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ABSTRACT 

White matter (WM) consists of bundles of long axons embedded in a glial matrix, which lead to anisotropic mechanical 
properties of brain tissue, and this complicates direct numerical simulations of WM viscoelastic response. The detailed 
axonal geometry contains scales that range from axonal diameter (microscale) to many diameters (mesoscale) 
imposing an additional challenge to numerical simulations. Here we describe the development of a 3D homogenization 
model for the central nervous system (CNS) that accounts for the anisotropy introduced by the axon/neuroglia 
composite, the axonal trace curvature, and the tissue dynamic response in the frequency domain.  Homogenized 
models that allow the incorporation of all the above factors are important for accurately simulating the tissue's 
mechanical behavior, and this in turn is essential in interpreting non-invasive elastography measurements. 

Geometric and material parameters affect the material properties and thus the response of the brain tissue. More 
complex, orthotropic, or anisotropic material properties are to be considered as necessitated by the 3D tissue structure. 
An assembly of micro-scale 3D representative elemental volumes (REVs) is constructed, leading to an integrated 
mesoscale WM finite element model. Assemblies of microscopic REVs, with orientations based on geometrical 
reconstructions driven by confocal microscopy data are employed to form the elements of the WM model. Each REV 
carries local material properties based on a finite element model of biphasic (axon-glial matrix) unidirectional 
composite. The viscoelastic response of the microscopic REVs is extracted based on geometric information and fiber 
volume fractions calculated from the relative distance between the local elements and global axonal trace. The 
response of the WM tissue model is homogenized by averaging the shear moduli over the total volume (thus deriving 
effective properties) under realistic external loading conditions. Under harmonic shear loading, it is proven that that 
the effective transverse shear moduli are higher than the axial moduli when the axon moduli are higher than the glial. 
Methodologically, the process of using micro-scale 3D REVs to describe more complex axon geometries avoids the 
partition process in traditional composite finite element methods (based on partition of finite element grids) and 
constitutes a robust algorithm to automatically build a WM model based on available axonal trace information. 
Analytically, the model provides unmatched simulation flexibility and computational power as the position, 
orientation, and the magnitude of each tissue building block is calculated using real tissue data, as are the training and 
testing processes at each level of the multiscale WM tissue. 
 
 

1. INTRODUCTION 

White matter (WM) constitutes approximately 50% of the brain and 60-80% of the spinal cord in humans, and its 
integrity is highly significant in health or disease (Fern, 2017; Saab and Nave, 2017). The explosive growth in 
mechanobiology knowledge indicates that WM mechanics on the cell level is an important regulator of the 
development or repair of the central nervous system (Franze et al., 2013). Consistent with findings across various 
pathologies in all biological tissues (Holle et al., 2017), it has been suggested that changes in mechanical properties 
of WM as a result of normal aging, injury, or disease are not only a consequence of local tissue structure changes but 
essential biomarkers for the progression of brain aging (Lamoureux et al., 2010) or disease (Pogoda and Janmey, 
2018; Urbanski et al., 2019). In parallel, there has been a growing emphasis on non-invasive techniques to assess 
WM mechanics in vivo. One such promising modality is Magnetic Resonance Elastography (MRE) (Murphy et al., 
2019), which produces full-field maps of effective mechanical properties of WM by interpreting the propagation of 
harmonic shear waves in the tissue. The MRE methodology involves the extraction of shear strain fields from 
displacement data, followed by the computational solution of an inverse problem to estimate the local viscoelastic 
properties of the tissue. Owing to intrinsic MRI limitations, MRE introduces several constraints for the mechanical 
characterization of brain tissue relative to ex vivo methods. MRE is based on detecting the shear waves generated by 
external mechanical actuation of the skull that generates low (~10!") shear harmonic strain. In contrast, ex vivo 
methods involve medium to finite-strain of ostensibly homogeneous specimens under quasistatic, creep/relaxation, 
constant strain tensile/compression, oscillatory shear, indentation, or impulsive actuation of brain or spine tissues 
(Chatelin et al., 2010) (Koser et al., 2015). The large scatter of brain viscoelastic properties reported is consistent 
with findings implying that the WM is mechanically heterogeneous (Johnson et al., 2013a), anisotropic (Anderson et 
al., 2016), and its effective properties depend strongly on the loading conditions, as well as on test conditions 
(Hrapko et al., 2008). An additional MRE constraint is low spatial resolution resulting from methodological 
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limitations in MRE signal acquisition and solution of the inverse problem. Biological tissue MRE resolution is 
limited to ~1 mm scales, so there is a gap in spatial resolution between MRE voxels in WM and axons and near 
micron diameters. This results in smoothing out local mechanical property gradients (Johnson et al., 2013b; Solamen 
et al., 2018), or under-estimating the mechanical contributions of WM components (Urbanski et al., 2019). MRE 
measurements reflect voxel-averaged (effective) properties, and the solution of the inverse problem relies on 
constitutive tissue models to account for the microstructure and intrinsic properties of the components in each WM 
voxel (axons and glial cells). By focusing on the contribution of individual realistic axons to a homogenized tissue 
model, the present work is the first step towards formulating appropriate constitutive models by bridging the spatial 
scales gap.  
 

Prior brain MRE studies (Murphy et al., 2019) are based on a priori constitutive models of the brain, which 
represent the brain as a heterogeneous, linear viscoelastic, and isotropic continuum. The isotropic MRE material model 
returns a single property pair (stiffness or storage modulus, 𝐺#,	and loss modulus, 𝐺##), and thus is inadequate for 
separating contributions to effective tissue properties from axons and glia, or their interface. There have been many 
indications that WM is mechanically anisotropic under shear on the mm scale, especially in regions with high 
directional coherence, such as the brainstem (Arbogast and Margulies, 1998), and the corpus callosum and corona 
radiata (Feng et al., 2013; Velardi et al., 2006). The spatial resolution and accuracy of in vivo brain MRE has recently 
increased, first achieving 2 mm (Johnson et al., 2013a; Johnson et al., 2013b; McGarry et al., 2013; McGarry et al., 
2012) and then 1.6 mm isotropic voxels (Johnson et al., 2014). By separately exciting the brain in two different 
directions, the consequences of the mechanical anisotropy of WM  on MRE metrics have been shown to be very 
important (Anderson et al., 2016). Isotropic inversions of the two separate displacement fields resulted in disparate 
mechanical property maps between the excitations in highly aligned WM regions. Specifically, reconstruction of 𝐺# 
and 𝐺## in the corpus callosum, corona radiata, and superior longitudinal fasciculus, revealed property differences 
between excitations of up to 33%. The need to choose the "correct" WM constitutive model for the inversion of MRE 
data has thus emerged. Gallo et al. (Gallo, 2020) employed high-resolution, multi-excitation MRE and a novel 
anisotropic inversion scheme to extract local shear anisotropic moduli from in vivo brain. It was found that the ratio 
of transverse to axial moduli, a new MRE metric, remains greater than 1 along all regions of the corpus callosum. 
 
