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a b s t r a c t 

During laser impact welding, severe plastic strains and temperature spikes occurring in less than 1 μs 

make experimental observation impractical and necessitate computational modeling to characterize in- 

situ behavior. To understand the effects of microstructure and the associated inhomogeneity/anisotropy 

in laser impact welding, an Eulerian framework featuring aluminum 1100 flyer and stainless steel 304 

target foils is applied to simulate cases with and without microstructure modeling. The transient thermo- 

mechanical phenomena revealed by the dynamic simulation provide insights into evolution of the in-situ 

structure-property relationship, including microstructural variation, phase transformation, and material 

jetting. In contrast to the homogeneous model, the inhomogeneous model suggests a 10 μm-thick zone 

of grain refinement at the weld interface establishing new grains 0.1-1 μm in diameter in the flyer, and 

causing partial martensitic phase transformation in the target, attributable to rapidly induced equivalent 

plastic strains of up to 10.71 in the flyer and 0.98 in the target. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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Solid state welding refers to a broad category of welding pro- 

esses in which joints are created between materials without ex- 

eeding their respective melting points, or doing so only at small 

cales [1] , thus permitting the joining of metals with dissimilar 

elting temperatures or other characteristics that render them un- 

uitable for fusion welding [2] . Within the solid-state category, im- 

act welding is characterized by a bond achieved via high-speed 

ollision, with a relative angle between the two surfaces to be 

oined [3] . An essential feature of impact welding is the jetting of 

articles from the weld front caused by ablative shearing, enabling 

irect contact between the parent materials without surface asper- 

ties or contaminants interfering with bonding during weld forma- 

ion [4,5] . 

When the surfaces collide at an appropriate oblique angle and 

elocity to form a joint, extreme shear forces concentrate near the 

eld front and travel at velocities approaching the speed of sound 

n the materials [6] . Extreme localized plastic deformation also oc- 

urs, with concurrent elevated temperatures from plastic heat dis- 

ipation near the interface. The rapidly shearing surface material 

cts as an inviscid fluid [7] and ablates from the advancing weld 

ront via a high velocity, high temperature jet [8] . The presence 

f a jet is thus considered a necessary condition of impact weld 

ormation; however, at excessively high impact energy, melt pock- 
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ts may form via vortex shedding [9] , resulting in the formation of 

rittle intermetallics or other defects that reduce the efficiency of 

he joint. 

While there are ongoing effort s aimed at observing impact weld 

rocesses in-situ [10,11] , detailed observations into the transient 

volution of strain and temperature fields remain impractical to 

btain experimentally considering the short timeframe of the pro- 

ess (μ∼ 1 s). Hence, the value of suitable analytical and computa- 

ional models to address the experimental deficit is evident. Such 

odels may offer insights into evolving conditions at the impact 

nterface during weld formation, helping explain post-weld exper- 

mental observations. For instance, the formation of new high- 

ngle grain boundaries via dynamic recrystallization has been ex- 

erimentally observed in aluminum during severe plastic deforma- 

ion processes [12–14] ; an analogous computational model can al- 

ow better understanding of how comparable quantities of plastic 

eformation at laser impact welding (LIW) interfaces may result 

n increased grain boundary density, and thus increased hardness. 

iffusion effects at impact weld interfaces are also of interest; at 

igh energy levels in large-scale impact welds, the formation of 

efects such as brittle intermetallic zones [3] can pose concerns 

epending on the alloys welded. A computational model capable 

f predicting the transient thermomechanical effects at a newly 

ormed interface can be useful for determining the likelihood of 

ignificant diffusion and subsequent chemical bonding effects. 

