecting (28), we note that no two lines in £, are parallel. Thus, every pair of
lines of £, that are in II intersect. By the above, for lines ¢, 4 and ¢, o to intersect,
the points d and d’ must lie on the same isotropic line. In particular, there exists an
isotropic line £* such that every ¢, C II satisfies d € ¢*.

Let a,ll, and ¢* be fixed as in the preceding paragraph. Let ¢* be defined by
y = ix+k (the case of y = —iz + k is handled symmetrically). Then for every d € ¢*,
the line ¢, 4 is defined as

2z = (az + dy) + (ay — id, — k)2,
2y = (ay +idy + k) + (dy — ag)2.
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We rewrite these equations as

dy(1 —iz) =22 — a, — ayz + kz,
de(i +2) =2y —ay, — k+ a,z.

Combining the two equations leads to
(t+2)2x —a, —ayz+kz) = (1 —1i2)(2y —a, — k + a,2).
Rearranging yields
22 (k —a, +ia,) + 22 - (x —ia, — ap +iy) + (2ix — a,i — 2y +a, + k) = 0. (29)

Denote the left side of (29) as f, € Clx,y,z]. Note that Z(f,) is the Zariski
closure of the union of the lines ¢, with d € ¢*. If f, is irreducible and of degree
2, then Corollary 2.10 implies that I N Z(f,) contains at most two lines. That is, II
contains at most two lines of the form ¢, 4 with d € ¢*. We conclude that, if f, is
irreducible then II contains at most two lines from L,.

Consider the case where the coefficient of 2% in f, is zero. That is, k—a,+ia, = 0.
In this case, a is also on the isotropic line £*. Since we assume that no pair from P x P’
is on a one isotropic line, we may ignore this case.

Finally, assume that f, is reducible and has a nonzero coefficient for z2. By
inspecting (29), we note that f,(z,y,2) = (A+ Bx + Cy + Dz)(E + Fz) for nonzero
A B,C,D,E,F € C. We also note that B,C, D, E, F' have nonzero values. Since
EB is the coefficient of z in f,, we have that FB = 2¢. Similarly, we obtain

EC=-2 FB=2  FC=2i, FD=k-—ay,+1ia,,
FA=—asi+a,+k, FA+ED = —ia, — a,.
We rewrite some of the above as
C=-2/E, F=2i/C=—iE, A=(-ayi+a,+k)/E,
D = (k —ay, +ia,)/F = (ki —ia, — a,)/E.
Combining this with the above expression for FA + ED leads to

_axi+ay+k+E'ki—iay—ax

—iay, —a, = FA+ ED = (—iF) -
iay, —a + (—iFE) = =

= —2a, — 2ia,.

Tidying up gives that a, = ia,. Thus, when no point of P U P’ is on the lines
defined by y = +ix, this case cannot happen.

By combining the three cases above ( f, is linear, quadratic irreducible, or quadratic
reducible), we obtain the following. When no point of P UP’ is on the lines y = +iz,
for every a € PUP’ the plane II contains at most two lines from £,. Thus, II contains
at most 2n lines of £. This is part (c) of the lemma.
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Part (d). For a point a € C?, consider the vector field
Va(z,y, 2) = <2y —ay — ;2 + 2(27 — a, + a,2) — a,(2* + 1),

a(2* +1) = 2r — a, + ayz — 2(2y — a, — a,2),2(2* + 1)) :

By repeating part of the proof of Lemma 4.6 in [8], we obtain the following property.
For every p = (pz, py, p.) € C* with p, # +i, the direction of the unique line of the
form ¢, . that is incident to p is V,(p).

Let U C C3 be an irreducible quadratic surface. Let f € Clxz, v, z] be a polynomial
of degree 2 satisfying Z(f) = U. We define g, € C[z,y, z| as the dot product g,(p) =
Va(p) - Vf(p). Consider a line ¢, 4 that is contained in U. At every point p € £, 4, we
have that V,(p) is tangent to U. Thus, g, vanishes on every line of the form ¢, 4 that
is contained in U.

Consider a € C? such that U contains at least five lines of £,. These lines are
contained in U N Z(g,). Since f is of degree 2 and V, is linear, we get that g, is of
degree at most two. Thus, Corollary 2.10 implies that U and Z(g,) have a common
component. Since U is irreducible, we have U = Z(g,). This in turn implies that U
is ruled by lines of the form ¢, 4.

