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Abstract

We study a generalization of Erdés’s unit distances problem to chains of k distances. Given P,
a set of m points, and a sequence of distances (d1,...,dx), we study the maximum possible num-
ber of tuples of distinct points (p1,...,prr1) € P*H! satisfying |pjpjr1]| = &; for every 1 < j < k.
We study the problem in R? and in R?, and derive upper and lower bounds for this family of problems.
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1 Introduction

Erdés’ unit distances problem is one of the main open problems of Discrete Geometry. To quote the
book Research Problems in Discrete Geometry [3], this is “possibly the best known (and simplest to
explain) problem in combinatorial geometry”. The problem simply asks: In a set of n points in R?, what
is the maximum number of pairs of point at a distance of one? We denote this maximum value as u(n).
In 1946, Erdds [4] constructed a configuration of n points that span nevVIoen ynit distances, for some
constant c¢. While over 70 years have passed, this remains the current best lower bound for u(n). In
1984, Spencer, Szemerédi, and Trotter [14] derived the current best upper bound u(n) = O(n*/3).

Although the unit distances problem is a central open problem, with many people studying it and
with connections to many other problems, no new bounds has been obtained for u(n) since 1984. As is
often the case in such situations of stagnation, researchers began studying variants of the problem. For
example, Matousek [10] showed that when replacing the Euclidean distance norm with a generic norm,
the maximum number of unit distances becomes significantly smaller. Thus, to solve the unit distances
problem, one probably has to rely on a property that is special to the Euclidean norm. For other variants
of the problem, see for example [3].

In this note, we study the following generalization of the unit distances problem. We have a set P
of n points in R?, a positive integer k, and sequence of distances (d1,da,...,d;). Denote the distance
between two points p,q € R? as |pg|. We define a k-chain to be a (k + 1)-tuple of distinct points
(p1y---,pr+1) € PPFL such that for every 1 < j < k we have |p;pj1] = §;. We are interested in the
maximum possible value of such chains. By considering the case of k = 1, we note that the chains
problem is indeed a generalization of the unit distances problem.

The discrete k-chains problem has also been studied by Frankl and Kupavskii, who have improved
upon some of the results from this note in [6]. More general repeated configurations have been studied
by Gunter, Rhodes, and the first two listed authors; see [7] and the references contained therein. In the
related pursuit of distinct configurations, Rudnev [13] derived a lower bound for the minimum number
of distinct 2-chains that n points in R? can span. This was recently generalized to k-chains by Passant,
in [12]. A continuous d-dimensional variant of the repeated chain problem was previously studied by
Bennett, Iosevich, and Taylor in [2], and more recently by Ou and Taylor in [11].

Our results. For a positive integer k, we denote as Ci(n) the maximum number of k-chains that
can be spanned by n points in R?, for any sequence of distances (d1,da,...,0;). We only consider the
case where k is a constant that does not depend on n. We trivially have Co(n) = n, and we also have
Ci1(n) = u(n) = O(n*?). While obtaining a tight bound for C;(n) is equivalent to a notoriously difficult
open problem, it is surprisingly easy to show that Co(n) = ©(n?). See Lemma 3.1 below.

*Department of Mathematics, Virginia Tech, Blacksburg, VA, USA. palsson@vt.edu. Supported by Simons Foundation
Grant #360560.

TDepartment of Mathematics, Missouri State University, Springfield, MO, USA. stevensenger@missouristate.edu

tDepartment of Mathematics, Baruch College, City University of New York, NY, USA. adamsh@gmail.com. Supported
by NSF award DMS-1710305.



The following theorem is our main result in R2.

Theorem 1.1. For every integer k > 3, we have

Cu(n) = O (n2k/5+1+7(k)) :

where
% (4 4-(=1/4) k/4) if k=0 (mod 4),
o — L (49 (—1/4)k/4) if k=1 (mod 4),
TR = 7715 (4+11 1/4)Lk/4J) if k=2 (mod 4),
Lo (4— B (—1/a)lk/4) if k=3 (mod 4).

