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ABSTRACT 
White matter (WM) characterization is challenging due to 

its anisotropic and inhomogeneous microstructure that 
necessitates multiscale and multi-modality measurements. Shear 
elastography is one such modality that requires the accurate 
interpretation of 3D shear strain measurements, which hinge on 
developing appropriate constitutive tissue models. Finite 
element methods enable the development of such models by 
simulating the shear response of representative elemental 
volumes (REV). We have developed triphasic (axon, myelin, 
glia), 2D REVs to simulate the influence of the intrinsic 
viscoelastic property and volume fraction of each phase. This 
work constitutes the extension of 2D- to 3D-REVs, focusing on 
the effect of the intrinsic material properties and their 3D 
representation on the viscoelastic response of the tissue. By 
lumping the axon and myelin phases, a flexible 3D REV 
generation and analysis routine is then developed to allow for 
shear homogenization in both the axial and transverse directions. 
The 2D and 3D models agree on stress distribution and total 
deformation when 2D cross-sectional snapshots are compared. 
We also conclude that the ratio of transverse to axial transverse 
modulus is larger than one when axon fibers are stiffer than the 
glial phase.   
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1. INTRODUCTION 

Shear elastography methods based on MRI [1] or ultrasound 
[2]  involve acquiring shear deformation data, followed by 

solving an inverse problem (based on a tissue constitutive model) 
to estimate the local mechanical properties, such as stiffness. The 
interpretation of these voxel-averaged (effective) properties in 
terms of tissue microarchitecture and intrinsic properties of its 
constituent cells requires accurate tissue-based models. White 
matter (WM) is known to be mechanically anisotropic under 
shear on the millimeter scale, especially in regions with high 
directional coherence, such as the corpus callosum (CC) [3]. By 
separately exciting the brain in two different directions, the 
consequences of the mechanical anisotropy of WM have been 
shown to be very important [4]. While the microstructure 
anisotropy and diffusional anisotropy are well accepted, the 
mechanical anisotropy of WM is still debated. Budday et al. [5] 
concluded that the WM was “not notably anisotropic” at the 
macroscopic scale after performing mechanical testing ex-vivo 
on large human WM sections. In an ex-vivo magnetic resonance 
imaging elastography (MRE) experiments on porcine brain WM 
blocks surrounding the CC, Schmidt at al. [6] reported that that 
the axial shear modulus was greater than the transverse, based on 
a homogeneous inversion model. Lastly, Romano et al. [7] used 
an orthotropic model to interpret measurements of in-vivo MRE 
of the human cortical spinal tract (CST). Using a waveguide 
inversion method that allows to extract a single shear modulus 
in-vivo for the entire CST WM matter track, they found that the 
transverse shear stiffness is greater than the axial. Finally, using 
an inverse transversely isotropic scheme to extract effective 
shear viscoelastic properties from multi-excitation MRE, Gallo 
et al. [8] showed that the ratio of transverse to axial stiffness 
remains greater than 1 in the human CC. Adopting appropriate 
WM anisotropic models is not only important in brain aging 
studies [8], but also in traumatic brain injury studies [9]. 
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Our working hypothesis is that WM is anisotropic in shear, 
and this anisotropy can be related to the intrinsic mechanical 
properties (of its constituents) and the microstructure. WM 
consists of a complex network of axon bundles, and each axon 
in ensheathed in myelin that is produced by glial cells. The 
disagreement in the WM anisotropy properties reported in the 
literature can be attributed to differences in experimental 
methodologies or tissue constitutive models. In order to resolve 
this issue, we adopt a bottom-up approach: build a 
micromechanical WM tissue model and then extract the effective 
properties directly by mimicking the mechanical excitation 
typical of elastography. One challenge here is to choose the 
simplest, most economic, model possible to account for those 
microstructural and mechanical elements that pertain to our 
hypothesis. Rather than starting from an a priori constitutive 
model, we focus here on extending the WM tissue model of 
Sullivan et al. [10] in 3D. This process is a culmination of prior 
work [11-15]. The development of the WM tissue model starts 
by homogenizing representative elemental volumes (REVs) of 
the microstructure of myelinated brain WM. In [11-12], 
homogenized REVs (carriers of material properties and 
geometric information) are assembled to form finite element 
models based on typical fiber volume fractions calculated by the 
relative distance between the elements and axonal traces. Our 
group has also developed another set of WM models that account 
for discrete axons with tortuous paths and distinct kinematic 
coupling (ties at random intervals along the axon) [13-14]. Such 
models recapitulate the distribution of axon tortuosity and myelin 
coupling that we discerned from our in-situ characterizations 
[15].  
 

