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Strangers in a Strange Land: New Experimental
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Abstract—In order for autonomous vehicles to adapt to local
norms in human driving, it is critical to profile how human driving
differs across geographical locations. While ethnographers have
qualitatively described regional differences in driving style, data-
driven statistical models might help computer-driven cars drive
like locals and recognize how local drivers might be signaling
through hand/body movement and motion of their vehicles. To
this end, we have created an experimental system and method to
profile driving behavior and interaction using a multi-participant
virtual reality (VR) driving simulation environment. The system
was designed to be portable and to support cross-cultural experi-
mental deployments. We aim to make sure the system is operational
and functional, can model diverse scenarios, generates data fit for
analysis, and captures expected behaviors. We describe the system,
test scenarios, and findings of the proof-of-concept study conducted
in the U.S. and Israel.

Index Terms—Human factors, vehicle safety, intelligent vehicles,
road vehicles.

I. INTRODUCTION

IN DISCUSSING Uber’s driverless car experiment, Uber’s
Engineering Director, Raffi Krikorian, stated, “if we can

drive in Pittsburgh, we can drive anywhere.” [1] This statement
was intended to highlight the benefit of testing cars in an envi-
ronment with poor roads and varied weather. Still, anyone who
has driven across borders knows that driving culture varies pro-
foundly from one locale to the next. Even people with decades of
driving experience can find themselves as strangers in a strange
land when they are behind the wheel away from home.
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As we move into an age of computer-driven vehicles, our
understanding of regional differences in driving will need to
develop beyond anecdote and observation towards concrete
understandings of the parameters, behaviors, and interaction
patterns that differentiate driving in one locale from another.
Today, autonomous cars are programmed to drive within the
boundaries of the law. Still, they seem to elicit higher-than-
normal [2] rates of accidents because they do not conform to
local driving norms [3]. Officially, many of these accidents are
classified as the fault of the non-AV car [4], but it would be
better if the AVs could avoid accidents and faults by adapting.
For example, AVs could adapt to how different cultures interpret
speed limits, how long they wait or how they slow at a stop sign
or before a left turn, what acceptable follow distances are on a
highway, and how much room they give a pedestrian.

To do so, we need to profile differences in human driving
behavior and interaction in ways that are machine-interpretable;
to date, no system or method exists to make this possible.

This paper describes the design and proof-of-concept test
of StrangeLand, an experimental system and method to pro-
file behaviors and interaction drivers exhibit when interacting
with each other in traffic. As part of the design effort for this
project, we designed a portable setup for the driving simulation
experiments, developed a multi-participant virtual reality (VR)
driving simulation environment, brainstormed and tested inter-
active driving scenarios, instrumented the experiment to capture
participant driving behavior, implicit and explicit interaction and
subjective evaluation of each driving interaction, and developed
an analysis tool with which researchers can replay and analyze
the driving interactions. We tested this system in two locations
to verify that the system actually captures differences in driving
interaction between cultures. This work is the first of its kind. It
makes an artifact contribution that facilitates previously impos-
sible explorations of driving culture [5]; it should be evaluated
holistically according to what it makes possible and how it does
so [6].

II. RELATED WORK

Over two decades ago, Oskar Juhlin presciently noted that in
designing automated driving, “it is essential to understand how
drivers themselves achieve coordination. Computers, running by
rules or algorithms, must function together with other road users.
They must adapt to them, or the drivers will have to adapt to the
new machines. If the artificial drivers are socially incompetent,
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Fig. 1. Our system uses a multi-person virtual reality driving simulation environment to help illuminate how drivers interact in different cultures. The participants
are wearing VR headsets with leap motion (hand-tracking device) mounted on the front. Their hands are on the steering wheels and gesturing to each other. Across
from them are laptops facing the researchers.

this could lead to ambiguity and misunderstandings, which put
serious strains on other road users.” [7]

While cross-cultural differences in driving are widely known
and accepted, there is limited prior work documenting and
detailing these differences, none doing so in quantitative ways
that could guide machine recognition or response. We began
our design effort by looking at related work that measures
driver behavior and captures the interaction between drivers. We
explain how these developments informed but also necessitated
the StrangeLand system.

A. Measuring Driving Behavior

While differences in driving across cultures are widely noted,
it has proven to be a challenging thing to study; previous re-
search in this domain has focused on profiling driving styles, on
self-reports from individuals, and on single-person driving sim-
ulation studies targeted at identifying differences in individuals
from different cultures.

1) Driving Styles: Sagberg et al. define driving styles as
habitual ways of driving, which differ across individuals or
between groups of individuals. Early research on driving styles
aggregated the individual differences of taxi drivers who had
been involved in accidents from those who had not, identifying
driving style differences that might account for the different
accident rates [8].

Specific driving style measures identified by Sagberg include
longitudinal control, measured by speed, acceleration, jerk,
headway distance and time, lateral control, measured by lane

choice, steering angle, lateral position and lateral acceleration,
gap acceptance, the time between vehicles at crossings, or
passing gap when overtaking, visual behavior, the area of fix-
ation, direction of looking, fixation length and frequency, and
mirror checking, errors and violations, use of indicator, number
of infractions, and other unusual maneuvers, near accidents,
inappropriate honking, gestures made to other users, and driving
posture [8].

2) Self-Report Based Studies: Transportation researchers
have used questionnaire- or log-based assessments to profile
several characteristic differences between drivers in different
regions, often to account for differences in accident rates. Öz-
can et al. examined differences in driving behavior across six
countries–Finland, Great Britain, Greece, Iran, the Netherlands,
and Turkey [9]. Using a driver behavior questionnaire [10], The
researchers found that self-reported differences in aggressive
driving violations, ordinary driving violations, and driving er-
rors corresponded with differences in the accident rate of each
country of the driver’s origin.

Another focus of cross-cultural research is on driver aggres-
siveness, defined by Lajunen et al. to be “any form of driving
behavior that is intended to injure or harm other road users physi-
cally or psychologically. ”[11]. Driver aggressiveness scales [12]
have been used to document differences between Serbian and
Romanian drivers [13], driving anger in Spain [14], causes of
driving differences of drivers in China [15], and differences in
driving between urban and rural U.S. drivers [16]. Driving skill
has also been posited to cause the difference between cultures.
However, research (also by Özkan et al. [17]) examining that
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hypothesis using the Driver Skill Inventory [18] found mixed
support for this hypothesis.