When k > 3 we have that y(k) < 1/12. As k — oo we have that v(k) — =.
In the other direction, we derive the following lower bounds for Cy(n).

Proposition 1.2 (Lauren Childs’ construction). For any integer k > 0, we have

Q (nk/3+1) if k=0 (mod 3),
Cr(n) = ¢ Q (nk+2)/3) if k=1 (mod 3),
Q (nHD/3+) - 4f k=2 (mod 3).

Note that there is still a polynomial gap between the bounds of Theorem 1.1 and Proposition 1.2.
We believe that the lower bounds are tight up to subpolynomial terms. Indeed, when assuming the unit

distances conjecture u(n) = © (nCV 103”), one can show that the bounds of Proposition 1.2 are tight up

to subpolynomial factors.

Proposition 1.3. For every k > 3, we have

O (n - us(n)k/3) if k=0 (mod 3),
Cr(n) = § O (ug(n)*+2)/3) if k=1 (mod 3),
O (n? -uz(n)*=2/3) if k=2 (mod 3).

Chains in three dimensions. The unit distances problem has also been studied in R3 for many
decades. Let ug(n) denote the maximum number of unit distances that can be spanned by n points in
R3. Tn 1960 Erdés [5] derived the bound uz(n) = Q(n*/3loglogn), and this remains the current best
lower bound. Unlike the study of w(n), in recent years there have been several small improvements in
the upper bound for us(n). The current best bound, by Zahl [16], states that for any € > 0 we have

us(n) =0 (n%“).

For a positive integer k, we denote as C,i?’)(n) the maximum number of k-chains that can be spanned
by n points in R?, for any sequence of distances (61,02, ...,d;). We only consider the case where k is
a constant that does not depend on n. We trivially have Cé3)(n) = n. For any € > 0, we have that
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Cis) (n) =uz(n) =0 (n 107 +E) The following is our main result in R3.

Theorem 1.4. For every k > 2 and any € > 0, we have

O (n2k/3+1) if k=0 (mod 3),
Cff) (n) = q O (n2/3+23/33+€) 4f k=1 (mod 3),
0 (n2k/3+2/3) if k=2 (mod 3).

In particular, note that Cé‘g)(n) = Cy(n) = O(n?).
In the case of Cég) (n), one can obtain a slight improvement over Theorem 1.4 with a simple use of
Zahl’s bound us(n) = O (n%“). Given a sequence of distances (41,2, d3) and a point set P, we look

for 3-chains (p1, 2, p3,pa) € P*. There are at most uz(n) options for choosing the pair (py, p2) € P? and
at most ug(n) options for choosing (p3, ps) € P?. This implies that Cég) (n) = O ((uz(n))?) = O (n*99).
The same approach does not yield improved bounds for any larger values of k.

With respect to lower bounds, Erdds’s unit distances bound implies CF’) (n) = us(n) = Q(n*3loglogn).
For longer chains, we derive the following bounds.



Proposition 1.5. For any integer k > 2, we have

C(g)( ) Q (n<k+1)/2) if k is odd,
n) =
k Q (nk/2+1) if k is even.

In R¢ with d > 4, the unit distances problem becomes significantly simpler. In particular, in this
case it is possible to have ©(n?) pairs of points at a distance of one (see [9]). The same construction
immediately implies that one can have ©(n**1) chains of length k, for any k& > 1. Thus, the chains
problem is trivial in this case.

In Section 2 we introduce geometric incidence results that we require for our proofs. In Section 3 we
derive our bounds in R?. Finally, in Section 4 we derive our bounds in R3.

Acknowledgements. We grateful to Lauren Childs for pointing out the construction in R?, and to
Oliver Purwin for assisting with the construction in R3. We would also like to thank Alex Iosevich and
Frank de Zeeuw for helpful discussions.

