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Discriminating between distributions is an important problem in a number of scientific fields. This
motivated the introduction of Linear Optimal Transportation (LOT), which embeds the space of
distributions into an L2-space. The transform is defined by computing the optimal transport of each
distribution to a fixed reference distribution and has a number of benefits when it comes to speed of
computation and to determining classification boundaries. In this paper, we characterize a number of
settings in which LOT embeds families of distributions into a space in which they are linearly separable.
This is true in arbitrary dimension, and for families of distributions generated through perturbations of
shifts and scalings of a fixed distribution. We also prove conditions under which the L? distance of the
LOT embedding between two distributions in arbitrary dimension is nearly isometric to Wasserstein-
2 distance between those distributions. This is of significant computational benefit, as one must only
compute N optimal transport maps to define the N2 pairwise distances between N distributions. We
demonstrate the benefits of LOT on a number of distribution classification problems.

Keywords: optimal transport; linear embedding; Wasserstein distance; classification.

1. Introduction

The problem of supervised learning is most commonly formulated as follows. Given data of the form
{(x;, y)}Y |, where x; € R", learn a function f : R" — R such that f(x;) ~ y;. However, in many
applications, the data points are not simply points in R” but are instead probability measures p; on R",
or even finite samples X; = {x;') }/I.Vi | for xj@ ~ ;. Applications where this problem arises are surveys
broken into demographic or location groups [12], topic modeling from a bag of words model [34] and
flow cytometry and other measurements of cell or gene populations per person [7, 11, 35].

The most natural way to solve the supervised learning problem on data {(,ui,yl-)}ﬁ.vz | is to embed
w; into a Hilbert space and then apply traditional machine learning techniques on this embedding.
Simple versions of this embedding would be through moments u; — Ey_, [X] [26] or through a mean
embedding p; — Ey_, K(-,X) for some kernel K [24]. However, these embeddings either throw away
pertinent information about y; (e.g. higher order moments) or induce a complex nonlinear geometric
relationship between distributions (e.g. ||]Ex~u(x)K("X) - EXNM(xir)K(;X)H ~ ”EX'vu(x)K("X) —
Eyx. w—20 KX for t significantly larger than the bandwidth of the kernel). These issues motivate
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the need for a transformation that is both injective and induces a simple geometric structure in the
embedding space, so that one can learn an easy classifier.

The natural distance between distributions is Wasserstein-2 distance [32], where the distance
between distributions w and v is

Wz, = min / 1T ) — xldp ), (1)

where 1), is the collection of all measure preserving maps from w to v. The argmin of (1.1) is
referred to as the ‘optimal transport map’ and we denote it by 7, (see Section 2 for a full description).
Wasserstein distance is a more natural distance between distributions as it is a metric on distributions
(unlike distances between a finite number of moments as above) and the distance does not saturate as
the distributions move further apart (unlike mean embeddings as described above). Optimal transport
has been of significant importance in machine learning, including as a cost for generative models [4],
natural distances between images [29], pattern discovery for data cubes of neuronal data [23] and general
semi-supervised learning [31]. There are two main drawbacks to optimal transport in machine learning.
The first is that the computation of each transport map is slow, though this has motivated a number of
approximations for computational speed up [13, 19, 30]. The second drawback is that it is difficult to
incorporate supervised learning into optimal transport, as the distance is defined for a pre-defined cost
function and eq. (1.1), as stated, does not generate a feature embedding of u and v that can be fed into
traditional machine learning techniques.

This motivated the introduction of Linear Optimal Transportation (LOT) [33], also called Monge
embedding in [22]. LOT is a set of transformations based on optimal transport maps, which map a
distribution p to the optimal transport map that takes a fixed reference distribution o to

> TH (1.2)

The power of this transform lies in the fact that the nonlinear space of distributions is mapped into the
linear space of L? functions. In addition, eq. (1.2) is an embedding with convex image.

In one-dimensional space, the optimal transport map is simply the generalized cdf of the distribution
(if o = Unif([0, 1]), this is exactly the traditional cdf). In [27], the authors define the LOT as the
Cumulative Distribution Transform (CDT), and the main theory and applications presented in [27]
concern linear separability of data consisting of one-dimensional densities.

However, LOT is more complicated on R” for n > 1. For n = 1, the cdf is the only monotone
non-decreasing measure preserving map from pu; to o, and thus is the optimal transport between the
distributions. Similarly, it can be computed explicitly. This is not the case for n > 1: there are a large
number of measure preserving maps, with the optimal transport map being the map that requires minimal
work, see (1.1). Similarly, there are a much larger family of potential simple continuous perturbations
that can be done to ; when n > 1 (e.g. shearings, rotations) than exist for n = 1.

In [17], the CDT is combined with the Radon transform to apply results from [27] in general
dimensions n > 1. While this construction can be considered a variant of LOT, a linear separability
result for LOT in n > 1 is still missing. A proof of linear separability in LOT space for n > 1 is one of
the main contributions of this paper (see Section 1.1).
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LINEAR OPTIMAL TRANSPORT EMBEDDING 3

The LOT embedding eq. (1.2) comes with yet another advantage. One can define a distance between
two distributions u; and u ;as the L2-norm of their images under LOT

Wyt (o ) = T = T |15 = / 174 (x) — T5" () |I* do (x).

In this paper, we prove that W, equals W2LOT if the family of distributions w; is generated by shifts
and scalings of a fixed distribution . We further show that W, is well approximated by W%OT for
perturbations of shift and scalings (see Section 1.1).

We wish to highlight the computational importance of establishing approximate equivalence
between LOT distance and Wasserstein-2 distance. Given N distributions, computing the exact
Wasserstein-2 distance between all distributions naively requires computing (g’) expensive OT opti-
mization problems. However, if the distributions come from a family of distributions generated by
perturbations of shifts and scalings, one can instead compute N expensive OT optimization problems
mapping each distribution to o and compute (g] ) cheap Euclidean distances between the transport maps,
and this provably well approximates the ground truth distance matrix.

1.1 Main contributions
The main contributions of this paper are as follows:

e We establish the following with regards to building simple classifiers:
THEOREM 1.1 (Informal Statement of Theorem 4.1). If & = {u; : y; = 1} are e-perturbations of
shifts and scalings of w, and £ = {v; : y; = —1} are e-perturbations of shifts and scalings of v, and
& and 2 have a small minimal distance depending on ¢ (and satisfy a few technical assumptions),
then & and 2 are linearly separable in the LOT embedding space.

e We establish the following with regards to LOT distance:
ProposiTiON 1.2 (Informal Statement of Proposition 4.1). If p and v are e-perturbations by shifts
and scalings of one another, then

Wy (1, v) < WEOT(u,v) < Wy(u,v) + C e + Coe'/2.

In particular, this implies that the LOT embedding is an isometry on the subset of measures related
via shifts and scalings, i.e. when ¢ = 0.

e We demonstrate that in applications to MNIST images, the LOT embedding space is near perfectly
linearly separable between classes of images.

2. Preliminaries: optimal mass transport

Let 2 (R") be the set of probability measures on R". By &, (R"), we denote those measures in & (R")
with bounded second moment, i.e. ¢ € Z(R") that satisfy

/ llx113 do (x) < oo.
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4 C. MOOSMULLER AND A. CLONINGER

For o € &2,(R"), we also consider the space L*(R", o) with squared norm

112 = / I do (0.

