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Abstract

We prove that if P is a set of n points in C2, then either the points in P
determine Ω(n1−ε) complex distances, or P is contained in a line with slope
±i. If the latter occurs then each pair of points in P have complex distance 0.

1 Introduction

In 1946, Erdős [6] posed the question: how few distinct distances can be determined
by a set of n points in the plane? The Erdős distinct distances problem has become
a central question in combinatorial geometry, and an entire book has been dedicated
to the question [7]. In 2010, Guth and Katz [12] nearly resolved the conjecture by
establishing the following lower bound.

Theorem 1.1. Every set of n points in R2 determines Ω(n/ log n) distinct distances.

This lower bound nearly matches the conjectured lower bound Ω(n/
√

log n), which
can be achieved by taking points of the form (j, k) with j and k integers between 1
and
√
n. Theorem 1.1 bookends decades of progress on the Erdős distinct distances

problem, such as [4, 24, 26]. The problem has also been studied in other fields and
under different distance norms [3, 25, 17]. See [21] for a survey of recent results.

In this paper we obtain an analogue of Theorem 1.1 for sets of points in C2. If
p, q ∈ C2 we define the (squared) complex distance ∆(p, q) = (px − qx)2 + (py − qy)2.
For P ⊂ C2, we define

∆(P) = {∆(p, q) : p, q ∈ P , p 6= q}.

In contrast to the situation in R2, the set ∆(P) can contain the distance 0. Indeed, it is
possible that ∆(P) = {0} even when P is large. We say that a line L ⊂ C2 is isotropic
if it has a slope of ±i. If two points p, q ∈ C2 are contained in a common isotropic line,
then ∆(p, q) = 0. Thus, if all points of P are contained in a common isotropic line
then ∆(P ) = {0}. The next theorem says that this is the only obstruction preventing
∆(P) from having large cardinality.
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Theorem 1.2 (Distinct distances in C2). For every ε > 0, there exists c > 0 that
satisfies the following. Let P be a set of n points in C2, not all on the same isotropic
line. Then

|∆(P)| ≥ cn1−ε.

Theorem 1.2 yields new sum-product type estimates for finite sets of complex
numbers.

Corollary 1.3. For every ε > 0, there exists c that satisfies the following. Let A ⊂ C.
Then

|{(a1 − a2)2 ± (a3 − a4)2 : a1, a2, a3, a4 ∈ A}| ≥ c|A|2−ε.

Corollary 1.3 follows by applying Theorem 1.2 to the set P = A×A or P = A×iA.
When A ⊂ R, these estimates were previously known. The case of a ‘+’ sign follows
immediately from Theorem 1.1. The case of a ‘-’ sign was proved by Roche-Newton
and Rudnev in [18].

1.1 From distinct distances to incidence geometry

To prove Theorem 1.1, Guth and Katz used the so-called Elekes-Sharir-Guth-Katz
framework. This framework reduces Theorem 1.1 to an incidence geometry problem
about lines in R3. In the result that follows, we say that a point p is r-rich with
respect to a set of lines L if at least r lines from L contain p. We write Pr(L) to
denote the set of points that are r-rich with respect to L.

Theorem 1.4. Let L be a set of at most n lines in R3, and suppose that at most
n1/2 lines are contained in a common plane or doubly-ruled surface.1 Then for each
2 ≤ r ≤ n1/2,

|Pr(L)| = O(n3/2r−2).

When r = 2, Guth and Katz’s proof of Theorem 1.4 is purely algebraic, and it
has since been extended to arbitrary fields [13, 15]. For larger values of r, the only
known proof of Theorem 1.4 requires topological arguments that are specific to R.
Specifically, Guth and Katz developed a new tool called polynomial partitioning.

Theorem 1.5 (Polynomial partitioning). Let P be a set of m points in Rd and let
r ≥ 1. Then there exists a nonzero polynomial f ∈ R[x1, . . . , xd] of degree at most r,
such that each connected component of Rd \ Z(f) contains O(mr−d) points of P.

Since its introduction in 2010, Theorem 1.5 has reshaped the field of incidence
geometry and has led to striking progress on problems in discrete geometry, theoret-
ical computer science, and harmonic analysis. See [10] for a partial survey of these
developments. Many of the incidence geometry problems in Euclidean space that
have been solved using Theorem 1.5 can also be posed in vector spaces over other
fields such as C or Fp. Since we do not have an analogue of Theorem 1.5 in these
settings, many of these problems remain open. Up to an ε loss in the exponent, the
following theorem is a complex analogue of Theorem 1.4.

1For rigorous definitions of a surface, a doubly-ruled surface, irreducible varieties, and other
technical terms, see Section 2.
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Theorem 1.6. For every ε > 0, there exists C that satisfies the following. Let L be
a set of at most n lines in C3, and suppose that at most n1/2 lines are contained in a
common plane or doubly-ruled surface. Then for each 2 ≤ r ≤ n1/2,

|Pr(L)| ≤ Cn3/2+εr−2.

When r = 2, Theorem 1.6 follows from the more general results in [13, 15]. A key
difficulty when proving Theorem 1.6 for larger values of r is that the complex analogue
of Theorem 1.5 is false—if f ∈ C[x1, . . . , xd] is a polynomial with Z(f) ⊂ Cd, then
Cd\Z(f) is connected, so Z(f) does not “cut” Cd into multiple connected components.
In the next section we discuss our strategy for overcoming this problem.

1.2 A structure theorem for lines in three dimensions

In [8], Guth used Theorem 1.5 to obtain the following structure theorem about sets
of lines in R3. For a set L of lines and a variety W , we denote by LW the set of lines
of L that are contained in W .

Theorem 1.7. For every ε > 0, there exist C and D that satisfy the following. Let
L be a set of n lines in R3, let 2 ≤ r ≤ 2n1/2, and let r′ = d9r/10e. Then there exists
a set S of algebraic surfaces in R3 with the following properties.

� Every surface W ∈ S is an irreducible surface of degree at most D.
� Each surface contains at least n1/2+ε lines of L.
� |S| ≤ 2n1/2−ε.
� |Pr(L) \

⋃
W∈S Pr′(LW )| ≤ Cn3/2+εr−2.

Guth then showed that Theorem 1.7 implies a slightly weaker version of Theorem
1.4, which in turn implies a slightly weaker version of Theorem 1.1. Specifically, the
bound Ω(n/ log n) is replaced by Ω(n1−ε). We use a similar strategy to prove Theorem
1.6 and Theorem 1.2. In particular, we prove the following complex analogue of
Theorem 1.7.

Theorem 1.8. For every ε > 0, there exists C that satisfies the following. Let L be
a set of n lines in C3, let 2 ≤ r ≤ 2n1/2, and let r′ = max(2, r/3). Then there exists
a set S of algebraic surfaces in C3 with the following properties.

� If r ≥ 3 then every surface in S is a plane. If r = 2 then every surface in S is
irreducible and has degree at most two.

� Every surface W ∈ S contains at least rn1/2+ε lines of L.
� |S| ≤ 2n1/2−εr−1.
� |Pr(L) \

⋃
W∈S Pr′(LW )| ≤ Cn3/2+εr−2.

Note that Theorem 1.6 is an immediate corollary of Theorem 1.8, since the as-
sumptions of Theorem 1.6 imply that S = ∅. The proof of Theorem 1.2, our main
result, relies on Theorem 1.8.

Our choice of r′ in Theorem 1.8 is slightly different than the choice used in Theorem
1.7. This is a minor technical issue, and it does not limit the usefulness of Theorem
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1.8. For a theorem of this type to be useful, we require that r′ = 2 when r = 2, and
that r′ grows linearly as a function of r; Our choice of r/3 is somewhat arbitrary and
can be improved slightly, though our arguments do not allow us to select r′ = d9r/10e
as in the statement of Theorem 1.7.

Guth proved Theorem 1.7 by induction on n using a divide and conquer approach.
Given a set of lines L, Guth used Theorem 1.5 to find a polynomial f with the
following properties. The set R3\Z(f) is a union of many connected regions, each
containing a small fraction of the points from Pr(L), and most intersecting a small
fraction of the lines from L. He then applied the induction hypothesis (Theorem
1.7 with fewer lines) to each of these regions individually. Finally, he combined the
sets of algebraic surfaces associated to each region into a single, slightly larger set of
algebraic surfaces and thereby closed the induction.

An important technical difficulty in Guth’s proof is that some of the r-rich points
and some of the lines might be contained in the “boundary” Z(f) of the partition.
Luckily, the boundary Z(f) is itself a variety, and irreducible components of this
variety that contain many lines can be added to the set S.

We now briefly describe our strategy for proving Theorem 1.8. As noted above,
the complex analogue of Theorem 1.5 is false. This is problematic because Theorem
1.5 played a critical role in Guth’s proof of Theorem 1.7. One strategy for proving
incidence geometry problems in complex space is to identify Cd with R2d and to
apply the polynomial partitioning theorem in R2d. This was the approach used by
the authors in [22] to establish new point-curve incidence results in C2, and we use a
similar strategy to prove Theorem 1.8.

To execute this strategy, we identify C3 with R6, and each complex line becomes
a real plane. With a slight abuse of notation, we continue to call these sets complex
lines. Some of the steps in Guth’s proof of Theorem 1.7 can still be used to prove
Theorem 1.8: We prove the theorem by induction on n and find a real polynomial f
with the following properties. The set R6\Z(f) is a union of many connected regions,
each containing far fewer r-rich points and intersecting far fewer complex lines than
the original problem. As in the proof of Theorem 1.7, it is possible that many r-rich
points are contained in the boundary Z(f) of the partition.

One possibility is that rich points on Z(f) are incident to many lines that have one-
dimensional intersection with Z(f). We handle this situation with a new structure
theorem for complex lines that properly intersect a real hypersurface. In brief, if many
complex lines properly intersect a real hypersurface and span many r-rich points,
then these complex lines must cluster into complex planes. A precise version of this
statement is given in Lemma 6.3.

A second possibility is that rich points on Z(f) are incident to many lines that
are contained in Z(f). Unfortunately, Z(f) might not be a complex variety, so we
are not permitted to add it to S. Instead, we study the incidence geometry of points
and complex lines contained in a real hypersurface in R6. Our main result in this
direction is the following incidence theorem, which is proved in Section 5. Before
stating our result, we require a definition. We say that a variety U ⊂ R6 is almost
ruled by complex planes if for each regular point p ∈ Ureg, there is a complex plane
Π ⊂ U that contains p. If such a plane exists and L ⊂ U is a complex line incident
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to p, then L ⊂ Π.

Proposition 1.9. Let U ⊂ R6 be an irreducible variety defined by polynomials of
degree at most D. Then at least one of the following two statements holds.

� U is almost ruled by complex planes.
� U contains at most 2D2(D− 1) complex planes. If L is a set of n complex lines

that are contained in U but not contained in any of these planes, then for each
r > D2 we have

|Ureg ∩ Pr(L)| = OD(n3/2r−5/2 + nr−1).

Proposition 1.9 allows us to deal with the situation where many points and com-
plex lines are contained in Z(f); this is the final missing piece in the proof of Theorem
1.8.

1.3 Structure of the paper

In Section 2 we introduce a number of tools from algebraic geometry and real al-
gebraic geometry that appear frequently in our proof. We also introduce the ruled
surface theory developed by Guth and the second author in [13]. Proposition 1.9 is
a statement about complex lines, and the theory of surfaces ruled by complex lines
is quite classical. However, some of the intermediate steps in the proof require struc-
ture theorems about surfaces ruled by more general types of curves. Thus, the full
strength of the ruled surface theory developed in [13] is required.

In Section 3 we show how existing algebraic techniques can be used to prove a
special case of Theorem 1.8 when r is small—as discussed above, Theorem 1.8 is
only novel when r is large. This is helpful because Proposition 1.9 is only effective
when r is large. In Section 4 we discuss how a slight variant of Guth’s Theorem 1.7
also applies to curves in Rd. This result will help us understand complex lines that
properly intersect the boundary of the partition.

In Section 5 we prove Proposition 1.9 and in Section 6 we use this proposition to
prove Theorem 1.8. Finally, in Section 7 we combine Theorem 1.8 with the Elekes-
Sharir-Guth-Katz framework to prove Theorem 1.2
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2 Preliminaries

2.1 Varieties

We now briefly recall standard definitions and results involving affine varieties. For
more information, see for example [2, 14]. Let F be a field; in practice we will
only be interested in the fields R and C. The variety defined by the polynomials
f1, . . . , fk ∈ F[x1, . . . , xd] is the set

Z(f1, . . . , fk) =
{
p ∈ Fd : f1(p) = 0, . . . , fk(p) = 0

}
.