2 Preliminaries: Geometric incidences

Given a set P of points and a set I' of circles, both in R2, an incidence is a pair (p,7) € P x I' such
that the point p is contained in the circle v. We denote by I(P,T") the number of incidences in P x T'.
Aronov and Sharir [1] proved the following result.

Theorem 2.1. Consider a set P of m points and a set ' of n circles, both in R%. For every ¢ > 0, we
have
I(P,1T)=0 (TnQ/HJrEnﬁ/11 +m2B3n23 4 m + n) )

This bound also holds when assuming that P and T' lie on a common sphere in R3.

There are many similar incidence problems where we have a set of points P and a set of “objects” T"
in R?, and are looking for the maximum number of incidences. In every such problem we use I(P,T") to
denote the number of incidences in P xI'. The following result was proved by Zahl [17] and independently
by Kaplan, Matousek, Safernova, and Sharir [8].

Theorem 2.2. Consider a set P of m points and a set S of n spheres of the same radii, both in R3.
For every € > 0, we have

I(P,S) :O(m3/4n3/4+m+n).

Let S be a set of spheres of the same radii in R®. For an integer r > 2, we say that a point p € R? is
r-rich if p is incident to at least r spheres of S. Upper bounds for incidence problems such as Theorems
2.1 and 2.2 have dual formulations in terms of r-rich points. These results are dual in the sense that
there are short simple ways of getting from each upper bound to the other (for example, see [15]). The
following is the dual formulation of Theorem 2.2.

Theorem 2.3. Consider a set S of n spheres of the same radii in R3. For every integer r > 2, the

number of r-rich points is
3
n n
0] <4 + ) .
r r

The following is the dual form of the upper bound for the number of incidences with circles of the
same radii in R2. In other words, it is the dual of the current best upper bound for u(n).

Theorem 2.4. Consider a set I' of n circles of the same radii in R%2. For every integer r > 2, the

number of r-rich points is
2
n n
0] <3 + > .
r r



3 Bounds for the number of k-chains in R2

In this section we prove our bounds for the maximum number of k-chains in R%2. We refer to a 2-chain
as a hinge. As a warm-up, we first derive a tight bound for the case of hinges. We will also require this
bound to prove Theorem 1.1.

Lemma 3.1. C2(n) = © (n?).

Proof. Let P be a set of n points in R%2. Consider a sequence of distances (d1,d3), and denote a hinge
as (p1,p2,p3) € P2. There are n choices for p;, and then at most n — 1 choices for ps3. After these two
points are chosen, p, must be on a circle of radius J; centered at p; and also on a circle of radius s
centered at po. These two circles intersect in at most two points, so for every choice of p; and p3 there
are at most two valid options for p,. This immediately implies that C2(n) = O (n?)

To see that the above upper bound is tight, consider a sequence of distances (d1,d2). Let C; and Co
be circles centered at the origin of respective radii §; and do. We construct a set P by taking the origin,
|(n —1)/2] points from Cy, and [(n — 1)/2] points from Cy. It is not difficult to verify that P is a set
of n points that span ©(n?) hinges. O

We now move to derive upper bounds for Ci(n) when k > 3. We first recall the statement of the
Theorem 1.1.

Theorem 1.1. For every k > 3, we have
Ce(n) =0 (n%/5+1+7(k)) ,

where
(=4 (—1/4)k/%) if k=0 (mod 4),
~(4-9- 1/4 Lk/al) if k=1 (mod 4
4+ 11 (=1/49)/4)if k=2 (mod 4
A= (1A i E=3(

v(k) =

)

E‘n\H a‘\H J\H E\“

)
);
)
)

Proof. The proof consists of two parts. In the first part we derive a recurrence relation for upper bounds
on C(n). In the second part we solve this relation.

Deriving a recurrence relation. Let P be a set of n points in R?. Consider a sequence of distances
(81,...,0k), and denote a k-chain as (pi1,...,prr1) € P Let Q € P**! denote the set of k-chains
that correspond to the sequence of distances.