The demonstrated numerical framework for LIW predicts ther- 

omechanical responses such as plastic strain and corresponding 

https://doi.org/10.1016/j.scriptamat.2021.114325
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eat dissipation using an Eulerian formulation, factoring in pre- 

icted microstructures for the two foils being joined. Such a com- 

utational framework is useful for impact welding problems due 

o extreme material deformation and mixing [15–21] . The Eulerian 

ethod utilizes a spatially fixed mesh that is fully remapped with 

ach time increment, avoiding problems of mesh distortion that 

ccur in Lagrangian [22] and Arbitrary Lagrangian-Eulerian formu- 

ations [23] . Eqs. (1) to (3) describe conservation of mass, momen- 

um, and energy in the model, respectively. 

∂ρ

∂t 
+ ∇ · (ρ ˙ X ) = 0 (1) 

∂ρ ˙ X 

∂t 
+ ∇ ·

(
ρ ˙ X � ˙ X 

)
= ∇ · σ (2) 

∂e 

∂t 
+ ∇ ·

(
e ̇ X 

)
= σ : ˙ ε p (3) 

In Eqs. (1) to (3) , ρ is the mass density, ˙ X is the velocity vector,

is the stress tensor, ˙ ε p is the plastic strain rate tensor, t is time, 

nd e is the internal energy per unit volume. These equations gov- 

rn the Eulerian step, which calculates material transport within 

he Eulerian grid. Eqs. (1) to (3) can be generalized as: 

∂ φ

∂t 
+ ∇ · �( φ, ˙ X , X , t) = S (4) 

here � is a flux function, S is a source function, X is the position 

ector, and φ is a solution variable. Operator splitting in (4) gives 

5) and (6) , which are solved in separate steps during each time 

ncrement. 

∂ φ

∂t 
= S (5) 

∂ φ

∂t 
+ ∇ · �( φ, ˙ X , X , t) = 0 (6) 

(5) resembles the Lagrangian governing equation, except for the 

ubstitution of the spatial time derivative for the material time 

erivative on the left side. Solution variables are calculated on a 

emporary Lagrangian mesh within a sufficiently small time incre- 

ent to avoid displacement across more than one element length. 

fter mesh remapping, (6) is solved to account for changes in solu- 

ion variables on the fixed mesh due to advection. In this manner, 

uantities such as equivalent plastic strain, internal energy, and 

ass can be tracked throughout the impact weld process [24] . 

Two cases of the LIW simulation described here are established, 

iffering only in constitutive and microstructural material models 

or the flyer and target foil pairs. The first is a homogeneous ma- 

erial model, using the assumption of a single quasi-static yield 

trength in the Johnson-Cook flow stress model for the aluminum 

100 flyer with an H19 heat treatment and an annealed stainless 

teel (SS 304) target. The second is an inhomogeneous model, with 

he foils’ microstructures predicted via a Dynamic Kinetic Monte 

arlo (KMC) model [25,26] . This Dynamic KMC model is adapted 

rom the open source KMC model published by Sandia in 2017 

27] by adding modifications that capture effects of transient in- 

ralayer and interlayer heat accumulation on the predicted mi- 

rostructure. Here, variable reference yield strengths among metal- 

ic grains in the foils are established according to a combined 

ohnson-Cook Hall-Petch (J-C H-P) constitutive model for both ma- 

erials. Hydrostatic elastic behavior is governed by a Mie-Grüneisen 

quation of state, and a linear shear stress-strain relation is also 

pplied. In both models, the inelastic heat fraction is set to 0.9 

28] ; this estimate is consistent with the plastic heat dissipation 

ehavior of both aluminum 1100 [29] and SS 304 [30] at the high 

trains ( > 20%) that are characteristic of impact weld interfaces. A 
2 
omprehensive description of the computational model can be ref- 

renced from an earlier publication by the authors [26] , and the 

verall LIW modeling approach without microstructure has shown 

ood agreement with the weld geometry resulting from experi- 

ent [18] . However, findings presented here reveal novel insights 

oward how the transient impact welding phenomena influence 

icrostructural variation and phase transformation. 

