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Long-term p21 and p53 dynamics regulate the frequency of
mitosis events and cell cycle arrest following radiation damage
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Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, we analyze the time evolution of p21
and p53 from two single cell datasets of retinal pigment epithelial cells exposed to several levels of radiation, and in particular, the
effect of radiation on cell cycle arrest. Employing various quantification methods from signal processing, we show how p21 levels,
and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how frequently these mitosis events
are likely to occur. We observed that single cells exposed to the same dose of DNA damage exhibit heterogeneity in cellular
outcomes and that the frequency of cell division is a more accurate monitor of cell damage rather than just radiation level. Finally,
we show how heterogeneity in DNA damage signaling is manifested early in the response to radiation exposure level and has
potential to predict long-term fate.

Cell Death & Differentiation; https://doi.org/10.1038/s41418-022-01069-x

INTRODUCTION
Signal transduction pathways modulate cellular behavior in
response to changes in the internal state of a cell or its
environment. These pathways are constituted by chains of
interacting signaling molecules. Changes in the abundance,
activity or localization of a particular molecule propagates to
downstream components, ultimately connecting signals and
cellular outcomes, such as proliferation, cell death and cell
migration. Decades of research in molecular and cellular biology
delineated signal transduction pathways that mediate response to
growth factors stimulation [1], DNA damage [2, 3], changes in
nutrient abundance [4] and oxygen availability [5], among others.
Altogether, the qualitative dissection of signal transduction
pathways provides a blueprint to understand how cells integrate
information and adapt to changing environments.
However, a static and qualitative account of signal transduction

fails to consider the dynamic and heterogeneous character of this
process. These two features are highlighted by experiments that
quantify signal transduction as it plays out in real time. The use of
fluorescent reporters for the abundance and activity of key
signaling molecules revealed pervasive heterogeneity in the
response of individual cells to particular stimuli, and intricate
patterns in the temporal evolution of signaling, ranging from all-
or-none activation to frequency-modulated pulses and persistent
oscillations [6, 7]. More recently, expression of multiple fluorescent
reporters in the same cell advanced the possibility to quantify the

way changes in cellular signaling propagate through biological
networks, and ultimately influence cell fate [8–12]. In principle,
these experiments should allow extraction of detailed quantitative
features of the interaction between pairs of molecular species in a
cascade, including time delays. Moreover, they should allow
quantification of the extent to which variability in upstream
observables can explain variability in downstream components in
the pathway and cellular behaviors. These quantitative data are
important since they impose constraints on quantitative dynami-
cal models of signal transduction and are fundamental for
understanding how reliably can cells process information of the
presence and amount of particular signals.
Here, we develop mathematical/signal processing methods to

estimate time delays and quantitative relations between pairs of
nodes in signal transduction pathways. As a proof-of-principle, we
use publicly available single cell time lapse imaging data on the
response of individual mammalian cells to DNA damage [9, 13].
These data focus on the dynamics of the tumor suppressive
transcription factor p53, and those of its downstream transcrip-
tional target, the cell cycle inhibitor p21. In addition, we have
information of the number of divisions that each cell goes through
in the course of 5 days post-DNA damage, forming a three-node
cascade that connects activation of p53 signaling with cell fate.
These data are an ideal ground to test our methods for multiple
reasons. Firstly, the pairwise interactions that we are studying (i.e.,
p53-p21 and p21-division) are well established in the field [14],
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providing a ground truth for the directionality in the quantitative
relations which we uncover. Secondly, trajectories are long,
enabling robust estimation of relations using multiple data points
per cell and over distinct timescales (hours and days). Lastly,
experiments were conducted over a range of DNA damage doses
that cover the entire spectrum of cell division patterns that have
been described in the literature, allowing us to test over a wide
dynamic range of inputs and outputs. Collectively, these data
provide a unique test case for novel mathematical data analysis
aimed at dissecting quantitative interactions in signaling cascades.
The tumor suppressor p53 is often referred to the as the