For a point po € R?, we denote by a;(ps) the number of points p; € P that satisfy |pips| = 61.
Similarly, for a point pr € P we denote by aii1(pr) the number of points ppi1 € P that satisfy
|pEpr+1] = k. We partition @ into two disjoint sets @' and Q", as follows. Let Q' be the set of
k-chains (p1,...,pr+1) € Q satisfying ag(p2) > ap1(pr). Let Q7 = Q \ Q' be the set of k-chains
(p1,- -+ pr+1) € Q satistying aq(p2) < a1 (pr)-

Without loss of generality, assume that |Q”| > |Q’|. In this case, we have that |Q| < 2|Q"|. For
0 <j < [logyn], let Q7 be the set of k-chains (p1,...,pr+1) € Q" that satisfy 297t < appi(pr) <27, In
other words, we dyadically decompose Q" into [log, n] subsets, each consisting of k-chains (p1,...,pr+1)
having approximately the same value of agy1(pr). Note that |Q"| = ZrlOg? nl Q7.

For a fixed 0 < j < [log, n], we now derive an upper bound on the number of k-chains in Q;’ . When
placing a circle of radius d;, around every point of P, a point py that satisfies agy1(pr) > 2971 is also a
27~ 1rich point (as defined in Section 2). Thus, Theorem 2.4 implies that the number of points pj, that

satisfy ag1(pr) > 2971 is
2
n n
0 (231 + 21) '

The above is an upper bound for the number of ways to choose pi. After choosing a specific pg, there
are fewer than 27 choices for pjy1. There are at most Cy_3(n) choices for (p1,...,pr_2) € P¥~2. Finally,
after choosing (p1,...,pk—2) and py there are at most two choices for py, since this point lies on the
intersection of two circles (as in the proof of Lemma 3.1). We conclude that

2.
Q7| <O (233 + 2j) -29.C_3(n)-2=0 <n02’;j_.3(m+n-ck3(n)>- (1)



The bound of (1) is reasonable for large values of j, but weak for small values of j. We thus derive
another bound for the number of k-chains in Q;-’ . There are at most Cr_2(n) choices of (pa,...,pr) €
PF=1. As before, there are fewer than 27 choices for pyy;. Since we are only counting quadruples from
Q", there are also fewer than 27 choices for p;. Combining these observations leads to

Q] < Chaln) - 2%, @
n?.Cc (n) 1/4 s :
Set 8 = |log, (61:7;(2)) . By combining (1) and (2), we obtain
lIgn 10g2
QI <2|Q"| = QZ Q5| = QZ Q| +2 Z
J=B+1

B ) ’—10g2 n] n2 . Ck_g(n)
=0 ZCA;_2(7Z) . 22j + Z (22J +n- Ck_3(n)>
J=0 j=p+1

=0 (” VCr2(n) - Cx_3(n) + nlogn - Ck%&(”)) :

The first term in this bound dominates when Cj,_2(n) = Q (Cr—3(n) log? n). This will be the case for
all of our bounds, so we may ignore the second term and consider the bound

Cr(n ( - \/Ch_2(n) - Cr_3(n )) (3)

Solving the recurrence relation.  Recall that Co(n) = n and that Ci(n) = u(n) = O(n*/3).
Combining these with (3) yields C5(n) = O (n'3/6). We can similarly derive an upper bound for C(n)
with any k£ > 3.

Let aj, to be the current best exponent of n in the upper bound for Cx(n). As already mentioned
above, we have ag = 1,a; = 4/3, and ay = 2. By (3), we have that

a Qj— Qf— .
k 2 k—3 2 k—2

Solving this relation and initial values yields

R B G TN S AN A R AR S 0 A B A
T s 75 2 2 75 75 22 5

Simplifying this leads to

1+ 2k4+ £ (4—4- (—1/4)%%) if k=0 (mod 4),
" 1+§k+%(4 9 (—1/4)k/4]) if k=1 (mod 4),
1+ 2k+ £ (4+11- (-1/49%/4)  if k=2 (mod 4),
1+ 2k+ 44— (-1/9/4)  if k=3 (mod 4).

