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ABSTRACT

White matter (WM) characterization is challenging due to
its anisotropic and inhomogeneous microstructure that
necessitates multiscale and multi-modality measurements. Shear
elastography is one such modality that requires the accurate
interpretation of 3D shear strain measurements, which hinge on
developing appropriate constitutive tissue models. Finite
element methods enable the development of such models by
simulating the shear response of representative elemental
volumes (REV). We have developed triphasic (axon, myelin,
glia), 2D REVs to simulate the influence of the intrinsic
viscoelastic property and volume fraction of each phase. This
work constitutes the extension of 2D- to 3D-REVs, focusing on
the effect of the intrinsic material properties and their 3D
representation on the viscoelastic response of the tissue. By
lumping the axon and myelin phases, a flexible 3D REV
generation and analysis routine is then developed to allow for
shear homogenization in both the axial and transverse directions.
The 2D and 3D models agree on stress distribution and total
deformation when 2D cross-sectional snapshots are compared.
We also conclude that the ratio of transverse to axial transverse
modulus is larger than one when axon fibers are stiffer than the
glial phase.

Keywords: white matter, elastography, computational modeling,
finite elements, homogenization, viscoelasticity

1. INTRODUCTION

Shear elastography methods based on MRI [1] or ultrasound
[2] involve acquiring shear deformation data, followed by

solving an inverse problem (based on a tissue constitutive model)
to estimate the local mechanical properties, such as stiffness. The
interpretation of these voxel-averaged (effective) properties in
terms of tissue microarchitecture and intrinsic properties of its
constituent cells requires accurate tissue-based models. White
matter (WM) is known to be mechanically anisotropic under
shear on the millimeter scale, especially in regions with high
directional coherence, such as the corpus callosum (CC) [3]. By
separately exciting the brain in two different directions, the
consequences of the mechanical anisotropy of WM have been
shown to be very important [4]. While the microstructure
anisotropy and diffusional anisotropy are well accepted, the
mechanical anisotropy of WM is still debated. Budday et al. [5]
concluded that the WM was “not notably anisotropic” at the
macroscopic scale after performing mechanical testing ex-vivo
on large human WM sections. In an ex-vivo magnetic resonance
imaging elastography (MRE) experiments on porcine brain WM
blocks surrounding the CC, Schmidt at al. [6] reported that that
the axial shear modulus was greater than the transverse, based on
a homogeneous inversion model. Lastly, Romano et al. [7] used
an orthotropic model to interpret measurements of in-vivo MRE
of the human cortical spinal tract (CST). Using a waveguide
inversion method that allows to extract a single shear modulus
in-vivo for the entire CST WM matter track, they found that the
transverse shear stiffness is greater than the axial. Finally, using
an inverse transversely isotropic scheme to extract effective
shear viscoelastic properties from multi-excitation MRE, Gallo
et al. [8] showed that the ratio of transverse to axial stiffness
remains greater than 1 in the human CC. Adopting appropriate
WM anisotropic models is not only important in brain aging
studies [8], but also in traumatic brain injury studies [9].
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Our working hypothesis is that WM is anisotropic in shear,
and this anisotropy can be related to the intrinsic mechanical
properties (of its constituents) and the microstructure. WM
consists of a complex network of axon bundles, and each axon
in ensheathed in myelin that is produced by glial cells. The
disagreement in the WM anisotropy properties reported in the
literature can be attributed to differences in experimental
methodologies or tissue constitutive models. In order to resolve
this issue, we adopt a bottom-up approach: build a
micromechanical WM tissue model and then extract the effective
properties directly by mimicking the mechanical excitation
typical of elastography. One challenge here is to choose the
simplest, most economic, model possible to account for those
microstructural and mechanical elements that pertain to our
hypothesis. Rather than starting from an a priori constitutive
model, we focus here on extending the WM tissue model of
Sullivan et al. [10] in 3D. This process is a culmination of prior
work [11-15]. The development of the WM tissue model starts
by homogenizing representative elemental volumes (REVs) of
the microstructure of myelinated brain WM. In [11-12],
homogenized REVs (carriers of material properties and
geometric information) are assembled to form finite element
models based on typical fiber volume fractions calculated by the
relative distance between the elements and axonal traces. Our
group has also developed another set of WM models that account
for discrete axons with tortuous paths and distinct kinematic
coupling (ties at random intervals along the axon) [13-14]. Such
models recapitulate the distribution of axon tortuosity and myelin
coupling that we discerned from our in-situ characterizations
[15].