“guardian of the genome” for its importance in regulating a large
number of target genes, its role in regulating cell cycle, inducing
cell apoptosis and DNA repair, as well as senescence. An in-depth
understanding of the dynamics of the p53-p21 couple is of crucial
importance in understanding why a given cell may decide to
continue dividing, especially in the context of cancer [15]. While
not a focus in this work, the known relationship of p53 and Mdm2
is of particular importance as it gives rise to the observed
oscillatory behavior in the p53 dynamics and indirectly in the
dynamics of p21 [16–23]. There are also, of course, numerous
other important targets of p53 such as p14ARF, Chk2, Wip1, and
ATM [21, 23–25], which could be studied in similar fashion using
the techniques introduced in this work. Cellular senescence as well
as temporary instances of cell cycle arrest are also of great interest
as potential therapeutic targets through the prevention of
cancerous cells from proliferating [26–28]. Notably, for cells to
remain arrested, this signaling pathway needs to be maintained
[9, 28–30]. Among a large number of targets that p53 influences,
the cyclin-dependent kinase (CDK) inhibitor p21 plays a crucial
role in the ability of cells to undergo cell cycle arrest [31–33]. p21
interacts with CDK2 as a bistable switch with increased levels of
p21 leading to cell cycle arrest, while low levels of p21 allow cells
to escape G1 phase arrest [9, 34–37].
The signal processing methods described in the present paper

may be used for the analysis of a number of biological
phenomena described by time series, which in the present
paper is dynamics of p21 and p53 in single cell datasets after
radiation exposure. In particular, the proposed techniques give
exact quantitative information concerning the oscillation
periods of p53 and p21 as well as the signaling delay between
these two measured signals, and a quantitative relationship
between p21/p53 levels and the frequency of mitosis. Finally,
the methods seem to indicate that the p21 and p53 dynamics
cluster by the total number of observed divisions rather than
radiation levels.

METHODS
In this section, we give the details of the quantitative methods that were
used to obtain our results using dynamic time warping and cross-
correlation in order to find delays between the signals, as well as
describing our use of moving averages to study the long-term trajectories
of p21 and p53.

Measuring delay between two interacting oscillatory signals
Signal detrending and amplitude normalization. The preprocessing step
for analyzing the relationship between p53 and p21 signals consisted of
detrending the data. This can be done by fitting polynomials, preferably of
low order, to the time series data. By finding an appropriate order that
captures the trend of the data, one can then subtract the “trend” from the
actual data to obtain the oscillatory component. In dealing with signals
such as p53 and p21 that can be subjected to abrupt changes when the
cells are about to divide or are undergoing division, the detrending should
be applied to subsets of the overall time series data that avoids the abrupt
changes.
We were able to obtain cleaner results using a method introduced in our

previous work [38]. The first part of this technique, called the Detrended
Autocorrelation Periodicity Scoring (DAPS) algorithm, focuses on the

detrending and amplitude normalization using a sliding window embed-
ding, which can be briefly summarized in the following steps:

1. Given the sliding window of length M of an N-length time series x,
the sliding windows are arranged into the columns of an M ×
(N−M+ 1) matrix X, so that the ith column of X is SWM[x]i.

X ¼

x1 x2 x3 � � � xN�Mþ1

x2 x3 x4 � � � xN�Mþ2

x3 x4 x5 � � � xN�Mþ3
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. ..
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In other words, the ith skew-diagonal of X is a constant value
equal to the ith value of the time series xi. In this work, M is chosen
to be 11 data points, or 5.5 h, which is roughly the length of one
period of p53 [20].

2. The mean of each column of X is subtracted from each
element of that column. This normalizes for linear drift in the
time series.

3. After point-centering, each column is normalized to be of
unit norm. This controls for changes in amplitude in the
signal.

4. Lastly, the following operation is performed on the matrix

Yi;j ¼ meankðX̂iþk;j�kÞwith
1 � i þ k � M;
1 � j � k � N �Mþ 1:

Finally, the ith value of the time series y is then simply the value of any of
the elements in the ith skew diagonal of Y.

Quantifying delay using dynamic time warping and cross-
correlation. Dynamic Time Warping (DTW) [39] is a method that measures
the similarity between two time series by finding an optimal time-ordered
correspondence, known as a “warping path,” which best maps every index
in the first time series to every index in the second time series [40]. Once
the signals have been properly detrended and normalized, we apply DTW
to determine which of the proteins p53 or p21 leads or lags, as well as the
actual delay between the two time series. It is likely that, because of the
periodic nature of these signals, the algorithm may pick up the real delay
as well as this value adjusted by integer multiples of the period of
oscillation. The “warping path” of a pure delay is expected to be a straight
line in this analysis with the true delay being a stronger signal than the
“secondary” alignments that are offset by a certain number of periods.
Similarly, cross-correlation may be used to determine a correspondence

between two time series by shifting one relative to the other. This work
introduces the concept of using DTW as an alternative to cross-correlation
to capture signal delays, with the hope that other applications may benefit
from it even though similar results were obtained using both techniques.