One issue with profiling cultural differences in driving with
questionnaire-based surveys of driving is that these methods
treat cultural differences as the accumulation of individual or
personality differences of the people from that culture. These
methods cannot easily interrogate the social aspects of driving
culture. (Also, these studies may also feature confounds as
people from different backgrounds or cultures might have more
or less self-awareness of or willingness to disclose their driving
skills or behaviors [19].)

3) Simulation Studies: Early work in 1989, looking at cross-
cultural differences, found that West German simulation drivers
were less likely to take risks in a pedestrian crossing sce-
nario than U.S. or Spanish drivers encountering the same sit-
uation [20]. These experiments used early simulation environ-
ments, where drivers were presented with an overhead schematic
of an intersection–like the computer game Frogger–rather than a
first-person perspective. Since the same study could be presented
to three different populations in three different locations, it could
be argued that the differences reveal different tolerances for risk
between cultures.

More recently, in 2010, Son et al. performed a cross-cultural
driving simulation study on older and younger drivers in the US
and Korea using a fixed-based immersive driving simulator [21].
Looking at forwarding velocity, speed control, and lateral control
measures, this experiment found that US drivers drove more
slowly than their Korean counterparts, had a higher range of
speed variation, and exhibited better control over lane deviation.

B. Capturing Driver Interaction

While driving style research focuses on the differences in
the aggregation of individual behaviors, driving interaction re-
searchers are concerned with the interactions between drivers as
the defining characteristics of regional driving style. Sociologist
Dale Dannefer, for example, mentions informal norms such as
following distance, merging behavior, right of way rules, but
also a performance of attention or inattention [22]. Factor et al.
extend this perspective, arguing that some crashes are not the
result of individually risky behaviors but rather the results of
“social accidents,” caused by interactions between people from
different social groups interpreting and responding to situations
differently [23].

1) Ethnographic Study: Until recently, most of the research
on driving interaction was based on direct or recorded obser-
vation. Juhlin, for example, employed ethnographic techniques
observing students at a Swedish driving school, interviewing
participants, recording driving sessions, and transcribing and
thematically coding incidents of cooperation between road
users [7]. Similar investigations have been made of social agent
navigation in urban traffic [24], driver-bus interaction, [25],
pedestrian-vehicle interaction [26], [27] and interactions at
petrol stations [28]. Vinkhuyzen and Cefkin used ethnographic
techniques to understand how autonomous vehicles will engage
with pedestrians, bicyclists, and other cars in a socially accept-
able manner and noted the difficulty of making observational
distinctions with these methods [29].

2) Multi-Driver Simulator Studies: Zaidel posited the pos-
sibility of formalizing the interactive model between drivers
as a mathematical model that would enable the prediction of
behavioral mixes in 1992, suggesting that computer and lab-
oratory simulation would be useful methods for beginning the
research, actual simulator studies of driver interaction are recent
phenomena [30].

While many outside the automotive research domain assume
that high fidelity and high immersion simulation is necessary for
an ecologically valid driving response, guidance from driving
simulation experts indicates that appropriate simulator fidelity
provides the greatest fidelity for the aspects of driving under test
is what is critical [31]. Driving simulators allow experimental
control of conditions, reproducibility, ease of data collection,
and the ability to test situations that are maybe dangerous to
test in real life [32]. Even without perfect ecological validity,
driving simulator studies can help researchers focus on factors
or behaviors to study in follow-on research.

Driving interaction studies have largely been made possible
through multi-driver simulation platforms. The use of multi-
driver simulation studies to examine the interaction between
drivers was first performed by Hancock and De Ridder in
2003 [33]. They placed two participants into adjacent full-
vehicle simulators that share a single virtual world to understand
collision avoidance behaviors. More recently, Muhlbacher et al.,
in 2011, developed a platform to study interactions between
four drivers in a platooning scenario [34]. Researchers at the
Institute for Transportation Studies at the German Aerospace
Center (DLR) created a Modular and Scalable Application Plat-
form for ITS Components (MoSAIC) in 2012 to understand
interactions between V2V connected vehicles and non-equipped
vehicles [35], [36]. Their setup features multiple modules of
high-fidelity driving simulation, such as three-display fixed-base
driving simulators with a complete vehicle seat and driving
interface. These researchers noted the possibility of using such
a multi-driver simulator to study the effect of varying levels
of drivers’ experience or different cultural backgrounds or to
study the influence of social psychological phenomena in traffic,
such as the merging-giveaway interaction [37]. They have pub-
lished studies using this set up to study cooperative lane-change
maneuvers [35], and traffic-light assistance [38] Houtenbros, et
al. used linked fixed-base driving simulators to study whether
audio-visual feedback would help participants in their interac-
tions with other drivers; in their study, a research experimenter
drove one of the vehicles [39].

Other research, particularly targeting other road users, have
also used multi-participant simulation setups. A recent publi-
cation by Abdelawad et al. [43], for example, compares the
aforementioned MoSAIC system, the Tokyo Virtual Living Lab
networked driving simulation (which is built on OpenStreetMap
and CityEngine tools), [41] and the Driving and Bicycling
Simulation Lab at Oregon State University. They mention using
the setup for training drivers, for studies of truck platooning,
or for hybrid traffic scenario enactments. A recent collaboration
between University of Wisconsin-Madison and University of
Iowa researchers tested the feasibility of conducting driver-
pedestrian simulator experiments with multiple people. [44] To
our knowledge, this project is the first proof-of-concept, and we
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TABLE I
MULTI-DRIVER SIMULATOR RESEARCH

have found no publications yet describing studies designed or
run on the platform.

While many multi-participant simulator systems are designed
to be hybrid, each individual station tends to be quite large.
This is because many interaction scenarios, such as merging
or four-way intersections, require a wide field of view for each
participant to see one another. (Platooning is an exception; since
the main activity is making sure your vehicle does not run into
the vehicle in front, the broad field of view is not necessary
for platooning interaction simulations.) This necessitates multi-
screen or multi-projector set-ups; these scenarios cannot be run
naturally using a single screen interface.

While commercial gaming systems, such as Grand Theft
Auto V, which enable multi-player interaction, have been widely
available for some time, attempts to use these systems for serious
driving research have been foiled or shut down by the gaming
company [45], [46]. In any case, mods such as [46] do not record
critical data about the position and behaviors of each driver’s
car for the purpose of post-analysis and study and have not been
validated to produce differences in driving where we expect to
see them in regional driving culture.