 We focus here on developing a WM tissue model for MRE starting from the micromechanics of each phase. A 
candidate micromechanical model of WM involves a biphasic composite with aligned fibers (representing axons) 
embedded in a homogeneous glial matrix. The proposed canonical topology can be extended to mimic realistic WM  
cytoarchitecture in the spinal cord (Singh et al., 2015) or brain (Lee et al., 2019). Several micromechanical studies 
have modeled individual WM axons embedded in glial matrix and simulated their response to various mechanical 
loads using the embedded finite element technique. The choice of representative volume element (REV), kinematics, 
and constitutive law is based on micro-geometry and loading conditions.  For very slow mechanical loading, Ogden 
hyperelastic models have been employed to simulate the response of WM as biphasic composites (Karami et al., 2009; 
Yousefsani et al., 2018a; Yousefsani et al., 2018b), which were calibrated against experiments (Meaney, 2003; Velardi 
et al., 2006). Embedded finite elements employed simulating affine kinematics, i.e., the axon interface is perfectly 
bonded to the glial matrix, so the matrix dictates its movement, to model the mechanics of the biphasic (axon-glial) 
composite model. Microscopic observations have revealed that axons do not demonstrate pure affine or non-affine 
behavior but instead transition from non-affine-dominated kinematics to affine kinematics with WM stretch level and 
development (Bain et al., 2003; Singh et al., 2015). To model these more realistic interfacial mechanics, we introduced 
a transitional kinematic model to simulate the axonal behavior within a white matter tissue subjected to uniaxial tensile 
stretch (Pan et al., 2011). Using an isotropic Ogden hyperelastic material model calibrated with experimental data 
(Meaney, 2003; Shreiber et al., 2009), adjustable "tie" constraints were applied to model axon-glial coupling with 
varying degrees of undulation in periodic revs. In a follow-up study (Pan et al., 2013),  a pseudo-3D model was 
proposed to accommodate multiple axons, in addition to axon undulation and transitional kinematic model. a 
numerical virtual test coupled with experimental data were used to determine the transversely isotropic hyperelastic 
response (Pan et al., 2021). The model can accommodate large deformations and was applied to transversely isotropic 
spinal cord WM.  
  

In a In a recent computational study, we considered a 2D triphasic unidirectional composite model of WM, 
consisting of parallel cylindrical inclusions (axons) surrounded by sheaths (myelin) and embedded in a homogeneous 
matrix (glial cells plus extracellular matrix), and the whole composite under pure shear perpendicular to the axon axis 
(Sullivan et al., 2021). Each phase was modeled by a linear viscoelastic constitutive law and was assigned uniform 
intrinsic (phasic) moduli 𝐺#  and 𝐺## . Based on harmonic shear excitation and steady-state diffusion in the plane 
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perpendicular to the axon direction, a global sensitivity analysis of MRE metrics (effective transverse shear storage 
and loss moduli) and diffusion MRI metric (effective radial diffusivity) was performed for a wide range of 
microstructural (fiber volume fraction and the myelin sheath/axon diameter ratio), and intrinsic (𝐺#, 𝐺##,	and diffusion 
coefficients) properties. The study concluded that isotropic MRE and diffusion MRI constitutive models are good 
approximations for myelinated WM sheared in the transverse plane. The present work builds on the above model by 
integrating local "micro-models" into a larger WM domain on the mesoscale.  
 

There is no published study (to our knowledge) of 3D micromechanical models of WM tissue as a biphasic 
(glia-myelinated axons) composite under harmonic shear. There are no studies where actual (i.e., extracted from 
histology) WM micro-geometries have been employed for loading conditions pertinent to MRE. The present study 
proposes merging an assembly of micro-scale 3D REVs to construct an integrated mesoscale WM finite element 
model. Employing geometric information extracted via high-resolution imaging techniques (Singh et al., 2015), we 
use the local axon orientation in the CNS to study the mechanics of a mesoscopic tissue block consisting of two axons. 
This tissue block is subjected to harmonic shear to extract homogenized viscoelastic properties on the mesoscale (the 
forward problem). This homogenization is the basis of developing a constitutive material model that can be used to 
interpret measurements from MRE or other experimental modalities and probe the mechanical properties of individual 
WM constituents (by solving the inverse problem). The scope of the present work is limited to the forward problem. 

2. MATERIALS AND METHODS 

2.1 Microscopic REV model 

A periodic representative Volume elemental (REV) is employed, consisting of a unidirectional biphasic composite of 
axonal fibers embedded in a homogeneous glial phase, as shown in Figure 1(a). For clarity, we call the biological data 
axons and their computational reconstructions axonal fibers. A local coordinate system marked by xyz is attached to 
each REV. The axon-aligned axes are along the z-direction of the local coordinate system congruent to the geometric 
distributions/constraints asserted by 1-μm thick slices of CNS data (Singh et al., 2015).  In contrast, the global 
coordinate system is marked by XYZ and identifies the loading direction. The glial phase consists of glial cells and a 
much softer extracellular matrix comprised of  glycosaminoglycans and proteoglycans (Ruoslahti, 1996). The focus 
of this work is the 3D multiscale modeling of white matter consisting of arrays of curved axons.  In this context, the 
following assumptions enhance the computational efficiency of our algorithms without oversimplifying or diminishing 
the novel contribution of this work. For simplicity, we assume axonal fibers of identical circular cross-sections and 
their conformance to a uniform hexagonal mesh (Recchia et al., 2015). Accordingly, the dominant geometrical 
parameter describing the microstructure is the volume fraction (VF), defined by the percentage of REV volume 
occupied by the axons. The size of the hexagon mesh (distance between nodes) is equal to 𝛼 =

2	𝑟$%&'(+1.75 /2√3	𝑉𝐹4,⁄  where 𝑟$%&'(	is the axonal fiber radius. The REV shown in Figure 1(a) is the basic packing 

cell that can be translated in the plane transverse to the fiber axis by 2𝛼  and √3	𝛼,	depending on the original 
orientation. Without loss of generality, each phase is modeled as an isotropic continuum with uniform viscoelastic 
moduli, with values based on interpolation of brainstem measurements at 50Hz (Arbogast and Margulies, 1999): 
𝐺)*+,# = 2.15 kPa,	𝐺)*+,## = 1.75 kPa,	𝐺-.%)# = 0.85 kPa, and 	𝐺-.%)## = 0.3 kPa. The Poisson ratio of each phase was 
fixed at 𝜈 = 0.49, representing near incompressibility of the material. Computations were performed for a volume 
fraction range 0.05< VF < 0.85, with VF increments of 0.05 for each step. Note that for hexagonal packing, the 
maximum VF = √01

2
~0.9069. According to these material properties, the orthotropic storage and loss modulus 

compliance tensors are calculated from the REV finite element analysis (Wu et al., 2019) (Wu et al., 2021) based on 
Eqs. (1)-(2), and consecutively used as the input data of the WM model.  
 

The 3D mechanical harmonic response of the composite under six cases (axial XX-, YY-, and ZZ-, and shear XY-
, XZ-, YZ-directions) of macroscopic 1% strain at 50 HZ was calculated using ABAQUS 6.14 and Python scripting. 
The REV was meshed with 8-node biquadratic hybrid elements resulting in a range of elements from ~5,500 to 
~43,000 depending on the VF under consideration. The load was applied as a displacement boundary condition on the 
appropriate surface nodes. The faces in the REV boundary planes are assigned a repeated boundary condition, where 
each node's displacement is matched to a corresponding node on the opposing face. Normal force transmission is 
assumed at the axon-glial interface. A direct steady-state dynamic solver is used to give the response of the REV under 
a steady harmonic load of 50 Hz. After the steady-state harmonic field is computed, the reaction forces necessary to 
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result in the assigned displacements are measured and summed for each face, and the resulting average complex stress 
is found. The effective viscoelastic material properties of the microscopic REV are derived by dividing the (average 
complex) stress by 1% strain.  