Long-term trend in the signals and occupancy density
The analysis of long-term trends in the signals is performed by using
moving averages (m.a.) [41]. By removing the short-term fluctuations, this
transformation acts as a low-pass filter that allows highlighting the trend
from the overall signal. Using a relatively small window of 9 data points or
4.5 h, all the time series shown in this work were cleanly smoothed. Since
the amplitude of the oscillations may be quite large relative to the long-
term trend, especially for p53, previous studies focused largely on
describing the behavior of the oscillations. A primary argument of this
work is to show that focusing on the trend and not the oscillations for p21
and p53 provides important and novel insights about the current state of a
cell as it pertains to cell cycle arrest.
Using moving average values of p21 and p53, 2-D maps of occupancy

density were constructed to better understand where these values tend to
lie with respect to their likelihood of undergoing mitosis or treatment
conditions. By constructing a vector of these moving averages for all time
points, each time point then takes up a (x,y) coordinate in space based on
(p53 m.a.,p21 m.a.). In this work, a grid was delimited by approximately the
minimum and maximum values for each of the axes. Due to the large
discrepancy of low and high values as well as the exponential nature of
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chemical reactions, a log10 (p21 m.a.) vs. log10 (p53 m.a.) was used and
discretized by 0.1 increment on this scale. This discretized grid is used to
count each time a coordinate lies within one of the cells. This is then
normalized into the final occupancy density maps.

RESULTS
Experimental single cell datasets and general trends
The analysis in this work is based on two datasets of individual
human cells that were published in [9, 13]. These retinal pigment
epithelial cells were monitored using fluorescence live-cell
imaging for about a week after being subjected to radiation.
The cultured cells were not cancerous and overexpressed
telomerase in order to make them as normal as possible in
comparison to in vivo cells. The cells had wild-type p53 and
tended to exit through cell cycle arrest rather than apoptosis
during the monitoring period.
The single cells in the first dataset were subjected to x-ray

radiation at 0 Gy, 0.5 Gy, 1 Gy, 2 Gy, 4 Gy, and 8 Gy. Fluorescence
markers for p21, p53, and geminin, as well as mitosis events, were
monitored throughout the experiment. The values used in this
work are fluorescence intensities (a.u.) of p53-mNeonGreen
reporter for p53, the mKate2 protein to form a p21-mKate2
complex, and the CFP-hGeminin(1-110) reporter for cell cycle
progression [42]. This geminin reporter indicates cell cycle
transition by its degradation in G1 phase, accumulation in G1/S
transition, and sharp degradation in M phase. The single cells in
the second dataset were subjected to gamma irradiation at 0 Gy,
2 Gy, 4 Gy, and 10 Gy. The culture media was replenished daily,
except for a subset of the cells subjected to 10 Gy irradiation that
had their culture media preserved throughout the experiment.
Fluorescence markers for p21 and p53, as well as the mitosis
events, were tracked throughout the experiment. Since the results
were quite consistent between the two types of irradiation, the
x-ray results are presented in the main text, while the
corresponding gamma results are provided in the Supplementary
Materials. Mitosis events were recorded in a semi-automated
manner using an algorithm on the recordings of the cells during
the observation period [9]. Following each mitosis event, only one
of the two cells was used for tracking further values in geminin,
p21, and p53.
The time series data are presented in Fig. 1 for the single cells

exposed to various grades of x-ray radiation and in Fig. S1 for cells
exposed to gamma radiation. As shown in Fig. 1a and Fig. S1a,
between two-thirds and three-quarters of the unirradiated cells
divide 3–5 times during the observation period of 5 days. As the
radiation levels increase from 0 to 0.5 to 1 Gy in the x-ray dataset,
the fraction of cells that divide often progressively diminishes and
is mostly replaced by cells that do not divide or divide only once.
Due to the two datasets being exposed to different radiation
sources, and the difference in intensity of the fluorescent light
source at the time of the experiment, we decided to analyze the
datasets independently, and we focused on results that were
conserved between the experimental conditions.
Irradiated cells tend to exhibit oscillations in p53 with a short

period on the order of hours [43]. There is also a longer-term
oscillation observable in the data for unirradiated cells that is cell
cycle dependent, as shown in panels Fig. 1b, c and Fig. S1c, d.
There are, however, confounders, such as daily media changes
during the experiments and the fact that cells tend to auto-
fluoresce prior to mitosis that makes this observation inconclusive
from the existing data. We note that cells that divide only once
during the 5 days tend not to exhibit strong oscillations after
mitosis. These cells tend to have dramatic increases in p53 levels
observed after undergoing their sole mitosis event if they divide at
all, an observation consistent with previous reports [13]. Cells that
do not divide over the period of 5 days tend to exhibit lower
amounts of p53 oscillations.

