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1 Introduction

Even though neutrinos were first detected more than six decades ago, they remain among
the most mysterious particles in nature, with many of their fundamental properties still to
be determined. In particular, although oscillation experiments have provided convincing
evidence that neutrinos have non-vanishing masses, these measurements are only sensitive
to the mass-squared splittings and consequently the spectrum of neutrino masses remains
unknown. The lifetimes of the neutrinos are also poorly constrained, especially in comparison
to the other particles in the Standard Model (SM). The determination of the masses and
the lifetimes of these mysterious particles remain some of the most important open problems
in fundamental physics.

The fact that cosmic neutrinos are among the most abundant particles in the universe,
contributing significantly to the total energy density at early times, provides an opportunity
to measure their properties. In particular, the evolution of the cosmological density
fluctuations depends on∑mν , the sum of neutrino masses. This translates into characteristic
effects on the cosmic microwave background (CMB) and large-scale structure (LSS) [1, 2]
(for reviews see [3–6]), that are large enough to allow the sum of neutrino masses to be
determined in the near future. This determination is based on the observation that massive
neutrinos contribute differently to cosmological observables than either massless neutrinos or
cold dark matter (CDM). At early times, while still relativistic, massive neutrinos contribute
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to the energy density in radiation, just as in the case of massless neutrinos. However, after
neutrinos become non-relativistic, their energy density redshifts as matter and therefore
contributes more to the expansion rate than massless neutrinos, which would continue
to redshift as radiation. As a result, over a given redshift span, the higher expansion
rate reduces the time available for the growth of matter density perturbations. However,
since massive neutrinos retain pressure until late times, their contribution to the density
perturbations on scales below their free streaming lengths is too small to compensate for
the shorter structure formation time. Therefore, if neutrinos become non-relativistic after
recombination, the net effect of non-vanishing neutrino masses is a suppression of the matter
power spectrum and the CMB lensing potential. Based on this, current observations are
able to place a bound on the sum of neutrino masses, ∑mν . 0.12 eV [7]. It is important
to note that this result assumes that neutrinos are stable on timescales of order the age
of the universe. In scenarios in which the neutrinos decay [8, 9], or annihilate away into
lighter species [10, 11] on timescales shorter than the age of the universe, this bound is no
longer valid and must be reconsidered.

Cosmological observations can also be used to place limits on the neutrino lifetime. In
the case of neutrinos that decay to final states containing photons, the bounds on spectral
distortions in the cosmic microwave background (CMB) can be translated into limits on
the neutrino lifetime, τν & 1019 s for the larger mass splitting and τν & 4× 1021 s for the
smaller one [12]. In the case of decays to invisible final states, the limits are much weaker.
For neutrinos that decay while still relativistic, the decay and inverse decay processes can
prevent neutrinos from free streaming. Measurements of the CMB power spectra sets a lower
bound on the neutrino lifetime, τν ≥ 4× 106 s (mν/0.05eV)5, in the case of decay into dark
radiation [13] (for earlier work see [14–17]). In the case of non-relativistic neutrino decays
into dark radiation, the energy density of the decay products redshifts faster than that of
stable massive neutrinos. Unstable neutrinos therefore have less of an effect on structure
formation than stable neutrinos of the same mass. Consequently, cosmological observables
depend both on the masses of the neutrinos and their lifetimes, and heavier values of ∑mν

may still be allowed by the data provided the neutrino lifetime is short enough. In ref. [18],
Planck 2015 and LSS data were used to place constraints on the neutrino mass as a function
of the lifetime, and found that values of∑mν as large as 0.9 eV were still allowed by the data.
Future LSS measurements at higher redshifts may be able to break the degeneracy between
the neutrino mass and lifetime and measure these parameters independently [19]. It is worth
noting that there are also bounds on the neutrino lifetime from Supernova 1987A [20],
solar neutrinos [21–24], astrophysical neutrinos measured at IceCube [25–30], atmospheric
neutrinos and long baseline experiments [31–34]. However,these constraints are in general
much weaker than the limits from cosmology.

In this paper we revisit the scenario in which neutrinos decay into dark radiation
after becoming non-relativistic and obtain updated limits based on the newer data from
Planck 2018. In order to take advantage of the greater precision of the new data, the analysis
we perform is also more accurate. We find that, under the assumption that neutrinos
decay after becoming non-relativistic, the neutrino mass bound from Planck 2018 data (in
combination with BOSS baryon acoustic oscillation (BAO) data and Pantheon SN1a data)
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is relaxed to ∑mν . 0.42 eV (95% C.L.).1 While this represents a remarkable relaxation
of the constraints as compared to the case of stable neutrinos, we note that it is much
stronger than the limit derived from Planck 2015 data for the same decaying neutrino
scenario, ∑mν . 0.9 eV at (95% C.L.). We show that the improvement of the bound
arises primarily from the more precise low-` polarization data from Planck 2018, which
allows an improved determination of the optical depth to reionization τreio, thereby breaking
the correlation with ∑mν that appears (for relatively high neutrino masses) through the
impact of neutrinos on the overall height of the acoustic peaks (i.e. the “early integrated
Sachs-Wolfe effect”) [4].

Besides using up-to-date cosmological data, we also improve the analysis from ref. [18] by
incorporating higher order corrections due to neutrino decays into the Boltzmann equations
that describe the evolution of Universe’s energy and metric fluctuations. Recently, ref. [13]
provided a complete set of Boltzmann equations for the neutrino decay, but did not conduct
Markov Chain Monte Carlo (MCMC) runs necessary to calculate updated neutrino bounds.
In this work, we derive Boltzmann equations exactly valid in the absence of ‘inverse-decays’
and quantum statistics. For the numerical implementation, we follow a consistent Tdec/mν

expansion, where Tdec is the temperature at the time of the decay, so that the analysis is
under control when neutrinos decay after become non-relativistic.

