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Abstract— In this work, we propose a novel adaptive for-
mation control architecture for a group of quadrotor sys-
tems, under line-of-sight (LOS) distance and relative distance
constraints, where the constraint requirements can be both
asymmetric and time-varying in nature. Universal barrier
functions are adopted in the controller design and analysis,
which is a generic framework that can address system with
different types of constraints in a unified controller architecture.
Furthermore, each quadrotor’s mass is unknown, and the
system dynamics are subjected to time-varying external distur-
bance. Through rigorous analysis, an exponential convergence
rate can be guaranteed on the distance tracking errors, while
the constraints are satisfied during the operation. A simulation
example further demonstrates the efficacy of the proposed
control framework.

I. INTRODUCTION

The formation control problems of unmanned aerial ve-
hicles (UAVs), especially quadrotors, have received much
attention from the research, industrial, and military commu-
nities, including notable applications in surveillance [1], [2],
search and rescue [3], contour mapping [4], [5], object lifting
and transporting [6], [7], just to name a few.

To ensure the precise and safe operations of the quadrotor
team, several constraint requirements cannot be ignored and
have to be taken into consideration. First, for the perfor-
mance constraints, we need to ensure that the quadrotor
team is tracking the desired formation trajectory closely.
Failing to meet such constraint requirements would result in
undesirable formation performance. Second, for the safety
constraints, we need to guarantee that the LOS relative
distance between any two quadrotors cannot be either too
small or too large, which can lead to collisions among
quadrotors or loss of communication between an agent and
rest of the team.

Few works in the quadrotor or unmanned aerial vehi-
cle formation literature have addressed the above issues
regarding the performance and safety constraints. Some
notable exceptions include [8]–[16], which consider mere
collision avoidance between UAVs, but ignore the upper
constraints of the inter-vehicle distances, and fail to address
constraints on the LOS distance tracking errors. A distributed
formation control framework for the underactuated quadro-
tors with the pre-assigned constraints of the position is
developed in [17]. The work [18] investigates the attitude
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synchronization problem for cooperative quadrotors subject
to unknown nonlinearities and multiple actuator faults. A
formation control algorithm for the leader quadrotors and a
finite-time containment control for the follower quadrotors
with unknown model dynamics are proposed in [19]. None
of these works [17]–[19] can address formation control
problems of a team of underactuated quadrotors, with time-
varying and asymmetric constraint requirements on the LOS
distance and relative inter-quadrotor distance tracking errors.

In this work, we develop a novel adaptive control archi-
tecture to address formation control problems for a team
of quadrotors. Two types of system constraint require-
ments, namely performance constraint and safety constraint,
are considered during the operation. For the performance
constraint, we address the constraint requirements on the
distance tracking error between the real and the desired
positions for each quadrotor, so that to ensure the precise
trajectory tracking and formation keeping. For the safety
constraints, we consider the constraints on the relative inter-
quadrotor distance, so that to ensure the distance between
any two quadrotors is neither too large nor too small,
hence to ensure the safe operations of the quadrotor team.
Universal barrier functions are adopted in the controller
design and analysis, which is a generic framework that can
address system with different types of constraints in a unified
controller architecture. Adaptive estimators are employed to
deal with the time-varying system uncertainties presented
in the system dynamics. Through rigorous analysis, we
show that exponential convergence can be guaranteed on the
LOS distance and relative distance tracking errors, while all
constraint requirements are satisfied during the operation.

The notations used in this work are fairly standard.
Specifically, R denotes the set of real numbers. Moreover,
(·)T implies the transpose vector, | · | is the absolute value
for scalars, and ||·|| represents the Euclidean norm for vectors
and induced norm for matrices. Next, we write ˙(·) as the first
order time derivative of (·), if (·) is differentiable, and (·)(n)

as the n-th order time derivative of (·) for n being a positive
integer. Furthermore, C2 denotes the class of functions that
are two-times differentiable with respect to time, with the
derivatives being in the class of C1, which consists of all
differentiable functions whose derivative is continuous. Last
but not least, the distance between any two points p1 and p2

in the three-dimensional space is defined as

dist(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

where p1 = [x1, y1, z1]T and p2 = [x2, y2, z2]T.
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II. PROBLEM FORMULATION

A. System Dynamics

Consider the following class of multi-vehicle systems with
N quadrotors, where, for the ith quadrotor (i = 1, · · · , N ),
the position and attitude in the inertial reference frame are
represented as pi(t) = [xi(t), yi(t), zi(t)]