p21 levels exhibit much lower amounts of oscillations, and the
trends in the data are of much greater importance to the local
fluctuations. In other words, p21 does oscillate similarly to p53, but
these oscillations constitute a smaller fraction of the overall signal.
Upticks in CFP-hGeminin(1-110) correlates with temporal drops in
p21 levels (shown in Fig. 1c, d). This is because this geminin
reporter only accumulates during the S/G2/M parts of the cell cycle
[44, 45] and p21 is degraded in the G1/S transition [33, 43]. In
addition to these “gaps” in p21 during the G1/S phases, p21 levels
are extremely low in unirradiated cells. p21 levels also rapidly
converge to very high values for cells that undergo cell cycle arrest
and never divide in the course of the experiment.
We note through additional analysis in Supplementary Sections

S1 and S2 that the dynamics of p21 and p53 are not easily
clustered by radiation levels. This is because even if single cells are
irradiated at the same radiation level, the amount of damage they
receive may vary widely. However, we show there that one can
cluster p21 and p53 dynamics by the number of divisions over five
days, which more closely reflects the actual damage that
individual cells received, using a t-Distributed Stochastic Neighbor
Embedding (t-SNE) classification technique employing the
1-Wasserstein distance. Thus, the remainder of the paper places
particular emphasis on analyzing the dynamics with respect to the
number of observed divisions as opposed to focusing on radiation
levels which contain very heterogeneous cell behaviors.

Quantifying the delay between p21 and p53 signaling
Given that p21 lies downstream of the p53 signaling pathway, part
of the observed fluctuations in p21 is directly influenced by the
oscillatory component of p53. By detrending and normalizing the
two signals via the Detrending Autocorrelation Periodicity Scoring
(DAPS) methodology (see Section 3 below), as shown in Fig. 2a for
the gamma radiation dataset, these transformed signals were used
to calculate the delay between the two signals by warping or
“aligning” them to one another using Dynamic Time Warping (DTW)
(Section 3). By performing this step for all time series in the gamma
radiation dataset, the aggregated warping paths are shown in
Fig. 2b. There are mostly two main visible straight lines that cut
across the graph, one indicating that the p21 signaling is lagging
behind the p53 signaling by about 3.5 h and the other indicating
that p21 leads p53 by 2.5 h. Because the two signals are periodic, the
latter result is a natural artifact that arises from the fact that the
patterns of transformed signals repeat themselves. Thus, the “correct
alignment” offset by full periods of the signal will yield a local
maximum in terms of correlation between the compared signals.
Both the normalized cross-correlation and DTW results shown in

Fig. 2b, c indicated a stronger correlation when aligning with p53
leading p21 by about 3.5 h. This holds whether looking at cells
that did not divide, or divided 1, 2, or 3 times during the 5 days
following radiation exposure. This is also identical to trends
observed in similar results generated for the gamma radiation
dataset that are shown in Fig. S6. These observations do not hold
when considering cells that divided 3+ times over 5 days whether
one looks at the gamma or x-ray radiation datasets. This can be
partially explained by the p21 signaling being suppressed during
the G1-S phases, which represent a major fraction of the cell cycle,
reducing the ability to compare the two signals. The oscillations
are also noisier when cells are dividing at the pace of healthy cells.
Thus, these single cell datasets containing a majority of cells for
which the rate of mitosis was slowed down, or for which cells were
arrested, made this analysis on the delay most appropriate.