The finite element model representing the LIW process is de- 

icted in Fig. 1 . An Eulerian grid defines the control volume for 

he entire system, with active material volume fractions imposed 

t the locations of the 50 μm-thick flyer and target foils. The el- 

ments are linear hexahedral, with fully coupled mechanical and 

hermal solutions. A standoff of 260 μm initially separates the flyer 

nd target, consistent with successful joints formed in experiments 

18,31] . Since Raoelison et al. [32] observed that impact weld joints 

ere formed without interfacial slip or separation, the no-slip con- 

act condition imposed between Eulerian materials reflects condi- 

ions of extreme contact pressure relative to lateral forces at the 

eld interface. 

Simplifications to the model have been introduced to reduce 

omputational expense; a plane strain assumption is applied based 

n observations by Lee et al. indicating substantial consistency 

n impact weld morphology in the direction normal to the weld 

ross-section over large distances relative to the flyer thickness 

33] . Additionally, a void is placed within the Eulerian grid in the 

olume not occupied by the foils. Both the confining overlay atop 

he flyer and substrate underneath the target are represented by 

igid bodies under fixed-displacement boundary conditions. The 

omain of investigation is limited to the path of contact between 

he foils as the collision progresses from the center (X = 0) out- 

ard, and thus the foil lengths are limited to 600 μm. Solutions 

re computed using the explicit solver of Abaqus v6.14. 

To model realistic deformation and internal stress response dur- 

ng its approach to the target, the flyer is loaded with a Gaus- 

ian plasma pressure spatial profile as seen in Fig. 1 . This pressure 

aries in time according to a 1D hydrodynamic model [34] used to 

epresent the transient behavior of the expanding, confined plasma 

nduced by a nanosecond-pulsed near-infrared laser having a circu- 

ar area of irradiance with 1.6 mm radius. A 2.7 GPa peak pressure 

s achieved after 17 ns, at the end of the active laser pulse. 

The state of the collision at t = 425 ns is illustrated in Fig. 2 ,

nd suggests no apparent weld formation in either case, due to 

he lack of jetting predicted at the interface. The relatively small 

ocal collision angle inhibits initiation of the shear instability nec- 

ssary to ablate the flyer and target surfaces under high pressure 

nd bring the alloys into interatomic-scale contact. However, the 

ollision causes a localized increase in temperature due to volu- 

etric compression, an effect modeled by the equation of state, 

hich in turn causes a decrease in flow stresses at the leading 

dge where the foils make contact. This results in subsequent weld 

nitiation at t = 450 ns, as the collision point progresses to 0.2 mm 

n the X direction. Near the laser spot center ( 0 ≤ X < 0 . 2 mm), re-

ected pressure waves may cause internal spallation and rebound, 

s has been observed in experiments by Wang et al. [31,35] . A 

ransient temperature-rise caused by compressive stress near the 

igid substrate is predicted in the region below the laser spot cen- 

er (corresponding to the bottom left) in the target in both cases, 

ig. 2 ( Top center, Top right ). Subtle differences between the inho- 

ogeneous and homogeneous models are predicted at this stage; 

eak equivalent plastic strains reach 0.976 within the aluminum 

yer in the inhomogeneous model, versus 0.829 in the homoge- 

eous model, and the highest temperatures are 1425 and 1370 K, 

espectively. 

As the imposed pressure load on the flyer foil reaches a max- 

mum at the central laser beam axis, the resulting Y-component 

f the velocity, v , is also at a maximum magnitude at the same 
Y 
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Fig. 1. Graphical overview of the LIW process model, adapted from [26] : ( Left ) Geometry of the active material volume fractions in the Eulerian grid, rigid body placements, 

and boundary conditions. ( Right ) Microstructural configuration of the foils, with legends indicating yield strengths of respective grains. This figure has been adapted with 

permission from [26] . (For interpretation of the reference to color in the figure, the reader is referred to the online version of this article.) 