We say that a set U ⊂ Fd is a variety if there exist polynomials f1, . . . , fk ∈
F[x1, . . . , xd] such that U = Z(f1, . . . , fk). If each of these polynomials has degree
at most D then we say that U is is defined by polynomials of degree at most D. In
particular, lines, planes, and hyperplanes are defined by polynomials of degree at
most one. We call varieties of this type flats, or k-flats when we wish to emphasize
the dimension. Note that if U is defined by polynomials of degree at most D, then it
is also defined by polynomials of degree at most D′ for every D′ ≥ D.

If U is a variety, a proper subvariety of U is a proper subset of U that is also a
variety. A variety U is reducible if it can be expressed as the union of two proper
subvarieties of U . Otherwise, U is irreducible. Every variety U can be uniquely
expressed as a union of irreducible varieties, none of which is contained in another.
These subvarieties are the irreducible components of U .

If X ⊂ Fd, the Zariski closure of X, denoted X, is the smallest variety in Fd that
contains X. In particular, every variety in Fd that contains X must also contain X.

Dimension. If U ⊂ Fd is an irreducible variety, we define the dimension of U to be
the smallest integer k for which there exists a sequence

U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Uk = U.

Here, all the containments are proper and all the Uj are irreducible. If U is reducible,
we define its dimension to be the maximum dimension of its irreducible components.
We will write dimU to denote the dimension of U , or sometimes dimF U if we wish
to emphasize the underlying field.

We say that a variety is equidimensional if each irreducible component has the
same dimension. We define a curve to be an equidimensional variety of dimension
one, a surface to be an equidimensional variety of dimension two, and a hypersurface
to be an equidimensional variety of co-dimension one.

Regular and singular points. Let U ⊂ Fd be an equidimensional variety of
dimension d′. Let I(U) be the ideal of polynomials in F[x1, . . . , xd] that vanish on
every point of U . Let f1, . . . , f` be polynomials that generate I(U). We say that
p ∈ U is a regular point of U if

rank

 ∇f1(p)
...

∇f`(p)

 = d− d′. (1)
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We define Ureg be the set of regular points of U . If U ⊂ Rd and p ∈ Ureg, we define
the tangent space TpU to be the set of vectors orthogonal to ∇f1(p), . . . ,∇f`(p).

If p ∈ U is not a regular point of U , then p is a singular point of U . We denote
this set by Using. The following lemma says that most points of U are regular points.

Lemma 2.1. Let U ⊂ Fd be a variety defined by polynomials of degree at most D.
Then Using is a variety of dimension strictly smaller than dimU that is defined by
polynomials of degree Od,D(1).

A proof of Lemma 2.1 can be found in Section 2.2 of [22]. See also Proposition
4.4 of [23].

2.2 Polynomial partitioning and real algebraic geometry

As discussed in the introduction, the polynomial partitioning theorem plays an im-
portant role in the proof of Theorem 1.8. In addition to Theorem 1.5, we also need
the following generalization that was proved by Guth in [9].

Theorem 2.2 (Polynomial partitioning for varieties). Let V be a set of n varieties
in Rd, each of dimension k and defined by polynomials of degree at most E. Then
for each integer D ≥ 1 there exists a nonzero polynomial f ∈ R[x1, . . . , xd] of degree
at most D, such that each connected component of Rd \ Z(f) intersects OE(n/Dd−k)
varieties from V.

In the arguments that follow, we will study incidence problems involving config-
urations of points and varieties. By multiplying the partitioning polynomials from
Theorem 1.5 and 2.2, we obtain a partitioning polynomial that is simultaneously
adapted to both sets.

Corollary 2.3. Let P be a set of m points in Rd and let V be a set of n varieties
in Rd, each of dimension at most k and defined by polynomials of degree at most E.
Then for every D ≥ 1 there exists a nonzero polynomial f ∈ R[x1, . . . , xd] of degree
at most D, such that each connected component of Rd \ Z(f) intersects OE(n/Dd−k)
varieties from V and contains O(mr−d) points from P.

Remark 2.4. One technical annoyance when working with real varieties is that if
f ∈ R[x1, . . . , xd] is a nonzero polynomial, we need not have dim(Z(f)) = d − 1.
Indeed, Z(f) can be empty, or it can have any dimension between 0 and d − 1.
Luckily, this issue need not be a problem when performing polynomial partitioning.
As discussed in [32, Section A.3], we can always replace a polynomial f ∈ R[x1, . . . , xd]
with a new polynomial g (possibly of lower degree) so that Z(f) ⊂ Z(g) and Z(g) is
equidimensional and has codimension one.

To make use of Theorems 1.5 and 2.2, we need to control the size of a number of
quantities related to the partitioning polynomials described above. In particular, we
need to bound the number of connected components in U\Z(f), where U is a (not
necessarily proper) subvariety of Rd.
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Lemma 2.5 (Warren’s theorem on a variety [1]). Let U ⊂ Rd be a variety of di-
mension d′ defined by polynomials of degree at most E. Let f ∈ R[x1, . . . , xd] be a
polynomial of degree D. Then U \ Z(f) has Od(D

d′Ed−d′) connected components.

Lemma 2.6 (irreducible components of a variety). Let U ⊂ Rd be a variety defined
by polynomials of degree at most D. Then U has Od(D

d) irreducible components.
Each of these components is defined by polynomials of degree OD,d(1).

When d = 2 the expression Od(D
2) from Lemma 2.6 can be sharpened somewhat.

First, Bézout’s inequality controls the number of intersection points between two
plane curves that do not share a common component.

Lemma 2.7 (Bézout’s inequality). Let f and g be bivariate polynomials that do not
share a common factor. Then Z(f, g) contains at most (deg f)(deg g) points.

Second, Harnack’s inequality control the number of connected components of a
plane curve.

Lemma 2.8 (Harnack’s theorem). Let f be a bivariate polynomial of degree D. Then
Z(f) has at most (D − 1)(D − 2)/2 + 1 ≤ D2 connected components.

Corollary 2.9. Let U ⊂ R2 be a zero-dimensional variety defined by polynomials of
degree at most D. Then |U | ≤ D2.

Proof. Write U = Z(f1, . . . , fk), where each of f1, . . . , fk has degree at most D.
Without loss of generality we can suppose that each polynomial is squarefree, and no
two polynomials share a common factor. If k = 1 then the result follows by applying
Lemma 2.8 to f1. If k ≥ 2 then U ⊂ Z(f1, f2), and the result follows by applying
Lemma 2.7 to f1 and f2.

We also require the following corollary of Bézout’s inequality (for example, see
[11]).

Corollary 2.10. Let f, g ∈ C[x1, x2, x3] have degrees k and m, respectively. If the
intersection Z(f) ∩ Z(g) contains more than km lines then f and g have a common
factor.

2.3 Orthogonal projections and general position

For integers 0 < e < d, the Grassmannian Gr(e,Fd) is the set of all e-dimensional
linear subspaces of Fd. When e = d− 1, we can identify each nonzero vector v ∈ Fd
with the orthogonal subspace v⊥ ∈ Gr(d− 1,Fd). In particular, if V ⊂ Fd is a proper
linear subspace of Fd, then {v⊥ : v ∈ V } is a proper subset of Gr(d − 1,Fd) (indeed,
if we give Gr(d − 1,Fd) the structure of a variety then the above set is a proper
subvariety of Gr(d− 1,Fd)).

We associate every element V ∈ Gr(e,Fd) with the orthogonal projection of Fd
onto the corresponding e-dimensional space. We denote this projection as πV : Fd →
Fe. If U ⊂ Fd is a variety and V ∈ Gr(e,Fd), then πV (U) need not be a variety.
However, the next lemma shows that πV (U) is contained in a well-behaved variety.
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Lemma 2.11. Let F be the field R or C. Let 0 < e < d, let V ∈ Gr(e,Fd), and let
U ⊂ Fd be a variety defined by polynomials of degree at most D. Then πV (U) is a
variety of dimension at most dim(U) that is defined by polynomials of degree Od,D(1).

Lemma 2.11 is proved in [14, Theorem 3.16] and in [16, Chapter 2.6, Theorem 6]
for the case of F = C.2 The proof is constructive and thus provides an upper bound
on the degree of the polynomials that define the constructible set.

When F = R, Lemma 2.11 is a consequence of the (effective) Tarski-Seidenberg
theorem. See for example [2, Section 2]. The Tarski-Seidenberg theorem states that
πV (U) is a semi-algebraic set of complexity Od,D(1) whose Zariski closure has dimen-
sion at most dim(U).

At several points in our proof, we orthogonally project a finite arrangement of
varieties onto a lower dimensional subspace. When applying such a projection, it
is important not to accidentally introduce additional algebraic dependencies among
these varieties. For example, if L is a set of n lines in R4 such that every polynomial
of degree at most two vanishes on at most m lines, then we want to apply a projection
π : R4 → R3 that preserves this property. We call such an orthogonal projection non-
degenerate. A precise definition is given in Appendix A. The following proposition
says that non-degenerate projections always exist.

Proposition 2.12 (Existence of non-degenerate projections, informal version). Let
0 < e < d and let V be a set of varieties of dimension at most e in Rd. Then there
exists a non-degenerate orthogonal projection from Rd to Re.

If each variety in V has dimension smaller than e/2, then there exists a non-
degenerate orthogonal projection that does not introduce any additional intersections
between these varieties. In particular, if U,W ∈ V are disjoint, then the projections
of U and V are also disjoint.

The proof and the precise statement of Proposition 2.12 require lengthy technical
details that are not used elsewhere in this paper. To avoid interrupting the flow of
our main proof, we defer these details to Appendix A.

2.4 Ruled surface theory

Let F be a field of characteristic 0, let S ⊂ F3 be an irreducible surface, and let
D ≥ 1 be an integer. We say that S is doubly ruled by curves defined by polynomials
of degree at most D if the following holds. There is a proper subvariety T ⊂ S such
that for all p ∈ S\T , at least two irreducible curves γ, γ′ ⊂ S contain p (and are
defined by polynomials of degree at most D).

Let f ∈ F[x, y, z] have degree at most E and let S = Z(f). Let γ ⊂ S be an
irreducible curve defined by polynomials of degree at most D. We say that γ is
an exceptional curve if at least CDE points p ∈ γ satisfy the following. There is
an irreducible curve γ′ 6= γ defined by polynomials of degree at most D such that

2Both references state that πV (U) is a constructible set (a set defined by a Boolean combination
of algebraic equalities and non-equalities) whose Zariski closure has dimension at most dim(U).
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p ∈ γ′ ⊂ S. Note that the definition of exceptional curves depends on the choice of
CD. We set this constant to be as in the following lemma (see [13]).

Lemma 2.13. For each D ≥ 1, there exists CD that satisfies the following. Let
f ∈ F[x, y, z] have degree E and let S = Z(f). If S contains more than CDE

2

exceptional curves defined by polynomials of degree at most D, then S is doubly ruled
by curves defined by polynomials of degree at most D. In this case E = OD(1).
Furthermore, if D = 1 then E ≤ 2.

Remark 2.14. Lemma 2.13 also holds in characteristic p, provided E is not too large
compared to D and p.

3 The r = 2 and r = 3 case: Kollár’s bound

As discussed in the introduction, the proof of Theorem 1.4 when r = 2 is purely
algebraic, and it extends to other fields. The main tool is the following theorem due
to Kollár [15]. See also [13].

Theorem 3.1. Let L be a set of n lines in C3, such that every plane and degree two
surface contains at most n1/2 lines from L. Then

|P2(L)| = O(n3/2).

To use Theorem 3.1 we will also need a simple result that controls the number of
planes and degree two varieties that contain many lines.

Lemma 3.2. Let L be a set of n curves in F3 and let A ≥ 2E2n1/2. Let S be a set of
irreducible surfaces in F3, each of which is defined by polynomials of degree at most
E and each of which contains at least A curves from L. Then |S| ≤ 2nA−1.

Proof. Let S = {S1, . . . , Sk}. The intersection of two surfaces defined by polynomials
of degree at most E and sharing no common components contains at most E2 curves
(for example, see [13, Theorem 5.7]). Since the surfaces in S are irreducible, each
pair of distinct surfaces can contain at most E2 common curves from L. Thus for
each j ≥ 1 we have∣∣∣ j⋃

`=1

LS`

∣∣∣ ≥ j∑
`=1

|LS`
| −

∑
1≤`<m≤j

|LS`
∩ LSm | ≥ A · j − E2 · j(j − 1)/2.

Assume for contradiction that |S| > 2n/A. Set j = d2nA−1e and note that

E2 · (j − 1)/2 ≤ E2nA−1 ≤ n1/2/2 ≤ A/4.

Thus ∣∣∣ j⋃
`=1

LS`

∣∣∣ ≥ (A− E2(j + 1)/2)j ≥ (3/4)A · j > n,

which is a contradiction.
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With these tools, we can now prove the “algebraic” part of Theorem 1.8.

Proof of Theorem 1.8, r = 2 and r = 3 case. Let S1 be the set of all planes that con-
tain more than 2n1/2 lines of L. Let S2 be the set of all irreducible degree two surfaces
that contain more than 8n1/2 lines of L. Lemma 3.2 implies that |S1|, |S2| = O(n1/2).