In case of the L2-norm with respect to the Lebesgue measure A, we simply write |[f].
Foramap 7 : R" — R" and a measure o we define the pushforward measure T,o by

T,o(A) = o (T~ (A)),

where A C R” is measurable and 7! (A) denotes the preimage of A under 7.
If o € &2,(R") is absolutely continuous with respect to the Lebesgue measure A, which we denote
by o < A, then there exists a density f,, : R” — R such that

o(A) = /fo (x) dr(x), A C R" measurable. (2.1
A
In terms of densities, the pushforward relation v(A) = O'(T_l (A)) is given by

/ S ) di(x) = / £, dr(y), A < R"measurable. (2.2)
T-1(4) A
In case the map T is invertible and differentiable, we can rewrite (2.2) as

1,00 =1, (T'®) 1detD, T} 23)

Given two measures o, v, there can exist many maps 7 that push o to v. For that reason, we focus on
an additional assumption for the map, namely that it is the optimal transport map between o and v [32].
The map 7 is required to minimize a cost function of the form

/ c(T(x),x) do (x), 2.4
Rn

under the constraint 7,0 = v, which is equivalent to T € I1;. In this paper, we consider the cost
c(x,y) = ||x — y||%. Other cost functions are possible as well, most notably, p-norms can be studied

instead of 2-norms [32]. If the optimization has a solution, then

W,(o,v)?> = min / IT(x) — x5 do (x)
T:Tio= Rn

is the 2-Wasserstein distance between the measures o and v. In this paper, we will refer to W, as the
Wasserstein distance, as we only consider this case. The map 7' that minimizes (2.4) is called optimal
transport map.
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LINEAR OPTIMAL TRANSPORT EMBEDDING 5

We introduce the notation T to denote the optimal transport map from o to v. With this notation,
we have the identity

W,y(o,v) = ||T) —1d |,

The minimization involving 7 might not have a solution, which has led to a relaxation of the
formulation of (2.4) introduced by Kantorovich: instead of a transport map 7, one seeks a transport
plan or coupling y € I}, where I} is the set of all measures on R” x R", whose marginals along the
two coordinate directions are o and v. The problem now becomes

inf / c(x,y)dy (x,y),
yely JraxRr

which gives rise to the 2-Wasserstein distance, even when the optimal map does not exist. In case an
optimal transport map 7;; does exist, then the optimal coupling has the form y = (id, 7,)),0.

We now cite a result concerning existence and uniqueness of the optimal transport map which is
used throughout this paper.

THEOREM 2.1 ((6), formulation taken from (28)). Let o,v € Z2,(R") and consider the cost function
c(x,y) = ||lx—y| |§. If o is absolutely continuous with respect to the Lebesgue measure, then there exists
aunique map T € L>(R", o) pushing o to v, which minimizes (2.4). Furthermore, the map T is uniquely
defined as the gradient of a convex function ¢, T'(x) = V¢(x), where ¢ is the unique (up to an additive
constant) convex function such that (Vgo)ﬁo = .

There exist many generalizations of this result, for example to more general cost functions or to
Riemannian manifolds [3, 6, 21, 32].

3. LOT and its properties

In this section, we introduce the LOT as defined in [33] (also called Monge embedding in [22]) and
present its basic properties.
LOT is an embedding of &, (IR") into L*(R", o) based on a fixed measure o It is defined as

vie>T,. (3.1

The power of this embedding lies in the fact that the target space is a Hilbert space, and as we will show,
will allow us to use linear hyperplanes to separate naturally clustered sets of measures. This allows to
apply linear methods to inherently nonlinear problems in &7, (R") (see, for example, the application to
classification problems in Section 5 and [22, 27]).

The map (3.1) can be thought of as a linearization of the Riemannian manifold &2, (R") endowed
with the Wasserstein distance. The tangent space of &7,(R") at ¢ lies in L2(R",0), hence (3.1) is an
inverse to the exponential map [15, 32, 33].

The map eq. (3.1) has been studied by others authors as well, mainly with respect to its regularity.
Reference [15] shows 1/2-Holder regularity of a time-dependent version of eq. (3.1) under regularity
assumptions on the measures o, v (we discuss this result in Appendix 7.1). Reference [22] prove a
weaker Holder bound, but without any regularity assumptions on the measures. It is also shown in both
[15] and [22] that in general, the regularity of (3.1) is not better than 1/2.
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6 C. MOOSMULLER AND A. CLONINGER

Bounds for a variant of (3.1) in which the source measure, rather than the target measure is varied,
can be found in [5].
We now define LOT and summarize its basic properties.

DEFINITION 3.1 (LOT (33)). Fix a measure 0 € Z,(R"), 0 <« A. We define the LOT , F,, which
assigns a function in L?(R", o') to a measure in Z,(R™")

F,0) =T, veZR".

We now show that LOT is an embedding with convex image.

LeEmMA 3.1. For fixed o0 € &,(R"), 0 <« A, we have the following
1. F_ embeds &, (R") into L2(R",0);
2. the image F, (2, (R")) is convex in L*>(R", o).

Proof. The proof is an application of Theorem 2.1. The first part is also shown in [22]. For the
convenience of the reader, we summarize the proof in Section 7.3. O

We introduce a compatibility condition between LOT and the pushforward operator, which is one of the
key ingredients for the results in Section 4.

Fix two measures o, u € &, (R"),0 <« A. F, is called compatible with p-pushforwards of a set of
functions .2 C L*(R", ) if for every h € J, we have

F(hyp) = ho F, (1), (3.2)

This condition has also been introduced by [1] on the level of densities.

REMARK 3.1. For o = pu, the compatibility condition reads as T,"° = h. This means that a function h
is required to be the optimal transport from o to iz This is a rather strong condition, and not satisfied

for a general function 4. In particular, by Brenier’s theorem for 0 < A, Tﬁ”" = hif and only if 4 is the
gradient of a convex function.

The compatibility condition can also be understood in terms of operators. The pushforward operator
h +— hyo, which in Riemannian geometry is an exponential map, is left-inverse to F,. The compatibility
condition requires that it is also right-inverse.

We mention below that the compatibility condition is satisfied for shifts and scalings, a fact also
shown in [1] on the level of densities. Reference [1] also prove that shifts and scalings are the only
transformation that satisfy (3.2) for all w.

For a € R" denote by S,(x) = a + x the shift by a. Similarly, for ¢ > 0 denote by R.(x) = cx the
scaling by c. We denote by & := {cx + a : ¢ > 0,a € R"} the group generated by shifts and scalings.

LEMMA 3.2 (Compatibility on R and with shifts and scalings). Leto,u € Z,(R"), 0 < A.
1. If n =1,i.e. on R, F, is compatible with p-pushforwards of monotonically increasing functions.

2. For general n > 1, F, is compatible with p-pushforwards of shifts and scalings, i.e. functions in
&.
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LINEAR OPTIMAL TRANSPORT EMBEDDING 7

Proof. The proof is an application of Theorem 2.1 and can be found in [1] (the first part can also be
found in [27]); for the convenience of the reader, we show details in Section 7.3. O

4. Geometry of LOT embedding space

In this section, we characterize the geometry of the LOT embedding space under families of compatible
transformations in & (i.e. shifts and scalings), as well as for approximately compatible transformations
inY, g (eq.4.3), where A denotes the Lebesgue measure.

For a measure u and a set of functions 47, we denote by 7 * u the set of all pushforwards of u
under 7, i.e.

S ={hyp:he A}

In this section, we are mainly interested in conditions under which two families of distributions defined
by pushforwards of & C &, ., 4 » n and & * v are linearly separable in the LOT embedding space.

Before stating the main results of this section, we briefly describe linear separability and its
importance in machine learning. Linear separability of two disjoint sets in a Hilbert space implies the
existence of a hyperplane (w, x) = b such that

(w, ;) < b, VY, € A x
(w,v;) > b, Yy, € A xv.

The existence of such a hyperplane can be established through the Hahn—Banach separation theorem.
The theorem simply assumes that the two sets (J * u, .7 % v) are convex and that one is closed and
the other is compact [25].

Linear separability is a strong and important condition for many machine learning applications and
supervised learning generally. This is because learning a linear classifier is very straightforward and does
not require many training points to accurately estimate w and b. This implies that once the distributions
are mapped to the LOT embedding space, it is possible to learn a classifier that perfectly separates the
two families with only a small amount of labeled examples.

We note that the result on %\’s’ g (Theorem 4.2) is the main result of this section, but we list several
other results for completeness. We also note that, for ease of understanding, we frame all theorems in
this section for subsets of shifts/scalings or perturbations of such. However, Corollary 4.3 and Theorem
4.2 actually have versions in Appendix 7.2 (Theorems 7.4 and 7.5, respectively) for the family of all
approximately compatible transformations. Furthermore, in the case of & , p (Theorem 4.2), through
Corollary 7.2, we can give an explicit characterization of the minimal distance § required between the
two families of distributions, ¢4 * i and ¢ * v, to guarantee linear separability.