Excluding planes, every irreducible surface in C? has at most two different rulings.
Thus, there are at most two points a € P U P’ such that lines of L, rule U. For every
such a, at most n — 1 lines of £, are in L. For every other value of a € P UP’, at
most four lines of £, are contained in U. We conclude that U contains fewer than 6n
lines from £ O

Lemma 7.4. Let P and P’ be finite sets in C?, such that |P| + |P'| < n. Then at
most n® pairs of L(P) x L(P') are parallel.

Proof. If ¢, 4 and (. are parallel, then (28) implies that a, — ¢, = b, — d, and
ay — ¢; = by —d,. When we fix a,b,c, at most one d € P’ satisfies these two
equations. Thus, at most n? pairs of lines from L£L(P) x L(P’) are parallel. O

7.2 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. We first recall the statement of this theorem.

Theorem 1.2. For every € > 0, there exists ¢ > 0 that satisfies the following. Let P
be a set of n points in C?, not all on the same isotropic line. Then

|IA(P)| > en'=.

Proof. Fix ¢ > 0. Suppose that there exists an isotropic line ¢ C C? that contains
at least n/20 points from P. By assumption, there exists at least one point p € P
that is not on ¢. For any nonzero distance § € A(P), at most two points ¢ € ¢ satisfy
A(p,q) = 0. Indeed, any such point must be contained in the intersection of ¢ with
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the complex circle {(x,y) € C?: (z —p,)*+ (y — py)*> = §}. No point on ¢ determines
distance 0 with p. This implies that the number of distinct distances determined by
pairs of {p} x (P N¥) is at least [P N¢|/2 > n/40. We may thus assume that every
isotropic line contains at most n/20 points from P.

We remove any points of P that are on the isotropic lines defined by y = +iz. By
the above, after this pruning we have that |P| > 9n/10. We partition P into disjoint
sets P and Ps, each of size at least n/3, such that no pair of P; x P, is contained in
a common line of the form y = iz + k. We then find subsets P; C Py and Py C P,
each of size at least n/10, such that no pair of P] x P is contained in a common line
of the form y = —iz + k. Both of these pruning steps can be done greedily, due to the
assumption that at most n/20 points from P are contained in a common isotropic
line.

We note that |[A(P)| > |D(P;, P;)|. By Lemma 7.1 we have that

4

/ / n
|A(PL, Ps)| =2 W

(30)

Write Q(P;,Py) = Q1 U Q2, where Q1 corresponds to pairs of parallel lines, and
()2 corresponds to pairs of lines that intersect. Lemma 7.4 implies that

(@1 = O(n?). (31)

We recall that |@»] is the number of intersecting pairs in L(P;, Py) x L(P4, P;).
By Lemma 7.3(b), such intersections do not occur at points of C* with z-coordinate
+i. By Lemma 7.3(a), each point in C* whose z-coordinate is not +i contains at
most n lines of L(Py,Py) U L(Py, P;). We set L = L(P;,P;) x L(P,P;) and note
that |£| < n?. We add generic lines to £ until |£] = n?.

For each r > 2, define

PNT(‘C) - Pr(ﬁ)\PZT(‘C)

For each dyadic r between 2 and n, we apply Theorem 1.8 with £ and /4. For
7" = max(2,7/3), we obtain a set S, such that every S € S, contains at least r-n!*%/2
lines of £ and

PO\ (P (Ls,))| = O /272).

Ses

By Lemma 7.3, every plane and irreducible degree-two surface contains fewer than
6n lines from £. This implies that S, = (). We thus have that

[Pur(L)] = Om*T/2r72),

Every point of P.,(L) corresponds to fewer than 472 pairs of intersecting lines
from £. We conclude that

logn logn
Q2] < Z [P (L)]-4r* = O (Z n3+€/2> =0 (n3+€/2 logn) =0 (n**°). (32
i=1 j=1

Combining (30), (31) and (32) completes the proof of Theorem 1.2. O
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A Non-degenerate orthogonal projections

In this appendix, we formally define the notion of a non-degenerate orthogonal pro-
jection, and we prove Proposition 2.12. Let 0 < e < d and let X C R? We define
the containment degree ContDeg(X,e) to be the smallest integer D such that there
exists a variety in R? of dimension e defined by polynomials of degree at most D that
contains X. If e > dim X then ContDeg(X, e) is well-defined and finite. If e < dim X
then no variety of dimension e can contain X, and we set ContDeg(X, e) = co. Note
that ContDeg(X,e) = ContDeg(X,e) for every set X C R? and every 0 < e < d.