T ∈ R3 and
Θi(t) = [φi(t), θi(t), ψi(t)]

T ∈ R3, respectively. The
translational velocities with respect to the inertial reference
frame are represented as vi(t) = [vxi(t), vyi(t), vzi(t)]

T ∈
R3. The kinematics and dynamics for the ith quadrotor
(i = 1, · · · , N ) are expressed as

ṗi(t) = vi(t), (1)
miv̇i(t) = migez − Fi(t)R(Θi(t))ez +N1i(t), (2)

where pi(0) = pi0 ∈ R3 and vi(0) = vi0 ∈ R3, with
pi0 and vi0 being initial conditions. mi ∈ R, mi > 0,
Fi(t) ∈ R, and N1i(t) ∈ R3 represent the mass, thrust, and
the external disturbance of the ith quadrotor (i = 1, · · · , N ).
Furthermore, g ∈ R is the gravitational acceleration and ez =
[0, 0, 1]T ∈ R3 is the unit vector. R(Θi(t)) ∈ SO(3) is the
rotation matrix, with the expression in (3) (see the next page),
which translates the translational velocity vector in the body-
fixed frame into the rate of change of the position vector in
the inertial frame, and SO(3) = {R3×3 | RTR = I3} is a
set of orthogonal matrices in R3×3. It is straightforward to
see that

||R(Θi(t))|| ≤ Rmax, (4)

with Rmax > 0 being a known constant.

B. System Performance and Safety Constraints

The coordinate of the reference trajectory for
the ith vehicle (i = 1, · · · , N ) is denoted by
pdi(t) , [xdi(t), ydi(t), zdi(t)]

T ∈ R3. Hence the
line-of-sight (LOS) distance tracking error for the ith
quadrotor dei(t) (i = 1, · · · , N ), which is the distance
between the actual and desired position of the quadrotor,
the desired LOS relative distance between ith and jth
quadrotors Lij(t) (i, j = 1, · · · , N , j 6= i), and the actual
LOS relative distance between ith and jth quadrotors dij(t)
(i, j = 1, · · · , N , j 6= i), are defined as

dei(t) = dist
(
pi(t), pdi(t)

)
, (5)

Lij(t) = dist
(
pdi(t), pdj(t)

)
, (6)

dij(t) = dist
(
pi(t), pj(t)

)
. (7)

During the formation operation, one performance con-
straint and one safety constraint have to be satisfied for each
quadrotor in the operation. First, the LOS distance tracking
error for the ith quadrotor dei(t) (i = 1, · · · , N ) has to
satisfy the following performance constraint

dei(t) < ΩdHi(t), (8)

where, for all t ≥ 0, ΩdHi(t) > 0 is the user-defined time-
varying constraint requirement for the distance tracking error

dei(t) and is C2. The constraint requirement (8) means that
the trajectory tracking error for the ith quadrotor cannot be
too large.

Second, define the LOS relative distance tracking error
between the ith and jth quadrotors (i, j = 1, · · · , N , j 6= i)
as deij(t) , dij(t)−Lij(t), which has to meet the following
safety constraint

−ΩLij(t) < deij(t) < ΩHij(t), (9)

where, for all t ≥ 0, ΩHij(t) > 0 is the user-defined
time-varying upper bound for the distance tracking error
deij(t), and −ΩLij(t) < 0 is the lower bound, with
Lij(t) > ΩLij(t) > 0. Both ΩHij(t) and ΩLij(t) are C2.
The constraint requirement (9) means that the inter-quadrotor
distance cannot be either too large or too small.

C. Control Objective

The control objective for the formation control problem
is to design a control framework such that:
1) The LOS distance tracking error dei(t) for the ith
quadrotor (i = 1, · · · , N ) can converge into an arbitrary
small neighbourhood of zero;
2) The relative distance deij(t) between the ith and jth
(i, j = 1, · · · , N, j 6= i) quadrotors can converge into an
arbitrarily small neighbourhood of zero;
3) The performance and safety constraint requirements (8)
and (9) are satisfied during the operation.

The following assumptions are used to facilitate the
discussion and analysis of the main result.

Assumption 2.1: The reference trajectory coordinates for
the ith quadrotor (i = 1, · · · , N ) xdi(t), ydi(t), zdi(t) are
all C2 with bounded differentiations.

Assumption 2.2: The thrust Fi(t) and disturbance N1i(t)
for the ith quadrotor (i = 1, · · · , N ) are uniformly bounded
with unknown bounds.