 
The effective moduli (𝑺∗)	of the homogenized REV is composed of the storage (𝑺#) and loss (𝑺##) compliance 

tensors which depend on the intrinsic material properties of each phase, namely, Young's moduli, 	𝐸%4,  shear moduli, 
𝐺%4 , and Poisson's ratios, 𝜈%4 . Note that the indices ij conform with the tensor notation convention. The effective 
modulus of the homogenized REV is composed of the storage compliance tensor (𝑺#) and the loss compliance tensor 
(𝑺##), which are defined as follows: 
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The compliance matrix of the REV, 𝑺∗, representing the constitutive relationship of REVs, is then written per (Findley 
and Davis, 2013) as 

 𝑺∗ = 𝑺#|56 	+ 𝑖		𝑺##|56 =
	𝜺|56
𝝈|56

 (3) 

where 𝑖 = √−1 is the imaginary unit, and 𝛆 and 𝝈	are the frequency-dependent strain and stress tensors, respectively, 
and VF-specific. Since the intrinsic moduli are fixed, the loss and storage moduli compliance tensors are only functions 
of VF. The effective complex stiffness (𝑺∗) of the REV can be calculated by the storage stiffness tensor (𝑺#) and the 
loss stiffness tensor (𝑺##) in Eq. (3). A similar approach provides the REV's effective complex stiffness (𝑪∗) in Eq. (4). 
Similarly, based on the convention used for stress and strain components in ABAQUS, the effective stiffness matrix, 
𝑪∗, of the homogenized REV, at a specific volume fraction can be calculated 
 

								𝑪∗ = 𝑪#|56 	+ 𝑖		𝑪##|56 =
	𝜺|56
𝝈|56

 (4) 
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2.2 Mesoscopic White Matter (WM) Model 

The computational domain of the mesoscopic WM model is constructed by assembling multiple microscopic REVs 
(Wu et al., 2019) (Wu et al., 2021) according to the location and orientation of individual axons as prescribed by 3D 
histological data (Singh et al., 2015). Each axonal fiber is located in the glia domain and is oriented in space according 
to 3D confocal imaging reconstruction data of embryonic chick axonal track data (Singh et al., 2015). Since confocal 
microscopy captures discrete position data at different depths along the axonal tracks of the examined spinal cords, 
additional geometric processing is necessary to recreate a smooth representation of axonal fibers with finite volume.  

The mesoscopic model inherits the material properties of the REVs according to the local orientation of axonal 
fibers and the local VF. First, the discrete coordinate points of each axonal fiber, which correspond to the histologically 
determined centroids of the axon cross-sections, are connected to build a smooth axonal fiber spline using a curve-
fitting algorithm built-in ABAQUS. In particular, the axons were immunostained (Singh et al., 2015) and their 
topology was captured with an Olympus IX81 inverted epifluorescent microscope equipped with a confocal unit and 
a Hamamatsuy ImageEM digital camera. Location and time sequences of sections of 20-40 axons were traced and 
recorded using ImageJ. Their tortuosity, an indicator of the local architecture, was determined based on the ratio of 
their arc length over total length. Once the axons' 3D architecture is defined, the axons' position data are discretized 
in 3D space to build axonal fibers using a curve fitting algorithm in Abaqus. Then, the numerical values of tangents 
were extracted from the axons' traces, based on target points on each tract, to specify the material orientation at the 
center of each RVE (Wu et al., 2019), as shown in Figure 1(b). The material orientation of each element was calculated 
based on the tangent direction of its axonal fiber spline. The orientation vectors of an element are located on its 
centroid; thus, there is always a distance between the centroid of the element and the axonal fiber spline. Each 
element's orientation is influenced by the surrounding fibers' splines, establishing the distance between elements' 
centroids and axonal fiber splines as an important factor in the material orientation of each element. Because this 
procedure is computationally expensive, a more efficient approach is needed to assign its corresponding material 
orientation to every element.  

We employ a 3D Radial Basis Function (RBF) interpolation method to generate material orientation for every 
element. Axonal fiber tangents can be decomposed into three different orientation components in space. As such, three 
RBF interpolation functions are used, one for each material orientation. Then the center points of every element 
associated with different directional components (Wu et al., 2019) are combined to produce the final material 
orientation of axonal fiber element in each REV. The RBF interpolation is based on computing the distance of two 
points in n-dimensional space defined by the function (Scala, 2017), (Fornberg, 2005): 

 

 𝑓(𝒙) =O𝜆%𝜙(‖𝒙 − 𝒙𝒊‖8) =O𝜆%𝜙(𝑟%)
:

%;7

,
:

%;7

 

 

(5) 

where 𝑟% = ‖𝒙 − 𝒙𝒊‖8 = S(𝑥 − 𝑥%)8 + (𝑦 − 𝑦%)8 + (𝑧 − 𝑧%)8
!  is the distance between 𝒙  and 𝒙𝒊  for  ith points,          

𝒙 = (𝑥, 𝑦, 𝑧) are coordinate locations in 3D space, 𝜆% is weight parameter to be computed, 𝜙(𝑟%) is RBF which may 
have numerous forms. 𝑥 is the centroid of the element needed to predict the material orientation, while 𝑥% are the 
locations of the tangent directions on the axonal fiber splines that surround 𝑥. The function output 𝑓(𝒙) in Eq. (5) 
represents the material orientation of the element with centroid 𝑥.  
 

The weight parameters, 𝜆% , of the interpolation function of Eq. (5) are obtained by training the associated 
parameters of the (𝒙% , ℎ%) data set into function  f(x) where ℎ% are associated with values to be interpolated and 𝒙% are 
point coordinates. The computation of the material orientation uses RBF interpolation to identify first the points and 
their associated tangents on each axonal fiber. These are selected as the input training data of 3D-RBF interpolation. 
The tangents have three different direction components (ℎ%* , ℎ%

<, ℎ%= for the 𝑥, 𝑦, 𝑧 direction in 3D space) resulting in 
three RBF interpolation functions. Then, the centroid of every element is used as input on the testing data set, and the 
three direction components are calculated and combined into the material orientation vector of each element. After 
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those two processes, every WM model element has its tensorial orientation computed based on RBF interpolation. We 
compared different RBFs (gaussian, inverse, multiquadric, cubic, and linear) in our data set and the linear distant RBF 
	𝜙(𝑟%) = 𝑟% performs better than the other methods, i.e., increased converging versus oversampling.  

 
The VF calculation hinges on the geometry of each axonal fiber and its location in the glia. The goal is to compute 

the volume intersection between axonal fibers and the associated finite elements, as shown in Figure 1(c). The volume 
intersection depends on the geometry of each axonal fiber, i.e., local position vector 𝑣, tangent vector 𝑡, normal vector 
𝑛, and curvature 𝑐, at the closest point. Closest point is the point on the axonal fiber that exhibits the shortest distance 
to the center of the element. The local position vector, 𝑣, is the vector from the element's centroid to the axonal fiber's 
closest point. The tangent, 𝑡, and normal, 𝑛, vectors specify the tangent and the normal vectors at the closest point, 
respectively. The curvature,	𝑐, is calculated at the closest point of the axonal fiber. To construct the above relationships 
between VF and axonal fiber geometric information, and predict the VF for the REVs, a multiple variable Support 
Vector Machine (SVM) algorithm is applied on the regression task.  

 
In preparation for the training data of SVM, 2,000 axonal fibers are randomly generated and located close to a 

cube. The sample size increases gradually until it reaches 2,000  fibers; further, an increase in the sample size does 
not improve the performance of the training models tested and documented ((Pelegri et al., 2019) (Wu and Pelegri, 
2020)). The random generation process supports the input feature of SVM, which is the axonal fiber geometry 
comprised of the local position vector, 𝑣, tangent vector, 𝑡, normal vector, 𝑛, and the curvature, 𝑐, of the axonal fiber 
on the closest point as the input part of a training set. The output result for each training set is the VF calculated as the 
ratio of (axonal fiber volume)/(cube volume). The input features and output results are computed using an internal 
function of ABAQUS python API. The ground truth in the training set combines the VF (prediction value) and the 
𝑣, 𝑡, 𝑛, c (features) parameters. The ground truth value for the VF is the "getSize" function in ABAQUS, which returns 
a floating point indicating the volume of the specific geometric body. The values for the 𝑣, 𝑡, 𝑛, and	c parameters are 
referenced by the "getCurvature" function in ABAQUS, which returns 'evaluationPoint', 'curvature', 'radius', and 
'tangent'. Based on the input feature and output results, we formulate a functional SVM model describing the 
dependence of the volume fraction on geometric and location parameters, see Eq. (6). 67% of the 2,000 samples are 
used in the training process of SVM. The remaining 33% of the 2,000 samples are appropriated as a testing set. In the 
data preprocessing step, Standard Scaler is used for the local position vector, 𝑣, and Min Max Scaler is used for the 
remaining features. 