Long-term p21 and p53 trends play a key role in determining
cell behavior vis-à-vis of mitosis
In Fig. 3a for the x-ray radiation dataset and Fig. S4a for the
gamma radiation dataset, using a moving average (m.a.) window
of 4.5 h, p21 m.a. values are plotted as a function of their
respective p53 m.a. values at t= 0,12.5,25, and 50 h. After 50 h, the
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Fig. 1 Visualization as a function of time of the x-ray irradiation dataset at 0 Gy, 0.5 Gy, 1 Gy, 2 Gy, 4 Gy, and 8 Gy. a Shows the
progression of the cells through cell division. The expression levels are then shown on a log10 scale and broken down by conditions for (b)
p53, c p21, and (d) geminin. The ordering of the single cells is preserved across the different panels for each treatment condition.
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Fig. 2 Parameterizations revealed by dynamic time warping method between detrended p53 and p21 time series. a, b Show histograms
of the parameterizations uncovered via dynamic time warping between the detrended p53 and p21 time series, as a function of number of
divisions. In (b), the normalized crosscorrelation between the two detrended time series is shown. In both cases, p53 leads p21 by 3.5 h or lags
p21 by 2.5 h more often for fewer divisions, which is consistent with the period of about 6 h of p53 during cell damage.
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m.a. values of p21 and p53 remain fairly consistent. p53 values
settle in a matter of hours as opposed to 1 to 2 days for the p21
values after irradiation. Videos of the datasets that show the
evolution at every measured time point over 5 days are available
at https://github.com/phongatran/p21p53/. There is a slight long-
term drift in the two signals that makes the data points slowly
disperse, which may potentially be due to a loss in fluorescence
signal over time.
By aggregating the m.a. values of these two markers, the

occupancy densities are shown in Fig. 3b for the x-ray radiation
dataset and Fig. S4b for the gamma radiation dataset. These
depictions suggest that p21 levels play a more central role in
determining how often cells divide over the course of 5 days after
irradiation. There is a period of about a day after irradiation before
the p21 levels reflect the changes due to irradiation exposure.
Additional plots are available in Fig. S5, illustrating the occupancy
densities broken down by radiation levels for both datasets.
To further understand the relationship between the trends in

p21 and p53 with respect to cell cycle arrest, the m.a. values are

centered around mitosis in Fig. 4 for cells that divide and are
exposed to x-ray radiation. In Fig. 4a, the cells that do not divide
have a characteristic jump in p53 m.a. values, which then subside
within the first few hours after the cell receives the irradiation
damage. The p21 m.a. values are constantly increasing for the next
20–30 h until they reach a plateau of about ∼3000–5500. These
non-dividing cells remain in this state with little variation in
geminin, p21, or p53 m.a. values.
Single-divider cells, shown in Fig. 4b, c, undergo the process

of mitosis at significantly higher values of p21 m.a. values than
cells that divide more often. These cells also seem to exhibit a
substantial increase of both p21 and p53 m.a. values before
mitosis. These elevated levels of p53 subsist long after
these cells undergo their single mitosis event. Of note, the
behavior between “early single-divider cells”, defined as cells
which undergo mitosis less than 3 days after exposure, exhibit
distinct behavior from “late single-divider cells” (also called
“escapers” in ref. [9]). Early-single divider cells have noticeably
lower levels of p21 and p53. There is also a significant jump in

Fig. 3 2D representations of the p21 and p53 temporal data for the x-ray radiation dataset. a Time lapses of the single cells of the moving
average values of p21 vs. p53 at different time points of 0, 12.5, 25, and 50 h after irradiation. The panels are broken down either by number of
total divisions over five days or by irradiation conditions. b Occupancy density of the cells with a breakdown by the total number of
undergone divisions over five days. The numerical value shown in color indicates the probability for a cell to occupy a given square of 0.1 by
0.1 in the log10(p21 m.a.) vs. log10(p53 m.a.) space in a given hour.
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p53 levels in late single-divider cells near the mitosis event and
afterward.
Looking in detail at cells that divided exactly twice (Fig. 4d, e) or

3 times (Fig. 4f–h), the profiles are almost identical for the same
number of divisions across all three markers. There does not
appear to be a significant difference in the long-term trends of
p21 levels before the mitosis process has taken place and
afterward, once the values are stabilized. Cells that divide more
than 3 times over five days in Fig. 4i exhibit in aggregate the
lowest levels of p21, p53, and geminin. Note that this Fig. 4i
subplot shows the behavior across all observed mitosis events,
unlike the other subplots.
Cells that do not divide despite high levels of geminin are

shown in Fig. 5, split into 6 clusters using k-means with correlation
as the distance. These subfigures show various instances in which
cells that are in the process of dividing decide to forego division or
have yet to divide. These cells had the characteristics of expressing
geminin levels higher than 500 a.u. for a period of more than