Assumption 2.3: The mass mi for the ith quadrotor (i =
1, · · · , N ) is unknown, but the inverse is assumed to be both
upper and lower bounded, such that b̄mi > 1

mi
> bmi, where

b̄mi and bmi are unknown positive constants.
Assumption 2.4 ([20]): Denote the approximation of the

time derivative of a continuous function ϑ̇(t) as ˆ̇
ϑ(t), where

ˆ̇
ϑ(t) =

ϑ(t)− ϑ(t− T )

T
(10)

for some small T > 0. Then

| ˆ̇ϑ(t)− ϑ̇(t)| ≤ εϑ ≈ o(T ). (11)
To facilitate the analysis, we present the following lemma

from the literature.
Lemma 2.1: For any constant ε > 0 and any variable z ∈

R, we have 0 ≤ |z| − z2√
z2+ε2

< ε.

From this point onwards, to simplify the notation, the time
and state dependence of the system will be omitted whenever
no confusion would arise.
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R(Θi(t))

=

 cos θi(t) cosψi(t) sinφi(t) sin θi(t) cosψi(t) − cosφi(t) sinψi(t) cosφi(t) sin θi(t) cosψi(t) + sinφi(t) sinψi(t)
cos θi(t) sinψi(t) sinφi(t) sin θi(t) sinψi(t) + cosφi(t) cosψi(t) cosφi(t) sin θi(t) sinψi(t) − sinφi(t) cosψi(t)

− sin θi(t) sinφi(t) cos θi(t) cosφi(t) cos θi(t)

 (3)

III. UNIVERSAL BARRIER FUNCTION

Regarding the constraint requirements (8) and (9), which
are on the LOS distance tracking error dei and relative inter-
quadrotor distance tracking error deij (i, j = 1, · · · , N , j 6=
i), we introduce the transformed error variables for the ith
quadrotor (i = 1, · · · , N ) as follows

ηei =
ΩdHidei

ΩdHi − dei
, ηij =

ΩHijΩLijdeij

(ΩHij − deij)(ΩLij + deij)
.

(12)

The universal barrier functions used to deal with the con-
straint requirements (8) and (9) for the ith quadrotor (i =
1, · · · , N ) are then defined as

Vei =
1

2
η2

ei, Vij =
1

2
η2
ij . (13)

Take Vij for an example. It is easy to see that ηij = 0
if and only if deij = 0. Besides, when deij → ΩHij , we
have ηij → +∞, hence Vij → +∞. Alternatively, when
deij → −ΩLij , we have ηij → −∞, therefore Vij → +∞.

Remark 3.1: For the universal barrier function Vij , note
that if the constraint functions are symmetric, namely if
ΩHij = ΩLij = Ωij , then the barrier function Vij becomes

Vij =
1

2
η2
ij , ηij =

Ω2
ijdeij

Ω2
ij − d2

eij

. (14)

When there are no constraint requirements on deij , which
can equivalently be seen as ΩHij = ΩLij = Ωij → +∞, we
have

lim
Ωij→∞

ηij = deij , lim
Ωij→∞

Vij =
1

2
d2

eij , (15)

which means systems without output constraint requirements
can in fact be regarded as a special case of the generic
discussion on asymmetric constraint requirements.

Remark 3.2: In the literature, to deal with asymmetric
constraint requirements, the following form of asymmetric
barrier Lyapunov function is commonly used [21], [22]

Vb =
q(e)

p
log

ΩpbH

ΩpbH − ep
+

1− q(e)
p

log
ΩpbL

ΩpbL − ep
, (16)

where e is the output tracking error to be constrained, ΩbH

and ΩbL are the upper and lower bounds, p is an even number
such that p > n, with n being the order of the systems, and

q(·) =

{
1, if · > 0;
0, otherwise. (17)

Note that (16) does not have the generic property stated in
Remark 3.1. Besides, since q(·) is a discontinuous function,
the form (16) requires that the error variable e is raised to
the p-th power in order to avoid discontinuity when e = 0

for the derivatives of Vb, which may put a higher demand
than necessary on the control signal when e is large.

IV. CONTROL DESIGN AND ANALYSIS

In this section we present the backstepping design proce-
dure that will lead to our controller design and main theorem.