Finally, both theorems can be strengthened if we make additional assumptions on the regularity
of the reference and target distributions. These assumptions, referred to as the Caffarelli’s regularity
assumptions, are used in Theorem 7.1, but we highlight the assumptions here as well. The assumptions
on both the target and source are as follows.

1. supp(o), supp(u) are C* and uniformly convex,
2. for some « € (0, 1), the densities f, fﬂ are C%¢ continuous on their supports, and

3. the densities are bounded from above and below.
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8 C. MOOSMULLER AND A. CLONINGER

By assuming this, we can attain much sharper rates when we move to &, , r, but weaker versions of
the results are similarly established without the regularity conditions.

4.1 Approximation of the Wasserstein distance

From Lemma 3.1, we know that LOT embeds &2, (R") into [? (R", o). In general, this embedding is not
an isometry.

In this section, we derive the error that occurs when approximating the Wasserstein distance by the
L? distance obtained in the LOT embedding. We are thus interested in the accuracy of the following
approximation:

Wy (i, v) = [|F, (1) = Fo ()l - 4.1)

Note that if W,(u,v) is approximated well by ||F,(u) — F;(v)ll,, LOT is very powerful, as the
Wasserstein distance between k different measures can be computed from only k transports instead
of (]2‘) Indeed, in this section, we show that (4.1) is exact, i.e. the LOT embedding is an isometry, for
two important cases: On R, and on R” if both u and v are pushforwards of a fixed measure under shifts
and scalings. We further show that it is almost exact for pushforwards of functions close to shifts and
scalings.

It is important to note that in most applications, distributions are not exact shifts or scalings of one
another. In many applications, perturbations such as rotation, stretching, shearing or overall noise are
commonly encountered. Thus, it is important to consider the behavior of LOT under such perturbations
and demonstrate that the LOT distance continues to be a quasi-isometry with respect to Wasserstein-2
distance and that the deformation constants depend smoothly on the size of the pertubation.

Let p € Z,(R"), R > 0 and ¢ > 0. Recall that we denote by & := {cx+a : ¢ > 0,a € R"} the
group generated by shifts and scalings. We define the sets

S, r=1he & |hl, <R} (4.2)
and
Gope =8 € PR ) :3h e &, 1 g —hll, <&} 4.3)

This can be thought of as the ¢ tube around the set of shifts and scalings or as the set of almost compatible
transformations.

ProposITION 4.1. Leto,u € Z,(R"),0,u < L. LetR > 0,& > 0.

1. Forg;, 8, € 9, g, and o the Lebesgue measure on a convex, compact subset of R", we have

2

0 < [IF,(g131) — Fo(82s)le — Wa(g1phts ga4it) < Cels + 2e.

2. If o, p satisfy the assumptions of Caffarelli’s regularity theorem (Theorem 7.1), then for g, g, €

9, Re» We have

0 < IF, (8141 — F, (250l — Wa(g 514, 82,1) < Ce'? + Ce.
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LINEAR OPTIMAL TRANSPORT EMBEDDING 9

The constants depend on o, u and R.

Proof. The main ingredient for these results is Holder bounds as derived in [15, 22]. We show a detailed
proof in Section 7.4. (]

We mention that through the application of results derived from [15] (Corollary 7.2), the constants
appearing in the second part of this theorem can be characterized explicitly, see Section 7.4.

The theorem states that for functions close to ‘ideal’ functions (shifts and scalings), the LOT
embedding is an almost isometry. Also note the trade-off between Holder regularity and regularity
assumptions on o, u: through [22], we can achieve a 2/15 bound without strong regularity assumptions
on o, t; the bound improves through [15], when o, u are regular in the sense of Theorem 7.1.

Without perturbation, i.e. when ¢ = 0, Proposition 4.1 implies the followings.

CoROLLARY 4.1. Leto,pu € &,(R"), 0 <« A. Then for i, h, € &, we have
Wy g1, hypit) = |y (hyyi) — Fy (e t)lg = Iy — Byl

This means that F,, restricted to & * u := {h,u : h € &} is an isometry.
We also have the following result, which has also been shown in [27]:

COROLLARY 4.2. On R, F_ is an isometry.

Proof. 'We prove in Lemma 7.5 that compatibility of F; with p-pushforwards implies eq. (7.9). Thus,
the result follows from Lemma 3.2. O

4.2 Linear separability results

We establish the main result of this paper, which covers approximately compatible transforms in ¢, , g,
the e-tube around the bounded shifts and scalings &) . Theorem 4.2 establishes the case for the
tube around & , and Theorem 7.5 (in the appendix) establishes the condition for almost compatible
transformations; indeed, Theorem 4.2 follows from the more general result presented in Theorem 7.5.
In both cases to show linear separability in the LOT embedding space, one must now assume that the
two families of distributions are not just disjoint but actually have a non-trivial minimal distance.

THEOREM 4.2. Leto,u,v € Z,(R"),0,u,v K A. LetR > 0,& > 0. Consider ¢ C %\,R’g and let ¢
be convex. Let & »  and & » v be compact. If either

1. o is the Lebesgue measure on a convex, compact subset of R" or

2. o, u, v satisfy the assumptions of Caffarelli’s regularity theorem (Theorem 7.1),

then there exists a § > 0 such that whenever W, (g, * i, g, * v) > é forall g;, g, € ¢, we have that
F_ (¥ x ) and F_ (¢ xv) are linearly separable. Moreover, § is explicitly computable in both cases (see

Remark 4.1) and § = 0(8%) inCase 1 and § = 0(6‘%) in Case 2.
Proof. 'We show a detailed proof in Section 7.4. (I

REMARK 4.1. We note here that for both cases of Theorem 4.2, the sufficient minimal distance § can be
made explicit.

1. In this case, the Holder bound by [22] can be used, see (7.13). With ¢ (n) = CIf), ”(1)41582/15 +

|[fM||¢lx/328, where fﬂ is the density of p with respect to the Lebesgue measure, the choice § =
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10 C. MOOSMULLER AND A. CLONINGER

6 max{yr(n), ¥ (v)} is sufficient. The constant C is the same constant appearing in the derivations
by [22].

2. In this case, a Holder bound following from [15] can be used, see Corollary 7.1. With

172

— 4R 1/2 12W2(G,H«)+R+”Id”

am :=( /E“) (AR s+(4R If, 115 e ) I
i "

the choice 8§ = 6 max{y (1), ¥ (v)} is sufficient. The constant K%' is defined in Definition 7.1.

Note that a minimal distance 6 > 0 is needed since we consider perturbations of ‘ideal’ functions
(shifts and scalings). A version of v (respectively v/) also appears in characterizing the amount that
LOT distance deviates from Wasserstein-2 distance (Proposition 4.1). A parallel of ¥ (respectively ¥r)
could be established for any approximately compatible transformations by proving a result similar to
Lemma 7.1 for some compatible transformation other than shifts and scalings.

The ¢ appears in both ¥ and ¥ since functions in ¢ are e-close to compatible functions, while the
£2/13, respectively, £!/2 come from the general Holder bounds for LOT as proved in [22], respectively
[15].

REMARK 4.2. Theorem 4.2 is written in terms of &, . for a fixed base measure A and p, v < A. This
was done to define a family of allowable perturbations that is extrinsic and independent of the target
distributions 1, v. One could alternatively define the intrinsic family of push-forwards &, |, . and all
proofs follow through similarly. The benefit of this perspective is it allows for the theory to apply to
discrete distributions p, v because we could drop the need for absolute continuity. This would change
the constants of the general Holder bound to v (1) = Ce?/13 + ¢.

REMARK 4.3. We mention that the Holder bounds for the LOT embedding used in Theorem 4.2 can be
further improved, see for example the recent paper [14].