12.5 h, but for which no division event was recorded. There were
175 cells in the x-ray dataset. It is relatively clear that a high level
of p21 is a necessary condition at the moment that the cell
reverses this decision and the levels of geminin start dropping
without mitosis occurring. All these cells also have an early spike in
p53, which may be due to the radiation exposure at t = 0. When
compared to cells that do divide in the previous panel (Fig. 4), it
takes longer for geminin to reach a peak, > 20 h, from the moment
geminin levels start noticeably rising as opposed to 15−20 h for
dividing cells. At the end of this reversion, cells return to having
high m.a. values of p53 and p21, similarly to non-dividing cells as
shown in Fig. 4a. From a biological standpoint, it is probable that
these cells have had an interrupted division, which may result in
them having an abnormal number of chromosomes (aneuploidy),
such as being tetraploid. In Fig. S8, the same results as Fig. 4 are
shown for the gamma radiation dataset. The geminin levels were
not measured in these single cells. The moving average trends in
p21 and p53 are nearly identical across both datasets.

Fig. 4 The moving averages for the expression levels of geminin, p53, and p21 are plotted and centered around mitosis (at t= 0) for the
x-ray irradiation dataset. The middle line represents the 50 percentile value for a given relative time, while the top and bottom of the shaded
region represent the 75 percentile and 25 percentile values. Note that in plots (b) and (c), the cells dividing once over five days are divided into
two groups: early and late single-divider cells. In (i), the mitosis events for cells dividing more than three times are aggregated and averaged
out.

A.P. Tran et al.

7

Cell Death & Differentiation



Due to p21 levels being suppressed during the 15–20 h leading
up to mitosis (seen on Fig. 4), Fig. 6a (x-ray irradiation dataset) and
Fig. S9a (gamma irradiation dataset) focuses on the mean levels of
p53 and p21 across all five days but excluding the regions in which
cells are actively dividing. These excluded regions were taken as the
15 h or 30 data points leading up to a mitosis event. Looking at the
distributions for mean p53 of the non-dividing regions (n.d.) as well
as the corresponding mean p21 n.d., there is a correspondence
between higher levels of p53 and fewer divisions as well as a
correspondence between higher levels of p21 and fewer divisions
over the course of five days. However, this is only true for the cells
which were irradiated since cells exposed with 0 Gy did not exhibit
this trend. Thus, while the decision to divide or not divide is a binary
decision, the frequency of mitosis stochastically correlates to the
value of p21 n.d. For p53 n.d., this signal is fainter, but still exists as
one would expect since we expect p53 to orchestrate the dynamics
of p21. A numerical relationship was found for both the x-ray
irradiation and gamma irradiation datasets.
Shown in Fig. 6b and Fig. S9b are swarm plots similar to Fig. 6a

and Fig. S9a but limited to the ranges of 18–36 h from the 5 days
that the data was recorded after irradiation. The decision to start
this range at 18 h after radiation exposure was to allow for p21
values to settle enough into the long-term trend. Notably, for
most single cells, the trends that are true over the entire interval of
five days also exists within this more limited range. Thus, we
hypothesize that early observations of p21 n.d. and p53 n.d. levels
can be used as a predictor as to how often cells are likely to divide.

The influence of cell phase at the moment of irradiation
The cell population submitted to x-ray radiation were divided into
two subpopulations by using a cut-off value of 100 for the
geminin value at the time of irradiation. The geminin marker was
employed here as the best proxy for cell cycle status at the

moment of irradiation [42]. The cells were approximated to be in
G1 phase under that threshold at the moment of irradiation and
cells that had a threshold greater than 100 were assumed to be in
S/G2 phase. Other thresholds were also considered but did not
yield significant differences in our observations. By drawing
histograms of key observations such as time to first division,
number of total observed divisions during the 5 days following
irradiation, the mean level of p53, or the mean level of p21 over
that observation period, we note the differences in behavior in the
two subpopulations in Fig. 7.
The key differences between those two subpopulations were

that cells irradiated in G1 phase:

● Had slower time to first division than cells irradiated in G2 or
S phase;

● Had higher number of total divisions than irradiated cells
during G2 or S phase;

● Had noticeably lower mean levels of p21 and p53 over the
observation period than their G2/S counterparts.

In addition to the time to first division, which seems to simply
indicate that cells irradiated later in their cell cycle divide earlier
the first time, cells that are irradiated in their G2/S phases
seemingly undergo more cell cycle arrest indicated by lower
division rates, higher p53 levels, and higher p21 levels. Thus, we
hypothesize that these cells may be suffering higher amounts of
damage at similar radiation levels than their G1 irradiated
counterparts.