Fig. 2. Material response immediately post-impact, at t = 425 ns. ( Left ) Comparison of the localized temperature (T) and equivalent plastic strain ( ε eq ) sampled along the 

contact interface in both inhomogeneous (grain) and homogeneous (no grain) models. ( Top center ) Temperature distribution for grained model, and ( Top right ) homogeneous 

model; ( Bottom center ) Equivalent plastic strain distribution for grained model, and ( Bottom right ) homogeneous model. (For interpretation of the reference to color in the 

figure, the reader is referred to the online version of this article.) 
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oint, and the flyer approaches the target at 683.4 m s −1 after 400 

s. In both the homogeneous and inhomogeneous cases, the LIW 

imulation predicts contact between the flyer and target at t = 400 

s, and a collision point forms that rapidly advances in the +X di- 

ection during the weld period of 400 ≤ t ≤ 800 ns. A declining v Y 
rofile along the flyer in the +X direction results in the flyer main- 

aining a curved shape ahead of the collision point throughout the 

eld phase. Fig. 3 ( Left ) illustrates the decline of the collision ve-

ocity, v X 
, after 450 ns as energy is dissipated via mutual ablation 

f the colliding surfaces, with the associated plastic heat dissipa- 

ion. 

The collision point accelerates briefly in the +X direction, until 

 prerequisite v X 
is reached at 450 ns to form the jet, and thus ini-

iate the weld. Such extreme flow velocities of the jet, containing 

aterial from both the flyer and target, cause instabilities that can 

esult in the formation of a wavy interface [36] . Peak v X 
in the 

nhomogeneous case reaches 3850 m s −1 at t = 450 ns, slightly 

ower than the 4050 m s −1 in the homogeneous case; however, 

ollision velocity declines more slowly in the inhomogeneous case 
3 
han the homogeneous case beyond t = 525 ns. The presence of 

ery small grains on the surface of the SS 304 foil, having a greater 

ow stress as per the J-C H-P material model, suggests reduced 

lastic heat dissipation during weld progression across the target 

urface. 

At t = 500 ns ( Fig. 4 ), a weld is underway with both cases now

xhibiting jetting, and the pronounced thermal and plastic strain 

ronts seen earlier in Fig. 2 have become less distinct. An impor- 

ant consideration in the development of the inhomogeneous ma- 

erial model is the accuracy of the predicted microstructure under 

xtreme thermal and plastic strain conditions, as the framework 

oes not reveal effects of dynamic recrystallization. Regions where 

he equivalent plastic strain exceeds 1 in the aluminum flyer, pre- 

icted in a narrow band of approximately 10 μm thickness near the 

eld interface, from 0 . 15 < X < 0 . 4 mm, suggest the propensity for

rain refinement [37] . A peak equivalent plastic strain of 10.71 is 

eached at the interface, well beyond the refinement threshold; 

he plastic strains predicted along the growing weld are similar 

o those caused via processes of severe plastic deformation, with 
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Fig. 3. ( Left ) Comparison of collision velocity, v X , for the inhomogeneous (grain) and homogeneous (no grain) cases. ( Right ) Key frames from the inhomogeneous (I) and 

homogeneous (H) simulations, illustrating differences in jetted material volume and local temperatures. Grain boundaries are omitted in the inhomogeneous frames (I) for 

clarity. This figure has been reprinted with permission from [26] . (For interpretation of the reference to color in the figure, the reader is referred to the online version of 

this article.) 

Fig. 4. Material response at t = 500 ns. ( Left ) Comparison of the localized temperature (T) and equivalent plastic strain ( ε eq ) sampled along the contact interface in both 

inhomogeneous (grain) and homogeneous (no grain) models. ( Top center ) Temperature distribution for grained model, and ( Top right ) homogeneous model; ( Bottom center ) 

Equivalent plastic strain distribution for grained model, and ( Bottom right ) homogeneous model. (For interpretation of the reference to color in the figure, the reader is 

referred to the online version of this article.) 
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rain sizes ranging from 0.1 to 1 μm likely arising in the aluminum 

yer [12,13] . This level of grain refinement within the flyer material 

n the weld zone also suggests an increase in the alloy’s hardness 

14] . 