Let L′ = L\
⋃
S∈S1∪S2 LS. Theorem 3.1 implies that

|P2(L′)| = O(n3/2).

(Theorem 3.1 requires at most n1/2 lines in a surface, while we have at most 8n1/2.
This is not a serious problem; for example, we can slightly increase n by adding
generic lines to L′.) A line L ∈ L intersects each surface S ∈ S1 ∪ S2 that does not
contain L in at most two points. Thus, at most 2|L||S1∪S2| = O(n3/2) points p ∈ C3

are incident to a line L ∈ L and a surface S ∈ S1∪S2 satisfying L 6∈ LS. We conclude
that ∣∣P2(L) \

⋃
S∈S1∪S2

P2(LS)
∣∣ = O(n3/2).

We define S as the set of surfaces of S1 ∪ S2 that contain at least r · n1/2+ε lines
of L. Lemma 3.2 implies that |S| ≤ 2n1/2−ε/r. For 1 ≤ j ≤ log(rnε), let S ′j denote

the set of surfaces of S1 ∪ S2 that contain at least n1/22j lines of L and fewer than
n1/22j+1 such lines. By Lemma 3.2, for every such j we have that |S ′j| = O(n1/22−j).
This implies that

∣∣Pr(L) \
⋃
S∈S

Pr(LS)
∣∣ = O(n3/2) +

log(rnε)∑
j=logn

|S ′j| · n22j+2

= O(n3/2) +

log(rnε)∑
j=logn

O(n3/22j) = O(n3/2+ε).

By taking a sufficiently large constant C, we obtain Theorem 1.8 when r = 2.
We now consider the case of r = 3. We revise S1 to be the set of planes in S

and S2 to be the set of quadratic surfaces in S. Similarly, let L′ = L\
⋃
S∈S LS. By

considering every type of irreducible quadratic surface in R3, we note that at most
one point in such a quadratic S is incident to three lines that are contained in S. This
implies that

∑
S∈S2 |P3(LS)| = O(n1/2−ε). There are three other ways for a point p

to be in P3(L): (i) p ∈ P3(L′), (ii) p ∈ P3(LS) for some S ∈ S1, and (iii) p is the
intersection of a line L ∈ L and a surface S ∈ S1 ∪ S2 satisfying L 6∈ LS. Since the
arguments above bound the number of line–surface intersections, we have that∣∣P3(L) \

⋃
S∈S1

P3(LS)
∣∣ = O(n3/2+ε).

Setting S = S1 concludes the proof of Theorem 1.8 when r = 3.

One of the hypotheses of Theorem 1.8 is that r ≤ 2n1/2. In the regime r > 2n1/2, a
much simpler argument shows that |Pr(L)| ≤ 2n/r, and this is tight up to a constant
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factor. This bound has little to do with the geometry of lines in C3; it only relies
on the fact that each pair of lines intersect in at most one point. We record this
observation below.

Lemma 3.3. Let X be a family of subsets of a ground set X, and suppose each pair
of sets in X intersect in at most one element. Let r ≥ 2|X |1/2 and let P ⊂ X be the
set of elements contained in at least r sets from X . Then |P| ≤ 2|X |r−1.

The proof of Lemma 3.3 is very similar to the proof of Lemma 3.2 when E = 1.
We do not repeat this proof.

We also require a complex variant of the Szemerédi–Trotter theorem [27, 31, 23].

Theorem 3.4. Let L be a set of n lines in C2. Then for every r ≥ 2, we have

|Pr(L)| = O

(
n2

r3
+
n

r

)
.

4 Guth’s structure theorem: curves in Rd

In [8], Guth proved Theorem 1.7, which is a structure theorem for sets of lines in R3.
As discussed in the introduction, Guth proved his result by induction on the number
of lines. He used polynomial partitioning (Theorem 1.5) to break the collection of
lines into several significantly smaller sub-collections.

Guth stated his result for lines, which are the primary objects of interest when
studying the distinct distances problem in the plane. However, his proof relies only
on a few properties that are specific to lines:

1. A special case of Lemma 3.2 where F = R and E = 1.
2. Lemma 3.3.
3. A variant of Bézout’s theorem: Let f be a polynomial of degree D. Then a line

not contained in Z(f) intersects Z(f) in at most D points.
4. The Szeméredi-Trotter theorem: Any set of n lines in R2 determines O(n2r−3 +
nr−1) r-rich points, for each r ≥ 2.

We formulated Lemmas 3.2 and 3.3 in a way that holds for arbitrary curves in R3.
The third item could be replaced with Lemma 2.5: If γ ⊂ R3 is an irreducible curve
defined by polynomials of degree at most E and f ∈ R[x, y, z] of degree D satisfies
γ 6⊂ Z(f), then |γ ∩Z(f)| = OE(D). Finally, the Szeméredi-Trotter theorem has the
following generalization [5].

Lemma 4.1. Let Γ be a set of n irreducible curves in R2, each defined by polynomials
of degree at most E. Suppose that for every pair of distinct points p, q ∈ R2, at most
M curves from Γ are incident to both p and q. Then for each r ≥ 2, the number of
r-rich points determined by Γ is OE,M(n2r−3 + nr−1).

Keeping these minor changes in mind, Guth’s theorem can be restated as a struc-
ture theorem for curves in R3.
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Lemma 4.2. For every ε > 0 and E,M ≥ 1, there exists C that satisfies the fol-
lowing. Let Γ be a set of n irreducible curves in R3, each defined by polynomials of
degree at most E. Suppose that for every pair of distinct points p, q ∈ R3, at most M
curves from Γ are incident to both p and q. Let 2 ≤ r ≤ 2n1/2 and let r′ = d9r/10e.
Then there exists a set S of surfaces in R3 with the following properties.

� Every surface in S is defined by polynomials of degree at most C.
� Every surface W ∈ S contains at least rn1/2+ε curves from Γ.
� |S| ≤ 2n1/2−εr−1.
� |Pr(Γ) \

⋃
W∈S Pr′(ΓW )| ≤ Cn3/2+εr−2.

Using Proposition 2.12, we can extend Lemma 4.2 to curves in Rd.

Lemma 4.3. For every ε > 0, d ≥ 3 and E,M ≥ 1, there exists C that satisfies the
following. Let Γ be a set of n irreducible curves in Rd, each defined by polynomials of
degree at most E. For every pair of distinct points p, q ∈ Rd, at most M curves from
Γ are incident to both p and q. Let 2 ≤ r ≤ 2n1/2 and let r′ = d9r/10e. Then there
exists a set S of surfaces in Rd with the following properties.

� Every surface in S is defined by polynomials of degree at most C.
� Every surface W ∈ S contains at least rn1/2+ε curves from Γ.
� |S| ≤ 2n1/2−εr−1.
� |Pr(Γ) \

⋃
W∈S Pr′(ΓW )| ≤ Cn3/2+εr−2.

Proof. Use Proposition 2.12 (as formulated precisely in Appendix A) to find a pro-
jection π : Rd → R3 that is non-degenerate with respect to the set of varieties
X = {

⋃
γ∈Γ′ γ : Γ′ ⊂ Γ}. Set ΓR3 = {π(γ) : γ ∈ Γ}. By the second part of Propo-

sition 2.12, for every pair of distinct points p, q ∈ R3, at most M curves from ΓR3

are incident to both p and q. We apply Lemma 4.2 to ΓR3 to obtain a set SR3 of
surfaces, each defined by polynomials of degree at most C = C(ε, E). Since π is
non-degenerate, for each SR3 ∈ SR3 , there is a corresponding surface S ⊂ Rd defined
by polynomials of degree at most E with the following property: For each γ ∈ Γ with
π(γ) ⊂ SR3 , we have that γ ⊂ S. Let S be the set of surfaces in Rd that correspond
to the surfaces of SR3 . Then this set of surfaces satisfies the requirements of the
lemma.

5 Complex incidence geometry inside a real hy-

persurface

5.1 Complex lines in a real variety

In this section we study the set of complex lines that can be contained in a real variety
in R6. Throughout this section, we identify C with R2 using the map (x+iy) 7→ (x, y).
We similarly identify C3 with R6. We call a subset of R6 a complex line if it is the
image of a complex line in C3 under this identification. We call a subset of R6 a
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complex plane if it is the image of a complex plane under this identification. We often
abuse notation and refer to a complex line as a subset of C3 or of R6.

The set of all complex lines in C3 can be identified with an algebraic structure
called a quasi-projective variety. For our purposes, however, it will be simpler to
restrict attention to a large subset of the set of complex lines. We say that a line
L ⊂ C3 is standard if it is not parallel to the complex z2z3 plane. Every standard
line L can be expressed in the form (0, a, b) + t · (1, c, d) with fixed a, b, c, d ∈ C and
a parameter t ∈ C. We define

G(L) = (Re(a), Im(a),Re(b), Im(b),Re(c), Im(c),Re(d), Im(d)).

Note that G is a bijection between the standard complex lines and R8.
When working with standard lines, it will be useful to define the map

φ(a1, a2, b1, b2,c1, c2, d1, d2, s, t)

= (s, t, a1 + sc1 − tc2, a2 + sc2 + tc2, b1 + sd1 − td2, b2 + sd2 + td1).

That is, φ(a1, a2, b1, b2, c1, c2, d1, d2, s, t) is the image of the point (0, a1+ia2, b1+ib2)+
(s+ it)(1, c1 + ic2, d1 + id2) under the identification of C3 with R6.

For a variety U ⊂ R6, we define L(U) to be the set of standard complex lines
contained in U . Abusing notation slightly, we define G(U) = G(L(U)) ⊂ R8.

The following observation plays a crucial role in the arguments that follow. If
U ⊂ R6 is a variety, p ∈ Ureg, and H ⊂ U is a plane that contains p, then H must be
contained in the tangent space TpU . If L ⊂ U is a complex line that contains p and is
contained in U , then more is true. In addition to L being contained in TpU , it must
also be contained in a certain subspace of TpU that is compatible with the complex
structure of L. To make this precise we define the operator J : R6 → R6 as

J(x1, y1, x2, y2, x3, x3) = (−y1, x1,−y2, x2,−y3, x3). (2)

If we identify R6 with C3, then J corresponds to multiplication by i. For p ∈ Ureg we
define the complex tangent space

Vp(U) = Tp(U) ∩ J(TpU). (3)

This is (a translate of) the largest complex linear subspace of C3 that is contained in
TpU . Observe that VpU must have an even dimension. In particular, if U is a proper
subvariety of R6 then VpU has dimension at most four.

With these definitions, we can begin to study the set of complex lines contained
in a real variety.

Lemma 5.1. Let U ⊂ R6 be a variety defined by polynomials of degree at most D.
Then G(U) is a variety defined by polynomials of degree at most D.

Proof. Let f1, . . . , fk be polynomials of degree at most D such that U = Z(f1, . . . , fk).
For each index j, consider the polynomial

(a1, a2, b1, b2, c1, c2, d1, d2, s, t) 7→ fj(φ(a1, a2, b1, b2, c1, c2, d1, d2, s, t))

=
∑

0≤u≤v≤D

Qj,u,v(a1, a2, b2, b2, c1, c2, d1, d2)sutv. (4)
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A standard line L with G(L) = (a1, a2, b1, b2, c1, c2, d1, d2) vanishes identically on
Z(fj) if and only if Qj,u,v(a1, a2, b1, b2, c1, c2, d1, d2) = 0 for each 0 ≤ u ≤ v ≤ D. We
conclude that

G(U) =
k⋂
j=1

⋂
0≤u≤v≤D

Z(Qj,u,v). (5)

Each of these polynomials has degree at most D.

If Π ⊂ R6 is a complex plane, then by Lemma 5.1, the variety G(Π) ⊂ R8 is defined
by polynomials of degree one. In fact, if Π is not parallel to the z2z3 plane then G(Π)
is a four-dimensional linear variety in R8. Under the standard identification of R8

with C4, the variety G(Π) is a complex plane. Furthermore, if Π and Π′ are complex
planes in R6, then G(Π) and G(Π′) are either disjoint (when Π and Π′ are parallel),
or they intersect at a single point (corresponding to the complex line Π ∩ Π′).

For p ∈ R6, we define Gp ⊂ R8 to be the (image of the) set of standard complex
lines that contain p. Again, Gp is a four-dimensional linear variety in R8. Under
the standard identification of R8 with C4, the set Gp is a complex plane. If p and p′

are distinct, then either Gp and Gp′ are disjoint (when the complex line containing
p and p′ is parallel to the complex z2z3 plane), or they intersect at a single point
(corresponding to the complex line containing p and p′).

Lemma 5.2. Let U be a proper subvariety of R6 defined by polynomials of degree at
most D and let p ∈ Ureg. If Gp ∩ G(U) is finite, then it has cardinality at most D2.
If it is infinite, then it has dimension one or two. If Gp ∩ G(U) has dimension two
then there is a complex plane Π ⊂ U that contains p.