This paper is organized as follows. In section 2, we present a summary of constraints
on the parameter space of decaying neutrinos. In section 3, we derive the set of Boltzmann
equations to describe neutrino decay that are valid in the non-relativistic regime and compare
our improved analysis to past work. In section 4, we present a MCMC analysis of the decaying
neutrino scenario against up-to-date cosmological data. Finally, we conclude in section 5.

2 Parameter space of decaying neutrinos

In this section we outline the constraints on the mass and lifetime of neutrinos decaying
into dark radiation. As explained in the introduction, current cosmological observables only
place limits on a combination of the sum of neutrino masses and their lifetime. Therefore, in
this study we will map out the constraints in the two-dimensional parameter space spanned
by the sum of neutrino masses (∑mν) and the neutrino decay width (Γν), as shown in
figure 1. In our analysis we assume that all three neutrinos are degenerate in mass. This is
a good approximation because the current bounds on ∑mν are larger than the observed
mass splittings (see figure 1). We further assume that all three neutrinos have the same
decay width Γν . Since the mixing angles in the neutrino sector are large, this is a good
approximation in many simple models of decaying neutrinos if the spectrum of neutrinos is
quasi-degenerate. While this is a simple parameterization of neutrino decays, our bounds
can easily be applied to specific models, as done in great details in ref. [36].

The CMB can be used to constrain the masses and decay widths of neutrinos that decay
prior to recombination.When neutrinos decay while still relativistic, decay and inverse decay

1It is a factor of two weaker than the constraints advocated in ref. [35], which used a model-independent
approach to constrain the neutrino mass as a function of redshift, but neglected the effect of the daugh-
ter particles.
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Planck 2015

Planck 2018

KATRIN

Γν=H(
anr)

Log scale

Linear scale

mν >T*

CMB neutrino free streaming

Figure 1. The plot shows the current constraints on decaying neutrinos in the
∑
mν−Γν parameter

space. The colored regions are excluded by current data while the white region is allowed. The orange
dashed line represents Γν = H(anr). Our study focuses on the region below this line, meaning decay
happens after neutrinos have become non-relativistic. The grey region shows current constraints on
neutrino mass and lifetime coming from the requirement that neutrinos are free streaming close
to recombination [13]. The light grey region indicates that this bound may not be applicable
when neutrino mass is larger than the temperature of recombination: mν > T∗ ∼ 0.2 eV [13]. Our
analysis excludes the red (blue) region labelled “Planck 2015”(“Planck 2018”) based on the data
(Planck+BAO+Pantheon). The vertical brown line shows the projected KATRIN sensitivity.

can prevent neutrinos from free-streaming. If this happens before recombination, it can
alter the well-known ‘neutrino drag’ effect that manifests as a phase-shift at high-`’s in the
CMB power spectrum [37–40]. Therefore, CMB data can place a constraint on the decay
width of neutrinos. The resulting bound depends on neutrino masses, and was recently
updated in ref. [13], τν ≥ 4× 106 s (mν/0.05 eV)5 . This bound excludes the grey region at
the top of figure 1.

In addition, based on the analysis in this paper, part of the ‘late-decay’ parameter space
can also be excluded based on the gravitational impacts of massive neutrinos on the CMB
and LSS. Through the Monte Carlo study presented in section 4, the blue (red) shaded
region in figure 1 is excluded by the data combination Planck 2018(2015)+BAO+Pantheon.2

2Note that in our analysis we scanned the region between 0 ≤ log10
Γν

km/s/Mpc ≤ 6. In figure 1, we have
extrapolated the bound at log10

Γν
km/s/Mpc = 0 to Γν = 0, because the constraint on

∑
mν is independent of

Γν when Γν � H0.
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The orange dashed line in the figure (Γν = H(anr)) separates the region where neutrinos
decay when non-relativistic from the region where they decay while still relativistic. Here
anr corresponds to the approximate scale factor at the time that neutrinos transition to
non-relativistic, and is defined as 3Tν(anr) = mν . This simple definition is based on the
fact that for relativistic neutrinos at temperature Tν , the average energy per neutrino is
approximately 3Tν . The Hubble scale at anr is given by,

H(anr) = H0
√

Ωm

(∑
mν

9Tν0

)3/2
(2.1)

' 7.5× 105km/s/Mpc
(

H0
68km/s/Mpc

)(Ωm

0.3

)1/2(∑mν

1eV

)3/2(1.5× 10−4eV
Tν0

)3/2
,

where Tν0 is the present neutrino temperature. Since our study focuses on the decay of
neutrinos after they become non-relativistic, we only present constraints below the orange
dashed line. Our analysis shows that ∑mν as large as 0.42 eV is still allowed by the data.

Our results have important implications for current and future laboratory experiments
designed to detect neutrino masses. Next generation tritium decay experiments such as
KATRIN [41] are expected to be sensitive to values of mνe as low as 0.2 eV, corresponding
to ∑mν of order 0.6 eV. Naively, a signal in these experiments would conflict with the
current cosmological bound for stable neutrinos, ∑mν < 0.12 eV. However, since the
unstable neutrino paradigm greatly expands the range of neutrino masses allowed by current
cosmological data, it is interesting to explore whether this scenario can accommodate a
potential signal at KATRIN. In figure 1, we display a brown vertical line ∑mν = 0.6 eV
that corresponds to the expected KATRIN sensitivity. We see that this value of ∑mν is
too large to be accommodated in the non-relativistic decay regime, where our analysis is
valid. However, our result, in combination with those from the ‘relativistic decay’ scenario
studied in ref. [13], leaves open the interesting possibility that neutrinos decaying with
a decay width between log10

Γν
km/s/Mpc ∼ 5.5–9 could reconcile cosmological observations

with a potential detection at KATRIN, thereby opening a large discovery potential for
laboratory experiments. To confirm this conjecture, more work needs to be done to cover
the ‘intermediate’ decay regime (i.e. where neutrinos are neither fully relativistic nor fully
non-relativistic). We leave this for future work.