Seeking to complete the study of the effect of microstructure 
on WM shear anisotropy, we return to the simplest 
micromechanical model of WM, which involves a unidirectional 
composite with axon fibers embedded in a glial matrix. Our prior 
study [10] involved the mechanics of the transverse plane 
(perpendicular to the axon direction), so it was only capable of 
capturing the transverse effective shear moduli. We need to 
extend the model to 3D in order to explore the response to other 
shear loading modes. Also, [10] involved a triphasic (axon, 
myelin, glia) REV, but the sensitivity analysis revealed that the 
effective moduli of REVs are very sensitive to the fiber volume 
fraction (which is the sum of the axon and myelin volume 
fractions), and the intrinsic viscoelastic moduli of the glial phase. 
It is therefore important to preserve these parameters as we go 
from 2D to 3D. In the following we perform a systematic study 
of the harmonic response of a unidirectional composite REV 
loaded in the transverse and axial plane (parallel to the axon 
direction). There is no published computational study (to our 
knowledge) of such models under harmonic shear. Arbogast and 
Margulies [16] employed approximate expressions for the 
transverse moduli, while Abolfathi et al. [17] studied viscoelastic 
relaxation. To our knowledge, the tissue model presented here is 
used for the first time to model elastography-relevant harmonic 
shear stress on the cell level.  

2. MATERIALS AND METHODS 
2.1. Homogenization of axon and myelin composite 

 
The three-dimensional model was generated by extruding a 

two-dimensional representation of brain white matter consisting 
of regular hexagonal array of parallel axons with a uniform 
myelin sheath (Figure 1). The two-dimensional REV includes 
three phases, axon (green), myelin (red), and glial matrix (gray). 
Using volume fractions of each phase that mimic realistic values 
for the brain, the sensitivity analysis reported in [10] revealed 
that the glial matrix properties have the strongest effect on the 
effective shear response of the material contained in the REV. 
Therefore, we opt for lumping the two phases (axon and myelin) 
into one phase, hereafter renamed “axon” for simplicity, and 
maintaining the geometry of the glial matrix. The new 3D REV 
of the resulting composite (homogenized) biphasic model is 
depicted in Figure 1. 

 
 

 
 
 
 
 

 
FIGURE 1. (Left) 2D triphasic REV under pure shear. The glia, 
axon, and myelin phases are represented by gray, green and red, 
respectively. (Right) 3D biphasic model, with axon  and glia 
phases, while the geometry and the volume fraction of the glial 
matrix is maintained. 
 
The creation of the 3D REV (Figure 2) allows for deriving 
effective viscoelastic properties in the axial and transverse 
directions.  
 
 
2.2. Finite element analysis and constitutive 

relationship of REV 
An automatic process based on ABAQUS and Python 

scripting was employed to homogenize the results of the finite 
element calculations. Harmonic shear loading is applied by 
imposing shear displacement on exterior opposing boundaries, 
similar to the 2D REV [10]. A direct steady-state solver was used 
to solve the equations of motion in the frequency domain. The 
oscillation frequency of interest is 50 Hz, as this is a common 
frequency in use for MRE [1]. The constitutive relationship of 
REVs can be expressed as: 

txy 
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Myelin 
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FIGURE 2. Homogenization of axon and myelin composite 
from 2D triphasic to 3D biphasic REVs. Yellow arrows show 
shear load in transverse (xy) and axial (yz and xz) directions. 
 

𝜎 = #𝐸!""# (𝑉𝐹) + 𝑖𝐸!""## (𝑉𝐹)+ 𝜀           (1) 
 

𝜏 = #𝐺!""# (𝑉𝐹) + 𝑖𝐺!""## (𝑉𝐹)+𝛾           (2) 
 

	𝑉𝐹 = $%&'()	%+	,-%./01)&2.
$%&'()	%+	34$

= $%&'()	%+	5'(6)7	829):
$%&'()	%+	34$

        (3) 

 
where the 1𝐸!""# , 𝐺!""# 3  and 1𝐸!""## , 𝐺!""## 3  are the effective 
normal/shear storage modulus and normal/shear loss modulus of 
the tissue REV. (𝜀, 𝛾) and (𝜎, 𝑣) are normal/shear strain and 
normal/shear stress applied on the REV. Each homogenized REV 
is associated with a particular fiber volume fraction (VF). The 
complete list of intrinsic material properties of axon and glia is: 
𝐺;<=># ,	 𝐺?@A;# , 𝐺;<=>## , 𝐺?@A;## . The effective moduli, which are 
functions of VF and intrinsic material properties, will be 
calculated by finite element analysis. 
 