O

We now derive our lower bounds for Cx(n). We first recall the statement of the corresponding
proposition.

Proposition 1.2. For any integer k > 0, we have
Q (nk/3+1) if k=0 (mod 3),

Cr(n) = ¢ Q (nk+2)/3) if k=1 (mod 3),
Q (kDY) if k=2 (mod 3).



Figure 1: (k4 1)/3 translated copies of the same circle configuration.

Proof. First assume that £ = 2 (mod 3). We choose two arbitrary distances d1,d2 > 0, and consider the

sequence of distances
(615 617625 617617 627617 617527 FRE) 62,61a 61)

Set m = |3n/(k+1)]. Let v be a circle of radii é;, place m — 1 on v, and place one additional point
at the center of . Denote this configuration of m points as A. We create a second copy of A, translated
a distance of o in the x direction. That is, we now have two circles and 2m points. We keep creating
more copies of A, each translated a distance of d3 in the x-direction from the preceding one. After having
(k +1)/3 copies of A, we denote the resulting set of m(k 4+ 1)/3 < n points as P. Such a configuration
is illustrated in Figure 1.

To obtain a chain, we first choose p; to be a point on the first circle and set ps to be the center of
that circle. We have m — 1 = ©(n) options for choosing p;, and a single choice for ps. We then choose
p3 to be another point on the first circle, set ps to be the point in the second copy of A that corresponds
to ps, and set ps to be the center of the second copy of A. There are m — 2 = ©(n) choices for ps3, a
single option for py, and a single option for ps. We repeat this step (k + 1)/3 — 1 times: Starting from
a center of a circle, choosing a point on the circle, moving to the corresponding point in the next circle,
and moving to the center of that next circle. At each step we determine three vertices of the k-chain and
have m — 2 = ©(n) choices.

When the above process ends, we obtain a k-chain that corresponds to our sequence of distances.
This process consists of (k + 1)/3 + 1 steps where we have at least m — 2 = O(n) choices. Thus, the
number of k-chains that correspond to the above sequence of distances is © (n(k+1)/ 3+1).

Next, consider the case when & = 1 (mod 3). In this case, we repeat the above construction with
m = |3n/(k + 2)| and have (k + 2)/3 copies of A. When creating a k-chain as before, we only take two
points from the rightmost circle. Thus, the sequence of distances ends with (...,d2,d1). This implies
that we have only (k + 2)/3 steps with ©(n) choices. That is, the number of k- Chams is © (nk+2)/3),

The case of £ = 0 (mod 3) is handled symmetrically. We repeat the above construction with m =
[3n/(k + 3)], and have (k 4 3)/3 circles. When creating a k-chain, we only take one points from the
rightmost circle. Thus, the sequence of distances ends with (...,d2). This implies that we have only
(k+3)/3 =k/3+ 1 steps with ©(n) choices. That is, the number of k-chains is © (n*/3+1). O

We conclude this section with a proof of Proposition 1.3. We first recall the statement of this
proposition.

Proposition 1.3. For every k > 3, we have

O (n - us(n)k/3) if k=0 (mod 3),
Cr(n) = ¢ O (uz(n)*+2)/3) if k=1 (mod 3),
O (n? - up(n)*=2/3) " if k=2 (mod 3).

Proof. Let P be a set of n points in R?. Consider a sequence of distances (d1,...,d;), and denote a
k-chain as (py,...,pre1) € PF¥HL. The proof is split into cases according to k (mod 3).

First, we consider the case of k = 0 (mod 3). There are n possible choices for piy1. We split the
first k£ points into triples of the form (psji1,psj+2,P35+3), for every 0 < j < k/3. In each of these %
triples, we have at most ua(n) choices for the pair (p3j+1,psj+2). After choosing the first pair of points
in each triple, there remain k/3 points that were not yet chosen in the chain. For every 0 < j < k/3,
since we already chose both ps;o and psji4, there are at most two valid choices for ps;4s (using the
same argument as in the proof of Lemma 3.1). We conclude that

Cr(n)=0 (n . uz(n)k/g) .