As a corollary to Theorem 4.2 with ¢ = 0 and § = 0, we establish simple conditions under which
LOT creates linearly separable sets for distributions in 7,(R"). This effectively creates a parallel
of Theorem 4.4 and Theorem 5.6 of [27] for the higher dimensional cases of LOT, and under the
particular compatibility conditions required for higher dimensions. Theorem 4.3 states this for & (shifts
and scalings), and Theorem 7.4 in the Appendix provides an equivalent form for subsets of arbitrary
compatible transforms.

CoRrROLLARY 4.3. Leto,u,v € Z,(R"), 0 < A, and let # C & and let JZ be convex. If 77 »
is closed and 7 x v is compact, and these two sets are disjoint, then F (7 » u) and F (S * v) are
linearly separable.

We also note the separability result on R, which follows directly from the results established above.
It is also proved in [27].

COROLLARY 4.4. Leto,u,v € #,(R), 0 <K A, and let 57 be a convex set of monotonically increasing
functions R — R. If JZ % u is closed and JZ x v is compact, and these two sets are disjoint, then
F_(J€ x ) and F (7 % v) are linearly separable.

REMARK 4.4. Note that Corollary 4.4 is also proved in [27]. In [27], H (equivalent to our J%) is
defined as a convex subgroup of the monotonic functions (Definitions 5.5 and 5.6 (i)—(iii) of [27]).
We are able to relax the assumption from subgroup to subset, however. Definition 5.5 of [27] also
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LINEAR OPTIMAL TRANSPORT EMBEDDING 11

assumes differentiability of functions in H, which is needed because constructions are considered from
the viewpoint of densities, which means that (2.3) should hold. Since our approach uses the more general
framework of measures rather than densities, we can drop this assumption.

REMARK 4.5. We note that each Theorem in this section can be trivially extended to an arbitrary set %
(or ) that is not required to be convex, so long as their convex hulls conv(7#) (or conv(¥)) satisfy the
needed assumptions of closedness, compactness and disjointness.

REMARK 4.6. We note that the assumption of compactness for 7 %  is not limiting in practice, as
this simply requires that the family of yu—pushforwards not to be unbounded (e.g. one cannot expect
an arbitrarily large shift/dilation of a distribution). This boundedness is a common assumption when
working on a real-world, finite number of training points data set.

5. Example: linear separability of MNIST data set

We linearly separate two classes of digits from the MNIST data set [18] with LOT to verify the linear
separability result (Theorem 4.2) numerically. We mention that we have an additional experiment on
Wasserstein distance approximation in the appendix (Section 7.6).

We consider the classes of 1s and 2s from the MNIST data set. Since the MNIST digits are centered
in the middle of the image, and the images have a similar size, we applied an additional (random)
scale and shift to every image. Scalings were applied between 0.4 and 1.2 using MATLAB’s ‘imresize’
function. These values have been chosen based on the heuristics that smaller scales make some digits
unrecognizable and with larger scales some digits are larger than the image. The images are non-negative
and were normalized to 1 after scaling, so they are probability measures supported on R2.

Within each class, the digits can be considered as shifts, scalings and perturbations of each other.
Therefore, the aim of this section is to show the LOT embedding works well to separate 1s from 2s.

The data consisting of images of 1s and 2s are embedded in L? via the LOT embedding, where we
choose as reference density o an isotropic Gaussian, and every image w is interpreted as a density on a
grid R ¢ R?. To approximate the continuous transport map, we project o to R and compute the optimal
coupling between o and p. This is then projected to a transport map by taking the center of P4 (x, y) for
each x. This means that every image is assigned to the function T% : supp(c’) — R. Since supp(o) C R
is discrete, T¥ (supp(c)) is a vector in R?", where 7 is the number of grid points in supp(c). For each
wu of the data set, we use this vector as input for the linear classification scheme (we use MATLAB’s
“fitcdiscr’ function). We note that while the discretization of the transport plan no longer satisfies the
regularity assumptions of the reference distribution needed for some of the guarantees, this experimental
setup demonstrates the robustness of the LOT embedding even beyond the regularity assumptions.

The experiment is conducted in the following way: we fix the number of testing data to 100 images
from each class (i.e. in total, the testing data set consists of 200 images). Note that we only fix the
number of testing data; the actual testing images are chosen randomly from the MNIST data set for
each experiment. For the training data set, we randomly choose N images from each class, where N =
40, 60, 80 and 100. For each choice N, we run 20 experiments. In each experiment, after embedding
the points using LOT, we perform linear SVM on the training data set and the classification error of
the test data is computed. Then, the mean and standard deviation for every N is computed. The mean
classification error is shown in Figure 1 (blue graph labeled ‘LOT’) as a function of N.

We compare the classification performance of LOT with regular L distance between the images.
Since we only use a small number of training data (N = 40,60, 80 and 100 for each digit), and the
size of an image is 28 x 28 = 784, the dimension of the feature space is much larger than the data
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12 C. MOOSMULLER AND A. CLONINGER

point dimension. Such a set-up leads to zero within-class variance in LDA. To prevent this, and in order
to allow for a fair comparison, we first apply PCA to reduce the dimension of the images to the same
dimension as is used in LOT. The feature space dimension used in LOT is the size of the support of o,
which consists of ~ 70 grid points in these experiments. Thus, the dimension is 140. LDA is then applied
to the PCA embeddings of the images. The resulting mean classification error is shown in Figure 1 (red
graph labeled ‘PCA’) as a function of N. We chose PCA as a comparison to demonstrate the robustness
of LOT to geometric transformations of the data, something that subspace methods such as PCA are not
equipped for without preprocessing (if possible).

We also compare the classification result to two different Gaussian Mixture Model classification
schemes. In the first approach, we train a GMM for each class (i.e. one model for MNIST digit 1, and one
model for MNIST digit 2). We then compute the probability of a testing data point belonging to model
1 or model 2 and assign the class that results in higher probability. Note that we again need to apply
dimension reduction, since the number of data points needs to be larger than the number of variables
for GMM training. We used PCA for dimension reduction, and the dimension was either chosen as the
dimension for the LOT embedding, or if the LOT dimension is too large for GMM training, it was chosen
as the largest possible based on the training data. We also mention that we used a small regularizer (on
the order of 107°) to guarantee convergence. To train the GMM model for each class, we used AIC to
determine the optimal number of Gaussians to fit the data (between 1 and 8 Gaussians). The resulting
mean classification error is shown in Figure 1 (purple graph labeled ‘GMM image’) as a function of N.

In the second approach, we first extract every 7 x 7 patch from the images and train a GMM for each
class on the patches. Then for each patch of each test point, we perform a least squares regression to
approximate the patch by a linear combination of the GMM means. After all patches are approximated,
we reconstruct the image from the patches (when windows overlap we average over the patches). This
is done for both models, and the test point is classified as the digit whose model yielded smaller L?
reconstruction error. We used a small regularizer (on the order of 107°) to guarantee convergence and
used the AIC to determine the optimal number of Gaussians (chosen from the set {5, 10, 25, 50}). The
resulting mean classification error is shown in Figure 1 (cyan graph labeled ‘GMM patch’) as a function
of N.

We also compare these classification results to training a convolutional neural network (CNN) [16]
on small amounts of data. This is not necessarily a perfect comparison, as LOT and PCA are building
unsupervised embeddings followed by a supervised classifier in that space, whereas a CNN is building
an end-to-end supervised feature extraction and classification. In theory, this should benefit the CNN if
the only method of validation is the overall classification error. However, as we will demonstrate, in the
small data regime, the CNN’s performance still does not compete with the LOT embedding and linear
classification.