Step 1:
At this step, we consider the position kinematics of the
quadrotors. Design the universal barrier function as V1 =∑N
i=1

(
Vei +

∑N
j=1,j 6=i Vij

)
, and its derivative with respect

to time leads to

V̇1 =
N∑
i=1

(
ηeiη̇ei +

N∑
j=1,j 6=i

ηij η̇ij

)
. (18)

First we examine the dynamics for ηei (i = 1, · · · , N ).
From (12), we have

η̇ei =
∂ηei

∂ΩdHi
Ω̇dHi + ϑdiḋei

= ∆Hi + ϑdi
1

dei
(xi − xdi)ẋi + ϑdi

1

dei
(yi − ydi)ẏi

+ ϑdi
1

dei
(zi − zdi)żi − ξi, (19)

where ∆Hi , ∂ηei
∂ΩdHi

Ω̇dHi, ϑdi , ∂ηei
∂dei

=
Ω2
dHi

(ΩdHi−dei)2 ,

ξi , ϑdi
1
dei

(xi−xdi)ẋdi+ϑdi
1
dei

(yi−ydi)ẏdi+ϑdi
1
dei

(zi−
zdi)żdi. Hence for V̇ei (i = 1, · · · , N ) we have

V̇ei = ηeiϑdi
1

dei
(xi − xdi)ẋi + ηeiϑdi

1

dei
(yi − ydi)ẏi

+ ηeiϑdi
1

dei
(zi − zdi)żi + ηei∆Hi − ηeiξi. (20)

Similarly, for V̇ij (i, j = 1, · · · , N , j 6= i) we have

V̇ij = ηijϑij
1

dij
(xi − xj)ẋi + ηijϑij

1

dij
(yi − yj)ẏi

+ ηijϑij
1

dij
(zi − zj)żi − ηijϑij

1

dij
(xi − xj)ẋj

− ηijϑij
1

dij
(yi − yj)ẏj − ηijϑij

1

dij
(zi − zj)żj

+ ηij∆ij − ηijξij , (21)

where ∆ij , ∂ηij
∂ΩHij

Ω̇Hij +
∂ηij
∂ΩLij

Ω̇Lij , ϑij , ∂ηij
∂deij

=
ΩHijΩLij(d

2
eij+ΩHijΩLij)

(ΩHij−deij)2(ΩLij+deij)2
, ξij , ϑijL̇ij = ϑij

1
Lij

(xdi −
xdj)(ẋdi−ẋdj)+ϑij

1
Lij

(ydi−ydj)(ẏdi−ẏdj)+ϑij
1
Lij

(zdi−
zdj)(żdi − żdj).

Hence, for V̇1 we have

V̇1 =
N∑
i=1

(
ηei∆Hi − ηeiξi +

N∑
j=1,j 6=i

(ηij∆ij − ηijξij)
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+ Exiẋi + Eyiẏi + Eziżi

)
, (22)

where

Exi = ηeiϑdi
1

dei
(xi − xdi) +

N∑
j=1,j 6=i

2ηijϑij
1

dij
(xi − xj),

Eyi = ηeiϑdi
1

dei
(yi − ydi) +

N∑
j=1,j 6=i

2ηijϑij
1

dij
(yi − yj),

Ezi = ηeiϑdi
1

dei
(zi − zdi) +

N∑
j=1,j 6=i

2ηijϑij
1

dij
(zi − zj).

Next, define the fictitious velocity tracking error as evi =
vi − αvi, with the stabilizing function αvi ∈ R3 (i =
1, · · · , N ) designed as

αvi =
Ei

ET
i Ei

(
−Keiη

2
ei −

N∑
j=1,j 6=i

Kijη
2
ij − ηei∆Hi

+ ηeiξi −
N∑

j=1,j 6=i

(ηij∆ij − ηijξij)
)
, (23)

where Ei = [Exi, Eyi, Ezi]
T ∈ R3, Kei > 0 and Kij > 0

are control gains.
Remark 4.1: In (23), singularity can occur when ||Ei|| =

0. Since ||Ei|| = 0 if and only if Exi = 0, Eyi = 0, and
Ezi = 0 at the same time, there are two cases when this can
happen. First, ||Ei|| = 0 when both dei = 0 and deij = 0. In
this case, note that all the terms in the bracket on the right-
hand-side of (23) are also zero, and we simply have αvi = 0.
Second, Exi = 0, Eyi = 0, and Ezi = 0 can happen at the
same time when the reference direction vector for tracking
is opposite to and same in magnitude with the direction
vector for collision avoidance. This is usually referred to as
the “deadlock situation” [20] in the literature, which can be
resolved by modifying the reference trajectories or the time-
varying constraint functions to allow the vehicle to move
out of the deadlock. For the rest of the analysis we assume
||Ei|| > 0 is guaranteed.