DISCUSSION AND CONCLUSION
Two sets of human single cells, treated with various levels of x-ray
and gamma radiation, were monitored for cell division, p21, p53,

Fig. 5 The moving averages for the expression levels of geminin, p53, and p21 are plotted and centered around mitosis (at t= 0) for the
x-ray irradiation dataset for cells that showed signs of division, but reversed course. These cells exhibited high levels of geminin for a
period of more than 12.5 h (>500 a.u.) but did not undergo mitosis. These cells were then split into 6 clusters using k-means clustering with
the distance used being correlation. The middle line represents the 50 percentile value for a given relative time, while the top and bottom of
the shaded region represent the 75 percentile and 25 percentile values.
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Fig. 6 Swarm plots of mean values of p21 and p53 for x-ray data. Swarm plots of the mean values of p21 and p53 for the x-ray dataset
excluding the non-dividing regions where p21 levels are suppressed considering in (a) all five recorded days and (b) only hours 18 to 36 of the
recorded data. The excluded regions are the 15 h leading to a mitosis event. Each panel is broken down into mean p53 n.d. vs. number of
divisions over 5 days, mean p21 n.d. vs. number of divisions, the ratio between mean p21 n.d. and mean p53 n.d. vs. number of divisions, and
mean p21 n.d. vs. mean p53 n.d.
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Fig. 7 The histograms for time to first division, number of total divisions observed over the 5-days period, the mean levels of p53, and
mean levels of p21 over that period are presented. The overall population of x-ray irradiated cells are split into two subpopulations using a
geminin cut-off value of 100. The subpopulation with cells having geminin value less or equal to 100 at the time of irradiation are shown on
the four left subpanels, while the cells with geminin values higher than 100 are shown on the four right subpanels.
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and hGeminin(1-110) levels after radiation exposure [9, 13]. From
the data on mitosis occurrences, it is clear that the behavior of
cells within a given treatment regimen, in terms of radiation levels
and type, can be quite heterogeneous with cells dividing at
different rates. Using t-SNE classification with the 1-Wasserstein
distance (see Supplementary Material), it was found that cells can
be readily clustered using the number of cell divisions they
undergo over five days, using the “histograms” of p21, and to a
lesser extent, p53. This indicates that p21 dynamics plays a key
role in the cell decision to undergo mitosis or not, and also affects
the rate at which this occurs.
While it is known that, biologically, p21 is located downstream

of the p53 signaling pathway, this work shows how p53 signaling
is an integral part of the p21 response by analyzing the oscillatory
components of the two signals. Through detrending and normal-
izing the two signals using the DAPS technique, it was shown that
p53 signaling leads p21 signaling by about 3.5 h and that the
period of the oscillations is about 6 h. This analysis was made
possible because of the high levels of induction of p21 in
damaged cells. Since p21 expression is low in the absence of
radiation, and it is sharply degraded upon S-phase entry,
estimation of such time delay in cells that divide normally as a
result of not receiving any radiation is inconclusive.
From studying time-lapses of the moving averages of p21 and

p53, we found that p53 trends tend to settle within hours of DNA
damage, while p21 values may take up to a few days to fully settle
into their long-term trends. Most cells that did not divide follow a
pattern of expressing very high levels of p21 that builds up from
the onset of the radiation.
However, in rarer cases, cells attempt to resume cell cycle

progression, as evidenced by accumulation of the hGeminin(1/100)
reporter and p21 degradation, but ultimately fail to undergo mitosis
and establish cell cycle arrest with very high levels of p21. It is
probable that these cells may have become aneuploid, since their
chromosomes may have already started the process of division
before being interrupted, as was previously reported [46]. The single
most important characteristic of mutant p53 is aneuploidy. If these
cells are only temporarily arrested in their division and eventually
undergo mitosis, this may lead to catastrophic results such as cancer
or trisomy. There remains an open question as to why cells would
tolerate such a catastrophic scenario. Thus, while we only isolate
their dynamics in this work, these cells may be of particular interest
in understanding the role of p53 in cancer.
It is also made clear through this work that the cell decision to

divide involves a more complex process than simply resuming
division after radiation damage repair. For the datasets considered
in the present work, cells that had high levels of p21 before
mitosis oftentimes recovered similarly high p21 levels after
mitosis. Further, we found via the mean values of p21 which
exclude the parts of actively dividing cells, that the pace at which
cells divide is regulated by the long-term trends of p21. This would
seem to suggest that cells do not deterministically decide to cease
division when considered too damaged, but that very high levels
of p21 make it unlikely for cells to divide within the given
observation period of five days. In summary, cell division may not
be simply a binary decision which cells undertake to divide or not
divide, but instead p21 levels seem to dictate how likely it is for a
division to take place. Thus, long-term arrested cells may be the
result of cells having extremely low probabilities of undergoing
mitosis due to elevated p21 levels.
The heterogeneity of the response to DNA damage observed