3) Virtual Reality Driving Simulation: Our system builds on
previous multi-participant driving systems using virtual reality
for networked driving simulation. The advent of networked
head-mounted virtual reality platforms makes it possible for
participants to have a wide field of view without having a
sizeable fixed-based simulator. While driving simulation was
one of the motivating uses of early virtual reality [47], [48], the
use of virtual driving simulation for the experimental study of
driver behavior is still relatively new [49], [50]. Virtual reality
headset technology makes it easier to recreate the immersion
and peripheral cues usually associated with bulkier three-screen
or curved screen driving simulation set-ups. Early research
suggests driving performance is similar to that of desktop driving
simulation platforms [51].

Lightweight, consumer-grade virtual reality platforms also
make multi-driver interaction simulation easier to deploy in
more places; this is critical to the goal of understanding cultural
differences in driving. No previous system of multi-participant
driving simulation using VR has been built for this purpose. The
closest such system that we have learned of in our background
research is a project by researchers at the University of Leeds and

the Lincoln Center for Autonomous Systems in the U.K.. They
used VR and participant tracking to have two people with VR
headsets walk freely across a space play to a game of “Sequential
Chicken” with their vehicle avatars in a driving simulation
environment [52]. That system illustrates the feasibility of the
proposed system in this project, but does not map in-grained
driving interaction behaviors to virtual driving as our proposed
research would.

III. ARTIFACT DESIGN

The StrangeLand simulator uses common virtual reality hard-
ware to make the system portable, low-cost, localizable, exten-
sible, and accessible to more researchers. Our system builds on a
body of work in the realm of multi-participant driving simulation
to enable controlled experiments with common scenarios in a
safe and repeatable fashion. As part of the design effort for this
project, we made a portable equipment setup for the driving
simulation experiments, developed a multi-participant virtual
reality (VR) driving simulation environment, and created and
tested interactive driving scenarios. We instrumented the equip-
ment to capture participant driving behaviors and implicit and
explicit interactions. Our platform for analyzing our data streams
allowed us to subjectively evaluate each driving interaction by
giving researchers the ability to replay and analyze the driving
interactions.

Here we describe the design of the system and experimental
protocol of StrangeLand.

A. Equipment

The hardware setup for the StrangeLand simulator uses cur-
rent consumer-grade virtual reality (VR) gaming components.

The functional components of the system are as follows:! Laptop: The simulator runs on two Alienware 15 R4 Lap-
tops (Intel i7 8750H CPU & NVIDIA GTX 1070). Each
laptop drives one VR headset.! Head Mounted Display: We used the Oculus Rift CV1 VR
headset for development. Conceivably, the hardware could
be any VR headset that supports OpenVR/SteamVR.! Hand tracking: To record and render the participants’
hands in the virtual world, each headset has a LeapMotion
hand tracking device mounted on the front. Rendering the
participants’ hands in VR helps the participants to feel
present in the simulation environment, and enables them to
use their hands to signal with other participants. While each
participant always sees the rendering of their own hands
inside their vehicle, the participants can only see each
other’s heads and hands rendered when their vehicles are
within 20 meters of one another in the virtual environment.! Drive Interface: Each participant used a Logitech G29
gaming interface, with force feedback steering wheel and
gas/brake foot pedals, to drive their virtual car. These
control surfaces are similar to what participants are used
to in everyday driving, and hence are more likely to yield
naturalistic driving behavior.! Network Router: The computer for each driver is connected
to a standard local area network connected through an
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ASUS RT-AC5300 router. (The system also ran success-
fully on other LAN routers.) Currently, the only require-
ment is that the IP addresses of the laptops need to be fixed.

To make it easier for researchers to transport and deploy
studies to different geographical locales; we designed the system
to be portable. We also designed the system to be relatively
inexpensive; currently, the two-person setup for StrangeLand
costs about $2500USD. We selected parts with the goal of fitting
the parts for the whole system (minus the laptops) in one large
suitcase (76 x 48 x 29 cm) that weighs less than current U.S.
airline limits for overweight baggage.

B. VR Driving Simulation Environment

As with the hardware, the software components of Strange-
Land were selected and designed to make it easier to deploy and
replicate studies and add and extend the platform. The software
is based on widely available popular software packages and is
all low-cost or free.! Game engine: The simulation was built in Unity 2018.4

using the now-legacy built-in networking to synchronize
the two clients [53]. This enables participants to see other
drivers in their virtual vehicles and note their head orien-
tation or exchange hand gestures.! Vehicle model: We used a prefabricated vehicle model and
logic from the GENIVI [54] driving simulation platform.
We extended the model to include a car interior and in-
teraction logic for the steering wheel, horn, and indicator
lights.! Head mounted display interface The main VR interface
used in Unity is the OpenVR library [55] connecting to
SteamVR [56].! Hand tracking: The Orion software pack from Leap Motion
for the hand tracking in combination with VR. [57]! Environment elements: We developed the road track in
which the different scenarios took place was modeled using
openly accessible textures. Buildings were placed at the
corners of the intersection to ensure participants could not
see the entire track without approaching the intersection.

C. Interactive Driving Scenarios

To capture driver interaction, we developed traffic scenarios
that required drivers to negotiate with one another to complete
their driving tasks. For example, we designed an intersection
with a four-way stop scenario where multiple drivers arrive at
approximately the same time. Because it is difficult to decisively
determine who arrived at the intersection first, drivers need to
observe each other and negotiate who will go first to avoid collid-
ing. These scenarios were intended to elicit routine interaction
responses that drivers use every day. We manually selected the
driving scenario, counterbalancing the order of scenarios across
participants.

We tried to account for the inconsistency of signage and
road standards across different locations to enable cross-cultural
studies. For example, yield signs have a consistent meaning
across cultures [58] (although with slightly different standards

about height and placement [59]), so we tried to use more yield
signs than stop signs, which have greater cross-cultural variance.