To show this, we construct two CNNs to be shown in Figure 1. The first (Iabeled ‘Small CNN’) is
a network constructed with three convolutional layers, each with 2 3x3 filters, followed by two fully
connected layers, all with ReLU activation units. In total, this CNN has 182 trainable parameters, which
is of a similar size to the 140 parameters used in the LOT embedding. The second (labeled ‘Large
CNN’) is a similar architecture, but with 8 3x3 filters, and 3650 trainable parameters. The CNNs are
given the same training data sets as the LOT embeddings, and the testing error is also averaged over
20 experiments. We chose to compare to a CNN to demonstrate the benefit of LOT embeddings and
linear classifiers for small data, even when compared with neural networks that are in the interpolation
regime (such as the ‘Large CNN”). This also demonstrates that while CNN layers are naturally designed
to handle translations, the shifted and scaled MNIST data we have created are not automatically handled
by a CNN.
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Small CNN
PCA

Large CNN
GMM image
GMM patch
LOT
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0.1 ¢

Classification error test data
(100 images per digit)

0.030 -
40 60 80 100

Number training data for each digit

FiG. 1. Classification of MNIST digits 1s and 2s with small CNN (green), PCA with a linear classifier (red), large CNN (black),
GMM on the image (purple), GMM on the patches (cyan) and LOT embedding with a linear classifier (blue). We fix the number
of testing data (100 images per digit) and vary the number of training data, N = 40, 60, 80 and 100 (the actual training and testing
sets are chosen randomly for each experiment). We train a linear classifier on the LOT embedding (blue) and the PCA embedding
(red), a GMM on PCA reduced images (purple) and on patches (cyan), and two CNNs (black and green). The figure shows the
mean and standard deviation of the classification error of the testing data over 20 experiments for each N.

It is clear from the figure that the mean error decreases as the number of training data increases for
the LOT embedding, while the mean error stagnates for the PCA embedding. The GMM classification
performs better than PCA, but the classification error does not drop as significantly as for LOT. Note that
we start with a very small amount of training data (40 images from each class), and test on 100 images
from each class. The resulting LOT mean error is only =~ 0.2. When we train on the same amount as we
test (100 images per class), the LOT mean error is already down to ~ 0.03. Similarly, the LOT mean
error significantly outperforms both the small and large CNNs. This is perhaps unsurprising as neural
networks are known to require large corpuses of training data [20] but still serves to demonstrate the
strength of embedding into a linearly separable space.

The LOT classification result is also visualized via LDA embedding plots in Figure 2 for two
experiments. These plots again underline the fact that separation improves as the training data are
increased. While training on 100 images per class (right plot of Figure 2) leads to almost perfect
separation, training on 40 images per class (left plot of Figure 2) still performs very well considering
the small size of the training set.

In addition to the fact that the LOT embedding is capable of producing good separation results on
small training data, there is yet another benefit connected to the dimensionality of the problem. To run
LDA (or any linear classifier), a matrix of data points versus features needs to be constructed. If we
were to compare the original images, the feature space would have dimension equal to the number of
grid points. In the LOT embedding, only the grid points in supp(c) need to be considered, rather than
the whole grid, which drastically reduces the dimension of the feature space. In the experiments we ran
with MNIST, the grid is of size 28 x 28, which leads to dimension 28> = 784, while the support of & is
~ 70 grid points, hence the dimension is 140.
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FI1G. 2. LDA embedding plots for the MNIST classification of digits 1 and 2 using LOT. As Figure 1, these plots underline that the
classification improves with the amount of training data. Left: We choose one of the experiments carried out for N = 40 training
data for each digit. The testing data (100 images per digit) is embedded in R2 through the LDA coordinates. The mean error
(Figure 1) is &~ 0.2, which corresponds to & 40 digits being misclassified. Right: We choose one of the experiments carried out
for N = 100 training data for each digit. The testing data (100 images per digit) is embedded in R2 through the LDA coordinates.
The mean error (Figure 1) is ~ 0.03, which corresponds to ~ 6 digits being misclassified.

This dimension reduction allows us to run LDA on small training data as we did in these experiments.
If the feature dimension is very high, one also needs a lot of training data to prevent zero within-class
variance, or one has to first apply PCA as we did for Figure 1.

6. Conclusion

In summary, LOT provides a useful framework for embedding certain families of distributions into a
linearly separable Hilbert space. These families can consist of shifts, scalings and perturbations of a
base distribution, and the results are strengthened when the base distribution satisfies the Caffarelli’s
regularity assumptions (support is convex and has a smooth boundary, densities are Holder-continuous
and the densities have a minimum height).

There are a number of directions of future work that are currently being considered. First, we
are examining how the set of compatible push-forwards can be significantly increased if we make
assumptions about the reference distribution ¢ and how it relates to the base distribution p. Similarly,
one can consider multiple reference sets. Second, we are examining how these results can be extended
to other forms of optimal transport, including entropic regularization and graph transport. Third, we are
considering LOT on point clouds sampled from the measure © and how the guarantees scale with the
size of the samples.
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Appendix

The aim of this appendix is to establish the proofs of Section 4 (Geometry of LOT space). We actually
derive a more general theory (true for all compatible transformations) in Section A.2 from which the
results of Section 4 follow. The rest of the appendix contains auxiliary results (Sections A.1 and A.5)
and additional experiments (Section A.6); see Table Al for an overview.

A.1 Regularity of the LOT embedding

The main results of this paper are based on Holder regularity-type properties of the LOT embedding,
which we discuss in more detail in this section.

One of the main ingredients is a version of a theorem on the regularity of the optimal transport map
proved by L. A. Caffarelli [§—10]. The formulation of the theorem is taken from [15].

THEOREM A.1 (Caffarelli’s regularity theorem). Let o,u € Z2,(R") with o, u <« A. Assume that
supp(o), supp(u) are C? and uniformly convex. Further assume that for some « € (0, 1), the densities
Joof, are C% continuous on their supports and assume that they are bounded from above and below,

i.e. there exist constants ¢, C,¢, C > 0 such that
0<c=lfsllo =C,
0<t<|fle=<C

Then, TZ is the gradient of a C2 function on supp(u).

DErFINITION A.1. We introduce the concept of k-strong convexity.

1. Letf : X — R with X € R" convex. f is called k-strongly convex if g; (x) = f(x) — %k||x||2 is
convex.

2. For two measures o, u € &,(R") with supp(o’) convex, we denote K% to be the supremum over
all k such that ¢ with Vo = T¥, is k-strongly convex on supp(o).

In [15, Corollary 3.2], it is proved that if o, i satisfy the assumptions of Caffarelli’s regularity
theorem (Theorem A.1), then K% > 0. We further cite the following result from [15].

THEOREM A.2 ([15, Proposition 3.3]). Let o,u € %, (R") and assume they satisfy the same
assumptions as in Caffarelli’s regularity theorem (Theorem A.1). Then for every § that pushes o to

TABLE A1  Overview of the appendix chapters

Section Title

Section A.1 Regularity of the LOT embedding
Section A.2 Set-up for linear separability results
Section A.3 Proofs of Section 3

Section A.4 Proofs of Section 4

Section A.5 A useful result in normed spaces

Section A.6 Experiment: Wasserstein distance approximation
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W, we have

IS 7412 < = (IS 1412 = W(o. ).
"
Note that in the formulation of this theorem in [15], 2/K}, appears instead of 1/K} in the bound.
From the proof presented in [15], it can be seen, however, that 2 can be replaced by 1.
We now prove a bound on the LOT embedding. The proof is based on Theorem A.2 and [15,
Corollary 3.4].