 
 𝑉𝐹 = SVM(𝑣, 𝑡, 𝑛, c), (6) 

 
In the validation process, the 5-fold cross-validation method (Pedregosa, F. et al., 2011) was used for the training 

set. Mean squared error (MSE) and mean absolute error (MAE) are selected as the evaluation metrics. The average 
value of 5-fold cross-validation in the training set is 0.0028 when using MSE metrics and 0.0458 when using MAE 
metrics. Note that MSE  measures the variance of the residuals while MAE measures the average of the residuals in 
the dataset. The smaller the MSE and MAE, the better model's prediction capability. 

 
In machine learning, a baseline model is required to compare with the current model. During tuning, the process 

of iteratively updating the current model to maximize its performance without overfitting or creating high variance, 
the updated new model's performance cannot be lower than the baseline's; otherwise, the latest update should be 
abandoned. The baseline model used here is Ridge regression. In addition, the results were treated with XHBoost to 
compare the model performance. In the testing set, the MSE of SVM is 98% and 42% better than the Ridge regression 
and the XGBoost model performances, see Figure 2. The MAE of SVM is 86%  and 29% better than Ridge regression 
and XGBoost. The coefficient of determination value is 0.95 and 0.96 for the 5-fold cross-validation and testing data 
set predictions, respectively. The coefficient of determination measures how well the regression model can predict the 
unseen samples. It ranges from 0 (worst) to 1 (best) and is used as a metric for regression models. 
 

The main WM modeling process is completed once the orthotropic viscoelastic material properties, orientation, 
and VF computation are combined (see Figure 3). The REV modeling generates the orthotropic viscoelastic material 
properties based on different VFs. A Radial Basis Function (RBF) process calculates the material orientation, and the 
VF is computed using the position and radius of each axonal fiber and the element's size. According to the geometric 
relationship between axonal fiber spline and WM elements, the final WM is assigned the correct orthotropic 
viscoelastic material properties with a redirected (corrected) material orientation tensor. 
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Figure 3 presents the algorithm for constructing the WM model using finite elements. The algorithm is composed 
of three key parts: orientation computed of each axon (blue boxes), VF computed by axon position (green boxes), and 
orthotropic viscoelastic material properties (salmon boxes), while the pink part of the algorithm represents the known 
input parameters. First, the blue part of the flow chat is the process of rebuilding the axonal fiber tracts. It creates the 
virtual fiber tracts and gets the tangent vector from each axonal fiber. Then the RBF 3D-interpolation method is used 
to get the material orientation for each REV. Second, the green part of the flow chart describes the derivative of the 
VF for each REV. The axon and matrix intersection computation results are used as training data for the machine 
learning model. Once trained, the machine learning model predicts the VF fraction based on different material 
orientations for each REV. The VFs will be used in the algorithm's viscoelastic material properties calculations (salmon 
color) to get the anisotropic material properties of REV. Tensile and shear loads are applied in the viscoelastic 
properties part (salmon color)  of the flow chart in six directions to derive the anisotropic material properties of the 
REV. The effective stiffness matrix, 𝐶∗, of the homogenized REV, at a specific VF can be calculated. In summarizing, 
the blue part calculates the orientation, the green part computes the VF, and the salmon part evaluates the material 
properties using the VF of each REV. By combining the three key parts, the WM finite element can be built (yellow 
boxes). The three parts are coupled with each other so that they can be assigned to a related element in the final WM 
finite element model 

 
 
 

3. RESULTS AND ANALYSIS 
 

3.1 Validation of WM model building methodology 
 

Before the histology-informed model simulation, a validation test is necessary to check the REVs compilation process 
and the construction of the WM model. The validation process entails combining the REVs with the same material 
properties into a homogeneous model that should have material properties consistent with a single REV. 
Consecutively, the homogeneous model can be viewed as a multi-axonal model of numerous REVs with the same 
material properties. Once the validation procedure ensures the homogeneity of the model, a heterogeneous WM model 
can be simulated, assuming REVs with different axonal orientations and material properties based on different VFs. 
 

Three homogeneous (axon/glia composite) WM models, with homogenized material properties based on different 
VFs (10%, 45%, and 85%) are built for the validation tests. Each model is 20	µm wide and has 1,000 elements 
(10x10x10) as seen in Figure 4 for model VF=45%, a representative example. The material orientations are 
homogenized and the axonal fibers lying along the global Z-direction. Stress tests of 0.1 kPa at 50 Hz in six directions 
(tensile in X-, Y-, and Z- directions, and pure shear in XY-, XZ-, and YZ-directions) are performed to derive the 
complete material properties tensor. The values were selected to represent MRE loading and can be alterred to 
accommodate other loading scenarios. Table 1 illustrates the test results of the homogenized WM material properties 
of the three VFs. The resulting maximum principal stress at VF = 45% in the global X-, XY-, XZ-, and Z-directions 
are shown in Figures 3 and 4. Volume fractions of 10% and 85% exhibit similar behavior but are not depicted here 
due to space limitations. 
 

Model images (a), (c), (e), and (g) in Figure 4 illustrate the real components of the principal stress in the X-, XY-, 
YZ-, and Z-directions, while images (b), (d), (f), and (h) denote their imaginary counterparts. The inset illustrates ten 
elements along the X-direction. Note that the color variation among elemental vectors indicates the intensity of the 
magnitude of the stress field, and the vectors indicate the orientation of the stress field. Since the properties in each 
element are homogenized, the element's stress state is fully characterized by one vector positioned at its centroid.  In 
Figure 4(a), the sxx magnitude and orientation originate from the mid-plane of the model, where the REV experiences 
the maximum stress (darker red area). The depiction of isxx in Figure 4(b) reveals the phase shift between the real and 
imaginary components of the stress tensor. In Figure 4(c), the txy shear stress magnitude distribution is consistent with 
the loading condition, and the stress magnitude is identical in the XY-plane (notice that every10 elements along the 
Z-direction have the same color.) The ityz magnitude in Figure 4(d) gradually decreases from the center to the cube's 
corner while the direction follows the phase shift of the imaginary stress component. (e-f) Similar stress orientation 
and magnitude trends to the ones in (c-d). Stress magnitude on ityz (f) is larger than itxy (d).  (g) Similar to (a), the 
stress magnitude and orientation are identical. (h) The orientation and magnitude of the principal stress are more 
evenly distributed compared to (b). 
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In Figure 4(a), the real X-direction magnitude and direction components of the maximum principal stress appear 
identical. The stress result is consistent with the loading condition since the storage moduli reflect the loading 
condition in the real part. The magnitude of maximum principal stress in the imaginary part (Figure 4 (b)) shows much 
lower values than the real part (Figure 4(a)) caused by the frequency domain viscoelastic properties of REV. This 
situation also occurs in other directions: the XY-direction in Figure 4(d), the XZ-direction in Figure 4(f), and the Z- 
direction in Figure 4(h). The lower value of the imaginary part represents the delay effect caused by the real part 
loading condition. The stress directions show the separation effect (Figure 4(b)), which means the dynamic delay 
effect changes the stress magnitude and direction in the axon/glia composite. The stress magnitude of elements located 
on the sides and corners is lower than those in the center area (Figure 4(b)). This phenomenon, which is noted in 
directions XY Figure 4(d) and XZ Figure 4(f), and in Z-direction Figure 4(h), suggests that the elements located on 
the sides and corners suffer less stress caused by the delay effect than the center area elements. 

 
The stiffness of the homogeneous model in the Z-direction should be larger than the one in X- or Y-directions 

since the stiffness of the axon is larger than the glia. Therefore, in the center area of Figure 4(b), the stress direction is 
aimed at the Y-direction rather than the axonal Z-direction. Further, it is noted that the stress is more evenly distributed 
in the center area of Figure 4(h), than that of Figure 4(b) due to the similar material properties of the homogeneous 
model in the X- and Y- directions (both vertical to the axonal Z-direction). 