We designed and tested several scenarios to ensure that drivers
were clear on their driving goals but not clear on the right of way
with respect to the other driver. We also designed the scenarios
to be counterbalanced so that both participants in the study
had a roughly equivalent experience. So, for example, if one
participant turns left and the other turns right, we include the
reverse scenario. The resulting set is listed below and shown in
Fig. 2:! S:1 - Four-way Intersection: Car A and B are orthogonal

to each other at a four-way intersection (A begins on the
right). Car A must turn left while Car B is instructed to go
right. The two cars are turning towards each other.! S:2 is the counterbalanced four-way intersection scenario.! S:3 - Intersection with Pedestrian: Both Car A and Car
B are instructed to go straight at opposite sides of an
intersection; as the cars approach, one pedestrian will start
to walk across the street. The pedestrian has by design
an ambiguous starting time, as they only begin moving as
either car A or B approaches.! S:4 - Opposing Left Turns: Both Car A and Car B appear at
opposite sides of an intersection, and both receive instruc-
tions to turn left [60].! S:5 - Merging: Car A (right) and Car B (left) are merging
onto the highway from their own respective roads. In most
merging situations, it is clear who has the right of way
because one car is merging onto the road of another car.
However, in this scenario, both roads merge into the same
road giving neither right of way.! S:6 is the counterbalanced merging scenario.! S:7 - Overtaking: Car A is driving behind Car B. Car B
is instructed to “stop,” while Car A is instructed to “Hurry
up.” Car A must decide to overtake Car B. Driver of Car
B is unaware of the instructions to the driver of Car A,
leading to uncertainty about their action. It is important to
see when, how, and if they decide to overtake Car A.! S:8 is the counterbalanced overtaking scenario.! S:9 - Blocked Lane: In front of Car A, there is a parked
car with hazard lights blocking the lane while Car B is
approaching the oncoming lane. As a result, the driver of
Car A has to decide whether or not to wait for Car B while
the driver of Car B can choose to stop and let Car A pass.
S:10 is the counterbalanced block lane scenario.

D. Behavioral Analysis Support

Because our driving simulator intends to capture a range of
interactive behaviors which we expect to differ as a function
of the drivers’ cultural norms, one key aspect of our simulator
design is that it needs to support the observation and analysis
of the communicative actions of drivers. Typical driving simu-
lation studies often measure performance or driving behavior
in response to pre-defined stimulus events which occur in a
controlled environment. Our simulator also contains a controlled
environment but, in other ways, is more like a naturalistic study
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Fig. 2. Showing all the types of scenarios developed for the study. Scenarios that are the exact mirror of another scenario are not shown. Instead, the mirrored
version is referenced in parentheses in the image caption. (a) S:1 (S:2) Orth. A Right. (b) S:3 Opposite Pedestrian. (c) S:4 Opposite Left. (d) S:7 (S:8) A Behind
B. (e) S:5 (S:6) Merging A Right. (f) S:9 (S:10) A Blocked Lane.

of group interaction; researchers observe how the interaction
emerges between the participant under different controlled cir-
cumstances.

To enable a qualitative analysis of driver interaction, we
developed an interactive behavioral analysis tool on a Jupyter
notebook (Fig. 3). This tool allows us to reconstruct and analyze
interactions from multiple viewpoints reconstructed from the
generated data. The notebook includes a map view, speed, and
indicator line graphs, in addition to synchronous video data from
the VR world. These multiple viewpoints enable qualitative as
well as quantitative analysis of the interactions. An example of
the output from the interface can be seen in Fig. 4. In this figure,
accelerator brake input and steering input is recorded. In the
beginning, one can see that the steering input is at the center
when the vehicle accelerates.! Map View: We generated videos with a map view of the

car based on the simulator data (speed, location, head
orientation). This top-down view allows us to intuitively
examine the traffic scenario and discover behaviors from
the participants, e.g., how some participants continually
creep into an intersection.! Steering, Speed, Paddle and Indicator View: Additionally,
we generated animated graphs to analyze the measures
and played them back in conjunction with the map view.
These graphs give a more detailed look at the participant’s
response. E.g., it is easily visible when and how strong
someone slowed down in reaction to an incident or event.! Video Data: In addition to the generated data view, we
can playback the synchronous video data from the GoPro
and the respective laptops screen recordings. This video
data allows for a subjective first-person evaluation of the
“normalcy” of the interactions.

In addition, we use an in-simulation questionnaire to assess
the situation awareness of each participant, structured using
three levels (perception, comprehension, and projection), known
as the SAGAT method [61]. We used this method to avoid taking
participants out of the virtual world many times throughout
the study. An example is shown in the Fig. 5. Within the VR
simulator, both participants are prompted to answer questions
that appear on a translucent screen in-world after each scenario.
The first question of the questionnaire would begin consistently
across scenarios, asking about certainty (i.e. “I clearly under-
stood the intent of the other driver(s)”).

In total, seven different questionnaire sets were asked through
this VR method. These included fact questions (i.e., “At the
intersection, who moved first?”) and then understanding the
facts (i.e., “Why did you move first?”). While this structure
of fact & understanding remained for the other question sets,
the topic differed (i.e., turn signals, stopping, who moved first,
false starts, overtaking, eye contact, cutting off). We chose to
ask about a particular topic based on the scenario. For example,
in the four-way stop scenario, the participants would be asked
about turn signals, who moved first, false starts, and eye contact
but not about overtaking as this did not happen in this scenario.
(A complete list of all possible questions can be found in the
appendix.)

E. Instrumentation of Behavior and Interaction

By logging data about the participants, their behavior, and the
state of the virtual world throughout the interaction scenarios,
we can collect key measures that we believe are instrumental
to understanding driver behaviors and their interactions with
each other. Many of these measures were informed by SAE’s
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Fig. 3. Screenshot of the behavioral analysis tool. At the top left and top right, we see the map and graphs videos showing the behaviors as they took place. There
are several drop-down menus on the right to select what the tool should show (i.e., location of the participants, the participant pair, scenario, and graphs). At the
bottom, there is both a space for writing annotations (bottom left) and reading any annotation (bottom right) that has been made for this particular participant pair
and scenario.

J2944 Operational definitions of driving performance measures
and statistics [62]. These quantitative measures are particularly
important as a secondary step to verify findings from qualitative
video plot analysis findings.

We describe a non-exhaustive list of possible measures that
could be analyzed out of the given data below:! Hand pose: Through the Leap Motion, we collect the

hand pose and articulation over time. We can tell if the
participants have their hands on the steering wheel, whether
they are steering, or if they are waving to someone.! Head orientation: Through the Oculus Rift, we can collect
the position of the head relative to the world. From this
data, we can tell if car B, in the dyad, is in the field of view
of car A. SAE J2944 does not have any recommendations
regarding head orientation. However, they guide the need
to measure where drivers are looking, particularly for lane
change tasks. [62], [63] It is possible that in longer sce-
narios than what we tested here, researchers could also use

this measure to infer distraction and fatigue. We can use
this in our interaction scenarios to see if drivers are in each
other’s field of view at different points in their interaction.! Steering orientation: Through the steering wheel, we col-
lect the rotation information of the steering wheel’s posi-
tion. This, in combination with event logs from the simu-
lation environment, allow us to measure steering reaction
time, movement time, and response time, as well as steering
reversals.! Pedal Input: Through the gaming interface, we can mea-
sure the participant’s input to the accelerator and brake.
This can be used with simulation environment event logs
to infer the accelerator and brake response times.! Car Position, Velocity & Acceleration: In the simulator, we
can determine the position, speed, and heading for each
car at each moment in time. Additionally, we also store the
car’s velocity. This allows us to measure lane position, lane
and roadway departures, as well as lane changes.
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Fig. 4. Top-down view of the virtual environment. This shows the path of two participants in the scenario, Blocked lane. The green tick marks indicate the
position over time. The y and x-axes are measured in meters with the intersection at 0/0.