Proof. If L is a complex line with p ∈ L ⊂ U , then L must be contained in the
complex plane Π = VpU . This means that the set of all such complex lines is given by
G(U) ∩Gp ∩G(Π). This variety has dimension at most two. The dimension is two if
and only if Gp∩G(Π) ⊂ G(U), in which case Π ⊂ U . Since Gp∩G(Π) is a real plane,
we can think of G(U) ∩ Gp ∩ G(Π) as a variety in R2. By Lemma 5.1 this variety is
defined by polynomials of degree at most D. By Corollary 2.9, if G(U) ∩Gp ∩G(Π)
is finite then it has cardinality at most D2.

For a standard complex line L ⊂ R6, we define H(L) to be the set of images of
the standard complex lines that intersect H. We refer to H(L) as the hairbrush of
L. A hairbrush is a six-dimensional variety in R8 defined by polynomials of degree
two. If L and L′ are standard complex lines that intersect at a point p and span the
complex plane Π, then H(L) ∩H(L′) = Gp ∪G(Π).

Lemma 5.3. Let Π ⊂ R6 be a complex plane and let U ⊂ G(Π) be a variety of
dimension at least two. Then there does not exist a real proper subvariety X ⊂ Π
such that every complex line corresponding to a point of U is contained in X.

Proof. Assume for contradiction that there exists X ⊂ Π as stated in the lemma.
Since dimXsing ≤ 2, the set of complex lines from G(Π) that have an infinite intersec-
tion with Xsing is of dimension at most one. Similarly, the set of such lines that are
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contained in X is of dimension at most one. Recall that two generic lines from G(Π)
intersect. Combining the above, we conclude that a generic line L0 ∈ G(Π) satisfies
dim(L0 ∩ Xreg) ≤ 1, dim(L0 ∩ Xsing) ≤ 0, and dim(H(L0) ∩ U) ≥ 2. Fix a line L0

that satisfies these three properties.
We claim that every point p ∈ L0 ∩ Xsing satisfies dim(Gp ∩ U) ≤ 1. Indeed, if

dim(Gp ∩ U) = 2 then Gp ∩ G(Π) ⊂ U , which implies that the union of the lines in
U is Π. This contradicts the assumption about X being a proper sub-variety of Π.

For a point p ∈ L0 ∩Xreg we have that dimVpX ≤ 2 (since this dimension must
be even). In this case, at most one complex line L ⊂ X satisfies p ∈ L. This implies
that the set of lines L ⊂ X with L ∩ L0 ⊂ Xreg is contained in a subvariety of U of
dimension at most one. We conclude that dim(H(L0) ∩ U) ≤ 1, which contradicts
the definition of L0.

Corollary 5.4. Let U ⊂ R6 be a variety defined by polynomials of degree at most D.
Let Π ⊂ R6 be a complex plane that is not contained in U . Then dim(G(U)∩G(Π)) ≤
1

Proof. Suppose to the contrary that dim(G(U) ∩ G(Π)) ≥ 2. Then for each w ∈
G(U) ∩ G(Π), the line Lw is contained in U ∩ Π, which is a proper subvariety of Π.
This contradicts Lemma 5.3.

Combining Lemma 5.2 and Corollary 5.4, we obtain the following.

Lemma 5.5. Let U ⊂ R6 be a variety defined by polynomials of degree at most D.
Let Π ⊂ R6 be a complex plane that is not contained in U . Then with the exception
of O(D4) points, every p ∈ U ∩ Π is incident to at most D2 complex lines that are
contained in U ∩ Π.

Proof. By Corollary 5.4, G(U)∩G(Π) is of dimension at most one. We identify Π with
R4, considering the intersection G(U)∩G(Π) as a variety in R4 defined by polynomials
of degree at most D. If p ∈ U ∩Π satisfies dim(Gp∩G(U ∩Π)) = 1, then we call it an
exceptional point. Since |Gp ∩Gp′ | ≤ 1 whenever p and p′ are distinct, the number of
exceptional points is at most the number of irreducible components of G(U)∩G(Π).
By applying Lemma 2.6 in R4, we get that this number is O(D4). If p is not an
exceptional point then Gp ∩ G(U ∩ Π) is finite. Since Gp ∩ G(Π) can be identified
with R2, we can use Corollary 2.9 to conclude that |Gp ∩G(U ∩ Π)| ≤ D2.

5.2 Real varieties ruled by complex planes

Recall that a variety U ⊂ R6 is almost ruled by complex planes if for each regular
point p ∈ Ureg, there is a complex plane Π ⊂ U that contains p. If U = R6, then
U is almost ruled by complex planes; this situation is not very interesting. If U is
a non-empty proper subvariety of R6 that is almost ruled by complex planes, then
dim(U) ≥ 4. If dim(U) = 4 and U is ruled by complex planes then U must be a finite
union of complex planes. Finally, if dimU = 5 and U is ruled by complex planes,
then for each p ∈ Ureg, the complex plane VpU is the unique complex plane satisfying
p ∈ Π ⊂ U .
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Lemma 5.6. Let U = Z(f) ⊂ R6 be an irreducible hypersurface with deg f ≤ D.
Then either U is almost ruled by complex planes or U contains at most 2D2(D − 1)
complex planes.

Proof. Without loss of generality we can assume that ∇f 6= 0 on Ureg. Let p ∈ U
and suppose that ∇f 6= 0. For each index j = 1, . . . , 6, let ej be the j–th unit basis
vector of R6. The vector obtained by projecting ej onto the complex tangent plane
Vp(U) is

ej −
ej · ∇f(p)

‖∇f(p)‖2
· ∇f(p)− ej · J(∇f(p))

‖J(∇f(p))‖2
· J(∇f(p))

= ej −
ej · ∇f(p)

‖∇f(p)‖2
· ∇f(p)− ej · J(∇f(p))

‖∇f(p)‖2
· J(∇f(p)).

Motivated by this observation, for each p ∈ R6 and each index j = 1, . . . , 6, define

Ej,f (p) = ej · ‖∇f(p)‖2 −
(
ej · ∇f(p)

)
∇f(p)−

(
ej · J(∇f(p))

)
J(∇f(p)).

For each index j, if ∇f(p) is zero then Ej,f (p) = 0. Otherwise, the vector Ej,f (p) has
the direction obtained by projecting ej onto the complex tangent plane Vp(U). This
vector is 0 when ej is orthogonal to Vp(U). Note that Ej,f (p) : R6 → R6 is a tuple of
polynomials of degree at most 2(D − 1).

Set Ef (p) = (E1,f (p), . . . , E6,f (p)). Let W : R6 × R6 → R be defined as

W (p, v) = f(p+ v · Ef (p)).

For p ∈ U define Wp : R6 → R as Wp(v) = W (p, v). If ∇f(p) = 0 then Wp(v)
is the zero polynomial. Otherwise, Wp(v) is the zero polynomial if and only if the
complex plane Vp(U) is contained in U . Note that W (p, v) has degree at most D in
the variables v1, . . . , v6. Thus, we may write

Wp(v) =
∑
I

QI(p)v
I ,

where the sum is over all multi-indices I = (j1, . . . , j6) of weight at most D, and
QI(p) is a polynomial in p of degree at most 2D(D − 1). Define

U ′ = U ∩
⋂
I

Z(QI).

Then U ′ ⊂ R6 is the union of Using with the set of points p ∈ U for which the complex
tangent plane Vp(U) is contained in U . If U ′ = U then U is almost ruled by complex
planes.

If U ′ is a proper sub-variety of U , then it has dimension at most four and is defined
by polynomials of degree at most 2D(D − 1). Every complex plane contained in U
is also contained in U ′ (including those complex planes contained in Using), and thus
by Lemma 2.6, U contains O(D12) complex planes. In the following paragraph we
obtain a stronger bound.
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A generic complex line in R6 intersects each complex plane in U at a distinct
point. Since U ′ has dimension four, such a generic line also has a zero-dimensional
intersection with U ′. We consider such a line L that is not contained in U . Then
dim(L ∩ U) ≤ 1. We identify L with R2 and define f̃ ∈ R[x, y] as the polynomial
obtained by restricting f to L. Similarly, there exist f1, . . . , fk ∈ R[x, y] of degree
at most 2D(D − 1) such that U ′ ∩ L = Z(f̃ , f1, . . . , fk). Without loss of generality,
we can suppose that f̃ , f1, . . . , fk do not share any common factors. If k = 0 then
Lemma 2.8 implies |U ′ ∩ L| ≤ D. If k ≥ 1 then applying Lemma 2.7 to f̃ and f1

leads to |U ′ ∩ L| ≤ 2D2(D − 1). We conclude that U contains at most 2D2(D − 1)
complex planes.

5.3 Point-line incidences inside a real hypersurface: prelim-
inary bounds

In this section we prove several preliminary bounds on the number of point-line inci-
dences inside a real hypersurfaces. In the next section we use these results to prove
Proposition 1.9.

Lemma 5.7. Let U be a proper subvariety of R6 defined by polynomials of degree at
most E. Let S ⊂ R8 be an irreducible surface defined by polynomials of degree at
most D. Let P ⊂ Ureg be a set of m points. Let L be a set of n complex lines that are
contained in U but not in any complex plane that is contained in U . Furthermore,
suppose G(L) ∈ S for each L ∈ L. Then

I(P ,L) = OD,E(m+ n). (6)

Proof. Consider a point p ∈ P that is contained in a complex plane Π ⊂ U . Then
Π = VpU and every complex line L ⊂ U that is incident to p is also contained in Π.
This implies that no line of L is incident to p, so we can safely discard it from P . We
thus assume that no point of P is incident to a complex plane that is contained in U .

For each p ∈ P , define γp = Gp ∩ G(U). If dim(γp ∩ S) ≤ 0 then Lemma 2.6
implies |γp ∩ S| = OD,E(1). The number of incidences formed by points of this type
is OD,E(m).

Set P1 = {p ∈ P : dim(γp ∩S) = 1}. Assume that S 6⊂ G(U). In this case, |P1| is
at most the number of irreducible one-dimensional components of S ∩G(U). Lemma
2.6 implies that |P1| = OD,E(1), which in turn leads to I(P1,L) = OD,E(n). This
establishes (6).

Next, assume that S ⊂ G(U). We consider a complex line L ∈ L and recall that
G(L) ∈ S. We claim that either S ⊂ H(L) or |P ∩ L| = OD(1). Indeed, every
p ∈ P ∩ L satisfies Gp ⊂ H(L), so Gp ∩ S ⊂ H(L) ∩ S. If p, q ∈ P are distinct then
|Gp ∩Gq| ≤ 1, which implies that |P ∩L| is at most the number of irreducible curves
in H(L) ∩ S. If S 6⊂ H(L), then by Lemma 2.6 this quantity is OD(1).

Assume that there exist two lines L,L′ such that G(L), G(L′) ∈ S and S ⊂
H(L) ∩H(L′). Since G(L′) ∈ S ⊂ H(L), the lines L and L′ intersect at some point
p ∈ R6 and span a complex plane Π. This implies that S ⊂ H(L)∩H(L′) = Gp∩G(Π).
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Recall that for distinct p and q we have |Gp ∩ Gq| ≤ 1. Thus, S ⊂ Gp, leads to
P1 ⊆ {p}. In this case I(P1,L) ≤ n, which establishes (6).

Finally, suppose that at most one line L satisfies G(L) ∈ S and S ⊂ H(L). This
line contributes at most m incidences. By the above, every L′ ∈ L \ {L} is incident
to OD(1) points from P1. Once again, (6) holds.

Lemma 5.8. Let U ⊂ R6 be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U but are not in
any complex plane contained in U . Let r0 = D2 + 1. Then

|Pr0(L)| = OD(n3/2).

Proof. Let H be the set of complex planes H ⊂ C3 that contain at least 2n1/2 lines
from L. By Lemma 3.2 we have |H| ≤ n1/2. Since no line from L is contained in
a complex plane H ⊂ U , for each H ∈ H the intersection H ∩ U is a variety of
dimension at most 3 defined by polynomials of degree at most D. By Lemma 5.5,

|Pr0(LH)| = OD(1).

LetW be the set of complex irreducible degree two surfaces W ⊂ C3 that contain
at least 8n1/2 lines from L. By Lemma 3.2 we have |W| ≤ n1/2. Since the lines in an
irreducible degree two surface determine at most one 3-rich point, for each W ∈ W
we have

|Pr0(LW )| ≤ |P3(LW )| ≤ 1.

If L ∈ L is not contained in a plane from H then L intersects each plane from
H at most once. Similarly, if L ∈ L is not contained in a surface from W then L
intersects each surface from W at most twice. Let L′ be the set of lines that are not
contained in a plane from H nor a surface fromW . Using Theorem 3.1 to control the
contribution from L′, we conclude that

|Pr0(L)| ≤ |P2(L′)|+ |L|(|H|+ 2|W|) +OD(|H|) + |W|
≤ O(n3/2) + n(n1/2 + 2n1/2) +OD(n1/2) + n1/2

= OD(n3/2).