 
The real stresses components are identical in magnitude and direction as caused by pure shear stress loading as 

shown in Figures 4(c) and (e). The directions of the imaginary stress counterparts (Figures 4(d) and (f)) are normal to 
the real stress direction (Figures 4(c) and (e)). The stress magnitudes of the imaginary part subjected to tensile loading 
(Figures 4(b) and (h)) are much larger than shear loading (Figures 4(d) and (f)), although the loading conditions are 
the same. This outcome affirms that a more prominent dynamic delay effect occurs in shear loading than in tensile 
loading, suggesting that the axon/glia composites are more sensitive to shear loading than tensile loading. The dynamic 
amplitude results (Figures 5(a)-(d)) indicate nearly equivalent results with the real part result (Figures 4(a), (c), (e) 
and (g)), supports the finding that the storage (real) component of the stress is more prominent than the loss 
(imaginary) one in dynamic loading. 

 
Validation test results are presented in Table 1 where the original orthotropic material properties of the REVs and 

test material properties /𝐶%4 , 𝑖 = 1,2…6	𝑎𝑛𝑑	𝑗 = 1,2…64 of the homogeneous models are listed. The values of 𝐶%4 
are the elements of the stiffness tensor (the inverse of compliance tensor in Equations (1)-(2)). The homogeneous WM 
model is constructed with multiple REVs with the same axonal orientation and VF. Validation tests illustrate that the 
WM model has the same material properties with a single REV when the orientation and the VF of multiple REVs 
within the WM model are the same. The next step is to use the REVs with various VF and axonal orientations to 
construct the general WM model.  

 
3.2 Effective properties computation of WM model 

 
The WM model simulation selects the location coordinates of two axonal traces in 3D space as input information per 
Singh et al. (Singh et al., 2015, 2017). Consequently, the axonal trace geometry can be generated using the spline 
method in ABAQUS 6.14 and Python scripting following (Wu et al., 2019). The modeling process is based on the 
methodology shown in Figure 5 and is coded in Python 2.7. The WM model is made up of 4,320 elements , and in 
Figure 6 the grids of the internal elements are hidden to reveal the axonal fiber structure. The material orientations 
(blue arrows), follow closely the direction of the axonal traces (red splines). The orthotropic elements of various VFs 
are surrounded by axonal traces, which depend on the distance between elements and axonal traces. Therefore, the 
WM model involves an assembly of various REVs with related VF and material properties. Each element has the same 
edge length of 20 µm but different VF according to its distance to the axonal trace. A homogenized radius of 15µm, 
representing the two 7µm axons (Singh et al., 2015) in REV, see Figure 1(a), is assumed for the virtual axonal traces 
and is used to calculate the VF of the elements surrounded by them. For example, any element in Figure 6 without any 
blue arrows has a VF equal to one and indicates an element of pure glia. Other elements have different VFs, ranging 
from 5% to 85%.  

 
The stress magnitudes and directions of the WM model subjected to 0.01 tensile strain at 50 Hz frequency are 

depicted in Figure 7(a) for local stress, 𝜎00, and Figure 7(b) for local maximum principal stress. The direction of local 
stresses, 𝜎00, is followed by the original axonal traces' direction. The higher stress magnitude regions focus on the 
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axonal traces of Figures 7(a)-(b) are shown as red arrows, indicating that the axonal trace to element distance is a 
significant factor for stress magnitude distribution, as higher VF ratio elements are nearby the axonal traces. Higher 
VF ratio elements are stiffer, which corroborates the in-vivo conditions of WM. Comparison of Figures 7(a)-(b) shows 
that the maximum principal stresses have similar direction and magnitude distributions with the local stresses,	𝜎00. 
The latter further supports that axonal trace structures and orientation significantly impact dynamic WM simulation 
and stress-strain response. The maximum principal stress in each element is depicted by arrows along the direction of 
the axonal traces in Figure 8. The green cubes signify that the elements with 50% ≤ VF (Figure 8 (a)) and the elements 
0% ≤ VF <50% (Figure 8 (b)) are concentrated around the axonal traces. The stresses concentrate around the elements 
close to axonal traces' locations inside the WM.  

4. DISCUSSION 

4.1 Originality and importance of the mesoscopic WM model development 

Driven by the need to model accurately the harmonic response of WM and to interpret elastography data, this 
work focused on developing a multiscale WM tissue model starting from the microstructure, which in our case is 
reconstructed from optical microscopy. Here we construct a histology-informed model that can simulate the intrinsic 
properties at the cellular level (axon, glial matrix), and interpret MRE data at the tissue level under a dynamic load 
that simulates MRE conditions. The originality of this work lies with the efficiency and sophistication of the multiscale 
model that bridges the microscale (single axon) with the mesoscale (group of axons). Sets of anisotropic REVs are 
assembled to describe curved axons in 3D space, thus eliminating the need to create complicated partitions of the 
finite element grids, as is the case with traditional composite finite element methods. Each REV contains a hexagonal 
periodic array of axons, coupled via slip to the glial matrix. The WM model expresses a combination method that 
includes various REVs with related VF and material properties. In addition, each element with the same edge length 
of 20 µm has a different VF according to the distance from the element to the axonal trace. 

 
At the microscale, the model involves a direct simulation of the harmonic response of a biphasic composite with 

axonal fibers, which are generally oriented in the same (main) direction and are embedded in a homogeneous glial 
matrix. Local architecture, i.e., axon fiber alignment relative to the main direction, diameter, and volume fraction, 
affects the constitutive response of neural tissue to normal stresses (Koser et al., 2015). At this scale, the present model 
is an extension of the model of Sullivan et al. (2021), where only the transverse direction was considered, and the 
transverse effective shear moduli were calculated. Based on a 2D triphasic composite tissue model consisting of a 
periodic array of axons, the Sullivan et al. study revealed high sensitivity of the effective (homogenized) REV 
mechanical properties to the fiber volume fraction, and the intrinsic viscoelastic moduli of the glial phase. The 
extension of the (Sullivan et al. 2021) model to 3D is reported in (Wu et al. 2021) who studied the 3D response to 
shear load in transverse (yz- and xz-planes) and axial (xy-plane) directions, see Figure 1.  Wu et al. (2021) demonstrated 
consistency of stress distribution between the 2D REV and 3D REV models in the axial plane (parallel to the fiber 
direction). Furthermore, our models were validated by comparing with exact transverse moduli calculations based on 
(Christensen, 2005). Both 2D and 3D models rely on composites consisting of homogeneous phases. The above work 
bolsters the hypothesis that mechanical anisotropy is intimately related to the intrinsic mechanical properties of each 
phase and the geometrical arrangement of each phase. 

The presented work is the first step towards developing a realistic 3D simulation framework for performing MRE-
DTI in silico experiments in complex, histology-based WM domains (the forward problem). The benefits of this 
endeavor are multifold. First, this will further inform the selection of the appropriate constitutive model for solving 
the inverse problem in MRE. Second, this 3D WM framework will constitute a sophisticated numerical phantom for 
brain microstructural MRI (Fieremans and Lee, 2018). For example, cellular biomechanics can be readily incorporated 
in our composite model to explore the underlying mechanisms of rapid changes of WM elasticity (Patz et al., 2019). 
The high sensitivity of MRE metrics to glial properties reported here might provide useful insights into the observed 
stiffness variations. Third, it will enable the integration of new knowledge regarding the mechanical failure of axons 
(Abolfathi et al., 2009; Singh et al., 2017) (Montanino and Kleiven, 2018) in neuroimaging studies of traumatic brain 
injury (Eierud et al., 2014). Fourth, it will allow the incorporation of multi-scale datasets, both in vivo and ex vivo, 
towards creating a structural framework for the systematic study of whole brain circuits (Muñoz-Castañeda et al., 
2021).  
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4.2 Effective viscoelastic properties of the mesoscopic WM model  

The present study is based on a composite medium containing two axonal fibers, whose geometry is 
reconstructed from sections of the chicken ventral spinal cord (Singh et al. 2015). As shown in Figure 6, the numerical 
domain consists of 4320 elements, each corresponding to a physical cube size of 20 x 20 x 20 µm. The fiber volume 
fraction (VF) is extended and ranges from 5% to 85%. The fibers are oriented along the main direction Z. The mean 
and standard deviation of the angle between the axonal trace tangent and Z-direction are 𝜃̅=27.81°, s(q)=11.06° for 
axon-1, and 𝜃̅=25.47°, s(q)=11.67° for axon-2, respectively. This level of dispersion of the local orientation angle is 
consistent with levels that have been measured in other oriented white matter regions of the brain, i.e., the corpus 
callosum (Lee et al., 2019). With the fibers not perfectly aligned along Z and this level of angle dispersion, the present 
results demonstrate that in terms of its mechanical behavior, the composite is anisotropic (orthotropic) with Z as the 
major axis. 
 