THEOREM A.3. Leto,v;,v, € Z,(R"), 0,v,,v, K . Suppose that o and v, satisty the assumptions
of Caffarelli’s regularity theorem (Theorem A.1). Then,

12
2 W,(o,v,)

o
%) KVZ

Proof. LetS = T,?. We aim at finding a bound on ||75" — T52||,,-
The triangle inequality and change-of-variables formula imply
STy =Tl = 1" =Tl — IS0 T, = T3l = IT5" = T2 llg — IS = 1d |,
=T = T2\, — Wa(vy, vp).
Thus, we get
175" = T2l < 1S 0 Ty = T2 lly + Wi (v, vy), (A1)

Theorem A.2 implies

v v 12
IS0 T, =T 5 <

o
V2

(||S o T —1d|2 — W,(o, v2)2) . (A2)

Again by the triangle inequality and the change-of-variables formula, we have
ISo T2 —1d|l, < S0 T — T2, + T —1d ||, = Wy, v) + Wy(o,vy)
< 2W2(V1, Uz) + Wz(U, V2)
Combining this with (A.2), we obtain
V1 v 12 4 2
IS0 Ty = 212 < < (Wav1.v2)” + Waoy v Wa(o 1))
1%
Taking the square root and using the fact that (a + b)'/? < a'/? 4+ b/2, we obtain
2
IS0 Ty = T32lly = —75 (Walviov) + (Wa(vp v Wa (o, 0))'2).

ngl/z

Now (A.1) implies the result. O

Note that the ‘constants’ in Theorem A.3 depend on v, (namely K7 and W,(o,v,)). This can be
avoided by considering v, € & » u for a fixed u € Z,(R"), where & denotes the set of shifts and
scalings. As a preparation for this result, we need the following lemma:

LeEmMMA A.1. Letf : X — R be differentiable with X € R” convex. Then, we have the following:

2202 1890100 G0 U0 1s9nB Aq 906E | L9/EZ0OBEYIEIEWI/EEOL 0 L/I0P/S0ILE-80UBAPE/IEIEW/WO0" dNO"oIUSPEdE//:SARY WOl Papeojumod



LINEAR OPTIMAL TRANSPORT EMBEDDING 19

1. fis k-strongly convex on X if and only if f o S, is k-strongly convex on S;l X).
2. fis k-strongly convex on X if and only if R_! o f o R. is (kc)-strongly convex on R. ! (X).

Proof. We first note that X is convex if and only if #~!(X) is convex forh = § , or h = R,. Furthermore,
f is k-strongly convex if and only if

(V) = VoD (x —y) = kllx —y|%  xye€X. (A3)
Forx,y € S;l (X), eq. (A.3) implies that f o S, is k-strongly convex if and only if
(VfoS,® —VfoS,0N &—¥) > k|x -7
which is the same as
(VF(S,(®) — VS, (S,® — S,) = k|IS,® — S,

As this is only a transformation x = S,(x) and y = §,(y) compared with eq. (A.3), k-strong convexity
of f and f o S, are equivalent.
ForXx,y € RC_1 (X), eq. (A.3) implies that RC_1 of oR, is (kc)-strongly convex if and only if

(VR of o R)®) = V(R of o RYGN X =) = kellx =¥,
which is the same as
TN VFR.®) — VIR, R.(® — R.()) = ke *|R.(®) — R DI,
resulting in
(VFR.(®) — VIR (R.®) — R.(3)) > kIR.X) — R

As this is only a transformation x = R.(X) and y = R_.(y) compared with eq. (A.3), k-strong convexity
of f and (kc)-strong convexity of Rc_1 of o R, are equivalent. U

CoroLLARY A.l. Leto,pu € Z,(R"), o, u < A. Further assume that o and p satisfy the assumptions
of Caffarelli’s regularity theorem (Theorem A.l). Let R > 0 and consider 1 € éaﬂ’R (bounded

shifts/scalings, see eq. (4.2)) as well as g € L2(R"™, ). Then, we have

4R
IF, (g,1) — Fp(ho)ll, 5( |2+ 1) W) (gsit. hyt)
"

W,(o,u)+ R+ || 1d
+(4R 5(o, 1df,

K

1/2
) W, (g hy)'/.
Note that we now have a bound with constants that do not depend on /4 or g. They only depend on the
fixed measures o, 1 and on the radius R.

Proof. Letv, = g u and v, = h, . First note that since  and o satisty the assumptions of Caffarelli’s
regularity theorem, also v, and o satisfy them. Therefore, we can apply Theorem A.3.

We now bound W, (o, v,) and K7, from Theorem A.3 by constants that only depend on o, u and R.
Such bounds then imply the result.
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20 C. MOOSMULLER AND A. CLONINGER

The triangle inequality, Lemma 3.2, and the assumption ||A[|, < R imply

h
Wy(0,v5) < Wy(0, 1) + Wy, hy) = Wy (o, ) + T2 —1d]),,
= Wy(o.p) + |h—1d],,

< Wy(o, ) + R+ 1],

We now show that K7 can be lower bounded by something that only depends on o, u and R but
does not depend on h. First consider h = S,. Note that 7] = T o S ! and T; = Vy implies
Tg o S;l =Vyo Sa_l. Also, ¥ o Sa_1 is convex on S, (supp(u)). This implies that ¢ = ¥ o Sa_l, where

=Ty,

Lemma A.1 implies that ¥ is k-strongly convex if and only if ¢ = ¥ o S;] is k-strongly convex.
Therefore, the modulus of uniform convexity of i o S;l equals the modulus of uniform convexity of .
Thus, Ky, = K, which is independent of S,.

Now con51der h = R.. Again, we have T}, = T} o R-! and T, = Vy implies T} o R =
VR.oy oR:'. Also, R, o oR. ! is convex on R.(supp(u)). This implies that ¢ = R.oy o R !, where
Vo =

Lemma A.1 implies that v is k-strongly convex if and only if ¢ = R. o ¢ o R;l is kc~!-strongly

convex. Therefore, K7 = KZC_l. Since by assumption |c| = ||R [, < R, we have
- | < R
K‘v’2 KCr
which gives a bound independent of R... 0

We now combine Corollary A.1 with the Lipschitz continuity of the pushforward map g — g.o to
obtain a Holder regularity-type result for LOT. We first cite the result on the Lipschitz continuity of the
pushforward map, which can be found in e.g. [3, Equation (2.1)]

Wy (gsm, hopt) < lig — hll - (A.4)

CoROLLARY A.2. Leto,u € Z,(R"), o, u <« A. Further assume that o and u satisfy the assumptions
of Caffarelli’s regularity theorem (Theorem A.1). LetR > 0,4 € ‘g)u,R (seeeq. (4.2)) and g € L2(R", 10).
Then, we have

4R Wy(o. ) + R+ [11d |
IF, (g,1) = Fy (), s( |+ 1) ||g—h||u+\/4R < g — i,/
M 13

REMARK A.1. In [15, Corollary 3.4], it is proved that for fixed o and a Lipschitz continuous curve u,
of absolutely continuous measures, ¢ € [0, 1], 1/2-Holder regularity of # — F_(u,) can be achieved.
Indeed, it is proved that

1Fy (1) = Fy (o) llg = CV1.

Corollary A.2 can be considered a generalization of this result. We prove that the map h — F; (h,u) can
achieve Holder-type regularity between an element of & (comparable to ) and an element of L*(R", 1)
(comparable to u,). Note that like u,, the ‘curve’ h +— hﬁu is Lipschitz continuous (eq. (A.4)). The
restriction to bounded shifts and scalings (via R > 0) relates to the fact that [0, 1] is bounded. We also
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mention that the ‘linear term’ ||g — A|| w if small enough, can be bounded by ||g — h||,1/ 2, relating our
result more closely to [15]. Indeed, in [15], a linear term in ¢ is also present but can always be bounded
by /% since ¢ € [0, 1].

A2 Set-up for linear separability results

In this section, we build up the theory needed for the results on linear separability presented in Section
4. The proofs for these results can then be derived easily from results of this section, see Section A.4.
Throughout this section, let 7 C L%(R", o). Then, % acts on Z,(R") by push-forward

hxp=hyp, heH,ue PR,

This is a group action if . is a subgroup of L>(R", o).
Fix u € &, (R"). Using the notation from Corollary 4.1, we denote by

Hxu="Lhxu:heiA}

the orbit of u with respect to the action of 7.

Note that .77 also acts on L>(R”", ') by composition, i.e. hxf = hof forf € L>(R",0) and h € .
We also denote this action by .

‘We now derive some properties of this action in connection with the LOT embedding F .

DEFINITION A.2. Leto,u € Z(R"), 0 < A andlet 52 C L*(R",5). We say that F is compatible
with p-orbits with respect to the action of 7€ if

Fo(hxp) =hxF_(u), he . (A.5)

REMARK A.2. Note that Equation (A.5) is exactly eq. (3.2). We just introduced a new notation via *.
As is shown in Lemma 3.2, Condition (A.5) is satisfied by shifts and scalings in arbitrary dimension
and by all monotonically increasing functions in dimension n = 1.