We move to consider the case of Kk = 1 (mod 3). There are at most us(n) choices for the pair of
points (px, pr+1) € P2 We split the first & — 1 points into triples of the form (psjt1,psj+2,P3j+3), for



every 0 < j < (k—1)/3. By handling these (kK — 1)/3 triples as in the previous case, we obtain
y 0<j<( y g P p ;
Ci(n) = O (u(n)(k+2)/3> .

Finally, we consider the case of kK = 2 (mod 3). Since (pg—1, pr,Pk+1) form a hinge, by Lemma 3.1
there are O(n?) choices for this triple. We split the remaining k& — 2 points into triples of the form
(P3j+1,P3j+2, P3j+3), for every 0 < j < (k —2)/3. By handling these (k — 2)/3 triples as in the previous
cases, we obtain

Cr(n) =0 (n2 . u(n)(k_Q)/S) .

4 Bounds for the number of k-chains in R?

In this section we derive our bounds for C,(f) (n). We begin by recalling the statement of Theorem 1.4.

Theorem 1.4. For every k > 2 and any € > 0, we have

O (n?k/3+1) if k=0 (mod 3),
C,(f)(n) = ¢ O (n/3+23/33%2) if k=1 (mod 3),
O (n?k/312/3) if k=2 (mod 3).

Moreover, C§3) (n) = O((uz(n))?).

Proof. The proof has two steps. We first prove that Cég) (n) = ©(n?), and then rely on this bound to
study large values of k. Recall that we refer to 2-chains as hinges.

Deriving a bound for the number of hinges and 3-chains. The lower bound Cés) (n) = Q(n?) is
obtained in the same way as in Lemma 3.1. It remains to derive a matching upper bound.

Let P be a set of n points in R?. Consider a sequence of distances (61,d2), and denote the hinges
corresponding to this sequence as (p1,p2,p3) € P3. For an integer 0 < j < [log, n], let P; be the set of
points py € P such that there exist at least 29! points p; € P satisfying |p1p2| = 61, and less than 27
such points. When placing a sphere of radius 6; around every point of P, every point p, € P; is also a
2/~ 1rich point. Thus, by Theorem 2.3

n3 n

For a fixed 0 < j < [logy n], we now bound the number of hinges with p, € P;. We know that for
every ps € Pj, there are ©(27) choices for p. Let S be a set of |P;| spheres of radius d2 centered around
the points of P;. Every incidence in P; X S corresponds to a pair (p2, p3) € P;j x P that appear together
in a hinge. By Theorem 2.2, the number of hinges with p, € P; is

0(2)-17.5) =0 (2 (415,44 7))

—O 2] 3/4 n3 n 3/4 n3 n
n3 207/4 j

Summing the above bound over every j from [log,n]/2 up [logy n] — 1 leads to O(n?). That is, the
number of hinges with p; € P; for any [logyn]/2 < j < [logyn] is O(n?). It remains to bound the
number of hinges with p, € P; for any 0 < j < [log, n]/2.

By definition, we also have |P;| < |P| = n. Repeating the above argument with this bound implies
that the number of hinges with p, € P; is

0 (2) - 1(P,8) = O (2 - (W44 +n+ [By1) ) = O (27%/2) .



Summing the above bound over every j from 0 up to [logyn]/2 — 1 leads to O(n?). We conclude
that the total number of hinges in P is O(n?).

To bound the number of 3-chains, we simply notice that there are no more than uz(n) ways to choose
p1 and py such that |p1p2| = 1, and no more than us(n) ways to choose ps and p4 such that |psps| = 3.