The equivalent homogenized behavior of the REV is approximated by a transversely isotropic model, under both 
axial and shear loading ( 𝐶""# ≠	𝐶>># ~𝐶22# 	)	}. This anisotropy has been replicated in all prior micromechanical studies 
of WM used viscoelastic constitutive laws (Abolfathi et al., 2009; Javid et al., 2014), which is expected since it is 
reflected in the experimental data used to calibrate the models (Arbogast and Margulies, 1999; Meaney, 2003). Recent 
measurements of directional Young's moduli of mice spinal cords revealed that WM behaves like a transversely 
isotropic material under compression, and an almost isotropic material under tension (Koser et al., 2015). Systematic 
measurements of the viscoelastic responses of small arrays of axons are lacking. Our results show that the stress 
magnitudes of the imaginary part subjected to tensile loading (Figures 4(b) and (h)) are much larger than shear loading 
(Figures 4(d) and (f)), although the loading conditions are the same. This outcome affirms that a more prominent 
dynamic delay effect occurs in shear loading than in tensile loading, suggesting that the axon/glia composites are more 
sensitive to shear loading than tensile loading. 

 
As seen in Table 1, the transverse shear storage modulus (Figure 4e) is always larger than the parallel storage 

modulus (Figure 4c)  𝐶""# 𝐶>>#⁄ > 1, with the ratio increasing as VF increases. This trend is consistent with the fact that 
the axon stiffness is higher than the glial. Wu et al. (2021) concluded that the ratio of transverse to axial transverse 
modulus is larger than one in that case.  With the exception of one study (Budday et al., 2017), this shear anisotropy 
has also been reported in ex vivo brain WM  experiments but with 𝐶""# 𝐶>>#⁄ < 1. On one hand the experimental results 
indicate 𝐶""# 𝐶>>#⁄ > 1 for porcine brainstem (Arbogast and Margulies, 1998) and porcine corpus callosum (Prange and 
Margulies, 2002), and on the other hand, 𝐶""# 𝐶>>#⁄ < 1	for porcine corona radiata (Prange and Margulies, 2002) and 
porcine corpus callosum (Feng et al., 2013; Schmidt et al., 2018). In a recent review (Budday et al., 2019), this 
inconsistency was assigned to microstructure inhomogeneity and experimental artifacts related to exposing the excised 
WM  tissue specimens to harmonic rectilinear shear.  

 
In vivo measurements of WM mechanical properties currently rely on elastography.  In vivo measurements 

via MRE provide unequivocal support that brain WM is transversely isotropic in shear. Nevertheless, past MRE 
measurements are equivocal as to which direction dominates. For example, it was reported that 𝐶""# 𝐶>>#⁄ > 1 for 
human corticospinal tracts (Romano et al., 2014; Romano et al., 2012), while 𝐶""# 𝐶>>#⁄ < 1 was found for the corpus 
callosum (Smith et al., 2020) The present study supports the finding that 𝐶""# 𝐶>>#⁄ > 1, and other than the geometric 
simplifications involved in defining the REV, is devoid of experimental artifacts. These predictions agree with recent 
MRE work (Gallo et al 2020), whereby a transversely isotropic constitutive model for the brain WM was used to 
interpret prior experiments involving 7 young and 4 older healthy men. By employing a novel inversion scheme, it 
was found that the effective transverse shear moduli remain higher than the axial moduli in two well-aligned WM 
structures, namely in the corpus callosum and corticospinal tracts. The present multiscale methodology (hexagonal 
packing of axons in REV, and consecutive histology informed mesoscale homogenization) can predict the transverse 
anisotropy of WM for a large range of VFs (5-85%) at dynamic loading of 50 Hz.  This is of the outmost importance 
because we can now accurately simulate intricate intrinsic microstructures (curved and tortuous axons, replicate 
boundary conditions) and create homogenized models that extend to the mm-scale voxels.  At this scale we can directly 
compare with MRE data, and we can cross validate with DTI studies.  

 
4.3 Limitations of the current study  
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Some of the limitations of this study are related to the morphological description of the WM microstructure. The 
present study considers REVs with periodic hexagonal arrangement of parallel identical fibers that are in contact with 
the glial matrix but can slip relative to the interface. The hexagonal arrangement of the fibers results in transversely 
isotropic behavior of the equivalent homogenized REV. Considering other arrangements and fiber/glial interfacial 
conditions alters the REV symmetry, and the effective properties defined in Equations (1-2). Square or random 
packings of identical cylinders create orthotropic REVs, with the shear moduli increasing as follows 
square<hexagonal<random for each VF value (Huang et al., 2008). This observation also holds for the case of random 
diameter distribution (Abolfathi et al., 2009). The axonal fibers have identical circular cross-sections, and they 
conform to a uniform hexagonal mesh. For the interested reader, random distribution of axonal diameters in this model 
can be incorporated following the work of Recchia et al. (2015). 

 
Additional limitations stem from the topology and mechanical coupling between the phases. In Sullivan at al. 

(2021), the REV included three phases, axon, myelin, and glial matrix but the sensitivity analysis revealed that the 
glial matrix properties have the strongest effect on the effective shear response of the homogenized REV. Therefore, 
we opted for lumping the two phases (axon and myelin) into one phase. Increasing the bonding between the phases 
increases the effective shear moduli, at least for hexagonal packing (Devries, 1993), so the moduli predictions reported 
here can be considered a lower bound. Another limitation is the assumption that the glial phase is homogeneous. The 
lack of granularity in the glia matrix is a result of the dearth of 3D glia cell reconstructions, as well as the short-range 
order of these cells. Should reconstructions of glial cells become available, our method can accommodate them. Taken 
together the above results imply that the methodology can accommodate any variations of geometry or property to 
make a more realistic interpretation of experiments that are accompanied by histology-based microstructural 
measurements.  

 
 
 

5. CONCLUSIONS  

Modeling traumatic injuries of the brain and spinal cord requires the extraction of tissue mechanical properties. 
Non-invasive techniques, such as Magnetic Resonance Elastography (MRE), can be used to probe the mechanical 
properties of white matter (WM) but their interpretation requires the development of constitutive tissue models that 
depend on efficient mathematical representations of the architecture and intrinsic properties of the tissue. Scale-
dependent anisotropy of white matter geometry and heterogeneous material properties complicate the direct numerical 
simulations of its viscoelastic response. In classical finite element methods, discretization of complex axon-glial 
matrix assemblies requires complicated, custom-made partitions of the finite element grids and make the simulation 
cumbersome. To obviate this difficulty, an economic homogenization scheme based on the micro- and mesoscale was 
developed. A 3D model that accounts for the anisotropy introduced by the axon/neuroglia composite, axonal trace 
curvature, and tissue dynamic response in the frequency domain is presented. To describe curved axons in 3D space, 
the micromechanical model of WM involves assembling multiple REVs of a biphasic composite with aligned fibers 
(representing axons) embedded in a homogeneous glial matrix. Each REV entails hexagonal packing of axons and is 
described by a local axon direction and volume fraction, along with the material properties of the constituent phases. 
The mesoscale model is built by assembling these anisotropic REVs with fiber volume fractions depending on the 
distance from the axonal trace. Three fiber volume fractions 10%, 45%, and 85%, and six loading scenarios, three 
tensile and three pure shear, were simulated under MRI dynamic load conditions (small strain, 50 Hz).  The full 
anisotropic material properties tensor was calculated and validated. It was observed that a more prominent dynamic 
delay effect occurs in shear loading than in tensile loading, suggesting that the axon/glia composites are more sensitive 
to shear loading than tensile loading. 