In recent years, a number of studies have attempted to constrain the neutrino mass
ordering, showing that under the assumption of stable neutrinos, the inverted ordering is
now disfavored by constraints from joint analysis of cosmological and oscillation data [42–47]
(see also refs. [48–51] for a different take) as well as from Ly-α observations [52]. However,
these arguments are centered on the fact that these analysis lead to a constraint on ∑mν at
odds with the lower bound on the sum of neutrino masses in the case of inverted ordering,∑
mν & 0.1 eV. Our result suggests that these constraints are strongly dependent on the

assumption of neutrino stability over cosmological timescales, and therefore that the inverted
ordering is not robustly excluded. It would be very interesting to extend our analysis to
the inclusion of Ly-α data to confirm this conclusion.
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3 Boltzmann equations for massive neutrinos decaying into radiation

In this section, we revisit the set of Boltzmann equations describing the evolution of the
phase space distribution (PSD) of massive particles decaying into daughter radiation. In
our analysis, we assume the decay happens after the neutrinos have become non-relativistic
so that the contribution from inverse decay processes can be safely neglected.

3.1 Derivation of the equations

We denote the phase space distribution of each species as f(q, n̂, ~x, τ), which is a function
of the comoving momentum qn̂, coordinates ~x and conformal time τ . The general time
evolution of f is controlled by the Boltzmann equations,

df

dτ
= ∂f

∂τ
+ dxi

dτ

∂f

∂xi
+ dq

dτ

∂f

∂q
+ dn̂

dτ
· ∂f
∂n̂

= C[f ], (3.1)

where C[f ] is the collision term that includes all the processes involving the species.
This phase space distribution has the leading order contribution f̄(q, τ) that only

depends on q and τ , while perturbations are encoded in ∆f(q, n̂, ~x, τ),

f(q, n̂, ~x, τ) ≡ f̄(q, τ) + ∆f(q, n̂, ~x, τ). (3.2)

Treating ∆f fluctuations about the homogeneous background as higher order perturba-
tions, the zeroth order Boltzmann equations for f̄ take the form

∂f̄

∂τ
= C[f̄ ]. (3.3)

In this work, our focus is on the case in which neutrinos decay after turning non-relativistic.
In this scenario, we can neglect the effects of inverse decay processes and quantum statistics.
The collision term for the neutrino and its daughters are respectively given by [18]

Cν = − a2

2εν

∫ ∏
i

d̄3qi
2εi
|M|2(2π)4δ(4)(q − Σiqi)fν(q), (3.4)

CDj = + a2

2εj

∫
d̄3q

2εν
∏
i 6=j

d̄q3
i

2εi
|M|2(2π)4δ(4)(q − Σiqi)fν(q). (3.5)

Here d̄3q ≡ d3q/(2π)3, ε ≡
√
q2 + a2m2 represents the comoving energy and a is the scale

factor. The label i(j) denotes the ith(jth) daughter. In the case of two body decays to
massless daughters, the amplitude squared |M|2 is simply related to the rest-frame decay
width of the neutrino as |M|2 = 16πΓνmν . From the collision terms above, the background
evolution for decaying neutrinos is given by

∂f̄ν
∂τ

= −aΓν
γ
f̄ν , (3.6)

where Γν is the neutrino decay width and γ is the Lorentz boost factor,

γ=
√
q2+a2m2

ν

(amν) . (3.7)

– 6 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
6

The formal solution to f̄ν(q, τ) from the differential equation eq. (3.6) is

f̄ν(q, τ) = f̄ini(q)e
−Γν

∫ τ
τini

a
γ(a)dτ

′
, (3.8)

where τini denotes the initial conformal time and f̄ini(q) represents the initial momentum
distribution, which we take to be of the Fermi-Dirac form, f̄ini = 1/(eq/Tν0 + 1).

The Boltzmann equations for the individual daughter particles do not have a simple
form, especially when the daughters consist of more than two species. However, since the
daughter particles are taken to be massless in this study the total background density of
daughter radiation can be defined as

ρ̄D ≡ 4πa−4∑
i

∫
dq q3f̄Di(q), (3.9)

where f̄Di is the background phase space distribution of the ith daughter particle. With
the definition in eq. (3.9), regardless of the number of daughter particles and their spins,
the Boltzmann equation for the total background daughter density ρ̄D has the simple form

∂ρ̄D
∂τ

+ 4aHρ̄D = aΓνmν n̄ν , (3.10)

where n̄ν ≡ 4πa−3 ∫ dq q2f̄ν(q).
We now turn to the Boltzmann equations describing the perturbations of the phase space

distribution of decaying neutrinos and their decay products. We work in the synchronous
gauge for which the metric perturbations can be parametrized as [53]

ds2 = a2[−dτ2 + (δij +Hij)dxidxj ]. (3.11)

In Fourier space, Hij is given by

Hij(~k, τ) = k̂ik̂jh(~k, τ) +
(
k̂ik̂j −

1
3δij

)
6η(~k, τ), (3.12)

where ~k is conjugate to ~x and h and η are the two independent scalar metric perturbations.
To obtain the Boltzmann hierarchy, we expand the angular dependence of the perturbations
as a series in Legendre polynomials,

∆f(q, n̂,~k, τ) =
∞∑
`=0

(−i)`(2`+ 1)∆f`(q, k, τ)P`(k̂ · n̂), (3.13)

where P` represents the `th Legendre polynomial. The Boltzmann hierarchy for the
perturbations of the decaying massive neutrinos ∆fν(`) read [18]

∆ḟν(0) = −qk
εν

∆fν(1) + q
∂f̄ν
∂q

ḣ

6 −
a2Γνmν

εν
∆fν(0), (3.14)

∆ḟν(1) = qk

3εν

[
∆fν(0) − 2∆fν(2)

]
− a2Γνmν

εν
∆fν(1), (3.15)

∆ḟν(2) = qk

5εν

[
2∆fν(1) − 3∆fν(3)

]
− q∂f̄ν

∂q

(ḣ+ 6η̇)
15 − a2Γνmν

εν
∆fν(2), (3.16)