TABLE II
A TABLE SHOWING THE QUESTIONS AND ANSWERS FOR THE CONFIDENCE QUESTIONNAIRE

! Wait time: Through timestamped data and car positions,
we can analyze the wait time until the participants move in
ambiguous parts of the scenarios.! Entropy/Energy: By summing the cumulative difference
in longitudinal or lateral input, we can obtain an “en-
ergy” measurement that corresponds to steering reversals
or excessive changes in speed. For lateral input, this corre-
sponds with the measure of Steering Entropy used in SAE
J2944 [62], [64].

IV. PROOF OF CONCEPT TESTING

To ensure that our system can produce meaningful measure-
ments that enable comparing driving behaviors across cultures,
we performed a proof-of-concept test. For this paper, whose
aim is to describe the design of a system that allows the capture
of important cross-cultural differences in driving, the test aims
to establish that the system we built is functional, deployable,
reliably captures data, and enables reconstruction of interactive
behaviors. Full-scale study deployment and results featuring
claims about differences in cultural driving behaviors will be
attempted and detailed in future work.

During the initial development, the researchers ran a proof-of-
concept study (N = 10) in Haifa, Israel, at the Technion. Based
on the proof-of-concept, we further developed the simulator.
Some of the improvements we made during these studies were,
e.g., adding virtual mirrors to the car, giving the participant a

Fig. 5. Post-interaction questionnaire internationalized in (a) English and (b)
Hebrew.

horn, and adjustments for both short and tall participants. After
these experiments, we ran more tests both at the Technion and
at Cornell Tech to further test and verify the system’s stable
operation and generate data to develop and test the data analysis
pipeline could be developed and tested.

A. Method

1) Participants: For the Proof-of-concept test at Cornell
Tech, we recruited using convenience sampling and had N =
26 participants (18 male, 8 female) between 21 and 41 years
old, with an average age, M = 26.5, SD = 4.45. 24 participants
learned to drive in the United States; one participant learned
how to drive in Costa Rica, and one in India. Out of the 26
participants, 3 got motion sick from driving in the virtual reality
environment. Keeping the headset on during the questionnaire

Authorized licensed use limited to: Cornell University Library. Downloaded on October 05,2022 at 03:28:49 UTC from IEEE Xplore.  Restrictions apply. 



GOEDICKE et al.: STRANGERS IN A STRANGE LAND: NEW EXPERIMENTAL SYSTEM FOR UNDERSTANDING DRIVING CULTURE USING VR 3407

made it so that participants kept HMD on between vignettes,
did less context switching, and shortened overall time in the
experiment. Participants had between 0 and 22 years of driving
experience (M = 9.3, SD = 4.25). When asked how many times
they drove a week in the last year, the answers varied widely, but
about half stated that they had primarily driven three times per
week or only when they were in the city. We also asked where
else people have driven for more than one year, if at all, outside
of the United States: one participant said Canada, and one said
Israel. In both places, we used a between-subjects study design.

At the proof-of-concept test at the Technion, we recruited
using convenience sampling we had N = 52 (31 male, 21
female) between the ages of 21 and 33 (one participant was 52).
27 participants knew the other participant in the experiment,
and 25 participants did not know the other participant. All of
the participants learned how to drive in Israel. Out of the 52
participants, 4 got motion sick. Participants had between 0 and
30 years of driving experience (M = 6.86, SD = 4.47). Most
participants stated that they drive more than five days a week.
We asked participants where else they have driven for more than
one year, if at all, outside of Israel; 5 participants answered yes;
one participant said Romania, one Mexico, one Germany, one
United States, and one Ibiza.

Although some participants in the U.S. study were not origi-
nally from the U.S., for the proof-of-concept test and to have a
comparable number of participants across the U.S. and Israel, we
have decided to include all pairs in the analysis. This inclusion
may seem less controlled but, in fact, may be ecologically valid,
as the U.S. site features more tourists and international visitors,
and so greater cultural variance even within the geographical
locale is the norm.

2) Procedure: When participants arrive, they are led through
the informed consent process, and are told about the remedies
available to limit nausea, like ginger candies and wet towelettes
for the forehead. Next, we start the data recording on the GoPro.
Participants each completed a demographic survey. Next, the
participants are informed about operating the system: pedals,
steering wheel, horn, VR headset, GPS, hazard lights, and turn
signals. They then are told how to answer the questionnaire in
VR, using eye gaze to rest on their multiple-choice answer.
They are instructed not to speak to each other verbally but
only to communicate in the virtual world. They are told that they
may stop the experiment at any time if they feel uncomfortable.
[3]

Next, the participants put on the VR headset, put their hands
on the steering wheel, see their hands on the steering wheel, and
their feet near the pedals. We then calibrate the Oculus system.
Once the system is calibrated, we tell the participants to drive
around an empty course alone to get familiar with driving in the
virtual reality world.

We ask if the participants are ready before beginning the
interaction traffic scenarios. When they are ready, we manually
select the driving scenario, counterbalancing the order of sce-
narios across participants. Next, the participants drive in a given
scenario and then answer questions in-world about what had just
happened. After five of the scenarios, we ask the participants to
take a break, to prevent nausea. Following that, the participants
continue the same process for five more scenarios. Finally, to

conclude the study, the participants are asked to take off their
headsets, are given compensation, debriefed on the experiment,
and thanked.

In Israel, the average time of each scenario (from the start
driving until the end trigger) was M = 38.58 seconds, with
a standard deviation of SD = 17.69 seconds. In the U.S., the
average time of each scenario was M = 34.57 seconds, with a
standard deviation of SD = 24.08 seconds. The average practice
times in Israel were M = 110.18 seconds, SD = 30.95 seconds
while in the U.S., the average practice time was M = 64.22
seconds, and SD= 26.52 seconds.

B. Findings

Part of our proof-of-concept study deployment was in-
tended as a proof-of-concept test to see whether and how well
the StrangeLand platform achieved the technical requirements
needed for cross-cultural driving interaction research. The sys-
tem needed to be readily deployed in various locations, present
the same context and scenario across different areas to elicit
behavioral differences and support naturalistic interactive be-
haviors between drivers. We discuss our assessment of these
criteria here and then further discuss the interactions and driving
behavior captured by the system.