Deriving bounds for larger values of k. Let P be a set of n points in R3. Consider a sequence of
distances (d1,...,0;) and denote a k-chain as (pi,...,prs1) € PFFL

First assume that k£ = 2 (mod 3). For 0 < j < (k+1)/3, by the above bound for Cé?’) (n) there are O(n?)
ways for choosing (psj11,psjt2,P3j+3)- Thus, in this case the number of k-chains is O(n?(*+1)/3). Next,
we assume that k = 0 (mod 3). For 0 < j < k/3, there are O(n?) ways for choosing (psj+1,P3j+2,P3j+3)-
Since there are n ways for choosing py 1, we get a total of O(n?¥/3+1) chains.

Finally, consider the case of k =1 (mod 3). For 0 < j < (k—1)/3, there are O(n?) ways for choosing
(p3j+1,P3j+2,P3j+3). Consider such a fixed choice of p1,...,pr—1. Let S be the sphere centered at py_1
and of radius d;y_1. There are n ways for choosing pr+1, and for every such choice pr must be on a
specific circle on S. In particular, this circle is the intersection of S with the sphere centered at pgi1
and of radius d;. Let I" denote the set of circles that are obtained in this way.

A specific circle in T' can originate from at most two values of pyi1, since at most two spheres of
radius d; can contain a given circle. This implies that |I'| = ©(n). For a fixed pg+1, the number of
choices for py is the number of points on the corresponding circle. Thus, the total number of choices
for both pry1 and py is I(P,I'). Theorem 2.1 implies that I(P,T') = O(n'%/11+¢) for any ¢ > 0. We
conclude that, in the case of kK = 1 (mod 3), the number of k-chains is

0 (n2(k—1)/3 _n15/11+e) -0 (an/3+23/33+e) _

We now prove Proposition 1.5. We begin by recalling the statement of this proposition.

Proposition 1.5. For any integer k > 2, we have

C(3)(n) _ {Q (ntk+1)/2) if kis odd,
k Q (nk/2+1) if k is even.
Proof. The proof is a variant of the proof of Proposition 1.2, taking advantage of the extra dimension
that is available in this case.
First assume that & is even. We choose two arbitrary distances 0 < d; < d2, and consider the sequence
of distances
(01,02, 01,09,01,02,...,02,01).

Set m = [2n/k]. Let 7 be a circle of radius d; centered at the origin of R? and contained in the plane
defined by « = 0. We place m — 1 points on v, and one additional point at the center of «v. Denote this
configuration of m points as A. We create a second copy of A, translated in the x direction such that the
distance between the origin and every point on the translated copy of v is d3. We now have two circles
and 2m points. We keep creating more copies of A, each translated the same distance in the z-direction
from the preceding one. After having k/2 copies of A, we denote the resulting set of mk/2 < n points
as P.

To obtain a chain, we first choose p; to be a point on the first circle and set py to be the center of
that circle. We have m — 1 = ©(n) options for choosing p;, and a single way to choose ps. We then
choose p3 to be a point on the second circle, and ps to be the center of the second circle. There are
m — 1 = ©(n) options for choosing p; and a single option for ps. We repeat this step another k/2 — 2
times: Starting from a center of a circle, choosing a point on the next circle, and moving to the center
of that circle. At each step we determine two vertices of the k-chain and have m — 1 = O(n) choices.

When the above process ends, we obtain a k-chain that corresponds to our sequence of distances.
This process consists of k/2+1 steps where we have m —1 = O(n) choices. Thus, the number of k-chains
that correspond to the above sequence of distances is © (nk/ 2+1).

Next, consider the case when k is odd. In this case, we repeat the above construction with m =
[2n/(k — 1)] and have (k — 1)/2 circles. Then we add one more point py41 as the center of yet another
circle, but with no points on the circle around it. When creating a k-chain as before, we always end with
this fixed final point pgy1. Thus, the sequence of distances ends with 2 in this case. This implies that
we have (k + 1)/2 steps with ©(n) choices. That is, the number of k-chains is © (n(*+1)/2). O
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