A routine random sampling argument allows us to bound the number of lines that
are r rich for larger values of r. For details, see for example [30, Section 3].

Corollary 5.9. Let U ⊂ R6 be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U but are not in
any complex plane contained in U . Then for each r > D2,

|Pr(L)| = OD(n3/2r−3/2).

Corollary 5.10. Let U ⊂ R6 be an irreducible variety defined by polynomials of
degree at most D. Let P be a set of m points in R6. Let L be a set of n complex lines
that are contained in U but are not in any complex plane contained in U . Then

I(P ,L) = OD

(
n3/2 +m

)
.
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Proof. Let j0 be the smallest integer such that 2j > D2. By Corollary 5.9,

I(P ,L) ≤ 2(D2 + 1)m+
∞∑
j=j0

2j+1|P2j(L)|

≤ 2(D2 + 1)m+OD(n3/2)
∞∑
j=0

2j · 2−3j/2

= OD(n3/2 +m).

5.4 Proof of Proposition 1.9

We are now ready to prove Proposition 1.9. The crucial step is to establish the
following incidence result for points and curves in R3. The following proof is closely
modeled on the arguments in [30] by the second author, which are in turn based on
arguments of Sharir and Zlydenko [20].

Before stating the next result, it will be helpful to introduce a definition. Let P be
a set of points and let Γ be a set of curves in R3. Let K : N→ R be a non-decreasing
function. We say that P and Γ have K-good incidence geometry inside surfaces if for
every irreducible polynomial f ∈ R[x, y, z], point set P ′ ⊂ P ∩ Z(f), and set Γ′ ⊂ Γ
of curves contained in Z(f), we have

I(P ′,Γ′) ≤ K(deg f)(|P ′|+ |Γ′|).

In brief, P and Γ have good incidence geometry inside surfaces if there do not exist
large subsets of P and Γ that cluster into low degree surfaces and generate many
incidences therein.

Lemma 5.11. Let E,B ≥ 1 and let K : N → R be a function. Let P be a set
of n points in R3 and let Γ be a set of m irreducible curves in R3, each defined
by polynomials of degree at most E. Suppose that P and Γ have K-good incidence
geometry inside surfaces, and that for all sets P ′ ⊂ P and Γ′ ⊂ Γ, we have

I(P ′,Γ′) ≤ B(|P ′|3/2 + |Γ′|). (7)

Then
I(P ,Γ) ≤ C(m3/5n3/5 +m+ n),

where the constant C depends on B,E, and K(t) for some t = OE(1).

Proof. In what follows all implicit constants may depend on B and E. We prove the
result by induction on m. The base case of the induction is m ≤ m0, where m0 is a
constant specified below. This base case holds by taking C to be sufficiently large.

Next, suppose that m2 ≥ cn3, where c is a constant specified below. In this case,
(7) implies

I(P ,L) = O
(
n3/2 +m

)
= O

(
m3/5n3/5 +m

)
,
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where the implicit constant depends on c. If C is sufficiently large compared to c and
B, then the induction closes and we are done. Henceforth we will assume that

m0 < m < c1/2n3/2.

Partitioning the space. We refer to the case where m ≥ n2/3 as Case 1 and to
the case where m < n2/3 as Case 2. In Case 1 we set D = bcn3/5m−2/5c and in Case
2 we set D = bcm1/2c. It can be easily verified that D ≤ cn1/3 in both cases. At this
point we fix m0 = dc−2e; this ensures that D ≥ 1. To recap, in both Case 1 and Case
2 we have

1 < D ≤ cn1/3.

In addition, in both Case 1 and Case 2 we have

D ≤ cm1/2.

We apply Corollary 2.3 to obtain a nonzero polynomial f ∈ R[x1, x2, x3] of degree
at most D that satisfies the following. Each connected component of R3 \Z(f) inter-
sects O(mD−2) varieties from Γ and contains O(nD−3) points from P . As discussed in
Remark 2.4, we may suppose that Z(f) is a surface (that is, Z(f) is equidimensional
and each irreducible component has dimension two).

Recall that R3\Z(f) is a union of O(D3) cells. For each index j = 1, . . . , O(D3),
let Pj be the set of points of P in the j-th cell and let Γj be the set of elements of Γ
that intersect the j-th cell. We also set P0 = P ∩ Z(f), n0 = |P0|, and n′ = n − n0.
By definition, for each index j we have |Pj| = O(nD−3) and |Γj| = O(mD−2). Note
that n′ =

∑
j |Pj|.

We first bound I(P \ P0,Γ). In Case 1, by applying (7) separately in each cell,
we obtain

I(P \ P0,Γ) =
∑
j

O
(
|Pj|3/2 + |Γj|

)
= O

(
D3 ·

(( n
D3

)3/2
+

m

D2

))
= O

( n3/2

D3/2
+m ·D

)
= O

(
m3/5n3/5

)
.

(8)

In Case 2, the number of elements of Γ that intersect a cell is O(mD−2) = O(1).
Since each such cell contains O(nD−3) points, we obtain

I(P \ P0,Γ) ≤
∑
j

|Pj||Γj| =
∑
j

O (|Pj|) = O(n′). (9)

Handling curves on the partition. It remains to derive an upper bound on
I(P0,Γ). As discussed above, we can assume that each irreducible component of
Z(f) has dimension two. Denote these two-dimensional components as U1, . . . , UD′ ,
where D′ ≤ D. For each 1 ≤ j ≤ D′, let fj be a minimum degree polynomial
satisfying Z(fj) = Uj.

We set I(P0,Γ) = I ′ + I ′′ as follows. Let p ∈ P0 be incident to γ ∈ Γ. If there is
an index 1 ≤ j ≤ D′ so that p ∈ Uj and dim(Uj ∩ γ) = 0, then the incidence (p, γ)
contributes to I ′. Otherwise (p, γ) contributes to I ′′.
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Since each element of Γ is defined by polynomials of degree at most E, if γ ∈ Γ
is not contained in Uj then Lemma 2.5 implies |γ ∩ Uj| = O(Dj). In particular, each
curve γ ∈ Γ can contribute O(D) incidences of the form I ′. Thus

I ′ = O(Dm) = O(m3/5n3/5). (10)

It remains to bound I ′′. Let P ′j denote the set of points p of P0 such that p ∈ Uj
and p 6∈ Uj′ for each j′ < j. Let Γ′j denote the set of curves γ ∈ Γ for which γ ⊂ Uj
and γ 6⊂ Uj′ for each j′ < j. For every incidence (p, γ) contributing to I ′′ there is an
index j such that p ∈ P ′j and γ ∈ Γ′j.

For each index j, applying Lemma 2.13 to Uj implies the following. Either Uj
contains O(D2) exceptional curves defined by polynomials of degree O(1), or Uj is
doubly ruled by such curves. In the latter case deg(fj) = O(1), where the implicit
constant depends only on E. By re-indexing, we can suppose that U1, . . . , Uh are
doubly ruled by curves defined by polynomials of degree O(1), and Uh+1, . . . , UD′ are
not. (If no Ui is doubly ruled then we set h = 0. If all Ui are doubly ruled then we
set h = D′.)

Since P and Γ have K-good incidence geometry inside surfaces, for each index
j = 1, . . . , h we have

I(P ′j,Γ′j) = O(|P ′j|+ |Γ′j|),

where the implicit constant only depends on K(t) with t = OE(1). Thus

h∑
j=1

I(P ′j,Γ′j) = O
( h∑
j=1

|P ′j|+
h∑
j=1

|Γ′j|
)
. (11)

It remains to control incidences (p, γ) where p ∈ P ′j and γ ∈ Γ′j for some h+ 1 ≤
j ≤ D′. We call a point p ∈ P ′j rich if it is incident to at least two curves from Γ′j.
Otherwise p is poor. For each index j = h+ 1, . . . D′, let P ′j,rich and P ′j,poor be the set
of rich and poor points of P ′j, respectively. Define

Prich =
D′⋃

j=h+1

P ′j,rich and Ppoor =
D′⋃

j=h+1

P ′j,poor.

Set npoor = |Ppoor| and nrich = |Prich|. Note that npoor + nrich ≤ n0. We have

D′∑
j=h+1

I(P ′j,poor,Γ
′
j) ≤ 2

D′∑
j=h+1

|P ′j,poor| = 2npoor. (12)

In a similar vein, let Γ′j,exceptional be the set of exceptional curves in Γ′j, and let
Γ′j,plebeian be the set of non-exceptional curves. Define

Γexceptional =
D′⋃

j=h+1

Γ′j,exceptional and Γplebeian =
D′⋃

j=h+1

Γ′j,plebeian.
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Since each curve γ ∈ Γ′j,plebeian is incident to O(1) rich points, we have

D′∑
j=h+1

I(P ′j,rich,Γ′j,plebeian) =
D′∑

j=h+1

O(|Γ′j,plebeian|). (13)

Finally, Lemma 2.13 implies

|Γexceptional| =
D′∑

j=h+1

O((deg fj)
2) = O(D2) = O(c2m).

If the constant c is selected sufficiently small compared to E, then

|Γexceptional| ≤ m/2.

We can now apply the induction hypothesis to conclude that

I(Prich,Γexceptional) ≤ C(|Prich||Γexceptional|3/5 + |Prich|+ |Γexceptional|)
≤ C(m3/5n3/5/23/5 + nrich +m/2).

(14)

Wrapping up. In the above, we partitioned the incidences of P × Γ into several
cases. The incidences inside the cells of the partition are bounded in (8) and (9).
The number of incidences with points on the variety of the partition was split into
I ′ and I ′′. In (10) we bounded I ′. The incidences of I ′′ were further partitioned and
bounded in (11), (12), (13), and (14). Combining all these bounds gives

I(P ,L) = O
(
m3/5n3/5 +m+ n′

)
+ 2npoor + C(m3/5n3/5/23/5 + nrich +m/2),

where the implicit constant depends on B,E, and K(t) with t = OE(1). Recall that
nrich + npoor + n′ = n. By taking C to be sufficiently large with respect to B,E, and
K(t), we obtain

I(P ,L) ≤ C
(
m3/5n3/5 +m+ n

)
.

This closes the induction and finishes the proof.

Lemma 5.12. Let U ⊂ R6 be an irreducible variety defined by polynomials of degree
at most E that is not almost ruled by complex planes. Let P ⊂ Ureg be a set of m
points. Let L ⊂ R6 be a set of n complex lines that are contained in U but not in any
complex plane contained in U . Then

I(P ,L) ≤ C(m3/5n3/5 +m+ n).

Proof. We first claim that each point p ∈ P satisfies dim(G(U) ∩ Gp) ≤ 1. Indeed,
assume that there exists p ∈ P such that dim(G(U) ∩ Gp) > 1. By Lemma 5.2, the
complex lines of G(U) ∩ Gp are contained in the complex plane VpU . We may then
repeat the first paragraph in the proof of Lemma 5.7.
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For each p ∈ P , define βp = G(U) ∩ Gp; this is a variety in R8 of dimension at
most one. We have

I(P ,L) = I({G(L) : L ∈ L}, {βp : p ∈ P}}.

Let Y = {G(L) : L ∈ L} ∪ {βp : p ∈ P} and let

X =
{ ⋃
Y ∈Y ′

Y : Y ′ ⊂ Y
}
.

That is, X is the family consisting of all finite unions of points from {G(L) : L ∈ L}
and curves from {βp : p ∈ P}.

Use Proposition 2.12 to select a projection π : R8 → R3 that is non-degenerate
with respect to X . Let Q = {π(G(L)) : L ∈ L} and let Γ be the set of all irreducible
curves γ ⊂ R3 with γ ⊂ π(βp) for some p ∈ P . By Lemma 2.6, |Γ| = O(n), and each
curve γ ∈ Γ is defined by polynomials of degree O(1).

We claim that
I(P ,L) ≤ I(Q,Γ) + O(m). (15)

Indeed, if p ∈ P is incident to L ∈ L, then either there is an irreducible curve
γ ⊂ π(βp) with G(L) ∈ γ, or G(L) is a zero-dimensional component of βp. By
Lemma 2.6, βp has O(1) irreducible components, so there are O(m) incidences of this
type.

Since the projection π non-degenerate, it does not introduce new incidences. By
Corollary 5.10, there is a constant B depending on E such that for all sets Q′ ⊂ Q
and Γ′ ⊂ Γ,

I(Q,Γ′) ≤ B(|Q′|3/2 + |Γ′|).

Again, since π is non-degenerate, Lemma 5.7 implies that Q and Γ have K-good
incidence geometry inside surfaces, where K : N→ R is a function that depends only
on E. Applying Lemma 5.11 to Q and Γ, we conclude that

I(Q,Γ) = O(m3/5n3/5 +m+ n). (16)

The result now follows by combining (15) and (16).