∆ḟν(`>2) = qk

(2`+ 1)εν

[
`∆fν(`−1) − (`+ 1)∆fν(`+1)

]
− a2Γνmν

εν
∆fν(`). (3.17)

Here εν =
√
q2 + a2m2

ν indicates the comoving energy of the neutrinos.
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To study the perturbations of the daughter radiation, we focus on the case of two-body
decay. In this case, the phase space distributions of the two massless particles are basically
identical and they can be considered effectively as one species with a single fD. We can
therefore define multipoles FD(`) as in ref. [54],

FD(`) ≡
4π
ρc

∫
dqq3∆fD(`), (3.18)

where ρc is the critical density of Universe today. The Boltzmann hierarchy of the FD(`)
can be written as,

ḞD(0) = −kFD(1) −
2
3 ḣ rD + C0,

ḞD(1) = k

3FD(0) −
2k
3 FD(2) + C1,

ḞD(2) = 2k
5 FD(1) −

3k
5 FD(3) + 4(ḣ+ 6η̇)

15 rD + C2,

ḞD(`>2) = k

(2`+ 1)
[
`FD(`−1) − (`+ 1)FD(`+1)

]
+ C`, (3.19)

where rD ≡ a4ρ̄D/ρc. The terms C` appearing in eq. (3.19) arise from the integrated
daughter collision term in eq. (3.5) expanded in terms of Legendre polynomials. The
expression for C` is given by,

C` = 2i`
∫
dΩk

4π P`(q̂1 ·k̂)
(4π
ρc

∫
dq1q

3
1CD1[q1, q̂1 ·k̂]

)
,

= i`
(

32πmνΓνa2

ρc

)∫
dΩkP`(q̂1 ·k̂)

∫
dq1
2ε1

q3
1

∫
d̄3q2
2ε2

d̄3q

2εν
∆fν(q, q̂ ·k̂)(2π)4δ(4)(q−q1−q2).

(3.20)

The overall factor of two in the equation above arises because we are adding the collision
integrals of the two massless daughters, which are of the same form. In this expression
dΩk represents the differential solid angle along the direction k̂, while q1,2 are the momenta
of daughter particles. The d̄3q2 integral can be easily evaluated using the delta function
corresponding to momentum conservation. In order to perform the integral over dΩk, we
notice that the direction of k̂ enters only via P`(q̂1 · k̂) and ∆fν(q, q̂ · k̂). Now, using the
Legendre expansion of ∆fν(q, q̂ · k̂) in eq. (3.13) and employing the identity∫

dΩkP`(k̂ · q̂)P`′(k̂ · q̂1) =
( 4π

2`+ 1

)
P`(q̂ · q̂1)δ``′ , (3.21)

we can evaluate the dΩk integral to obtain

C` =
(

128π2mνΓνa2

ρc

)∫
d̄3qdq1
8ενε1ε2

q3
1P`(q̂1.q̂)∆fν`(q)(2π)δ(εν − ε1 − ε2). (3.22)

Now, notice that the direction of the neutrino momentum only enters the integrand via
the angle between the neutrino momentum q and the daughter momentum q1, defined as
cos θ1 ≡ q̂ ·q̂1. The energy conserving delta function can be expressed in terms of this angle as

δ(εν − ε1 − ε2) = ε2
qq1

δ (cos θ1 − cos θ∗1) , (3.23)
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where

cos θ∗1 = 2ενq1 − a2m2
ν

2qq1
. (3.24)

The energy conservation restricts the daughter momentum to a range of values (q+
1 , q

−
1 ). The

edges of this range occur when the extreme values, cos θ∗1 = ±1, are reached. For these values,

q±1 = m2
νa

2

2 (εν ± q)
. (3.25)

After integrating over the delta function corresponding to energy conservation, this reduces
to the simpler form,

C` =
(

8πmνΓνa2

ρc

)∫
dq

εν
q∆fν(`)

∫ q−1

q+
1

dq1q1P`

(
2ενq1 − a2m2

ν

2qq1

)
. (3.26)

Eq. (3.26) may also be obtained by taking the appropriate limit of the more general expres-
sion in ref. [13]. The same Boltzmann hierarchy has been derived in the context of warm
matter decaying into dark radiation [55].

Performing the integral over q1, we can obtain the following expressions for the first
few C`’s,

C0 = 4πa2Γνmν

ρc

∫
dqq2∆fν(0),

C1 = 4πa2Γνmν

ρc

∫
dq
q3

εν
∆fν(1),

C2 = 4πa2Γνmν

ρc

∫
dqq2g2(q, εν)∆fν(2),

C3 = 4πa2Γνmν

ρc

∫
dqq2g3(q, εν)∆fν(3). (3.27)

Here the functions g2(q, εν) and g3(q, εν) are given by,

g2(q, εν) ≡ 5
2 −

3
2
ε2
ν

q2 + 3
4

(ε2
ν − q2)2

ενq3 ln
(
εν + q

εν − q

)
,

g3(q, εν) ≡ 25
2
εν
q
− 4q
εν
− 15

2
ε3
ν

q3 + 15
4

(ε2
ν − q2)2

q4 ln
(
εν + q

εν − q

)
. (3.28)

Given the complicated integrals in eq. (3.26), it is technically challenging to keep track
of all the collision terms in the Boltzmann hierarchy. Instead, we choose to keep just the first
few C`’s for ` ≤ `max. The idea behind this approach is that C` is of O((Tdec/mν)`) around
the time of decay. Therefore, for non-relativistic decay (Tdec/mν � 1), it is self-consistent
to set C`>`max = 0 because those terms only have negligible effect on physical observables.
To understand the scaling of C`, we first note that the integral over q in eq. (3.27) receives
most of its support from the region around q ∼ Tν0 because ∆fν(`) inherits features of the
Fermi-Dirac distribution from f̄ini = 1/(eq/Tν0 + 1). Deep in the non-relativistic region,
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q � εν and Tν0 � amν . In this regime, we can employ a Taylor expansion for the functions
g2 and g3 in powers of q/εν to obtain,

g2(q, εν) ≈ 4
5
q2

ε2ν
, g3(q, εν)≈4

7
q3

ε3ν
for (q � εν). (3.29)