We say that a projection my : R — R€ is degenerate with respect to X if there is
an index 1 <t < e such that

ContDeg(X,t) > ContDeg(my (X),t). (33)

If 7y is not degenerate then we call it non-degenerate. If m, € Gr(d’,R%) is non-
degenerate with respect to X and my» € Gr(d”,R?) is non-degenerate with respect to
7y (X), then myr o Ty € Gr(d”, R?) is non-degenerate with respect to X. This allows
us to construct a non-degenerate projection from R? — R® by composing a sequence
of projections from R? — R R¥1 — R%2 and so on. First, we show that most
projections do not decrease the containment degree. For v € R that is not the origin,
we denote by m,: R? — R?! the orthogonal projection in direction v.

Lemma A.1. Let X C R? be a set whose Zariski closure has dimension at most
d — 2. Then there are d — 2 proper linear subspaces Vi, ..., Vy_o C R such that for
allv e R\N(ViU---UVy ) and 0 <t < d—1,

ContDeg(X,t) < ContDeg(m,(X),1). (34)

Proof. We will show that for each 0 < ¢t < d—1, the set of vectors v € R? for which (34)
fails must be contained in a proper linear subspace of R? (note that the subspaces
for different choices of ¢ might be different). We will prove this by contradiction.
Suppose that there exist an index 0 < t < d — 1 and d linearly independent directions
v1,...,vq such that (34) fails with v = v; for each j. Applying an invertible linear
transformation (such a transformation leaves the containment degree unchanged), we
may assume that v; is the j—th basis vector.

Let D = ContDeg(X,t). Since (34) fails for each vector v;, for each index j there
is a collection of polynomials F;, each of degree at most D — 1 and independent of
the variable z;, such that X C (\;cz Z(f). We claim that U = (); ez, Z(f) has
dimension at most t. Since X C U, this would imply that ContDeg(X,t) < D — 1,
which would contradict the definition of D and complete the proof.

Indeed, for each j, the dimension of ﬂfe}-j Z(f) is at most t + 1. If there exists
1 < j < d—1 such that one of the polynomials in F; includes z;, then dim(U) <
dim(ﬂfeflufj Z(f)) < t. Thus, in this case we are done. Otherwise, we repeat the
above argument for xo, x3, ..., x4. If none of these events occur, then each polynomial
in | ; J; must be constant, which is impossible. O
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Let X be a family of subsets of R?. We say that a projection m : R — R® is
non-degenerate with respect to X if it is non-degenerate with respect to each set
XeX.

With these definitions, we are now able to state and prove a formal version of
Proposition 2.12

Proposition 2.12.

(a) Let 0 < e < d. Let X be a finite family of subsets of RY, where each X € X
satisfies dim(X) < e. Then there exists a projection = € Gr(e,R?) that is non-
degenerate with respect to X.

(b) When all sets in X satisfy dim(X) < e/2, we may assume that 7 also has the
following property. For every pair of sets X, X' € X, we have | X N X'| = |x(X) N
m(X")].

Proof. (a) For each X € X, let V] x,..., V42 x be the proper linear subspaces de-
scribed in Lemma A.1, and select vy € RN\ Uycx{Vi,x,-- -, Va—a,x}. By Lemma A.1,

we have
ContDeg(X,t) < ContDeg(m,,(X), 1)

for each 0 <t < d—1 and each X € X. Define Xy, = {m,,(X): X € X}; thisis a
family of subsets of RY™!, each of which satisfies dim(X) < e.
Repeat this process to select a vector vg_; € R so that

ContDeg(X,t) < ContDeg(m,, ,(X),1)

for each 0 <t < d — 2 and each X € X;_;. Continuing this process, we obtain a
sequence of vectors vy € R, vg_; € R ... v, € R*T! and a sequence of families
Xiq—1,...,Xe. Define 7 to be the composition 7, ,, o m,,,, 0 0v4.

(b) We repeat the proof of part (a) with a small addition. At each step when
we select a vector vy_; € R?=7 we choose the vector so that for every pair of sets
X, X' € Xy, we have [ X N X'| = |m, ,(X) Ny, (X')|. Since dim(X) < e/2 and
dim(X’) < e/2, the set of vectors v € R?J for which the above inequality fails is
contained in a proper sub-variety of R?. n
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