Using Lemma 5.12, we can now prove Proposition 1.9. We first recall the statement
of this proposition.

Proposition 1.9. Let U ⊂ R6 be an irreducible variety defined by polynomials of
degree at most D. Then at least one of the following two statements holds.

� U is almost ruled by complex planes.
� U contains at most 2D2(D− 1) complex planes. If L is a set of n complex lines

that are contained in U but not contained in any of these planes, then for each
r > D2 we have

|Ureg ∩ Pr(L)| = OD(n3/2r−5/2 + nr−1).
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Proof. If U is almost ruled by complex planes then the first item holds and we are
done. Suppose that U is not almost ruled by complex planes. Then by Lemma 5.6,
U contains at most 2D2(D − 1) complex planes. Let L be a set of complex lines
contained in U that are not contained in any complex plane contained in U . Let
r > D2 and let C = C(D) be the constant from Lemma 5.12.

We first consider the case of r < 2C. We address this case by imitating the proof
of Lemma 5.8. Let S be the set of complex planes that contain at least 2n1/2 lines
from L. We also insert into S every irreducible degree two surface that contains at
least 8n1/2 lines from L. Lemma 3.2 implies |S| = O(n1/2). By Lemma 5.5, for each
plane S ∈ S the number of r-rich points formed by lines in LS is OD(1). The lines
contained in an irreducible degree two surface form at most one 3-rich point. The
total contribution from all elements in S is OD(n1/2). A line L ∈ L intersects a
surface of S that does not contain L in at most two points. Summing this over all
lines of L and all surfaces of S leads to O(n3/2) intersection points. Thus, removing
from L all lines that are contained in at least one surface of S decreases the number
of r-rich points by O(n3/2).

After the above pruning of L, we can apply Theorem 3.1 on L. The theorem
states that Pr(L) = OD(n3/2). By the above, after bringing back the removed lines
the number of r-rich points remains OD(n3/2). Since r < 2C, we have that OD(n3/2) =
OD(n3/2/r5/2).

We move to consider the case of r ≥ 2C. Set P = Ureg ∩Pr(L). Applying Lemma
5.12, we have

r · |P| ≤ I(P ,L) ≤ C
(
|P|3/5n3/5 + |P|+ n

)
.

Since r ≥ 2C, after subtracting C|P| from both sides we obtain

r · |P|/2 ≤ C
(
|P|3/5n3/5 + n

)
.

Rearranging yields the bound in the statement of the proposition.

6 A structure theorem for lines in C3

In this section we prove Theorem 1.8. As discussed in the introduction, the theorem is
proved by induction on the number of lines. We use Theorem 2.2 to partition R6 into
open connected cells, and apply the induction hypothesis inside each cell. The main
difficulty occurs when many of the r-rich points are contained in the boundary Z(f)
of the partition. If an r-rich point p is contained in Z(f), then either many complex
lines incident to p are contained in Z(f), or many such lines properly intersect Z(f).
In Section 6.1 we develop tools to understand the former case, and in Section 6.2 we
develop tools to understand the latter. Finally, in Section 6.3 we use these tools to
prove Theorem 1.8.
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6.1 A structure theorem for complex lines inside a real vari-
ety

Lemma 6.1. Let U ⊂ R6 be an irreducible variety defined by polynomials of degree
at most D. Let L be a set of n complex lines that are contained in U . Let r be
sufficiently large compared to D. Then there is a set S of complex planes in C3 such
that each S ∈ S contains at least 2rn1/2+ε lines from L, and∣∣∣(Ureg ∩ Pr(L))\

⋃
S∈S

Pr(LS)
∣∣∣ = OD(n3/2+εr−2 + nr−1). (17)

Proof. We first consider the case where U is almost ruled by complex planes. In this
case, for each p ∈ Ureg ∩Pr(L), every line from L that contains p is contained in VpU .
Let S be the set of planes contained in U that contain at least 2rn1/2+ε lines from L.
Let S ′ be the set of planes contained in U that contain between 1 and 2rn1/2+ε lines
from L. By Theorem 3.4, we have∑

S∈S′
Pr(LS) =

∑
S∈S′

O(|LS|2r−3 + |LS|r−1)

= O(rn1/2+ε ·
∑
S∈S′
|LS|r−3 +

∑
S∈S′
|LS|r−1) = O(n3/2+εr−2 + nr−1).

We conclude that∣∣∣(Ureg ∩ Pr(L))\
⋃
S∈S

Pr(LS)
∣∣∣ ≤∑

S∈S′
Pr(LS)

= O(n3/2+εr−2 + nr−1).

We now consider the case where U is not almost ruled by complex planes. By
Proposition 1.9, the variety U contains at most 2D2(D − 1) complex planes. Let S0

be the set of complex planes in U . Let S be the set of planes in S0 that contain at
least 2n1/2+εr lines from L.

Consider p ∈ Ureg that is contained in a plane S ∈ S0. Then every line from L that
is incident to p is contained in LS. By repeating the above argument that involves
Theorem 3.4, we have ∑

S∈S0\S

|Pr(LS)| = O(n3/2+εr−2 + nr−1). (18)

Let L′ = L\
⋃
S∈S0 LS. By Proposition 1.9 we have

|Pr(L′)| = O(n3/2r−5/2 + nr−1). (19)

Combining (18) and (19) yields (17) and finishes the proof.
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6.2 A structure theorem for complex lines intersecting a real
variety

In this section we analyze the structure of complex lines that properly intersect a
real variety U ⊂ R6 and determine many r-rich points therein. The basic idea is as
follows. Suppose that L is a set of complex lines in R6 that properly intersect U . For
each L ∈ L, the intersection L∩U is a union of isolated points and real curves in R6.
Ignoring the isolated points, we can use Lemma 4.3 to obtain a structure theorem
for the set of curves {L ∩ U : L ∈ L}. Lemma 4.3 gives us a collection of irreducible
real surfaces in R6 that cover most of the r-rich points inside U . Lemma 6.2 shows
that, for every irreducible surface S ⊂ R6 that contains many real curves of the form
L∩U , there is a complex surface in C3 that contains the corresponding lines from L.

Before getting to Lemma 6.2, we introduce terminology and results concerning
the interplay between real and complex varieties. We now identify Rd with the real
part of Cd. That is, we think of p = (p1, . . . , pd) ∈ Rd as (p1, . . . , pd) ∈ Cd. The
complexification U∗ of a variety U ⊂ Rd is the smallest variety in Cd that contains U .
In other words, U∗ is the Zariski closure of the embedding of U in Cd. We have that
dimC U

∗ = dimR U . In the opposite direction, for a variety W ⊂ Cd we define W (R) to
be the set of points of W that have real coordinates. We have dimRW (R) ≤ dimC(W ),
and strict inequality is possible. Further information can be found in [29].

If U ⊂ Rd is defined by polynomials of degree at most D, then U∗ ⊂ Cd is defined
by polynomials of degree at most D. Similarly, if W ⊂ Cd is defined by polynomials
of degree at most D, then W (R) ⊂ Rd is defined by polynomials of degree at most
D. (Indeed, we can split each polynomial that defines W into two polynomials of
R[x1, . . . , xd], by separately considering the real and imaginary parts.)

As in the previous sections, we also identify Cd with R2d using the bijection

ι(x1 + iy1, . . . , xd + iyd) = (x1, y1, . . . , xd, yd),

where x1, y1, . . . , xd, yd ∈ R.

Lemma 6.2. Let U ⊆ R2d be an irreducible variety defined by polynomials of degree
at most D. Then there exists an irreducible variety W ⊆ Cd defined by polynomials
of degree OD,d(1) such that dimCW ≤ dimR U and U ⊆ ι(W ).

Proof. We define the linear functions τ : C2d → C2d as

τ(x1, y1, . . . , xd, yd) = (x1 + iy1, x2 + iy2, . . . , xd + iyd, x1 − iy1, x2 − iy2, . . . , xd − iyd).

Since the expressions x1 + iy1, . . . , xd + iyd, x1 − iy1, . . . , xd − iyd are linearly in-
dependent, we may use them as another coordinate system. Using these coordinates,
we consider the projection π : C2d → Cd defined by

π(x1 + iy1, . . . , xd + iyd, x1 − iy1, . . . , xd − iyd) = (x1 + iy1, . . . , xd + iyd).

Recall that the complexification U∗ is defined by polynomials of degree OD,d(1).
By Lemma 2.11, there exists a variety W ⊂ Cd defined by polynomials of degree
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OD,d(1) such that π(τ(U∗)) ⊂ W . Projections, Zariski closures, complexifications,
and linear transformations do not increase dimensions. We thus have that dimCW ≤
dimR U . It remains to show that U ⊆ ι(W ). Consider a point p ∈ U and write

p = (p1, q1, . . . , pd, qd) ∈ R2d.

Let p∗ be the point in C2d having the same coordinates as p. Note that

τ(p∗) = (p1 + iq1, . . . , pd + iqd, p1 − iq1, . . . , pd − iqd) ∈ C2d.

This implies that
π(τ(p∗)) = (p1 + iq1, . . . , pd + iqd) ∈ Cd,

so
ι((π(τ(p∗))) = (p1, q1, . . . , pd, qd).

Since ι(π(τ(p∗))) = p, we have that p ∈ ι(W ). That is, U ⊂ ι(W ). Since U is
irreducible, every component of ι(W ) either contains U or intersects U in a lower-
dimension variety. Thus, at least one irreducible component of ι(W ) contains U . To
complete the proof, select a component of ι(W ) that contains U .

Lemma 6.3. Let U ⊂ R6 be a variety that is defined by polynomials of degree at most
D. Let L be a set of complex lines that are not contained in U . Let r be sufficiently
large compared to D. Then there is a set S of complex planes in C3 such that each
S ∈ S contains at least 2rn1/2+ε lines from L and∣∣∣U ∩ Pr(L)\

⋃
S∈S

P 4
5
r(LS)

∣∣∣ = OD,ε(n
3/2+εr−2).

Proof. Define Γ to be the set of all irreducible curves γ ⊂ R6 such that γ ⊂ L ∩ U
for some L ∈ L. By Lemma 2.6, |Γ| = OD(n), and each curve in Γ is defined by
polynomials of degree OD(1).

Let P0 be the set of points incident to at least r/100 lines from L at an isolated
point of U ∩ L. Using Lemma 2.6 again, for each L ∈ L, the intersection L ∩ U has
OD(1) isolated points. This implies that |P0| = O(nr−1). Note that

U ∩ Pr(L) ⊂ P 99
100

r(Γ) ∪ P0.

We apply Lemma 4.3 to Γ with 99
100
r in place of r, and let S ′ be the resulting set

of irreducible real surfaces of degree OD,ε(1) in R6. We have∣∣∣P 99
100

r(Γ)\
⋃
S′∈S′

P 4
5
r(ΓS′)

∣∣∣ = OD,ε(n
3/2+εr−2).

Apply Lemma 6.2 to each surface S ∈ S ′, to obtain an irreducible complex variety
of dimension at most two. Let S ′′ be the set of the resulting irreducible complex
varieties. Note that |S ′′| = OD,ε(n

1/2−εr−1). Each variety of S ′′ has an infinite
intersection with a complex line and is thus two-dimensional. A surface of S ′′ contains
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each complex lines that it has an infinite intersection with. Thus, when p ∈ P 4
5
r(ΓS′)

for some S ′ ∈ S ′, there is a complex surface S ′′ ∈ S ′′ such that p ∈ P 4
5
r(LS′′). This

implies ∣∣∣U ∩ Pr(L)\
⋃
S∈S′′
P 4

5
r(LS)

∣∣∣ = OD,ε(n
3/2+εr−2).

Let S be the set of surfaces S ∈ S ′′ that are complex planes containing at least
2n1/2+εr lines from L. We claim that∑

S∈S′′\S

|P 4
5
r(LS)| = OD,ε(n

3/2+εr−2 + nr−1). (20)

Indeed, if S ∈ S ′′ is a plane containing fewer than 2n1/2+εr lines, then by Theorem
3.4,

|P 4
5
r(LS)| = O(n1+2εr−1)

Since there are O(n1/2−εr−1) such planes, their total contribution is O(n3/2+εr−2).
Consider S ∈ S ′′ that is not a plane. Since S contains at least 2n1/2+εr lines, it

must be a ruled surface. The lines in a ruled surface that is not a plane form at most
one 3-rich point. (For these claims about ruled surfaces in C3, see for example [15].
In particular, see the part titled “Special ruled surfaces”.) The total contribution
from surfaces of this type is O(n1/2−εr−1) = O(n3/2r−2). This establishes (20), which
in turn completes the proof of the lemma.

6.3 Proof of Theorem 1.8

Armed with Lemmas 6.1 and 6.3, we are now ready to prove Theorem 1.8. For the
reader’s convenience we first recall the statement of the theorem.