Inserting eq. (3.29) above into eq. (3.27), it is straightforward to see that C` ∝ (Tν0/amν)`.
Moreover, if we assume decay happens deep in the non-relativistic region, we will get C` ∝
(Tdec/mν)` when decay happens, where Tdec = Tν0/adec. Therefore, C` is suppressed by pow-
ers of Tdec/mν � 1 for higher `. To further justify this argument, we show in section 3.3 that
setting `max = 2 or `max = 3 makes negligible difference to cosmological observables (see fig-
ure 4). Therefore, we only keep C`≤3 and set C`>3 = 0 in our numerical study for simplicity.

Physically, the expansion in the small parameter Tdec/mν corresponds to perturbing
about the ultra-nonrelativistic limit in which the momentum of the mother particle has
completely redshifted away, so that it has come to rest in the cosmic frame. Energy and
momentum conservation is respected order by order in this expansion. The earlier work [18]
approximated the Boltzmann hierarchy for daughter radiation (eq. (3.19)) by just keeping
C0 and setting all the C`≥1 = 0. It is clear from the above discussion that this is a consistent
approximation to zeroth order in an expansion in the small parameter Tdec/mν . The
authors in ref. [13] argued that the Boltzmann hierarchy for daughter radiation in ref. [18]
does not reproduce the standard decaying CDM scenario and does not respect momentum
conservation. Both criticisms can be addressed by considering the term C1. Since C1 begins
at O(Tdec/mν), we see that the Boltzmann hierarchy in ref. [18] does in fact reproduce the
decaying CDM scenario and respects momentum conservation up to O(Tdec/mν) corrections,
consistent with the approximation. In this limit, the momenta of the daughter particles
arise entirely from the rest mass of the mother. In practice, since the contributions of
neutrinos to the density perturbations are small, we will see that the higher order terms do
not significantly affect the constraints derived in ref. [18] with Planck 2015 data.

3.2 Signatures of the non-relativistic neutrino decay on the CMB spectra

To make this work fully self-contained, we briefly summarize the impact of the non-
relativistic invisible neutrino decays on the CMB spectra, following the discussion in
ref. [18]. In figure 2, we display the residuals in the CMB (lensed) TT, EE and lensing
power spectra, for the sum of neutrino masses ∑mν = 0.6 eV and several decay widths
Log10(Γν/km/s/Mpc) = 0, 2, 4, 6. In all cases, the ΛCDM parameters are set to their
best-fit values from Planck 2018, that is, {100θs = 1.04089, ωcdm = 0.1198, ωb = 0.02233,
ns = 0.9652, ln(1010As) = 3.043, τreio = 0.0540}. Our reference ΛCDM model makes use of
the same parameters and assumes standard massless neutrinos.

For the value of the mass considered (∑mν = 0.6 eV) and at fixed angular size of
the sound horizon θs, neutrino masses primarily impact the lensing spectrum. Indeed, as
they reduce power below the free-streaming scale, they produce a significant matter power
suppression at small scales, which leads to a ∼ 20% reduction in the Cφφ` at large ` (blue curve
in figure 2). Consequently, this power suppression decreases the smoothing in the high-`
part of the TT and EE spectra, which can be seen as ‘wiggles’ in the corresponding plots.

– 10 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
6

Figure 2. Residuals in the CMB lensed TT (upper), EE (middle) and lensing (lower) spectrum for
a fixed value of the neutrino mass and several decay widths. The residuals are taken with respect to
the ΛCDM best-fit parameters from Planck 2018. The ΛCDM parameters are kept fixed in all cases.

In addition, stable neutrinos dilute like non-relativistic matter at late times (ρ̄ν ∼ a−3),
which increases the value of Ωm. As we impose the closure relation Ωm + ΩΛ = 1 at late-
times, this is compensated for by a decrease in ΩΛ (later beginning of Λ-domination), and
thus a reduction in the Late Integrated Sachs-Wolfe effect (LISW), leaving a signature in the
low-` TT spectrum. Furthermore, the modified expansion history H(z) changes quantities
integrated along z, such as τreio, which affects the multipoles at ` ∼ 10 in the EE spectrum.

When a non-negligible Γν is considered (orange, green and red curves in figure 2), one
can see that the aforementioned effects typically become less prominent for earlier decays.
This is particularly true for the high-` part of the lensing spectrum (and consequently
the smoothing at high-` in TT and EE) since decay of neutrinos reduce their impact on
structure formation. The reduction of the effect in the low-` part of the TT and EE spectra
is not entirely monotonic, as intermediate values of Γν can induce additional time variation
in the gravitational potentials (thereby affecting the LISW effect), as well as time variations
in H(z) (thereby affecting τreio). As a result, the ΛCDM limit is reached not only for
small values of ∑mν , but also for high values of Γν . This will be reflected in the MCMC
analysis in section 4, which shows a large positive correlation between both parameters. It
is precisely this degeneracy which relaxes the neutrino mass bounds.
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Figure 3. Redshift evolution of the quantity (ρ̄ν + ρ̄D)/ρ̄ur (where ρ̄ur denotes the energy density of
stable massless neutrinos), which should be equal to 1 in the limit of relativistic decays. We consider
a very small value of the neutrino mass sum,

∑
mν = 0.06 eV, and several values for the decay

width, Log10(Γν/km/s/Mpc). “approx. PSD” refers to the approximated phase space distribution
in eq. (3.30) while “Full PSD” refers to the exact solutions of eq. (3.8).