Seeking to complete the study of the effect of microstructure
on WM shear anisotropy, we return to the simplest
micromechanical model of WM, which involves a unidirectional
composite with axon fibers embedded in a glial matrix. Our prior
study [10] involved the mechanics of the transverse plane
(perpendicular to the axon direction), so it was only capable of
capturing the transverse effective shear moduli. We need to
extend the model to 3D in order to explore the response to other
shear loading modes. Also, [10] involved a triphasic (axon,
myelin, glia) REV, but the sensitivity analysis revealed that the
effective moduli of REVs are very sensitive to the fiber volume
fraction (which is the sum of the axon and myelin volume
fractions), and the intrinsic viscoelastic moduli of the glial phase.
It is therefore important to preserve these parameters as we go
from 2D to 3D. In the following we perform a systematic study
of the harmonic response of a unidirectional composite REV
loaded in the transverse and axial plane (parallel to the axon
direction). There is no published computational study (to our
knowledge) of such models under harmonic shear. Arbogast and
Margulies [16] employed approximate expressions for the
transverse moduli, while Abolfathi et al. [17] studied viscoelastic
relaxation. To our knowledge, the tissue model presented here is
used for the first time to model elastography-relevant harmonic
shear stress on the cell level.

2. MATERIALS AND METHODS

2.1. Homogenization of axon and myelin composite

The three-dimensional model was generated by extruding a
two-dimensional representation of brain white matter consisting
of regular hexagonal array of parallel axons with a uniform
myelin sheath (Figure 1). The two-dimensional REV includes
three phases, axon (green), myelin (red), and glial matrix (gray).
Using volume fractions of each phase that mimic realistic values
for the brain, the sensitivity analysis reported in [10] revealed
that the glial matrix properties have the strongest effect on the
effective shear response of the material contained in the REV.
Therefore, we opt for lumping the two phases (axon and myelin)
into one phase, hereafter renamed “axon” for simplicity, and
maintaining the geometry of the glial matrix. The new 3D REV
of the resulting composite (homogenized) biphasic model is
depicted in Figure 1.

Axon
Myelk

Glia

Txy .
L.
FIGURE 1. (Left) 2D triphasic REV under pure shear. The glia,
axon, and myelin phases are represented by gray, green and red,
respectively. (Right) 3D biphasic model, with axon and glia

phases, while the geometry and the volume fraction of the glial
matrix is maintained.

The creation of the 3D REV (Figure 2) allows for deriving
effective viscoelastic properties in the axial and transverse
directions.

2.2.Finite element constitutive

relationship of REV

analysis and

An automatic process based on ABAQUS and Python
scripting was employed to homogenize the results of the finite
element calculations. Harmonic shear loading is applied by
imposing shear displacement on exterior opposing boundaries,
similar to the 2D REV [10]. A direct steady-state solver was used
to solve the equations of motion in the frequency domain. The
oscillation frequency of interest is 50 Hz, as this is a common
frequency in use for MRE [1]. The constitutive relationship of
REVs can be expressed as:
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FIGURE 2. Homogenization of axon and myelin composite
from 2D triphasic to 3D biphasic REVs. Yellow arrows show
shear load in transverse (xy) and axial (yz and xz) directions.
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where the (E;ff, Gé,ff) and (Eé}f, Gé}f) are the effective
normal/shear storage modulus and normal/shear loss modulus of
the tissue REV. (¢,¥) and (o,v) are normal/shear strain and
normal/shear stress applied on the REV. Each homogenized REV
is associated with a particular fiber volume fraction (VF). The
complete list of intrinsic material properties of axon and glia is:
Gaxonr Ggiiar Gaxons Gglia- The effective moduli, which are
functions of VF and intrinsic material properties, will be
calculated by finite element analysis.