Theorem 1.8. For every ε > 0, there exists C that satisfies the following. Let L be
a set of n lines in C3, let 2 ≤ r ≤ 2n1/2 and let r′ = max(2, r/3). Then there exists
a set S of algebraic surfaces in C3 with the following properties.

� If r ≥ 3 then every surface in S is a plane. If r = 2 then every surface in S is
irreducible and has degree at most two.

� Every surface W ∈ S contains at least rn1/2+ε lines of L.
� |S| ≤ 2n1/2−εr−1.
� |Pr(L) \

⋃
W∈S Pr′(LW )| ≤ Cn3/2+εr−2.

Proof. The cases of r = 2 or r = 3 are proved in Section 3. By taking C to be
sufficiently large and using the bound from the r = 3 case, we obtain the result for
any constant r. We may thus assume that r ≥ rε for a sufficiently large rε depending
on ε. In particular, we can assume that r′ = r/3.

With ε and r fixed, we prove the result by induction on n. By selecting the
constant C sufficiently large, we can suppose that n ≥ nε for a fixed value nε of
our choosing. Suppose now that the result has been proved for all sets of lines of
cardinality smaller than n, and let L be a set of complex lines of cardinality n.
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Since each complex line L ∈ L is also a two-dimensional real variety in R6, we
can apply Theorem 2.2 to L with a value of D = D(ε) to be specified below. We
obtain a polynomial f ∈ R[x1, . . . , x6] of degree at most D such that each connected
component of R6 \ Z(f) intersects O(nD−4) complex lines from L. We denote these
open connected components as Ω1, . . . ,Ωs, with s = O(D6). Let U = Z(f), and for
each index j let Lj be the set of lines from L that intersect Ωj.

We set nj = |Lj|. For every index j that satisfies r > 2n
1/2
j , we define Sj = ∅. By

applying Lemma 3.3 and recalling the assumption r ≤ 2n1/2, we obtain that

|Pr(L) ∩ Ωj| ≤ |Pr(Lj)| ≤ 2njr
−1 < 2nr−1 ≤ 4n3/2r−2. (21)

Recall that D depends only on ε. If nε is selected sufficiently large compared to ε
then

4n3/2r−2 ≤ Cn3/2+εr−2D−6−4ε. (22)

For each index j with r ≤ 2n
1/2
j , apply the induction hypothesis to Lj with the

same values for ε and r. We obtain a set Sj of complex planes, such that

|Sj| ≤ 2n
1/2−ε
j = O(D−2+4εn1/2−ε).

Define

S ′ =
s⋃
j=1

Sj.

Note that |S ′| = OD

(
n1/2−ε). Since Pr(L) ∩ Ωj ⊂ Pr(Lj), we have

|(Pr(L) ∩ Ωj) \ ∪S∈SjPr′(LS)| ≤ Cn
3/2+ε
j r−2 = O(Cn3/2+εD−6−4εr−2). (23)

Combining (21), (22), and (23) and taking D to be sufficiently large compared to
ε gives ∣∣∣(Pr(L)\U) \

⋃
S∈S′
Pr′(LS)

∣∣∣ = O(D6 · Cn3/2+εD−6−4εr−2)

= O(Cn3/2+εD−4εr−2)

≤ C

4
n3/2+εr−2.

(24)

Let S ′′ be the set of complex planes S ∈ S ′ that contain at least 2n1/2+εr lines
from L. We repeat the last part of the proof of Lemma 6.3, which involved Theorem
3.4 and ruled surfaces. By the same argument∑

S∈S′\S′′
|Pr′(LS)| ≤ C

4
n3/2+εr−2. (25)

It remains to derive an upper bound on the size of Pr(L) ∩ U . Let U1 = U , and
for each j = 2, . . . , 6 let Uj = (Uj−1)sing. By Lemma 2.1 each of the sets U1, . . . , U6

are defined by polynomials of degree OD(1); U6 is finite (possibly empty), and U =
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⋃6
j=1(Uj)reg. In particular, if p ∈ Pr(L) ∩ U then there is an index j such that

p ∈ (Uj)reg. Such a point p is either incident to at least r/2 lines L ∈ L that are
contained in Uj, or to at least r/2 lines L ∈ L that are not contained in Uj (or both).

For each index j = 1, . . . , 6, we apply Lemma 6.1 and Lemma 6.3 to Uj; we
obtain sets Sj,S ′j of complex planes contained in Uj, with |LS| ≥ 2n1/2+εr for each
S ∈ Sj ∪ S ′j. For each index j we have∣∣∣(Uj)reg ∩ Pr/2(LUj

)\
⋃
S∈Sj

Pr/2(LS)
∣∣∣ = OD(n3/2+εr−2 + nr−1) ≤ C

4
n3/2+εr−2, (26)

and∣∣∣(Uj)reg ∩Pr/2(L\LUj
)\
⋃
S∈S′j

P 4
5
· r
2
(LS)

∣∣∣ = OD(n3/2+εr−2 + nr−1) ≤ C

4
n3/2+εr−2. (27)

Let

S = S ′′ ∪
6⋃
j=1

(Sj ∪ S ′j).

Each plane S ∈ S contains at least 2n1/2+εr lines from L, so by Lemma 3.2 we have
|S| ≤ n1/2−εr−1. Combining (24), (25), (26), and (27), we obtain∣∣∣Pr(L) \

⋃
S∈S

Pr/3(LS)
∣∣∣ ≤ Cn3/2+εr−2.

This closes the induction and completes the proof.

7 The distinct distances problem

We now study distinct distances in C2. In [12], Guth and Katz used the Elekes-
Sharir-Guth-Katz framework to convert an upper bound for incidences of lines in R3

into a lower bound for distinct distances in R2. In [18], Roche-Newton and Rudnev
used a similar strategy to obtain a lower bound for the number of distinct “Minkowski
distances” spanned by a set of points in R2. If p and q are points in R2, then the
square of their Minkowski distance is the signed area of the rectangle with oppose
corners p and q. In contrast to the situation with Euclidean distances, it is possible
for a pair of distinct points to have Minkowski distance zero. Roche-Newton and
Rudnev introduced new arguments to tackle this situation. We will use similar ideas
in order to use the incidence bound from Theorem 1.8 to prove Theorem 1.2.

7.1 The ESGK framework: from distinct distances to line
intersections

The first step in the ESGK framework is to reduce the problem of counting distinct
distances to that of counting quadruples a, b, c, d ∈ C4 with ∆(a, b) = ∆(c, d). For
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finite sets P ,P ′ ⊂ C2, let ∆(P ,P ′) be the set of distances spanned by pairs of points
from P × P ′. We also define

Q(P ,P ′) =
{

(a, b, c, d) ∈ (P × P ′)2 : ∆(a, b) = ∆(c, d) and (a, b) 6= (c, d)
}
.

Lemma 7.1. Let P and P ′ be finite sets in C2, each of size at least n. If no pair of
points from P × P ′ is on the same isotropic line, then

|∆(P ,P ′)| ≥ n4

2|Q(P)|
.

Proof. Recall that two points p, q ∈ C2 satisfy ∆(p, q) = 0 if and only if there exists
an isotropic line that contains both. Indeed, if p = (px, py) and q = (qx, qy), then
∆(p, q) = (px− qx)2 + (py− qy)2, so ∆(p, q) = 0 if and only if (px− qx)2 = −(py− qy)2.
This can occur if and only if (px − qx) = ±i(py − qy).

Since no pair of points from P × P ′ is on the same isotropic line, we have that
0 /∈ ∆(P ,P ′). We set t = |∆(P ,P ′)| and write ∆(P ,P ′) = {δ1, . . . , δt}. For every
1 ≤ j ≤ t, we set Nj = |{(a, b) ∈ P × P ′ : ∆(a, b) = δt}|. Since every pair
(a, b) ∈ P × P ′ contributes to exactly one Nj, we get that

∑t
j=1 Nj ≥ n2.

By Cauchy–Schwarz, we have that

|Q(P ,P ′)| = 2
t∑

j=1

(
Nj

2

)
≥ 1

2

t∑
j=1

N2
j ≥

(∑t
j=1 Nj

)2

2t
≥ n4

2|Q(P)|
.

The second step in the ESKG framework is to reduce the problem of counting
quadruples in Q(P) to that of counting line-line intersections in C3. Given two
distinct points a = (ax, ay) and d = (dx, dy) in C2, we denote by `a,d the line in C3

that is defined by the equations

2x = (ax + dx) + (ay − dy)z,
2y = (ay + dy) + (dx − ax)z. (28)

Lemma 7.2. Let a, b, c, d ∈ C2. Then ∆(a, b) = ∆(c, d) if and only if the lines `a,d
and `b,c are coplanar.

Lemma 7.2 is proved in [8, Lemma 4.2] for the case of points in R2. An identical
proof works for points in C2. Rudnev and Selig [19] provide an alternative proof,
which is more involved but provides additional intuition for the situation.

For finite P ,P ′ ⊂ C2, we define

L(P ,P ′) = {`a,d : (a, d) ∈ (P × P ′) }.

We note that (a, b, c, d) ∈ Q(P ,P ′) if and only if `a,d intersects the line `b,c. Thus,
|Q(P ,P ′)| is the number of pairs of coplanar lines in L(P ,P ′)× L(P ′,P).

Lemma 7.3. Let P and P ′ finite sets in C2, such that |P|+|P ′| ≤ n and no pair from
P×P ′ is on one isotropic line. Let L = L(P ,P ′)∪L(P ′,P) and let p = (px, py, pz) ∈
C3. Then the following holds.
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(a) If pz 6= ±i then p is incident to at most n lines from L.

(b) If pz = ±i then either p is not incident to any line from L(P ,P ′) or p is not
incident to any line from L(P ′,P) (or both).

(c) When no point of P∪P ′ is on the lines defined by y = ±ix, every plane contains
at most 2n lines from L.

(d) Every irreducible surface of degree 2 contains at most 6n lines from L.

Proof. Parts (a) and (b). Let a, d, d′ ∈ C2 be three distinct points. By Lemma
7.2, the lines `a,d and `a,d′ are coplanar if and only if ∆(d, d′) = 0. That is, if and
only if d and d′ are on the same isotropic line.

Fix a point a ∈ C2 and an isotropic line `∗. We now show that all lines `a,d with
d ∈ `∗ have a common intersection point. Assume that `∗ is defined by y = ix + k
for some k ∈ C. By writing d = (dx, idx + k) and inspecting (28), we note that `a,d is
incident to the point

p =

(
ax − iay + ik

2
,
iax + ay + k

2
,−i
)
.

The coordinates of p do not depend on d. We note that px + ipy = ik and that
px − ipy = ax − iay. In other words, the coordinates of p uniquely determine k
and the isotropic line of the form y = −ix + k′ that contains a. Thus, all lines `a,d
with fixed a and with d on an isotropic line `∗ intersect at the same point. The
common intersection point p has a z-coordinate equal to −i. When `∗ is of the form
y = −ix+ k, then the z-coordinate becomes i.

Let p ∈ C3 satisfy pz 6= ±i. By the above, for every a ∈ P ∪ P ′ there exists at
most one d ∈ C3 such that p ∈ `a,d. Since |P|+ |P ′| ≤ n, at most n lines from L are
incident to p. This completes the proof of part (a).

Let p ∈ C3 satisfy pz = ±i. By the above, there exists a unique isotropic line `′

such that lines of the form `a,d are incident to p only when a ∈ `′. Since no pair from
P × P ′ is on one isotropic line, we get part (b) of the lemma.

Part (c). Consider a plane Π ⊂ C3. For a ∈ C3, we set La = {`ad : d ∈ C3}.
By inspecting (28), we note that no two lines in La are parallel. Thus, every pair of
lines of La that are in Π intersect. By the above, for lines `a,d and `a,d′ to intersect,
the points d and d′ must lie on the same isotropic line. In particular, there exists an
isotropic line `∗ such that every `a,d ⊂ Π satisfies d ∈ `∗.

Let a,Π, and `∗ be fixed as in the preceding paragraph. Let `∗ be defined by
y = ix+k (the case of y = −ix+k is handled symmetrically). Then for every d ∈ `∗,
the line `a,d is defined as

2x = (ax + dx) + (ay − idx − k)z,

2y = (ay + idx + k) + (dx − ax)z.
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We rewrite these equations as

dx(1− iz) = 2x− ax − ayz + kz,

dx(i+ z) = 2y − ay − k + axz.

Combining the two equations leads to

(i+ z)(2x− ax − ayz + kz) = (1− iz)(2y − ay − k + axz).

Rearranging yields

z2 · (k − ay + iax) + 2z · (x− iay − ax + iy) + (2ix− axi− 2y + ay + k) = 0. (29)

Denote the left side of (29) as fa ∈ C[x, y, z]. Note that Z(fa) is the Zariski
closure of the union of the lines `a,d with d ∈ `∗. If fa is irreducible and of degree
2, then Corollary 2.10 implies that Π ∩ Z(fa) contains at most two lines. That is, Π
contains at most two lines of the form `a,d with d ∈ `∗. We conclude that, if fa is
irreducible then Π contains at most two lines from La.