1) Deployability: Because our intent is for cross-cultural
simulation studies to occur in various locations, the Strange-
Land simulator needs to be transportable and deployable in
various lab, office, or conference room settings. This study’s
two locations were intended in part to show the practicability
of the system for transport. We will also mention anecdotally
that during development, the system was relocated several times
and in three different countries during development. Setup time
for the simulation equipment can be well under an hour if
chairs, tables, and power outlets are available. The equipment is
also based on commercially available gaming and entertainment
hardware, so the bulkiest parts of the StrangeLand setup–the
driving interface and the VR headsets–can also be procured for
each study site for < $1000USD.

2) Controlling Scenarios Across Locations: For the proof-
of-concept study, we were able to have participants in our study
drive in exactly the same scenarios in both our study locations.
This was desirable in the proof-of-concept study because we
wanted specifically to verify that we were able to elicit differ-
ences in interaction and behavioral measures across two sites
and avoid the confounds that would occur if there were any
differences in the virtual surroundings.

The system and scenario development required numerous
iterations to solidify the overall protocol. A number of study
design dilemmas emerged during scenario development, such
as the fact that four-way stops, for example, which is prevalent
in unsignalized intersections in the US, were not at all typical
in Israel, where traffic circles are common. There is also some
tension between localizing the study environment to be typical
and familiar to the drivers and keeping the study environment a
little more abstract. For example, SUVs are more typical in the
US, and compact cars are more typical in Israel. Ultimately, we
decided to use the same buildings, cars, and environments in both
our study locations for experimental control; if we had varied
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Fig. 6. Showing how the fp/S vary significantly between each frame and
how a small 5-frame 1-d convolution shows the continues fp/S.

the environment, however superficially, we would have had
to perform validation experiments to see, for example, people
would be more likely to yield for one type of car or another.

One important thing to note is that the design of the Strange-
Land system makes it possible for other researchers to test the
effect of such variations. StrangeLand is implemented on the
widely accessible Unity game engine. Since many other simu-
lators exist using this engine base, their 3D graphic assets and
software libraries can be reused with StrangeLand; this enables
flexibility in the scenarios and extends StrangeLand use for other
environments. We did not employ any proprietary graphic assets
in StrangeLand that we would not be able to distribute, although
employing such graphic assets could improve the visual appeal
of the simulations. As designed, it would be easy for researchers
in other locations to add scenarios or to skin the cars, buildings,
or signs to StrangeLand as they deem appropriate for their own
studies. By making the StrangeLand system open-source, and
also sharing our study datasets, we make it easier for researchers
in other locations to set up comparison studies and directly
compare their results to ours.

3) Immersion and VR Performance: At a high level, our goal
is for participants to feel immersed enough in the simulated
environment to interact naturally with other drivers. Our goal is
to elicit the natural differences in driving that people practice.
Part of this, we felt, was that participants needed to handle the
alignment between their physical actions and that of their virtual
avatar and to be able to interact with the other participant as they
would with another person in the real world.

During the studies, all participants had no problem operating
the virtual vehicle or associating with the virtual representation
of their hands. Qualitatively, we observed numerous episodes
where participants responded to the gaze and gestures of the
other participant in ways that suggest that the StrangeLand
platform supported their naturalistic interactive behaviors. Quite
a lot of gesturing occurred (see the participant on the left in the
Fig. 1, for example). Anecdotally, gestures from one participant
caused return gestures from the other participant. This is sig-
nificant in part because StrangeLand is, to our knowledge, the
first driving simulator environment which tracks and renders the
hand gestures of participants, and so is the first system to be able
to capture this type of interactive behavior.

Fig. 7. We used video recordings with the participants’ screen captures in view
to validate both the motion-to-photon delay and the network synchronization
delay.

For a more quantitative verification of the function and immer-
sivity of the VR simulation environment, we examined the frame
rate, external perceived motion-to-photon delay, and the network
delay by comparing time differences from participant study runs
during the development and after the proof-of-concept study.

For VR applications, the frame rate should be greater than
60 fp/S to create an immersive experience [65]. Data analysis
from the proof-of-concept studies showed a median frame rate
of 90.9 fp/S with a standard deviation of 6.0 fp/S. This means
that most frames (>95%) were rendered within 70 to 90 frames
per second. The researchers’ subjective experience supports
this finding during development and testing, during which no
noticeable stuttering occurred.

To ensure that participants did not encounter extended periods
of stutter, we computed a 1 d convolution over a window of
4 frames, which reduced the standard deviation by about half
to 3.1 fp/S. This finding shows that often a slower frame
was preceded with faster frames and that it was exceedingly
unlikely(<0.001%) for any participant to experience a frame
rate of less than 80 fp/S for more than 5 frames in a row, an
excerpt of 200 data points is in Fig. 6.

To both verify motion-to-photon delay and network delay, we
used a GoPro action camera (set at a 29.97 fp/S setting) to take
a video recording with both participants in the study setting and
their respective virtual views on a laptop screen (see Fig. 7).
Looking frame by frame at the head and hand motion of the
participants, we could not measure a single frame difference
between head motion and the rendered frame appearing on
the laptop screen. The headsets were operating in direct-mode,
which has less delay than the laptop screen used to measure the
delay. The video was recorded at 29.97 fp/S; this sets the upper
bound for the frame delay to be 33 ms.

The same video source was used to probe the network delay
between the two participants. In particular, the GPS display and
the questionnaire screens are network-synchronized events that
use the same network bus used for the transform and hand data.
Therefore, the network delay should be consistent. As with the
motion-to-photon delay, the events appear in the same frame; this
implies a network latency equal to or less than 33ms. Studies on
networked multiplayer video games, in particular racing games,
set the acceptable latency range at 50 ms [66], [67].

4) Interaction in the Designed Scenarios: Using Strange-
Land’s analysis platform, we can replay scenarios to view how
the cars interacted from an overhead perspective. For example,
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Fig. 8. The comparison of waiting time, driving speed, throttle/brake energy,
and steering energy measures for one example scenario illustrate that the system
generates consistent data. Error bars show 95% confidence intervals.

we can see how two vehicles slow down as they approach each
other. Observing this behavior helps us verify that the two drivers
are aware of each other.