Therefore, (22) leads to

V̇1 =
N∑
i=1

(
ET
i evi −Keiη

2
ei −

N∑
j=1,j 6=i

Kijη
2
ij

)
. (24)

Step 2:
At this step, we consider the translational dynamics of the
quadrotors. Design the Lyapunov function candidate at this
step as V2 =

∑N
i=1

1
2e

T
vievi, and its time derivative gives

V̇2 =

N∑
i=1

eT
vi

(
gez −

1

mi
ui +

1

mi
N1i − α̇vi

)
, (25)

where we denote ui = FiRiez . Now, for the ith quadrotor
(i = 1, · · · , N ), the control law ui ∈ R3 is designed as

ui =
eviū

T
i ūiρ̂

2
mi√

eT
vieviū

T
i ūiρ̂

2
mi + ε2

i

, (26)

ūi = Ei + gez + (Kvi + νi)evi + µ̂mi
evi√

eT
vievi + ε2

i

− ˆ̇αvi,

(27)

where Kvi > 0 is a control gain, νi > 0 and εi > 0
are design constants, ρ̂mi is the estimation of the unknown
constant ρmi = 1

bmi
, and µ̂mi is the estimation of the

unknown constant µmi such that
∣∣∣∣∣∣ 1
mi
N1i

∣∣∣∣∣∣ ≤ µmi. Next,
we substitute the control design (26) back into (25), which
yields

− 1

mi
eT
viui < εibmi − bmieT

viūiρ̃mi − eT
viūi, (28)

where ρ̃mi = ρ̂mi − ρmi (i = 1, · · · , N ).
Hence, (24) and (25) lead to

V̇1 + V̇2 <
N∑
i=1

(
−Keiη

2
ei −

N∑
j=1,j 6=i

Kijη
2
ij −Kvie

T
vievi

− bmieT
viūiρ̃mi − µ̃mi

eT
vievi√

eT
vievi + ε2

i

+ εi(bmi + µmi) +
1

νi
ε2
αvi

)
, (29)

where µ̃mi = µ̂mi − µmi (i = 1, · · · , N ).
Next, design the adaptive laws for the estimators ρ̂mi and

µ̂mi (i = 1, · · · , N ) as the following

˙̂ρmi = nρmie
T
viūi − σρmi ρ̂mi, (30)

˙̂µmi = nµmi
eT
vievi√

eT
vievi + ε2

i

− σµmi µ̂mi, (31)

where ρ̂mi(0) = 0 and µ̂mi(0) = 0 are the initial conditions,
nρmi , nµmi , σρmi , and σµmi (i = 1, · · · , N ) are positive de-
sign constants. Design the Lyapunov function candidates for
the estimators of the quadrotors as Vρm =

∑N
i=1

bmi
2nρmi

ρ̃2
mi,

Vµm =
∑N
i=1

1
2nµmi

µ̃2
mi. Denote Vpos = V1 + V2 + Vρm +

Vµm , after some algebraic manipulation, we can arrive at

V̇pos <
N∑
i=1

(
−Keiη

2
ei −

N∑
j=1,j 6=i

Kijη
2
ij −Kvie

T
vievi

− bmiσµmi
2nρmi

ρ̃2
mi −

σρmi
2nµmi

µ̃2
mi + C1i

)
, (32)

where C1i =
bmiσµmiρ

2
mi

2nρmi
+

σρmi
2nµmi

µ2
mi + εi(bmi + µmi) +

1
νi
ε2
αvi .

Hence, let the overall Lyapunov function be V = Vpos,
we can get

V̇ < −κV + %, (33)

where κ , mini,j(2Kei, 2Kij , 2Kvi, σµmi , σρmi), % ,∑N
i=1 C1i.
The above backstepping design leads to the following

theorem.
Theorem 4.1: For the ith quadrotor (i = 1, · · · , N ), with

the thrust law as (26) and (27), and adaptive laws (30) and
(31), the quadrotor formation system described by (1) and
(2), under Assumptions 2.1–2.4 has the following properties:
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i) The constraint requirements (8) and (9) will not be
violated during operation.

ii) The transformed output tracking error ηei and ηij will
converge into the sets{

x = ηei, ηij : x < εη, εη =

√
2%

κ

}
,

and as a result, the output tracking error dei and deij

will converge to the sets{
dei : dei < εχH,i

}
, (34){

deij : −ειL,i < deij < ειH,i

}
, (35)

where εχH,i
is expressed as

εχH,i
=

εηΩdHi

ΩdHi + εη
, (36)

and we have ειL,i expressed in (37), with ειH,i expressed
in (38) (see the next page), where ΩH , ΩHij and
ΩL , ΩLij , for i, j = 1, · · · , N , j 6= i.
Proof: First, from (33), it is clear that the overall

Lyapunov function V is bounded, since V (t) ≤
(
V (0) −

%
κ

)
e−κt + %

κ . The boundedness of V in turn implies bound-
edness of ηei and ηij . Hence, the constraints requirements
(8) and (9) are satisfied during the operation.