A version of the following lemma is also proved in [1].

LEMMA A2. Leto,u € Z,(R"),0 <« Aandlet 57 C L2(R", o) be convex. If F, is compatible with
p-orbits with respect to the action of # (Definition A.2), then F (7 % ) is convex.

Proof. We prove that for f € L*>(R", o), convexity of # implies convexity of .7  f. This together
with condition (A.5) then implies convexity of F (7 x ).
Letc € [0,1] and let 4, h, € 7. Then,

(I=c)yhyof)+c(hyof)y=((1—=c)h; +chy) of € I xf. O

THEOREM A4. Leto,pu,v e Z,(R"),0 <« Aandlet 77 C L*(R", o) be convex. Further assume that
F, is compatible with both j- and v-orbits with respect to the action of .7#” (Definition A.2). If 5 %
is closed and % v is compact, and these two sets are disjoint, then F_ (¢ » u) and F_ (I  v) are
linearly separable.

Proof. Since F is continuous, F, (J  u) is compact and F_ (€ * v) is closed. Since F is injective
(Lemma 3.1), they are also disjoint. Lemma A.2 implies that both images are convex. Therefore, the
Hahn-Banach Theorem implies separability. O

Definition A.2 is a strong condition which is satisfied for shifts and scalings. In the following, we
show a linear separability result which relaxes this condition. Indeed, we show that Theorem A.4 is also
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22 C. MOOSMULLER AND A. CLONINGER

true if we extend .77 by functions which are e-close to shifts and scalings in L>(R", o). In analogy to
Definition A.2, we define compatibility of F,; with respect to p-orbits up to an error &.

DEFINITION A.3. Leto,u € Z,(R"), 0 < A, let 7 C L*>(R",0) and let & > 0. We say that F, is
g-compatible with p-orbits with respect to the action of € if

IF,(hxp) —hxF_ (wll, <e he .

There is also an analog to Lemma A.2:

LEMMA A3. Leto,u € Z,(R"),0 < A, let 7 C L*(R",0) be convex and let ¢ > 0. If F, is e-
compatible with p-orbits with respect to the action of .7 (Definition A.3), then F (¢ x ) is 2e-convex
(Definition A.4).

Proof. Lethy,h, € 7 and c € [0, 1]. Define h = (1 — ¢)h| + ch, € . We aim at proving that
(I =c)F (hy %)+ cF (hyxp) —F (hxp)ll, < 2e.
To this end, we apply Definition A.3:
I(1 = OVF,, () % 12) + cF, (hy % 1) — F, (h + I,
(L= Fy(hy ) = hy x Fy (@)l 4 cllFy (hy % 1) — hy % Fo ()|l
+llh*Fy(u) = Fo(hx ),

< (1 —=c)e+ce+e=2e. 0

This lemma allows us to establish the most general form of the linear separability theorem, which
simply requires the additional assumption that the two families generated by action 7, 5 x u and
J€ * v, have a minimal distance greater than 6¢.

THEOREM A.5. Leto,pu,v € ZZ,(R"), 0 K A, let 37 C L2(R", o) be convex and let ¢ > 0. Further
assume that F is e-compatible with both ;- and v-orbits with respect to the action of .7 (Definition
A.3). If 7 % and € v are compact, and W, (h; * t, hy *xv) > 6¢ forall hy, h, € F, then F_ (€ % 1)
and F_ (S x v) are linearly separable.

Proof. Since F, is continuous, bothA = F_ (xu) and B = F_ (¢ 'xv) are compact. Now consider the
closed convex hull of these sets, i.e. consider conv(A) and conv(B). The closed convex hull of compact
sets is compact again in a completely metrizable locally convex space [2, Theorem 5.35]. Thus, in order
to apply the Hahn—Banach theorem to conv(A) and conv(B), we only need to show that these sets are
disjoint.

Lemma A.4 implies

66 < Wy(hy * 1, hy % v) < |F, (hy % ) — F, (hy )|,

for hy, h, € . Therefore, d(A, B) > 6¢, where d denotes the distance between sets.
Since F; is e-compatible with respect to both - and v-orbits, Lemma A.3 implies that both A and
B are 2¢-convex (Definition A.4). This means that d(conv(A),A) < 2¢ and d(conv(B), B) < 2¢.
Lemma A.6 now implies that d(conv(A),conv(B)) > ¢. Therefore, the closure of these sets has
positive distance, d(conv(A), conv(B)) > 0, which implies that conv(A) N conv(B) = @.

REMARK A.3. The essential part of Theorem A.5 is about proving that convexity (or almost convexity)
is preserved under LOT. We impose this property by assuming the compatibility condition to hold. Since
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this condition is quite restrictive (up to now: shifts and scalings), one may consider other ways to infer
convexity in the embedding space. A possibility would be to try relate convexity in the embedding space
to geodesic convexity in &7, (R") and Wasserstein barycenters. This is strongly connected to the question
of how well LOT barycenters approximate Wasserstein barycenters (a question that is still open). This
is part of future research.

A.3  Proofs of Section 3

Proof of Lemma 3.1. To prove part 1 of the lemma, we show continuity and injectivity of F.
The stability of transport maps as described in [32, Corollary 5.23] implies that F; is continuous.
If F,(v)) = F,(v,), then T,' = T,*. In particular, this implies

— 7TV1 — T2 —
vl_TO' :IO—_TU uo——vz

This implies injectivity of F,;.
To prove part 2 of the lemma, let ¢ € [0, 1] and let v;, v, € &, (R"). We define

T(x) =0 —-0)F,(v))(x) +cF_ (1) (x), xeR"

We need to show that there exists v; € &, (IR") such that T = F (v3). To this end, we define v; := T.o.
By definition, T pushes o to v;. We now show that T’ can be written as the gradient of a convex function.
By Theorem 2.1, there exist convex functions ¢,, ¢, such that 7,' and T, can be written uniquely
as T;j x) = V(pj(x), Jj=1,2,x € R". This implies that T'(x) = V¢;(x), with the convex function
p3(0) = (1 =) g () +cpy(x), xeR"™

Theorem 2.1 thus implies that T = T2, which proves T = F(v3). U

Proof of Lemma 3.2. On R recall that
T =G;'oG,, (A.6)

where G, denotes the cdf of o defined by G, (x) = o ((—0o0,x]). Now if & is monotonically increasing,
we have G, g = G,o h~!, which implies compatibility.
Letn > 1 and h € &. We first consider the case i = S, for some a € R". By Theorem 2.1, both T,/
and Tﬁ“ﬁ” exist. We now prove ]ﬁ”jv =S, o T}, which shows the result for 2 = S,.
Again, by Theorem 2.1, there exists a unique convex function ¢ such that 7)) = V. Then,
(Sa o T;) x)=Vex)+a=V(px)+ <a,x>) = Vi),

where ¥ is also convex.
Due to the general property

(ToT),0 =T,(T,0) (A7)

for maps T, 7“, we have that S, o T} pushes o to § azV- Therefore, Theorem 2.1 implies that S, o T} =

P
We now consider the case h = R, for some ¢ € R. By Theorem 2.1, both 7] and chﬁv exist. We
now prove that T{jcnv = R, o T}, which implies the result for # = R,..
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Again, by Theorem 2.1, there exists a unique convex function ¢ such that 7} = V. Then,
(R, 0 Ty) (x) = Vo) = Vep((x) = Vi (x),
where v is also convex. Furthermore, by eq. (A.7), R, o T, pushes o to R..v. Therefore, Theorem 2.1

implies 72" = R.oTY. O

A4  Proofs of Section 4
We first establish an approximation result:
LEMMA A4. Leto,pu,v e Z,(R"), 0, u K A, then we have
Wy, v) < 1Fy (1) = Fo Wy < Wap,v) + 1T, — Ty o Tyl
We also have an upper bound by the triangle inequality
1Fy (1) = Fo Wy < Wh(u,0) + Wy(o,v).
Proof. By the change-of-variables formula, we have
1F, () — F, Wy = 1Ty — Ty ll, = 11d =T, o T}, (A.8)

Since T} o Tg pushes p to v, Wo(u,v) < |F, (uw) — F, (v, follows.
For the first upper bound on [|F, (1) — F, (v) ||, note the following

|1d-T) o ol < Id—T/‘iIIM + IITl‘i —T)o TN, < Walp,v) + ||T,3 —T)o T,
The second upper bound by W, (i, 0) + W, (o, v) follows from the triangle inequality. 0

Lemma A.4 shows that the error occurring in the LOT approximation of the Wasserstein distance is
determined by the L2-error between the map T4 o T}; and the correct transport map 7),. This means that
the LOT embedding replaces the transport 7, by T,; o T} and computes the Wasserstein distance from
this map.