3. EXPERIMENTS AND RESULTS
3.1.Comparing analysis with 2D REV and 3D REV

The 2D REV is meshed with 4-node bilinear, reduced
integration elements, which requires approximately 800 finite
elements. The 3D REV is meshed with 8-node biquadratic,
reduced integration, hybrid elements, which requires
approximately 28000 finite elements [18]. A direct steady-state
dynamic solver is used to simulate the REV response under a
steady harmonic load of 50 Hz. The load is applied as a
displacement boundary condition on the surface nodes, with a
harmonic displacement parallel to the face of the REV. This
boundary condition results in a pure shear deformation of the
REV, with a shear strain of y=0.01 [10] in the axial plane (xy-
plane) of the 2D and 3D REVs. To reflect the two- and three-
dimensionality of the respective REV interfaces, we consider
distinct boundary conditions. In the 2D REV, there are three
phases axon, myelin, and glia with different geometric
interfaces. Considering the lack of literature data on myelin
properties, the same values are considered for axon and myelin,
with definite boundaries set between them in the computational

model. The myelin and glia elements  (4-node bilinear
elements) share the same nodes. In the 3D REV, the axon and the
myelin become a single phase, so there is no interface between
them. The 3D axon/glia interface extends to the entire length of
the axon. Depending on the contact conditions between the axon
and the glia, there may be different tied elements, at regular or
random intervals, to represent the nodes of Ranvier. Here, we
assume a fully stitched 3D axon/glia interface. Thus, the
elements (8-node biquadratic hybrid elements) are fully tied,
which means that no interfacial slip is allowed along the length
of the axons.

The finite element analysis produces a steady-state
harmonic field where the resulting average complex shear stress
is computed from the reaction forces. These forces are computed
and summed for each phase (glial or axon). As Equation 2
indicates, the effective shear modulus over the REV is computed
by the pure shear stress loading divided by the average shear
strain [10].

The intrinsic material properties for both 2D and 3D
calculations are Gj,,, = 2.15kPa (storage modulus), Gyon =
1.75kPa (loss modulus), Gg;, = 0.85kPa(storage modulus),
and Ggy;, = 0.3kPa(loss modulus) [10-11]. The Poisson ratio is

assumed v = 0.49, which is consistent with the white matter
incompressibility assumption.

The finite element analysis results of the 2D and 3D REVs
illustrate similar global stress distribution (Figure 3). There is a
slight differentiation between the two models at the 2D
axon/myelin/glia or the 3D axon/glia interface. In the 3D REV
model, the tie constrain results in a distinct interfacial reaction
between the two phases which is more subtle in the 2D REV
(common node) model. In spite of the local interface difference,
the global stress minima and maxima are concentrated on the
same areas within the two REV models. This result supports the
consistency of 2D and 3D REV models' behavior in the axial (xy-
plane) direction. The difference in sub-region around the
axon/glia interface indicates the 3D REV sensitivity to the
contact information between axon and glia mater.

3.2.3D REV sensitivity analysis
The purpose of the sensitivity analysis is to systematically study

the effect of intrinsic properties (Gaxon, Ggiier Gaxons Gglia) ON
the effective REV properties (Géff, Gé}f). A total of six

variables are defined here, which are derived from a combination
of the intrinsic material parameters and the effective properties

of REV: Gerriyay/Ggiia » Geppixzy/Ggiia » Gefroeyy/ Gatia
Gerriyzy! Gatias Gefrixen/Gauia> Geffexyy/Ggiia» Where the 'xy,
'yz', and 'xz' are the associated shear moduli's directions.
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(a) (b)

FIGURE 3. Shear stress distribution for (a) 2D REV and (b) 3D
REV in transverse (xy-plane) direction. The local stress
distribution is smoother in the 2D axon/glia interface where the
REV is triphasic the elements share the same 4-nodes,
contrasting the 3D case of the tied 8-node lumped fiber with 8-
node glial elements. The global shear stress distribution is
similar for both cases.