3.3 Consistency of the implementation of Boltzmann equations

We begin by comparing the approximation used in ref. [18] for the background energy
density of decaying massive neutrinos to the more accurate results obtained by evaluating
the integral in eq. (3.8) numerically. In ref. [18], the phase space distribution of neutrinos
in eq. (3.8) is approximated through the following analytic formula,

f̄ν(q, τ) = f̄ini(q)e−Γνt/γ . (3.30)

As argued in ref. [18], this approximation is valid under the assumption that the decay
happens deep in the non-relativistic regime. To see the difference between the approximation
and the full result, we plot the ratio r ≡ (ρ̄ν + ρ̄D)/ρ̄ur in figure 3, for several values of the
decay width Γν and a fixed value of the total neutrino mass ∑mν = 0.06 eV. Here ρ̄ur
denotes the energy density of stable massless neutrinos. If neutrinos decay while relativistic,
this ratio always gives r ' 1. However, if the decay happens when the neutrinos are already
non-relativistic (ρ̄ν ∼ a−3), then the ratio evolves from r ' 1 to r ∼ a, and will eventually
reach a plateau once all the neutrinos have decayed. From figure 3, we can see that the
approximate formula in eq. (3.30) gradually improves as we go to smaller decay widths
(that is, going deeper into the regime of non-relativistic decays), as expected. The error
in the case of neutrinos decaying right around the time of the non-relativistic transition
(Log10(Γν/[km/s/Mpc]) ' 4 for ∑ 0.06 eV) is around 25%. Nevertheless, as we argue below,
the impact on observables is much smaller given that neutrinos only contribute a small
fraction of the total energy density for masses considered in this work. Not surprisingly,
the approximate formula fails in the relativistic regime, leading to r < 1 at late-times.
Therefore future work focusing on this regime should make use of the exact formula.
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Figure 4. Fractional change in the CMB TT (upper), EE (middle) and lensing (lower) spectrum,
when imposing different prescriptions for the background energy density distribution and Boltzmann
hierarchies. “approx. PSD” refers to the approximate phase space distribution in eq. (3.30) while
“Full PSD” refers to the exact solution of eq. (3.8). “C`” in the plot means we only keep those collision
terms in eq. (3.19). The chosen values of the neutrino mass (

∑
mν = 0.6 eV) and decay width

(Log10(Γν/[km/s/Mpc]) = 5.5) correspond to the case when neutrinos decay close to non-relativistic
transition (Tdec/mν ' 0.3). The gray shaded region indicates Planck 2018 1-σ uncertainties, while
the pink boxes indicate the (binned) cosmic variance.

In figures 4 and 5, we show the effects of various approximations in dealing with
decaying neutrinos (at the background and perturbation level) on the CMB TT, EE and
lensing spectra. We compare the impact of using either the approximated or the exact PSD
of neutrinos discussed above, as well as the impact of only keeping C`≤`max in the Boltzmann
hierarchy of daughter particles in eq. (3.19), where we vary `max from zero to three. We show
the residuals of these approximations with respect to the ‘optimal’ case (i.e. including all
terms up to `max = 3 and the exact background PSD) for a fixed value of the neutrino mass
(∑mν = 0.6 eV) and two different decay widths (Log10(Γν/[km/s/Mpc]) = 5.5 in figure 4
and Log10(Γν/[km/s/Mpc]) = 4 in figure 5). Figure 4 corresponds to decays happening
around the time of the non-relativistic transition, Tdec/mν ' 0.3, where the effects of the
approximations are expected to be largest. Figure 5 on the other hand refers to decays
happening deep in the non-relativistic regime, Tdec/mν ' 0.03. We also show the Planck
2018 1-σ error bars, as well as the (binned) cosmic variance.
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Figure 5. Same as in figure 4, but with a smaller decay width (Log10(Γν/[km/s/Mpc]) = 4),
corresponding to a neutrino decay happening deep in the non-relativistic limit (Tdec/mν ' 0.03).

For decays close to the non-relativistic transition Tdec/mν ' 0.3 shown in figure 4,
we find that the biggest improvement in the CMB TT spectrum occurs when including
C`≤1 (i.e., the contribution from the decaying neutrino bulk velocity) in the Boltzmann
hierarchy of daughter radiation, which impacts the integrated Sachs-Wolfe (ISW) effect
at multipoles ` . 100. On the other hand, the approximate background distribution of
neutrinos does not have a significant effect. For the CMB EE spectrum shown in the same
figure, which is not sourced by the ISW effect, the impact of the approximate background
distribution of neutrinos is comparable to the effect of the approximate perturbed hierarchy.
Nevertheless, one can see that for `max ≥ 2, additional contributions to the daughter
hierarchy have negligible impacts, which justifies our choice of cutting the collision term
C` contribution at `max = 3. Finally for the CMB lensing spectrum, the effects due to the
approximate treatment of the background PSD dominate over the ones due to including
higher order terms in the Boltzmann hierarchy of the dark radiation. This is expected given
that the matter power spectrum suppression scales approximately with ρ̄ν/ρ̄m [2, 4] where
ρ̄m is the total matter density, while neutrino perturbations are very small well below the
free-streaming scale, so that their detailed dynamics is not as important as on larger scales.

The impact of the various approximations in the case of decays deep in the non-
relativistic regime Tdec/mν ' 0.03, displayed in figure 5, is much less visible. In that case,
one can therefore safely neglect C`>0 and consider the approximate PSD, as done in ref. [18].
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4 Updated Monte Carlo analysis of the decaying neutrino scenario

4.1 Details of the analysis

In this section we perform a numerical scan over the parameter space to obtain updated
limits on the neutrino mass and lifetime. We perform comprehensive MCMC analyses with
the MontePython-v33 [56, 57] code interfaced with our modified version of CLASS. We fit
the decaying neutrino model to a combination of the following data-sets:

• The Planck 2018 high-` TT, TE, EE + low-` data TT, EE + lensing data [7]. We
will also compare these results with the use of Planck 2015 data to disentangle the
effects of our improved formalism and that of the new data.