Since we are interested in studying driving interaction, we
looked to see which scenarios seemed to generate the most
driver-driver interaction. By observing and interpreting the data
from our analysis platform, we found that merging scenarios
(S:5, S:6) produced the least amount of interaction. It seemed
that one participant was not waiting or depending on another
participant. In contrast, in the overtaking scenario (S:7, S:8),
participant A was, by default, dependent on participant B, and
hence waiting, and monitoring behaviors could be observed.

The analysis platform also allowed us to find scenarios that
need to be redesigned to elicit ambiguous situations. One way
to achieve this is by timing participants’ arrival at a certain point
such that the right-of-way becomes ambiguous.

a) Waiting on the other car: We use car position as the
reference to all other measures. The Fig. 4 shows a graph from a
pair of participants in a basic blocked lane scenario. In this case,
participant B’s lane is blocked by a parked car. The plot shows
the participant slowing down; the tick marks, which are made
once per second, become closer as the car is now slowly rolling
towards the stopped vehicle; after participant, A passes by, we
see the subsequent left turn of participant B.

b) Comfort and Confidence in Interaction: We observed
that the speed with which a participant drives is an important
measure in understanding their driving behavior. It is closely
linked to the participants’ comfort driving at a certain speed
given a certain traffic scenario. The Fig. 8 shows the average
speed in meters per second for the Opposing Left Turn scenario
and their respective 95% confidence intervals on the second
pair of bars. We can see a difference in average speed between
the participants from Haifa, Israel, and New York, New York.
Israelis appear to have driven slower in that specific scenario.

c) Wait Time: Another related measure is the wait time,
which is the time between coming to a stop and resolving an am-
biguous situation (i.e., the time they waited at the intersection).
This measure can be found in Fig. 8 for the Intersection with

Pedestrian Scenario. The first two bars show the average wait
time in seconds and their respective 95% confidence intervals.
As with the speed parameter, there appears to be a difference
between Israel and the US drivers, with Israeli drivers waiting
longer.

d) Erraticness of driving: Many of the metrics described
in SAE J2944 could be computed based on the available data.
However, for the example data, we calculated a simple cumu-
lative difference for the input parameters, longitudinal (speed)
and lateral (steering) control. This basic “energy” measurement
corresponds to the change in steering and paddle input. This
data is exemplary visualized in the last two pairs of bar graphs,
in Fig. 8 indicating that Israel and the US participants were
comparable in their erratic behavior.

5) Questionnaire Evaluation: Results showed that both pop-
ulations were certain about their driving and the other driver’s
driving. Results from the 5 points Likert questionnaire show that
overall positive responses were more common for all three ques-
tions on certainty, and the most common answer was “Agree.”
In the United States, for the question, “I felt the other driver
drove well,” the average response was M = 3.91, SD = 1.09. In
the question “I clearly understood the intent of the other driver,”
the average response was M = 3.85, SD = 1.09. Lastly, in the
question, “I felt confident about my own actions,” the average
response was M = 3.97, SD = 0.4.

In Israel, for the question “I felt the other driver drove well,”
the average response was M = 3.96, SD = 1.14, for the question
“I clearly understood the intent of the other driver,” the average
response was M = 3.89, SD = 1.14, and for the question “I felt
confident about my own actions” the average response was M
= 3.75, SD = 0.43.

The two groups had statistically insignificant differences in
their answers for the statements “I clearly understood the intent
of the other driver” and “I felt the other driver drove well”
with two-tailed t-test p-values of 0.187 and 0.1197, respectively.
Participants from the United States agreed slightly more with
the statement “I felt confident about my own actions” with a
significant p-value of 0.0015.

Our situational awareness assessment asked participants what
occurred in their interactions with the other driver. It allowed us
to analyze the participants’ awareness of their driving styles
and compare their actual actions in the simulator with their
alleged actions as recalled in the questionnaire. While par-
ticipants in the United States accurately recalled their own
and their partners’ turn signal use about 80% of the time,
participants in Israel recalled their own turn signal use more
accurately than the turn signals of their partners. This suggests
that Israeli drivers may pay less attention to fellow drivers’ turn
signals.

6) Simulator Sickness: Both driving simulators and virtual
reality experiences can cause nausea and simulator sickness. At
the Technion, the Simulator Sickness Questionnaire data was
collected (N = 56) pre-and post- experiment to evaluate the
participants’ sickness likelihood and incidence. Out of the 56
participants, four reported nausea. Overall, these results suggest
that the severity of self-reported simulator sickness with the
StrangeLand setup was low.
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V. DISCUSSION

Our long-term goal in creating the StrangeLand system is
to be able to capture cross-cultural driving differences in a
manner that would allow a computer-controlled car to recognize
and respond to local driving norms. As the first step towards
this, we can use StrangeLand to elicit naturalistic driving in-
teraction between people in different locations in ways that
enable researchers to reconstruct and analyze what transpired
between participants and find promising evidence of regional
differences in driving culture. While this work builds on prior
work in multi-driver simulation systems, such as [33], [34] our
platform is game-changing because it is built on lightweight,
portable consumer-grade equipment using open software. This
fact makes the system suitable for deployment in multi-location
studies in a manner that previous systems had not achieved;
this is why none of the previous systems had been used for
the purpose of profiling cultural differences. The difference in
cost of these platforms is one or two orders of magnitude. The
low-cost and consumer-product architecture makes it possible
for other researchers in other locales to build their own version of
our system and run comparison studies replicating our methods
with their local population.

1) Scenarios: The design of interactive systems which can
respond to culturally-specific driving interactions requires that
an autonomous system recognize interactive bids and maneu-
vers by people and responds appropriately. This approach–of
using simulation environments to elicit naturalistic interactive
behaviors–can also help develop other interactive products–
such as conversational agents–where being savvy about local
norms could improve the product. In staging the scenario, our
work enables the first step towards designing future interac-
tions; it collects data about how people in different locales
currently negotiate these scenarios, giving us information about
what exchanges lead to better or worse outcomes. The use
of the virtual environment to collect this data reduces the
effort that is needed to recognize scenarios and to control
for conflating factors when trying to understand interaction
in the wild, for example, as Domeyer, et al. have done us-
ing data from MIT’s Advanced Vehicle Technology dataset
[68], [69].

As mentioned previously, the system and scenario devel-
opment required numerous iterations to solidify the overall
protocol; the scenarios we developed yield meaningful differ-
ences in driver behavior. Of course, the scenarios we developed
are not exhaustive; however, when we compare our scenarios
with the proposed driving interaction framework by Markkula
et al. (which was published after our system was developed and
being piloted), we are pleased that our scenarios cover all of
the driver-driver interactions except that where two vehicles are
vying for the same parking space [70].