Results are plotted in Figure 4, where a logarithmic scale is
used for the Gixon/Ggiiq and Ggyon/Ggliq axes (ranging from
1 to 100). Note that the independent variables Ggyxon/Ggiiq and
Ga'xon/Gglia use the same axis. The range starts from 1 to reflect

the fact that the axons are stiffer than the glia [15]. The VF of
REV is kept at 0.7. The influence of each independent variable
on the resulting effective moduli of REV is studied.

Under the correspondence principle, there exist exact
solutions for the effective axial moduli, Ggrrgriary and
Geff(axian» Of unidirectional composites [19]:

Gaxon A+VF)+G g5 (1-VF)

Gefr(axia) = Ggia =7 7 “
ef f(axia glia Gaxon(1-VF)+Gl 1 (1+VF)
1 n
G A Gaxon(1+VF)+Gglia(1—VF) (5)
eff(axial) 9Ua Gl o (1=VF)+G ) (1+VF)

The effective shear moduli in the transverse direction
(Gerrxyy/Ggia and Ggrrpixyy/Ggriq ) increase monotonically
and are more sensitive t0 Ggyon/Ggria and  Ggxon/Gglia
relative to the axial ones. Note the logarithmic scale in the
abscissa. When the axon is stiffer than the glial matrix, the
effective transverse shear moduli are larger than the axial. The
effective shear moduli ratios pairs in the axial direction
match: Géff(yz)/ G!;zia = G(;ff(xz)/ G_L,;lia and Gé}f(yz)/ g;Ilia
Gefrixzy/ Ggria Which is expected due to the symmetries in the
REV. The computed values of G.rriaxiany/Ggiia and

1%

Geff(axiany/Ggria match with the exact solutions shown in
Equations (4-5).
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FIGURE 4. Sensitivity analysis of effective properties of the 3D
REV for VF=0.7. The yellow arrows in the REVs represent the
three shear loading directions. G.rr(axian, Geff(axiar d€note
effective moduli of unidirectional composites. [19] (Although
Gepy is noted for the inset the same applies for G, .)

In closing, we have to make the following cautionary
remark. Under the assumptions made in this paper (isotropic
homogeneous and linear viscoelastic constituent materials,
perfectly bonded interfaces), the 2D REV model [10] combined
with the Equations [4-5] are sufficient to estimate all the
effective shear moduli of a periodic unidirectional composite.
The last conclusion is not self-evident if any of the assumptions
are violated, and this justifies the utility of 3D REV models.

4. CONCLUSIONS

Shear elastography methods require the interpretation of the
shear deformation data in order to extract tissue effective
properties. This interpretation is based on tissue constitutive
models. We have pursued the further development of the
simplest tissue model on the scale of the single axon, consisting
of unidirectional composite with axonal fibers embedded in a
glial matrix. On the basis the results of a prior 2D study [10], a
biphasic 3D REV model was deployed. The consistency of the
stress distribution between 2D REV and 3D REV models in the
axial plane (parallel to the fiber direction), as well as the
agreement with exact result of the transverse moduli, bolsters the
validity of the results.

The sensitivity analysis reveals that the effective transverse
modulus is higher than, and increases faster than, its effective
axial counterpart as the axon/glia moduli ratio increases at
VF=0.7. We proved our hypothesis that WM is anisotropic in
shear, and this anisotropy can be related to the intrinsic
mechanical properties (of its constituents) and the
microstructure. In the future, the 3D REV model can be utilized
as a base unit of large-scale WM models, including additional
geometric information in brain tissue, such as the axon tortuosity
and axon-axon tethering via myelin.
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