• The BAO measurements from 6dFGS at z = 0.106 [58], SDSS DR7 at z = 0.15 [59],
BOSS DR12 at z = 0.38, 0.51 and 0.61 [60], and the joint constraints from eBOSS
DR14 Ly-α auto-correlation at z = 2.34 [61] and cross-correlation at z = 2.35 [62].

• The measurements of the growth function fσ8(z) (FS) from the CMASS and LOWZ
galaxy samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 [60].

• The Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3 [63].

We adopt wide flat priors on the following six ΛCDM parameters: {ωb, ωcdm, H0, ns, As,
τreio}. We assume three degenerate neutrinos decaying into massless radiation and consider
flat priors on ∑mν/eV and Log10(Γν/[km/s/Mpc]). To accelerate convergence, we split the
parameter space between Log10(Γν/[km/s/Mpc]) ∈ [0.1, 2.5] and Log10(Γν/[km/s/Mpc]) ∈
[2.5, 6.5]. In both cases we take wide priors on ∑mν ∈ [0.06, 1.5] eV. We assume our
MCMC chains to be converged when the Gelman-Rubin criterion R− 1 < 0.05 [64]. In our
baseline analysis, we do not apply any specific cut to the parameter space, even if neutrinos
decay in the relativistic regime (this occurs for low ∑

mν and high Γν). In appendix A, we
investigate the impact of imposing a prior that excludes the parameter space corresponding
to relativistic decay from our analysis and show that the limit at 95% on ∑mν agrees
within a few percent.

4.2 Main results: updated limit on the neutrino mass and lifetime

The results of our analyses are presented in figures 6. For very late decays,
Log10(Γν/[km/s/Mpc]) . 2.5, no relaxation of the constraints on ∑

mν/eV is visible,
in agreement with what was found in ref. [18]. The impact of the new Planck data is
visible as a significantly improved bound on the sum of neutrino mass, namely we find∑
mν < 0.127 eV (95%C.L.), an improvement of about ∼ 35% over 2015 data, in good

agreement with ref. [7]. For Log10(Γν/[km/s/Mpc]) & 2.5, one can see that the bound
relaxes as expected, although not as much with Planck 2018 data as for Planck 2015 data.

Taking the intersect of the non-relativistic decay line as our 2σ limit, we find that
Planck 2018 allows neutrinos with masses up to ∑mν = 0.42 eV. In appendix A, we present

3https://github.com/brinckmann/montepython_public.
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an alternative analysis that directly imposes the non-relativistic decay criterion as a prior
while performing the scan. Marginalizing over all parameters we find the same result,∑
mν < 0.42 eV (95% C.L.). The excellent agreement between these different analyses leads

us to conclude with confidence that, within the regime of non-relativistic decay, values of∑
mν as large as 0.4 eV are still allowed by the data. This bound is significantly stronger

than the limit from Planck 2015 data, for which ∑mν ∼ 0.9 eV was still allowed in the
non-relativistic decay scenario.

Our result also has implications for laboratory searches. For ∑mν = 0.6 eV, the
smallest mass scale that the KATRIN experiment is designed to probe, Planck 2018 data
requires decay rate Γν & 105.5 km/s/Mpc, a constraint roughly one order of magnitude
stronger than from Planck 2015 data. However, this value of the decay rate is now slightly
beyond the regime of validity of our work,4 indicating that, in the event of a neutrino mass
discovery at KATRIN, a more involved analysis including inverse-decays would be necessary
to confirm that the decay scenario can reconcile laboratory and cosmological measurements.

4.3 Comparison with former results and the impact of Planck 2018 data

Comparing with the constraints presented in ref. [18] for Planck 2015, we find that, while the
impact of our improved treatment is clearly visible in the CMB power spectra (and will be
relevant for future experiments), it has only a marginal impact on the constraints, and our
bounds are in very good agreement with those derived in ref. [18], which only included the
leading order term in the daughter radiation hierarchy.5 The bulk of the improvement is due
to the newest Planck 2018 data and can be understood as follows. As shown in figure 2, for
the masses we consider, the main effect is an almost scale independent suppression of CMB
lensing spectrum. This suppression can be compensated for by increasing the primordial
amplitude As or by adjusting the matter density ωcdm (see ref. [65] for a discussion of the
correlation between {∑mν , As, τreio, ωcdm}). Due to the well-known degeneracy between
As and e−2τreio , Planck 2015 data, which was limited in polarization, were unable to place
a tight constraint on As, and thus the constraining power on the sum of neutrino mass
and lifetime was limited. The precise measurements of low-` polarization from Planck 2018
leads to constraints on τreio that are tighter by a factor of two than those from Planck 2015.
As a result, parameters degenerate with τreio such as As are now much better constrained.
Consequently, the constraints on the sum of neutrino mass and lifetime have significantly
improved with Planck 2018 data. To confirm this simple argument, we perform another
MCMC run with Planck 2015 data and a tight gaussian prior on τreio = 0.0540± 0.0074,
chosen to match the optical depth to reionization reconstructed from Planck 2018. Given
that the constraints on ∑mν are independent of Γν below Γν . 103, and the scaling above

4For
∑

mν = 0.6 eV and assuming degenerate neutrino masses, the non-relativistic condition requires
Γν < 105.3 km/s/Mpc.

5Let us note that the implementation of the BAO/fσ8 DR12 likelihood used in ref. [18] within the
MontePython code had an issue that led to constraints on

∑
mν that were somewhat milder than the true

bounds. MontePython has since then been corrected, leading to an improvement on the constraints on the
stable/long-lived (Γν < 103 km/s/Mpc) case by about 20%. However, we have verified that this bug had no
impact in the short-lived case (Γν > 102.5 km/s/Mpc).
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Figure 6. 2D posterior distribution of the decaying neutrino model reconstructed from the analysis
of BAO + FS + Pantheon together with either Planck 2015 or Planck 2018 data. In the top panel,
we show the correlation with other cosmological parameters.