In both LIW models, reflected elastic stress waves and shear 

nstabilities at the weld front cause slight fluctuations in equiv- 

lent plastic strains along the interface. These effects are re- 

ealed by constitutive modeling that allows periodic instability to 

merge in the plastic strain predicted along the weld interface, a 

henomenon observed in experimental impact welding literature 

15,16] . Previous studies have investigated the role of unstable mo- 

ion during the advancement of the collision point as a prerequisite 

or the jet that indicates the formation of welds [36,38,39] . Due to 

he variation of flow stresses along the interface, the inhomoge- 

eous model predicts a more pronounced jet, suggesting greater 

nstabilities that initiate among the metallic grains as the collision 

oint advances [26] ; the homogeneous case, by contrast, has no 

icrostructural variation and predicts far less jetted material. The 

eader is referred to the supplementary material for LIW anima- 

ions illuminating the new, in-situ transient phenomena. 
4 
Fig. 5 presents the material response at t = 600 ns, with the in- 

omogeneous case showing less prominent concentrations of ele- 

ated temperature and plastic strains than the earlier frames, with 

he notable exception of a thermal spike of 1475 K at X = 0.35 

m. This extreme temperature corresponds to a high shock pres- 

ure at a small grain of SS 304; the applied equation of state ac- 

ounts for a large, localized increase in temperature but does not 

apture phase change, thus likely reflecting only localized melt- 

ng that persists for a brief duration. Recent experimental work by 

ellmann et al. [11,40] analyzed light spectra from forming impact 

elds that indicated temperatures above vaporization thresholds 

or copper and aluminum, suggesting the plausibility of localized 

emperature spikes due to transient shock and plastic dissipation 

ffects, particularly when a grained microstructure is considered. 

hile the welding process has not yet completed, the maximum 

lastic strain values for both LIW simulations are reached at the in- 

erface. These plastic strain values suggest that exothermic marten- 

itic phase transformation can be expected in the SS 304 target, an 

ffect that drives the inelastic heat fraction to over 1 at equiva- 

ent plastic strains ranging from 0.07 up to 0.25 [30] ; however, the 
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Fig. 5. Material response at t = 600 ns. ( Left ) Comparison of the localized temperature (T) and equivalent plastic strain ( ε eq ) sampled along the contact interface in both 

inhomogeneous (grain) and homogeneous (no grain) models. ( Top center ) Temperature distribution for grained model, and ( Top right ) homogeneous model; ( Bottom center ) 

Equivalent plastic strain distribution for grained model, and ( Bottom right ) homogeneous model. (For interpretation of the reference to color in the figure, the reader is 

referred to the online version of this article.) 
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ransformation will be limited due to the extreme strain rates ob- 

erved in the model ( 10 6 < ˙ ε p < 10 7 ) near the weld. This renders 

 constant inelastic heat fraction of 0.9 a reasonable estimate, con- 

idering the high interfacial plastic strain values. Equivalent plastic 

trains within the target range up to 0.98 at the weld; on that ba-

is, the martensitic transformation will likely be limited to under 

0% in a narrow region, concentrated at shear bands which func- 

ion as nucleation sites [41] . 

Findings from this study illuminate the potential of an Eule- 

ian numerical model to capture the small-scale dynamic material 

esponses of LIW, as it can readily accommodate material track- 

ng under extreme deformation. While transient thermal and plas- 

ic strain responses during the impact welding process remain 

xperimentally infeasible to observe directly, the demonstrated 

ramework offers a suitable avenue for researchers to investigate 

ow these transient phenomena influence microstructural varia- 

ions and phase transformations along the interface. 
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