 
3. EXPERIMENTS AND RESULTS 
3.1. Comparing analysis with 2D REV and 3D REV 

The 2D REV is meshed with 4-node bilinear, reduced 
integration elements, which requires approximately 800 finite 
elements. The 3D REV is meshed with 8-node biquadratic, 
reduced integration, hybrid elements, which requires 
approximately 28000 finite elements [18]. A direct steady-state 
dynamic solver is used to simulate the REV response under a 
steady harmonic load of 50 Hz. The load is applied as a 
displacement boundary condition on the surface nodes, with a 
harmonic displacement parallel to the face of the REV. This 
boundary condition results in a pure shear deformation of the 
REV, with a shear strain of γ=0.01 [10] in the axial plane (xy-
plane) of the 2D and 3D REVs. To reflect the two- and three-
dimensionality of the respective REV interfaces, we consider 
distinct boundary conditions. In the 2D REV, there are three 
phases axon, myelin, and glia with different geometric 
interfaces. Considering the lack of literature data on myelin 
properties, the same values are considered for axon and myelin, 
with definite boundaries set between them in the computational 

model. The myelin and glia elements  (4-node bilinear 
elements) share the same nodes. In the 3D REV, the axon and the 
myelin become a single phase, so there is no interface between 
them. The 3D axon/glia interface extends to the entire length of 
the axon. Depending on the contact conditions between the axon 
and the glia, there may be different tied elements, at regular or 
random intervals, to represent the nodes of Ranvier. Here, we 
assume a fully stitched 3D axon/glia interface. Thus, the 
elements (8-node biquadratic hybrid elements) are fully tied, 
which means that no interfacial slip is allowed along the length 
of the axons.  

 
The finite element analysis produces a steady-state 

harmonic field where the resulting average complex shear stress 
is computed from the reaction forces. These forces are computed 
and summed for each phase (glial or axon). As Equation 2 
indicates, the effective shear modulus over the REV is computed 
by the pure shear stress loading divided by the average shear 
strain [10]. 

 
The intrinsic material properties for both 2D and 3D 

calculations are 𝐺;<=># = 2.15𝑘𝑃𝑎	(storage modulus),	𝐺;<=>## =
1.75𝑘𝑃𝑎		(loss	modulus), 𝐺?@A;# = 0.85𝑘𝑃𝑎(storage modulus), 
and 𝐺?@A;## = 0.3𝑘𝑃𝑎(loss modulus) [10-11]. The Poisson ratio is 
assumed 𝜈 = 0.49, which is consistent with the white matter 
incompressibility assumption. 

 
The finite element analysis results of the 2D and 3D REVs 
illustrate similar global stress distribution (Figure 3). There is a 
slight differentiation between the two models at the 2D 
axon/myelin/glia or the 3D axon/glia interface. In the 3D REV 
model, the tie constrain results in a distinct interfacial reaction 
between the two phases which is more subtle in the 2D REV 
(common node) model. In spite of the local interface difference, 
the global stress minima and maxima are concentrated on the 
same areas within the two REV models. This result supports the 
consistency of 2D and 3D REV models' behavior in the axial (xy-
plane) direction. The difference in sub-region around the 
axon/glia interface  indicates  the 3D REV sensitivity to the  
contact information between axon and glia mater.  
 
3.2. 3D REV sensitivity analysis 
The purpose of the sensitivity analysis is to systematically study 
the effect of intrinsic properties (𝐺;<=># ,	 𝐺?@A;# , 𝐺;<=>## , 𝐺?@A;## ) on 
the effective REV properties 1𝐺!""# , 𝐺!""## 3 . A total of six 
variables are defined here, which are derived from a combination 
of the intrinsic material parameters and the effective properties 
of REV: 𝐺!""(CD)# /𝐺?@A;# , 𝐺!""(<D)# /𝐺?@A;# , 𝐺!""(<C)# /𝐺?@A;# , 
𝐺!""(CD)## /𝐺?@A;# , 𝐺!""(<D)## /𝐺?@A;# , 𝐺!""(<C)## /𝐺?@A;# , where the 'xy', 
'yz', and 'xz' are the associated shear moduli's directions. 
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            (a)                      (b) 
FIGURE 3. Shear stress distribution for (a) 2D REV and (b) 3D 
REV in transverse (xy-plane) direction. The local stress 
distribution is smoother in the 2D axon/glia interface where the 
REV is triphasic the elements share the same 4-nodes, 
contrasting the 3D case of the tied 8-node lumped fiber with 8-
node glial elements. The global shear stress distribution is 
similar for both cases. 
 