 
Geometric parameters extracted from microscopy studies of optical nerve histology were used for the histology-

informed WM model simulation. The model consists of two axons from embryonic chick spinal cord (Singh et al., 
2015). The selection and incorporation of only 2 axons does not reduce the generality of our approach. Stress fields 
were studied on the microscale and effective shear moduli on the mesoscale. The important findings are as follows: 
First, the stress magnitudes and directions of the WM are strongly influenced by axonal trace location changes when 
subjected to tension. Second, effective shear moduli perpendicular to the “average” axon direction are higher than 
along that direction. The first result provides a justification for pursuing multiscale models for WM; they are 
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indispensable when axon failure modes are studied.  The second result addresses the ongoing controversy of WM 
anisotropy measured by MRE.  

 
The presented multiscale methodology (REV and histology-informed mesoscale homogenization) can predict the 

transverse anisotropy of WM for a large range of VFs (5-85%) at dynamic loading of 50 Hz.  This is of the outmost 
importance because we can now accurately simulate intricate intrinsic microstructures (curved and tortuous axons, 
replicate boundary conditions) and create homogenized models that extend to the mm-scale voxels.  At this scale we 
can directly compare with MRE data, and we can cross validate with DTI studies. Since our methodology does not 
rely on analytical homogenization techniques, it is flexible enough to accommodate more sophisticated microstructural 
models by modifying the micromechanics of the REVs. For example, the platform can easily accommodate intra-
axonal mechanics, more cellular components, and the effects of different loading and test conditions to allow 
comparisons with ex-vivo or in-vivo studies of WM. This novel approach enables the concurrent incorporation of 
local architecture, material, and scaling factors to accurately simulate white matter viscoelastic behavior subjected to 
dynamic loading. The model markedly predicts dynamic response of histology-informed white matter tissue when 
compared to simplified (non-complex) periodic models. The proposed framework is an essential step in 
computationally efficient but geometrically accurate representation of tissue where trauma-related structural changes 
can be modeled. 
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Figure Captions 
 

Figure 1(a) Shear stress response to XY-shear loading of microscopic biphasic white matter REV with 
axonal fiber surrounded by glial phase. Result at a phase angle of 0° with Von Mises stress (kPa) 
plotted. Axonal fibers of identical circular cross-sections are regularly distributed in hexagonal 
packing arrangement allowing for different packing geometries and varying mechanical 
interactions at axon/glial interface. b) Graphic representation of aligned orientation vectors of the 
finite element and axonal fiber. The pink start symbol is the centroid of this element. The pink 
arrow is the extracted tangent (yellow arrow) from the rebuilt axonal trace at the centroid of this 
element, which represents its material orientation. (c) Sample of REV training data with randomly 
generated VFs of 0.45, 0.67, and 0.85. The VF of this specific element will be predicted by the 
trained SVR model.  

 
Figure 2  Graphic representation of SCV training comparison. Red bar represents SVM, green represents 

XGBoost used for comparing with current model, and black is Ridge regression used as baseline 
model. MSE (variance of residuals) and MEA (average of residuals) are used to compare the three 
models. SVM outperforms XGBoost and Ridge (baseline model) in both comparative sets. 

 
 
Figure 3  Algorithm for constructing the WM model using finite elements. The algorithm comprises (3) key 

parts: orthotropic viscoelastic material properties (salmon boxes group), 𝑽𝒇  computed by axon 
position (green boxes groups) and orientation (blue boxes group) of each axon. The three parts are 
coupled with each other so that they can be assigned to a related element in the final WM finite 
element model. The pink boxes indicate the know parameters (input). The yellow boxes represent 
the final combination of material properties, volume fraction, and orientation for each element and 
the assembly of the WM FEM. 

 
 
Figure 4 Representative results of maximum principal stress experienced by REV of VF = 45% subjected 

to 0.1 kPa in (X-, Z-, XY-, XZ-) global directions at 50 Hz frequency. Yellow arrows indicate 
loading directions. The axonal direction of REV is along the global Z-direction. (a) Real 
components and (b) Imaginary components of maximum principal stress test in X-direction. (inset) 
10 sample elements in the XX-direction from real portion result of (a). Different colors denote 
stress distribution. (c) Real components and (d) Imaginary components of maximum principal 
stress test in the XY-direction. (e) Real components and (f) Imaginary components of maximum 
principal stress test in the XZ-direction. (g) Real components and (h) Imaginary components of 
maximum principal stress test in the Z-direction. Model illustrates 10 elements in the global X-, Y-, 
and Z-directions amounting to 1,000 elements. The stress field at the center point of each REV is 
marked.  

 
Figure 5 Dynamic amplitude results of maximum principal stress under tensile stress in (a) XX-direction, 

(b) XY-direction, (c) XZ-direction, and (d) ZZ-direction. Dynamic amplitude is the combination 
magnitude of both the real and imaginary portions of the result value. Each value is the square root 
of the sum of the squares of the real and imaginary invariant components. The results are analogous 
to the real part result of each direction in Figure 4. 

 
Figure 6 Mesoscopic WM model indicating axonal tract splines and material orientation in 3D space. The 

red splines represent the geometric axis of the axonal traces generated from axonal location 
coordinates data and are not included in the stress-strain analysis. There are 4,320 elements of size 
20 x 20 x 20 µm each in the WM model. The material orientations in the z-direction of local 
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coordinate system indicated by the blue arrows on the elements that are generated from microscopic 
REVs. The remaining elements without material orientation represent the pure glia phase in WM. 
Boundary condition is 0.01 strain tensions at 50Hz frequency, shown as red arrows in positive and 
negative global Z-direction. Inset illustrates one of the elements with the material orientation noted 
by blue arrows. 

 
Figure 7 Stress magnitudes and directions inside WM model in the yz-plane. Yellow arrows indicate the 

tensile strain direction along the global Z-direction. Under loading condition of 0.01 strain tensions 
in the Z-direction at the 50Hz frequency, the analysis results are shown as (a) Stress magnitudes 
and directions of local stress 𝜎""  and (b) Stress magnitudes and directions of local maximum 
principal stress. The WM model material properties vary according to the different VFs and 
orientations in each local element. The red splines are the virtual axonal traces denoting direction 
and location. The arrows with different colors indicate the stress magnitudes and directions in local 
coordinates of each element. The unit of stress shown on the left margin is kPa.  

 
Figure 8  Maximum principal stress magnitudes and directions of elements (a) 50% ≤ VF and (b) 0% < VF 

< 50% elements (note the scales at the legends).  The loading condition is 0.01 strain tensions in 
the Z-direction at 50Hz. The yellow cubes are elements with the VFs which are larger than 50%. 
The red splines signify the axonal traces. The material orientations in local z-direction are indicated 
by the green arrow on each element. 

 
 
 
 
 
 
 
 
 
 
 
Table Caption 
 
Table 1 Comparison of the orthotropic REV material properties and homogenization test results for fiber 

fractions (VF) 10%, 45% and 75%. 
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Table 1 Comparison of the orthotropic REV material properties and homogenization test results for fiber fractions 
(VF) 10%, 45% and 75%.  

 
 

 
  

 Components of storage stiffness material properties tensor 𝐶! Components of loss stiffness material properties tensor 𝐶!! 