among cells in a culture dish, fed every day with fresh medium
and growth factors, is also a function of the cell cycle stage of a
given cell at the time of DNA damage [47, 48]. By using the
geminin levels at the moment of irradiation, the cells were
separated into a subpopulation of cells irradiated early (G1 phase)
and a subpopulation of cells irradiated late in their cell cycle (G2, S,
M phases). For this second subpopulation of cells irradiated later

in the cell cycle, we found that levels of p21 and p53 are
noticeably higher, while also observing fewer divisions over the
course of the 5-days observation period. From our other analyses
presented in this work, we believe that these results are consistent
with a higher level of effective damage experienced by these cells.
We also wish to point out that the cell cycle state at the moment
of irradiation is not the sole factor determining cell fate and this is
likely one of many factors that lead to the observed heterogeneity
in cell fate observed in both subpopulations.
Classic studies on the function of p21 identified its role as a

mediator of cell cycle arrest downstream of p53 [49–51]. Although
it may be speculated that loss of this canonical function of p21
could confer a fitness advantage to cancer cells, with notable
exceptions [52], there is a paucity of mutations affecting the p21
coding sequence [53, 54]. Furthermore, mice lacking p21 fail to
develop spontaneous neoplasms within 7 months of age [55]. The
low frequency of p21 genetic alterations in cancer could be
explained by the prevalence of p53 alterations, as p53 orches-
trates a plethora of tumor suppressive mechanisms independent
of p21 [56]. In addition, studies have identified roles of p21 in the
error-free progression through the cell cycle [57–60], suggesting
that complete loss of this protein may be detrimental for cells in
certain contexts. New methods that allow quantification of p21
protein and its relation to fate at the single cell level will allow
further dissection into the roles that p21 plays in the response and
recovery from DNA damage.
We should emphasize once again that while the present paper

focused on the dynamics of p21/p53 using time series data, the
proposed methodology employing DTW and autocorrelation with
signal detrending may certainly be applied to the study of other
pairs of other interacting biological oscillatory signals [61–64]. The
use of moving averages can be a powerful tool to isolate long-
term trends in the given signals, and hence act as an important
indicator of cell state. In addition, the t-SNE using a 1-Wasserstein
distance may deal with oscillatory signals better than the standard
t-SNE methodology relying on traditional measures such as the
Euclidean or Manhattan distances.
A potential research direction employing the proposed

methodologies in the present work, is the application of these
methodologies to quantify the relations in non-transformed and
transformed cells [10]. Indeed, the latter analyzes similar p21/p53
relationships, but for a cancer cell line as opposed to the normal
cell lines studied in this work. Other types of systems where this
type of approach may be beneficial would be to study systems
where the cells would be deficient in either p21 or p53, since it
may unlock additional understanding on how p21 can be induced
in a p53-independent manner or gain additional understanding
about the way p21 deficiency may directly or indirectly p53
dynamics. We believe that the signal processing techniques
introduced in this paper have the ability to reveal a deeper
understanding of fundamental biological processes arising from
existing and future biological experiments without necessarily
adding to the burden of experimentalists.
Finally, we would like to summarize the key methodological

findings of the present paper:

● By detrending the original signals of p21 and p53 using DAPS
and focusing on the oscillatory components, one may apply
either the dynamic time warping or normalized cross-
correlation techniques to estimate the signaling delay.

● By smoothing the oscillatory part of the two signals using a
moving average filter, we were able to describe the long-term
trends of the p53 and p21 signaling after irradiation, which we
utilized throughout this work. Additionally, averaging across
the entire time series also brought insights on the long-term
behavior of individual cells. These two approaches turned out
to be especially useful dealing with signals that have a strong
oscillatory component such as p53.
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● Using total divisions over the observation period as a proxy for
effective radiation damage received by the individual cells, we
were able to study the dynamics of these various subpopula-
tions. Most notably, quantitative relationships between
number of divisions and mean p53 value, as well as number
of divisions and mean p21 value, were discovered.

CODE AVAILABILITY
The availability of the code to reproduce the results as well as the algorithms made in
this work are made available at https://github.com/phongatran/p21p53/.

DATA AVAILABILITY
The data that support the findings of this study are available upon request through
the corresponding author.
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