Consider the case where the coefficient of z2 in fa is zero. That is, k−ay+iax = 0.
In this case, a is also on the isotropic line `∗. Since we assume that no pair from P×P ′
is on a one isotropic line, we may ignore this case.

Finally, assume that fa is reducible and has a nonzero coefficient for z2. By
inspecting (29), we note that fa(x, y, z) = (A+Bx+Cy +Dz)(E + Fz) for nonzero
A,B,C,D,E, F ∈ C. We also note that B,C,D,E, F have nonzero values. Since
EB is the coefficient of x in fa, we have that EB = 2i. Similarly, we obtain

EC = −2, FB = 2, FC = 2i, FD = k − ay + iax,

EA = −axi+ ay + k, FA+ ED = −iay − ax.

We rewrite some of the above as

C = −2/E, F = 2i/C = −iE, A = (−axi+ ay + k)/E,

D = (k − ay + iax)/F = (ki− iay − ax)/E.

Combining this with the above expression for FA+ ED leads to

−iay − ax = FA+ ED = (−iE) · −axi+ ay + k

E
+ E · ki− iay − ax

E
= −2ax − 2iay.

Tidying up gives that ay = iax. Thus, when no point of P ∪ P ′ is on the lines
defined by y = ±ix, this case cannot happen.

By combining the three cases above (fa is linear, quadratic irreducible, or quadratic
reducible), we obtain the following. When no point of P ∪P ′ is on the lines y = ±ix,
for every a ∈ P∪P ′ the plane Π contains at most two lines from La. Thus, Π contains
at most 2n lines of L. This is part (c) of the lemma.
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Part (d). For a point a ∈ C3, consider the vector field

Va(x, y, z) =

(
2y − ay − axz + z(2x− ax + ayz)− ay(z2 + 1),

ax(z
2 + 1)− 2x− ax + ayz − z(2y − ay − axz), 2(z2 + 1)

)
.

By repeating part of the proof of Lemma 4.6 in [8], we obtain the following property.
For every p = (px, py, pz) ∈ C3 with pz 6= ±i, the direction of the unique line of the
form `a,c that is incident to p is Va(p).

Let U ⊂ C3 be an irreducible quadratic surface. Let f ∈ C[x, y, z] be a polynomial
of degree 2 satisfying Z(f) = U . We define ga ∈ C[x, y, z] as the dot product ga(p) =
Va(p) · ∇f(p). Consider a line `a,d that is contained in U . At every point p ∈ `a,d, we
have that Va(p) is tangent to U . Thus, ga vanishes on every line of the form `a,d that
is contained in U .

Consider a ∈ C3 such that U contains at least five lines of La. These lines are
contained in U ∩ Z(ga). Since f is of degree 2 and Va is linear, we get that ga is of
degree at most two. Thus, Corollary 2.10 implies that U and Z(ga) have a common
component. Since U is irreducible, we have U = Z(ga). This in turn implies that U
is ruled by lines of the form `a,d.

Excluding planes, every irreducible surface in C3 has at most two different rulings.
Thus, there are at most two points a ∈ P ∪P ′ such that lines of La rule U . For every
such a, at most n − 1 lines of La are in L. For every other value of a ∈ P ∪ P ′, at
most four lines of La are contained in U . We conclude that U contains fewer than 6n
lines from L

Lemma 7.4. Let P and P ′ be finite sets in C2, such that |P| + |P ′| ≤ n. Then at
most n3 pairs of L(P)× L(P ′) are parallel.

Proof. If `a,d and `b,c are parallel, then (28) implies that ay − cy = by − dy and
ax − cx = bx − dx. When we fix a, b, c, at most one d ∈ P ′ satisfies these two
equations. Thus, at most n3 pairs of lines from L(P)× L(P ′) are parallel.

7.2 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. We first recall the statement of this theorem.

Theorem 1.2. For every ε > 0, there exists c > 0 that satisfies the following. Let P
be a set of n points in C2, not all on the same isotropic line. Then

|∆(P)| ≥ cn1−ε.

Proof. Fix ε > 0. Suppose that there exists an isotropic line ` ⊂ C2 that contains
at least n/20 points from P . By assumption, there exists at least one point p ∈ P
that is not on `. For any nonzero distance δ ∈ ∆(P), at most two points q ∈ ` satisfy
∆(p, q) = δ. Indeed, any such point must be contained in the intersection of ` with
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the complex circle {(x, y) ∈ C2 : (x− px)2 + (y− py)2 = δ}. No point on ` determines
distance 0 with p. This implies that the number of distinct distances determined by
pairs of {p} × (P ∩ `) is at least |P ∩ `|/2 ≥ n/40. We may thus assume that every
isotropic line contains at most n/20 points from P .

We remove any points of P that are on the isotropic lines defined by y = ±ix. By
the above, after this pruning we have that |P| ≥ 9n/10. We partition P into disjoint
sets P1 and P2, each of size at least n/3, such that no pair of P1×P2 is contained in
a common line of the form y = ix + k. We then find subsets P ′1 ⊂ P1 and P ′2 ⊂ P2,
each of size at least n/10, such that no pair of P ′1×P ′2 is contained in a common line
of the form y = −ix+k. Both of these pruning steps can be done greedily, due to the
assumption that at most n/20 points from P are contained in a common isotropic
line.

We note that |∆(P)| ≥ |D(P ′1,P ′2)|. By Lemma 7.1 we have that

|∆(P ′1,P ′2)| ≥ n4

200|Q(P)|
. (30)

Write Q(P ′1,P ′2) = Q1 ∪ Q2, where Q1 corresponds to pairs of parallel lines, and
Q2 corresponds to pairs of lines that intersect. Lemma 7.4 implies that

|Q1| = O(n3). (31)

We recall that |Q2| is the number of intersecting pairs in L(P ′1,P ′2) × L(P ′2,P ′1).
By Lemma 7.3(b), such intersections do not occur at points of C3 with z-coordinate
±i. By Lemma 7.3(a), each point in C3 whose z-coordinate is not ±i contains at
most n lines of L(P ′1,P ′2) ∪ L(P ′2,P ′1). We set L = L(P ′1,P ′2) × L(P ′2,P ′1) and note
that |L| ≤ n2. We add generic lines to L until |L| = n2.

For each r ≥ 2, define
P∼r(L) = Pr(L)\P2r(L).

For each dyadic r between 2 and n, we apply Theorem 1.8 with L and ε/4. For
r′ = max(2, r/3), we obtain a set Sr such that every S ∈ Sr contains at least r ·n1+ε/2

lines of L and
|P∼r(L)\

⋃
S∈S

(Pr′(LSr))| = O(n3+ε/2r−2).

By Lemma 7.3, every plane and irreducible degree-two surface contains fewer than
6n lines from L. This implies that Sr = ∅. We thus have that

|P∼r(L)| = O(n3+ε/2r−2).

Every point of P∼r(L) corresponds to fewer than 4r2 pairs of intersecting lines
from L. We conclude that

|Q2| ≤
logn∑
j=1

|P∼r(L)| · 4r2 = O

(
logn∑
j=1

n3+ε/2

)
= O

(
n3+ε/2 log n

)
= O

(
n3+ε

)
. (32)

Combining (30), (31) and (32) completes the proof of Theorem 1.2.
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A Non-degenerate orthogonal projections

In this appendix, we formally define the notion of a non-degenerate orthogonal pro-
jection, and we prove Proposition 2.12. Let 0 < e < d and let X ⊂ Rd. We define
the containment degree ContDeg(X, e) to be the smallest integer D such that there
exists a variety in Rd of dimension e defined by polynomials of degree at most D that
contains X. If e ≥ dimX then ContDeg(X, e) is well-defined and finite. If e < dimX
then no variety of dimension e can contain X, and we set ContDeg(X, e) =∞. Note
that ContDeg(X, e) = ContDeg(X, e) for every set X ⊂ Rd and every 0 < e < d.

We say that a projection πV : Rd → Re is degenerate with respect to X if there is
an index 1 ≤ t < e such that

ContDeg(X, t) > ContDeg(πV (X), t). (33)

If πV is not degenerate then we call it non-degenerate. If πV ∈ Gr(d′,Rd) is non-
degenerate with respect to X and πV ′ ∈ Gr(d′′,Rd′) is non-degenerate with respect to
πV (X), then πV ′ ◦ πV ∈ Gr(d′′,Rd) is non-degenerate with respect to X. This allows
us to construct a non-degenerate projection from Rd → Re by composing a sequence
of projections from Rd → Rd−1, Rd−1 → Rd−2, and so on. First, we show that most
projections do not decrease the containment degree. For v ∈ Rd that is not the origin,
we denote by πv : Rd → Rd−1 the orthogonal projection in direction v.

Lemma A.1. Let X ⊂ Rd be a set whose Zariski closure has dimension at most
d − 2. Then there are d − 2 proper linear subspaces V1, . . . , Vd−2 ⊂ Rd such that for
all v ∈ Rd\(V1 ∪ · · · ∪ Vd−2) and 0 < t < d− 1,

ContDeg(X, t) ≤ ContDeg(πv(X), t). (34)

Proof. We will show that for each 0 < t < d−1, the set of vectors v ∈ Rd for which (34)
fails must be contained in a proper linear subspace of Rd (note that the subspaces
for different choices of t might be different). We will prove this by contradiction.
Suppose that there exist an index 0 < t < d−1 and d linearly independent directions
v1, . . . , vd such that (34) fails with v = vj for each j. Applying an invertible linear
transformation (such a transformation leaves the containment degree unchanged), we
may assume that vj is the j–th basis vector.

Let D = ContDeg(X, t). Since (34) fails for each vector vj, for each index j there
is a collection of polynomials Fj, each of degree at most D − 1 and independent of
the variable xj, such that X ⊂

⋂
f∈Fj

Z(f). We claim that U =
⋂
j

⋂
f∈Fj

Z(f) has

dimension at most t. Since X ⊂ U , this would imply that ContDeg(X, t) ≤ D − 1,
which would contradict the definition of D and complete the proof.

Indeed, for each j, the dimension of
⋂
f∈Fj

Z(f) is at most t + 1. If there exists

1 < j < d − 1 such that one of the polynomials in Fj includes x1, then dim(U) ≤
dim(

⋂
f∈F1∪Fj

Z(f)) ≤ t. Thus, in this case we are done. Otherwise, we repeat the
above argument for x2, x3, . . . , xd. If none of these events occur, then each polynomial
in
⋃
j Fj must be constant, which is impossible.
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Let X be a family of subsets of Rd. We say that a projection π : Rd → Re is
non-degenerate with respect to X if it is non-degenerate with respect to each set
X ∈ X .

With these definitions, we are now able to state and prove a formal version of
Proposition 2.12

Proposition 2.12.
(a) Let 0 < e < d. Let X be a finite family of subsets of Rd, where each X ∈ X
satisfies dim(X) < e. Then there exists a projection π ∈ Gr(e,Rd) that is non-
degenerate with respect to X .
(b) When all sets in X satisfy dim(X) < e/2, we may assume that π also has the
following property. For every pair of sets X,X ′ ∈ X , we have |X ∩ X ′| = |π(X) ∩
π(X ′)|.

Proof. (a) For each X ∈ X , let V1,X , . . . , Vd−2,X be the proper linear subspaces de-
scribed in Lemma A.1, and select vd ∈ Rd\

⋃
X∈X{V1,X , . . . , Vd−2,X}. By Lemma A.1,

we have
ContDeg(X, t) ≤ ContDeg(πvd(X), t)

for each 0 < t < d − 1 and each X ∈ X . Define Xd−1 = {πvd(X) : X ∈ X}; this is a
family of subsets of Rd−1, each of which satisfies dim(X) < e.

Repeat this process to select a vector vd−1 ∈ Rd−1 so that

ContDeg(X, t) ≤ ContDeg(πvd−1
(X), t)

for each 0 < t < d − 2 and each X ∈ Xd−1. Continuing this process, we obtain a
sequence of vectors vd ∈ Rd, vd−1 ∈ Rd−1, . . . , ve+1 ∈ Re+1 and a sequence of families
Xd−1, . . . ,Xe. Define π to be the composition πve+1 ◦ πve+2 ◦ · · · ◦ vd.

(b) We repeat the proof of part (a) with a small addition. At each step when
we select a vector vd−j ∈ Rd−j, we choose the vector so that for every pair of sets

X,X ′ ∈ Xd, we have |X ∩ X ′| = |πvd−j
(X) ∩ πvd−j

(X ′)|. Since dim(X) < e/2 and

dim(X ′) < e/2, the set of vectors v ∈ Rd−j for which the above inequality fails is
contained in a proper sub-variety of Rd.
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