VF  (kPa) 𝑪𝟏𝟏! 	 𝑪𝟏𝟐!  𝑪𝟏𝟑!  𝑪𝟐𝟐!  𝑪𝟐𝟑!  𝑪𝟑𝟑!  𝑪𝟒𝟒!  𝑪𝟓𝟓!  𝑪𝟔𝟔!  𝑪𝟏𝟏!! 	 𝑪𝟏𝟐!!  𝑪𝟏𝟑!!  𝑪𝟐𝟐!!  𝑪𝟐𝟑!!  𝑪𝟑𝟑!!  𝑪𝟒𝟒!!  𝑪𝟓𝟓!!  𝑪𝟔𝟔!!  

VF  (kPa) 𝑪𝐱𝐱𝐱𝐱! 	 𝑪𝐱𝐱𝐲𝐲!  𝑪𝐱𝐱𝐳𝐳!  𝑪𝐲𝐲𝐲𝐲!  𝑪𝒚𝒚𝒛𝒛!  𝑪𝐳𝐳𝐳𝐳!  𝑪𝐱𝐲𝐱𝐲!  𝑪𝒙𝒛𝒙𝒛!  𝑪𝐲𝐳𝐲𝐳!  𝑪𝐱𝐱𝐱𝐱!! 	 𝑪𝐱𝐱𝐲𝐲!!  𝑪𝐱𝐱𝐳𝐳!!  𝑪𝐲𝐲𝐲𝐲!!  𝑪𝒚𝒚𝒛𝒛!!  𝑪𝐳𝐳𝐳𝐳!!  𝑪𝐱𝐲𝐱𝐲!!  𝑪𝒙𝒛𝒙𝒛!!  𝑪𝐲𝐳𝐲𝐳!!  

10% 
REV 20.0064 18.3937 18.6127 20.1447 18.6842 20.6848 0.8670 0.6959 0.6961 0.9861 0.0152 0.0006 0.9898 0.0004 1.2403 0.3244 0.2456 0.2457 

test 20.0064 18.3937 18.6127 20.1447 18.6842 20.6848 0.8670 0.6959 0.6961 0.9861 0.0152 0.0006 0.9898 0.0004 1.2403 0.3244 0.2456 0.2457 

45% 
REV 23.7923 22.4489 22.7665 24.3669 23.0414 25.3495 0.93341 0.3232 0.3251 1.2886 0.0420 0.0017 1.3197 0.0009 2.6168 0.4200 0.1141 0.1147 

test 23.7923 22.4489 22.7665 24.3669 23.0414 25.3495 0.93341 0.3232 0.3251 1.2887 0.0420 0.0017 1.3197 0.0009 2.6168 0.4200 0.1141 0.1147 

75% 
REV 44.6475 45.6190 44.4327 49.8899 47.0122 47.0970 0.9616 0.1180 0.1184 1.5116 0.0394 -0.0018 1.6678 0.0032 3.8096 0.5275 0.0417 0.0418 

test 44.6475 45.6190 44.4327 49.8899 47.0122 47.0970 0.9616 0.1180 0.1184 1.5116 0.0394 -0.0018 1.6678 0.0032 3.8096 0.5275 0.0417 0.0418 
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Figure 1(a) Shear stress response to XY-shear loading of a microscopic biphasic white matter REV with axonal fiber 
surrounded by glial phase. The axonal fibers have identical circular cross-sections and are regularly distributed in a 
hexagonal packing arrangement. This periodic REV allows for different packing geometries and varying mechanical 
interactions at the axon/glial interface. The axonal direction of REV is along the Z-direction. (b) Graphic 
representation of aligned orientation vectors of the finite element and axonal fiber. The pink start symbol is the centroid 
of this element. The pink arrow is the extracted tangent (yellow arrow) from the rebuilt axonal trace at the centroid of 
this element, which represents its material orientation. (c) Sample of REV training data with randomly generated VFs 
of 0.45, 0.67, and 0.85. The VF of this specific element will be predicted by the trained SVR model.  
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Figure 2  Graphic representation of SCV training comparison.  Red bar represents SVM, green represents XGBoost 
used for comparing with current model, and black is Ridge regression used as baseline model. MSE (variance of 
residuals) and MEA (average of residuals) are used to compare the three models. SVM outperforms XGBoost and 
Ridge (baseline model) in both comparative sets. 
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Figure 3  Algorithm for constructing the WM model using finite elements. The algorithm comprises (3) key parts: 
orthotropic viscoelastic material properties (salmon boxes group), 𝑉$ computed by axon position (green boxes groups) 
and orientation (blue boxes group) of each axon. The three parts are coupled with each other so that they can be 
assigned to a related element in the final WM finite element model. The pink boxes indicate the know parameters 
(input). The yellow boxes represent the final combination of material properties, volume fraction, and orientation for 
each element and the assembly of the WM FEM. 
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Figure 4 Representative results of maximum principal stress experienced by REV of VF = 45% subjected to 0.1 kPa 
in (X-, Z-, XY-, XZ-) global directions at 50 Hz frequency. The big yellow arrows indicate loading directions. The 
axonal direction of REV is along the global Z-direction. (a) Real components and (b) Imaginary components of 
maximum principal stress test in X-direction. (inset) 10 sample elements in the XX-direction from real portion result 
of (a). Different colors denote stress distribution. (c) Real components and (d) Imaginary components of maximum 
principal stress test in the XY-direction. (e) Real components and (f) Imaginary components of maximum principal 
stress test in the XZ-direction. (g) Real components and (h) Imaginary components of maximum principal stress test 
in the Z-direction. Model illustrates 10 elements in the global X-, Y-, and Z-directions amounting to 1,000 elements. 
The stress field at the center point of each REV is marked.  
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Figure 4 Dynamic amplitude results of maximum  
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
Figure 5 Dynamic amplitude results of maximum principal stress under tensile stress in (a) XX-direction, (b) XY- 
direction, (c) XZ direction, and (d) ZZ-direction. Dynamic amplitude is the combination magnitude of both the real 
and imaginary portions of the result value. Each value is the square root of the sum of the squares of the real and 
imaginary invariant components. The results are analogous to the real part result of each direction in Figure 4. 
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Figure 6 Mesoscopic WM model indicating axonal tract splines and material orientation in 3D space. The red splines 
represent the geometric axis of the axonal traces generated from axonal location coordinates data and are not included 
in the stress-strain analysis. There are 4,320 elements of size 20 x 20 x 20 µm each in the WM model. The material 
orientations in the z-direction of local coordinate system indicated by the blue arrows on the elements that are 
generated from microscopic REVs. The remaining elements without material orientation represent the pure glia phase 
in WM. Boundary condition is 0.01 strain tensions at 50Hz frequency, shown as red arrows in positive and negative 
global Z-direction. Inset illustrates one of the elements with the material orientation noted by blue arrows. 
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Figure 7 Stress magnitudes and directions inside WM model in the yz-plane. Yellow arrows indicate the tensile strain 
direction along the global Z-direction. Under loading condition of 0.01 strain tensions in the Z-direction at the 50Hz 
frequency, the analysis results are shown as (a) Stress magnitudes and directions of local stress  and (b) Stress 
magnitudes and directions of local maximum principal stress. The WM model material properties vary according to 
the different VFs and orientations in each local element. The red splines are the virtual axonal traces denoting direction 
and location. The arrows with different colors indicate the stress magnitudes and directions in local coordinates of 
each element. The unit of stress shown on the left margin is kPa.  
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Figure 8 Maximum principal stress magnitudes and directions of elements (a) 50% ≤ VF and (b) 0% ≤ VF <50% 
elements (note the scales at the legends).  The loading condition is 0.01 strain tensions in the Z-direction at 50Hz. The 
yellow cubes are elements with the VFs which are larger than 50%. The red splines signify the axonal traces. The 
material orientations in local z-direction are indicated by the green arrow on each element. 
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