One of our goals in future work is to add scenarios and
measures to establish a more comprehensive data-driven model
of cultural driving styles. Superficially, the platform can be
“skinned” to adapt signs, buildings, and vehicles to match lo-
cal regulations, regional architectural styles, and typical traffic
make-up.

2) Cultural Driving Styles: While we do not intend for our
proof-of-concept results to be used for broad claims about
cultural differences, we believe the findings suggest “construct
validity” [71] for cultural driving differences. Our proof-of-
concept test found statistically significant cross-cultural differ-
ences in driving between the U.S. and Israel drivers in their
average recall of turn signals. Additionally, we found a signif-
icant difference in average speed between the two countries.
This is a positive indication that a more extensive and controlled
study with a deeper analysis of complex interaction patterns
would unearth other driving differences. Furthermore, this lays
the ground for future research which can profile regional dif-
ferences in driving culture, which are essential for drivers and
autonomous systems to adapt to.

3) Methodological Issues: In running our proof-of-concept
test, we noticed some issues that we think need to be addressed
before the system and protocol can be used for research. For
example, we noticed that, sometimes, participants were com-
municating verbally instead of through the simulator despite
our instructions. While it is common for drivers to communicate
with passengers within the vehicle, this isn’t the case between
cars. This could affect the verisimilitude of the simulator. Verbal
communication could also obviate the need to communicate
through gesture or vehicle motion as people would in regular
traffic. Therefore, we plan to amend the protocol to start the
study by assessing whether the participants know each other. In
addition, we will physically separate the participants to prevent
cross-talk.

During the study, we found that participants did not always
start when told to. This would throw off the timing of our
designed scenarios and cause misses where we intended to have
interactions. We are looking into programmatic and simulator-
based solutions that could adjust vehicle speeds so that partici-
pants experience arrival at the critical event simultaneously.

Finally, the counterbalancing of the scenarios caused some
scenarios to be experienced twice from both sides. This poten-
tially could have made the second scenario more predictable,
causing learning and interaction effects. In the future, we plan
to create a visual distinction between similar scenarios by de-
signing trivial scenery differently. By doing so, we hope drivers
are less likely to recognize that they are in a mirror scenario from
one they experienced previously.

4) Features for Studying Interaction: Strange Land is not the
first multi-user simulator, however, it was designed with a direct
focus on the implicit interaction that happens between drivers as
they encounter each other on the road. These features and their
combination is particularly important as it allows for scenarios
and findings not covered by prior systems.

Hand Tracking: When deploying a VR-based simulator, hand
tracking is always crucial as it gives the participants the sense
of place necessary to grab and halt the physical steering wheel.
This capability to share the tracked hand data with the other
networked participants allows for hand gesture communication.
Additionally, the head pose is also shared between participants
such that another driver can see where a driver is looking.

Field-of-view: By using VR headsets, there is no technical
limit to the field-of-view a participant can achieve by turning
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their head. Many of the existing multi-participant simulators
feature a three-screen setup that only covers a portion of the
participant’s field of view. While for many driving scenarios,
this should not be concerning, it can become a limiting factor
for urban driving with intersection and interactions happening
at 90◦ or higher relative to the participant’s orientation. Strange-
Land allows the participant to look around and gain situational
awareness similarly to how they would in a real car, allowing
for interactions with road users coming from any orientation.

Additional features for interaction have also been imple-
mented; these, however, can also be found in other simulators.

5) Limitations: One key limitation of this work is that the
studies in both locations were run with university students. We
believe that this is appropriate for proof-of-concept testing: if
you cannot get statistically significant results with students,
who are roughly the same age, similarly educated, and capable
of following instructions, we assume that the protocol will
yield better results with participants from a wider population.
However, one side-effect of this participant pool is that many
participants come from a location other than the culture we
were trying to profile. This further raises a question on how to
correctly screen for a participant from a specific driving culture.
i.e., When has someone driven long enough in a specific location
to qualify for the experiment.

Over time, when it becomes clearer exactly which measures
the best capture the differences in behavior and interaction
between cultures, the open-ended qualitative observations of
researchers can give way to pre-programmed sensors or mea-
sures of key variables. These may someday be captured as
standard metrics, such as those defined in SAE J2944 [62],
and be computed from the data generated from this simulator
or instrumented vehicles. Until that time, however, our driving
simulator analysis environment needs to allow researchers to
play and replay the interactions between the participants and
code behaviors or data points they think are notable.

While this system is the first to compare driver-driver inter-
actions across cultures, it is not our intent in this paper to make
broad claims about driving cultures. For future studies using
StrangeLand, where the goal will be to characterize driving
interaction rather than prove the system functions, we will make
greater efforts to recruit local participants for the study and be
conscientious about how we sample the population. Certainly,
there is a wide range of individual variations in driving behavior
within a culture. Therefore, we are looking for ways to profile
demographic differences within a population to understand how
some of these differences interact with the broader norms in
each region. In future studies, we would like to perform stimulus
sampling [72] by incorporating study runs from three cities in
each culture we are trying to profile.

As this is a simulator study, one essential question is how the
motions and gestures captured during the experiment align with
those that occur during actual driving. Simulation studies have
been a mainstay of transportation research for many years and
generally yield results that correlate to on-road behavior [73]–
[75]. However, as Mullen et al. point out, while simulator driving
behavior approximates on-road behavior, it does not replicate
on-road behavior [76]. Hence, some efforts to make common

instrumentation and measures to study on-road driving in-situ
are also needed to complement this work.

While this system was designed and evaluated before the
pandemic, this system could be adapted to be operated remotely
with social distancing. For example, participants can be in dif-
ferent rooms, researchers can maintain a six-foot distance from
the participants, and both participants and researchers would be
required to wear masks.

VI. CONCLUSION

The differences that we encounter on the road when we travel
to new places are no longer fodder for funny anecdotes. The
advent of increasing automation makes it important for us to
understand the differences we may currently intuit at a deeper,
more foundational level. By creating the StrangeLand system,
we intend to contribute an experimental platform that allows
people from different cultures to experience the same situations
and scenarios. This contributes a critical step towards running
cross-cultural interaction studies in a controlled and deployable
fashion.

Looking ahead, our primary goal is to understand the social
interactions and accidents that occur between drivers. With
StrangeLand, we look forward to examining interactions be-
tween drivers to see how those patterns of interactions are similar
or vary across locations. Our system and protocol allow us to
compare how people interact on the road and, in so doing,
is an essential step towards unlocking the implicit language
that drivers are using to communicate with one another on
the road.
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