Moreover, we have lim supt→∞ V = %
κ , hence 1

2η
2
ei ≤

%
κ when t → ∞, therefore ηei will converge to the set
|ηei| < εη . Similar relationship holds for ηeij . Furthermore,
boundedness of the adaptive estimates ρ̂mi, µ̂mi, as well as
boundedness of the fictitious error evi (i = 1, · · · , N ), can
be concluded from the fact that V is bounded. Next, for
i = 1, · · · , N , note that in the range that dei < ΩdHi, ηei is
a function in dei. Hence, the range (8) gives the range for
dei given as in (34). Besides, within the range of (9), ηij is
quadratically related to deij . Hence, satisfying the constraints
(9) means that the distance tracking errors dei and deij will
be confined in the ranges defined by (34) and (35).

V. SIMULATION STUDIES

In this section, a simulation example is carried out with
a team of N = 4 quadrotors. In this simulation, the
model parameters of the quadrotors are mi = 2kg and
g = 9.81m/s2, i = 1, 2, 3, 4. Note that the units of
the position and translational velocity are m and m/s,
respectively. The reference signals for the vehicles are given
as pd1 = [2, 2, 5]T, pd2 = [2, 3, 5]T, pd3 = [3, 2, 5]T,
and pd4 = [3, 3, 5]T. The constraint functions are selected
as ΩdHi = (10.1 − 0.5)e−0.24t + 0.5, ΩHij = (7 −
0.1)e−0.08t + 0.1, and ΩLij = (2.2 − 0.1)e−0.04t + 0.1,
i, j = 1, 2, 3, 4, i 6= j. To implement the adaptive control
framework, the design parameters are chosen as εi = 0.1,
nρmi = 0.29, nµmi = 0.3, σρmi = 0.065, and σµmi = 0.1,
i = 1, 2, 3, 4. The control gains are designed as Kei = 0.75,
Kij = 0.6, and Kvi = 2, νi = 0.5, i = 1, 2, 3, 4. The initial
positions of the quadrotor team are [x1, y1, z1]T = [0, 0, 0]T,
[x2, y2, z2]T = [0, 5, 0]T, [x3, y3, z3]T = [5, 0, 0]T, and

[x4, y4, z4]T = [5, 5, 0]T. The initial condition of the transla-
tional velocity of each agent is zero. The external disturbance
is N1i = [0.1 sin(0.2t) + 0.005rand, 0.05 cos(0.15t) +
0.01rand, 0.03 cos(0.12t)]T, where i = 1, 2, 3, 4, and rand
represents the random noise uniformly distributed in the
interval (−1, 1). The simulation results are presented in Figs.
1 and 2. The LOS distance tracking errors dei under the
proposed controller are shown in Fig. 1 with the constraint
function ΩdHi. From this figure, we see that dei can converge
to a small neighborhood of the origin without violation of the
performance constraint ΩdHi. Fig. 2 gives us the exhibition
of the profile of the inter-quadrotor distance tracking errors
deij under the proposed controller. It is obvious that the
safety constraints are always satisfied during the operation
since deij always stayed between the constraint functions
−ΩLij and ΩHij . Based on the above discussion, we can
conclude that the simulation results confirm the theoretic
analysis shown in Theorem 4.1.

VI. CONCLUSION

In this work, we address the formation control problem for
a team of quadrotors with two types of constraints, namely
the performance constraints and the safety constraints. A
new adaptive formation control architecture is proposed.
Specifically, we employ the universal barrier functions into
the controller design and analysis, to ensure that the con-
straint requirements on the LOS distance tracking error
and relative distance error between two quadrotors are all
satisfied during the operation. The universal barrier function
approach is also a generic framework that can address system
with different types of constraints in a unified controller
architecture. Exponential convergence rate can be guaranteed
on the LOS distance and relative inter-quadrotor distance
tracking errors, while all constraints are satisfied during the
operation. Future research includes extension of the analysis
to constrained formation control problems for unmanned
aerial vehicles with collaborate objectives such as load lifting
and transporting.
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