Lemma A.4 shows that in case the relation

T =T 0T (A.9)

is satisfied, the LOT embedding is an isometry. Also, if eq. (A.9) is satisfied up to an error ¢ > 0, then
¢ is also the maximal error between the LOT embedding and the correct Wasserstein distance.

LEmMa AS. Fixo,u € Z,(R"), o, < A If F_ is compatible with p-pushforwards of a set of
functions % C L? (R", ) (see eq. 3.2) then for iy, h, € I, we have

hZﬁM hZ):I/'L o
Thluﬂ- =lg o hl:ﬂ'

Proof. Denote by v; = hlﬁ/x, vy, = hzﬁ . Compatibility (eq. (3.2)) implies
Ty =hoTV, j=1.2. (A.10)
This implies

T2 0TS =hyoTto(hy 0T =hyohy.
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Again by eq. (3.2), we obtain
T2 =hyoTl =hyo (T ' =hyo(h oTH)™ =hyoh.
O

Proof of Proposition 4.1. Since g,8, € 9, ., there exist by, h, € &, g such that ||g; — Ay ||, < e and
g2 — hyll,, < &. The triangle inequality implies

1F, (8140~ Fy (82:)ly < IF,(8150) — Fy(hy )l
- UIFy (1) = Fy (i)l + I1Fy (hyy0) = Foy (83,100 - (A.11)
Lemma A.5, eq. (A.4) and the triangle inequality imply
1Fy (hy i) — Fo(hypi)lly = Wy(hy gt houpt)
< Wo(hyge, g1410) + Wo(g1 4, 82410) + Wolga it hyyt)
< Iy =&l + Walgy:1: 8201 + 1182 — Mol
< 28 + Wy (g 414, 824 10)- (A.12)

Now, we distinguish the two cases of the theorem

1. For this part, we use the following Hélder—% regularity result by [22]:
1Fy 0p) = Fp)lly < C Wy, v) ¥, (A.13)
for v, v, € Z,(R"). Fori = 1,2, we get
1F, (gi.1) — Fy (higi) g < CWa(gipts hiyt)™ < Cllgy — |12/ < /1.
This, together with (A.11) and (A.12), gives the overall bound

0 < IIF, (81:10) = Fo @t ly = Wal815 82510) < 2C %1 422,

2. With regularity assumptions on o, u, Corollary A.2 implies that there exist constants
Cy k> Co .k SUch that
1Fs (giz1t) = Fo (it llg = Co yy pllg; = Hill, + fa,mllgi - hi”llt/z
= Coune + Copue'l™ (A.14)

for i = 1, 2. Note that the same constants can be used for i = 1 and i = 2 since R bounds both 7,
and h,. This, together with (A.11) and (A.12), gives the overall bound

0 < IF, (81410) — Fp (804 ly — Wa(gy4tt 8251) < 2(C,p g+ e +2C, g2,

which concludes the proof. O

Proof of Corollaries 4.3 and 4.4. By Remark A.2, the compatibility condition (A.5) is satisfied. Thus,
we can apply Theorem A.4. O
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Proof of Theorem 4.2. We show that F is §-compatible with both u- and v-orbits with respect to the
action of ¢. Then, the result follows from Theorem A.5. We note that the value of § will be as in Remark
4.1.

Let g € 4 and h € &,  such that [|g — h|| < e. Since h € & p, it is compatible with p-orbits. First
note that

IF, (g% ) — g% Fo(u)lly < IIF, (g% ) — Fy(hw i)l + llh* Fy () — g % F, ),
‘We further note that
1 2
hx Fy() — g% Fy Iy = lho T4 — g o T, = Ih—gll, < IIf,lIsd e.

To bound ||F, (g * u) — F, (hx )|, we distinguish the two cases as in the theorem:
1. We use the Holder bound (A.13) and (A.4):

5 \2/15
1y (8% 1) = Fy (e i)l = CWa(gx e i?!'S < Cllg = hlZ/™S = € (11,187 )

172 12, 2/15
Therefore, overall, F, is §-compatible with § = |If,,llcc” € + C { If,,llo

2. Corollary A.2 implies

4R Wy(o, ) + R+ || 1d ||
IF, (g,10) = Fy (g, < ( |2 + 1) lg —nll, + /41% < E g —nll/?
W n
4R 12 Wy(o. 1) +R+||1d | 12
s(/ﬁ )(nfu/ ) + /41% e < (1, 142¢)
"

Therefore, overall, F,, is §-compatible with

( /4R 12 Wy(o, ) + R+ [1d]|, 12 \'/?
8_(/1{0 )(”f 1 ) \/4R K (Ilfﬂloos) :

Similarly, it can be shown that F is §-compatible with v-orbits (now § depending on v). Thus by
taking the maximum between those § values and multiplying by 6 (distance conditions in Theorem A.5),
all the assumptions of Theorem A.5 are satisfied and linear separability follows. g

A.5 A useful result in normed spaces

In this section, we derive a result on almost convex sets for general normed spaces. It states that if two
almost convex sets are separated by a positive value, then their convex hull can also be separated.

This result is needed for the almost linear separability proof for perturbed shifts and scalings
(Theorem 4.2 and A.5).

DErFINITION A4. Let (X, | - ||) be a normed space and let ¢ > 0. X is called e-convex if for every
X1,%, € X and ¢ € [0, 1] there exists x € X such that

(I —=c)x; +cxy, — x| <.
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FiG. Al. Left: The reference density o (Gaussian) used in the LOT embedding to approximate the Wasserstein distances between
images of 1s and 2s from the MNIST data set (right). Right: We consider images of 1s and 2s from the MNIST data set. Both
the images of 1s and 2s are shifts of each other. The right panel shows the relative error between the ground truth Wasserstein
distances of the data set and the distances computed by the LOT embedding. The error is 0 in each individual class of 1s and 2s
since the LOT embedding is an isometry on these subsets (since they have been produced by shifts). In the inbetween classes, i.e.
between 1s and 2s, an error of order 102 is observed.

Ones

Twos

This definition states that for an e-convex set X, d(conv(X),X) < &, where conv(X) denotes the
convex hull of X and d is the distance between sets.

LeEMmA A.6. Let (X, || - ||) be a normed space and let ¢ > 0. Consider two e-convex sets A,B C X. If
d(A,B) > 3¢, then d(conv(A), conv(B)) > ¢.
Proof. Leta € A and ¢, € conv(B). Let b € B such that ||c,, — b|| < ¢ Then,

la—cpll = lla—=bll — llb—cyll > 3e —e = 2s.

Therefore, d(A, conv(B)) > 2¢. Similarly one can prove that d(B, conv(A)) > 2e.
Now let ¢, € conv(A) and ¢;, € conv(B) and choose b € B such that ||c;, — b|| < e. Then, we have

llca = cpll = lleg = bl = 11D = ¢l > 28 —e =,

which implies that d(conv(A), conv(B)) > . (I

A.6  Experiment: Wasserstein distance approximation

We show an experiment related to the Wasserstein distance approximation result of Section 4.1. We
consider MNIST images (1s and 2s), where both the 1s and the 2s are shifts of each other. Figure A1
shows the approximation error of LOT for the individual and inbetween classes, using a Gaussian as
reference. We observe that there is no error in the class of 1s and 2s, because they are shifts of each
other (isometry result of Corollary 4.1).

We mention that [22] has additional Wasserstein distance approximation results and experiments.
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