Results are plotted in Figure 4, where a logarithmic scale is 
used for the 𝐺;<=># /𝐺?@A;#  and 𝐺;<=>## /𝐺?@A;##  axes (ranging from 
1 to 100). Note that the independent variables 𝐺;<=># /𝐺?@A;#  and 
𝐺;<=>## /𝐺?@A;##  use the same axis. The range starts from 1 to reflect 
the fact that the axons are stiffer than the glia [15].  The VF of 
REV is kept at 0.7. The influence of each independent variable 
on the resulting effective moduli of REV is studied.  

 
Under the correspondence principle, there exist exact 

solutions for the effective axial moduli, 𝐺!""(;<A;@)#∗  and 
𝐺!""(;<A;@)##∗ , of unidirectional composites [19]:  

 

𝐺!""(;<A;@)#∗ = 𝐺?@A;# G!"#$% (H/IJ)/G&'(!
% (HKIJ)

G!"#$% (HKIJ)/G&'(!
% (H/IJ)

      (4) 

 

𝐺!""(;<A;@)##∗ = 𝐺?@A;## G!"#$%% (H/IJ)/G&'(!
%% (HKIJ)

G!"#$%% (HKIJ)/G&'(!
%% (H/IJ)

      (5) 

 
The effective shear moduli in the transverse direction 

(𝐺!""(<C)# /𝐺?@A;#  and 𝐺!""(<C)## /𝐺?@A;# ) increase monotonically 
and are more sensitive to 𝐺;<=># /𝐺?@A;#  and 𝐺;<=>## /𝐺?@A;##  
relative to the axial ones. Note the logarithmic scale in the 
abscissa. When the axon is stiffer than the glial matrix, the 
effective transverse shear moduli are larger than the axial. The 
effective shear moduli ratios pairs in the axial direction 
match: 	𝐺!""(CD)# /𝐺?@A;# = 𝐺!""(<D)# /𝐺?@A;# and 𝐺!""(CD)## /𝐺?@A;## 			=
	𝐺!""(<D)## /𝐺?@A;##  which is expected due to the symmetries in the 
REV. The computed values of 𝐺!""(;<A;@)#∗ /𝐺?@A;#  and 
𝐺!""(;<A;@)##∗ /𝐺?@A;#  match with the exact solutions shown in 
Equations (4-5).  

 
 

FIGURE 4. Sensitivity analysis of effective properties of the 3D 
REV for VF=0.7. The yellow arrows in the REVs represent the 
three shear loading directions. 𝐺!""(;<A;@),#∗  𝐺!""(;<A;@)##∗ denote 
effective moduli of unidirectional composites. [19] (Although 
𝐺!""#  is noted for the inset the same applies for 𝐺!""## .) 
 

In closing, we have to make the following cautionary 
remark. Under the assumptions made in this paper (isotropic 
homogeneous and linear viscoelastic constituent materials, 
perfectly bonded interfaces), the 2D REV model [10] combined 
with the Equations [4-5] are sufficient to estimate all the 
effective shear moduli of a periodic unidirectional composite. 
The last conclusion is not self-evident if any of the assumptions 
are violated, and this justifies the utility of 3D REV models. 
 
 
4. CONCLUSIONS 

Shear elastography methods require the interpretation of the 
shear deformation data in order to extract tissue effective 
properties. This interpretation is based on tissue constitutive 
models. We have pursued the further development of the 
simplest tissue model on the scale of the single axon, consisting 
of unidirectional composite with axonal fibers embedded in a 
glial matrix. On the basis the results of a prior 2D study [10],  a 
biphasic 3D REV model was deployed. The consistency of the 
stress distribution between 2D REV and 3D REV models in the 
axial plane (parallel to the fiber direction), as well as the 
agreement with exact result of the transverse moduli, bolsters the 
validity of the results.  
 

The sensitivity analysis reveals that the effective transverse 
modulus is higher than, and increases faster than, its effective 
axial counterpart as the axon/glia moduli ratio increases at 
VF=0.7. We proved our hypothesis that WM is anisotropic in 
shear, and this anisotropy can be related to the intrinsic 
mechanical properties (of its constituents) and the 
microstructure. In the future, the 3D REV model can be utilized 
as a base unit of large-scale WM models, including additional 
geometric information in brain tissue, such as the axon tortuosity 
and axon-axon tethering via myelin. 
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