Γν . 105.5 is monotonic, we focus on the parameter space Log10(Γν/[km/s/Mpc]) ∈ [3, 5.5]
to accelerate convergence. Our results are presented in figure 7, where one can see that
this simple prescription leads to constraints that are very similar to those from the full
Planck 2018 data. We attribute the remaining differences to the additional constraining
power of Planck 2018 data on the parameters ωcdm and ωb, which are mildly correlated
with ∑mν (see figure 6, top panel). Note that our constraints are a factor of two weaker
than those advocated in ref. [35], which performed a ‘model-independent’ reconstruction of
the neutrino mass as a function of redshift, but neglects the decay products. As we show
here, including details about the daughter radiation is necessary to accurately compute
the effect of neutrino decays even in the non-relativistic regime. Finally, as discussed in
refs. [19, 65], a combination of CMB data with future tomographic measurements of the
power spectrum by DESI [66] or Euclid [67], and an improved determination of the optical
depth to reionization by 21-cm observations with SKA [68, 69], could greatly increase the
sensitivity of cosmological probes to neutrino masses and lifetimes.
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Figure 7. Posterior distribution of
∑
mν and Log10(Γν/[km/s/Mpc]) with Planck 2018 and Planck

2015 + a primer on τreio from Planck 2018. The agreement of the posteriors shows the dominant
constraining power on

∑
mν and Log10(Γν/[km/s/Mpc]) comes from a precise measurement of τreio

from Planck 2018.

5 Conclusions

Cosmological observations are known to set the strongest constraints on the sum of neutrino
masses. Yet, the existing mass bound from CMB and LSS measurements, which assumes that
neutrinos are stable, is significantly weakened if neutrinos decay. In this work, we provide
up-to-date limits on the lifetime of massive neutrinos that decay into dark radiation after
becoming non-relativistic, from a combination of CMB, BAO, growth factor measurements,
and Pantheon SN1a data.

Compared to the earlier analysis [18], we have incorporated higher-order corrections up
to O((Tdec/mν)3) when solving the dark radiation perturbations, and also performed the full
calculation of the background energy density of the decaying neutrino using eq. (3.8). The
more precise treatment of the Boltzmann equations and the background energy evolution
in our MCMC study improves the coverage of the case when the neutrinos decay early so
that their average momenta are close to their masses. As shown in figure 5, if neutrinos
decay when having Tν � mν/3, the inclusion of higher moment perturbations C`≥2 gives
a negligible change to the power spectra as compared to the experimental uncertainties.
However, the complete calculation of the neutrino energy does improve the prediction for the
power spectrum significantly from the approximate result using eq. (3.30) when the decays
happen semi-relativistically. Nevertheless, we have found that constraints from Planck 2015,
given their limited precision, are unaffected by these considerations. However, we anticipate
that these effects will be relevant for future experiments (as well as an essential contribution
in the relativistic case, to be considered in the future).
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In fact, we have shown that the bulk of the improvement in the constraining power
compared to ref. [18] comes from the use of Planck 2018 data. Indeed, we have demonstrated
that the improved τreio measurement from the low-` polarization data helps breaking the
degeneracy in the CMB power spectrum amplitude and strengthens the bound on the
neutrino mass and lifetime. As a result, we have found that neutrinos with ∑mν > 0.42 eV
(2σ) cannot be made consistent with cosmological data if they decay while non-relativistic, a
significant improvement from Planck 2015 data for which masses as high as ∑mν ∼ 0.9 eV
were consistent with the non-relativistic decay scenario [18].

We have argued that one notable application of this result is that, if the KATRIN
experiment sees an electron neutrino with mν ≈ 0.2 eV (the advocated sensitivity), our
result would constrain Γν & 105.5 km/s/Mpc, i.e. the neutrinos would need to decay between
z ≈ 2× 102 − 4× 103, while they are still relativistic, so that our bounds and the bounds
studied in ref. [13] would not apply. In case of a neutrino mass discovery at KATRIN, a
more involved analysis including inverse-decays would be necessary to firmly confirm that
the decay scenario can reconcile laboratory and cosmological measurements. Additionally,
our results show that the tentative exclusion of the inverted mass ordering [44–46, 52], based
solely on the fact that the inverted ordering predicts ∑mν > 0.1 eV, is highly dependent
on the hypothesis that neutrinos are stable on cosmological time-scales. Non-relativistic
decays can still easily reconcile the inverted ordering with cosmological data.

Finally, let us mention that even though current exclusion bounds in figure 6 do not set
independent constraints on the neutrino mass and lifetime, next generation measurements
of the matter power spectrum at different redshifts can help break that degeneracy [19]. It
will be interesting to revisit the forecast on the sensitivity of future cosmological data to
the sum of neutrino masses and their lifetime in light of our improved formalism.
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A Excluding the relativistic decay regime from the MCMC analysis

In our baseline analysis, we have extrapolated our scans to the (mildly-)relativistic decay
regime, despite the fact that the equations do not include inverse decays. We have then
interpreted the bound on the sum of neutrino masses when considering non-relativistic
decays as the intersect between the non-relativistic decay condition Γν > H(Tν = mν/3)
and the 2σ limit derived from our analysis.

In this appendix, we investigate how excluding the relativistic decay regime of param-
eter space from the scan can affect the bounds on ∑mν/eV and Log10(Γν/[km/s/Mpc]).
As we are interested in (semi-)relativistic decays, we focus on the parameter space
Log10(Γν/[km/s/Mpc]) ∈ [3, 6.5]. Our results are presented in figure 8. In the 2D plane
{Log10Γν ,

∑
mν} and below the non-relativistic line Γν = H(Tν = mν/3), we find that

imposing the condition directly within the MCMC prior relaxes the bound by ∼ 10–20%.
Nevertheless, after marginalizing over Log10(Γν)), we find that the ‘naive’ bound coming
from the intersect between the non-relativistic line (Γν > H(Tν = mν/3)) and the 2σ limit
without priors is in excellent agreement with that coming from imposing this condition as a
prior in the analysis, both yielding ∑mν < 0.42 eV.
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