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Quantum cascade of correlated phases in 
trigonally warped bilayer graphene

Anna M. Seiler1,2, Fabian R. Geisenhof2, Felix Winterer2, Kenji Watanabe3, Takashi Taniguchi4, 
Tianyi Xu5, Fan Zhang5 ✉ & R. Thomas Weitz1,2,6 ✉

Divergent density of states offers an opportunity to explore a wide variety of 
correlated electron physics. In the thinnest limit, this has been predicted and verified 
in the ultraflat bands of magic-angle twisted bilayer graphene1–5, the band touching 
points of few-layer rhombohedral graphite6–8 and the lightly doped rhombohedral 
trilayer graphene9–11. The simpler and seemingly better understood Bernal bilayer 
graphene is also susceptible to orbital magnetism at charge neutrality7 leading to 
layer antiferromagnetic states12 or quantum anomalous Hall states13. Here we report 
the observation of a cascade of correlated phases in the vicinity of electric-field- 
controlled Lifshitz transitions14,15 and van Hove singularities16 in Bernal bilayer 
graphene. We provide evidence for the observation of Stoner ferromagnets in the 
form of half and quarter metals10,11. Furthermore, we identify signatures consistent 
with a topologically non-trivial Wigner–Hall crystal17 at zero magnetic field and its 
transition to a trivial Wigner crystal, as well as two correlated metals whose behaviour 
deviates from that of standard Fermi liquids. Our results in this reproducible, tunable, 
simple system open up new horizons for studying strongly correlated electrons.

Electron–electron interactions can give rise to macroscopic quantum 
phenomena such as magnetism, superconductivity and quantum Hall 
(QH) effects. It is well known that interaction effects can be boosted near 
where the density of states (DOS) of electrons diverges. One remark-
able example is twisted bilayer graphene, in which the Dirac minibands 
become flattest when the twist angle is near the so-called magic angle1. 
Indeed, orbital ferromagnetism18, the quantum anomalous Hall (QAH) 
effect19 and nematic superconductivity20 have been observed in this deli-
cately designed system5. In fact, strongly interacting behaviour has also 
been discovered in the simpler, naturally occurring, Bernal bilayer gra-
phene (BLG) at charge neutrality. Under a high magnetic field, its bands 
quantize into Landau levels (LL) that are exactly flat, and both the frac-
tional QH effect and QH ferromagnetism have been reported6,13,21,22. Near 
zero magnetic field, its quadratic band touching points that each has a 
non-trivial winding number of ±2 are susceptible to spontaneous gaps 
driven by topological orbital magnetism7, as evidenced by a QAH octet 
observed in free-standing BLG13. Interestingly, when lightly doped, the 
trigonal warping of the Fermi surface of BLG (and its rhombohedral 
cousins) attributed to the interlayer next-nearest-neighbour coupling23 
becomes pronounced. The winding number and the C3z symmetry dic-
tate a deformation of each quadratic cone into one central Dirac cone 
and three surrounding ones. An electric field can gap these cones and 
even invert the central one14,15. These produce multiple Lifshitz transi-
tions and van Hove singularities (vHSs) tunable by the electric field and 
the charge density. However, so far, correlated phases mediated by this 
trigonal warping effect have escaped experimental observation in BLG, 
although ferromagnetism and superconductivity have been recently 
reported in lightly doped rhombohedral trilayer graphene (RTG)10,11.

Here we show that, at large electric fields, gate-tunable correlated 
insulating and metallic phases emerge in lightly doped high-quality 
BLG, without the presence of a moiré potential. The two insulating 
phases are consistent with a Wigner crystal and an unprecedented 
Wigner–Hall crystal, respectively, and the novel metallic phases are 
most likely fractional metals that develop LLs and correlated metals 
that show no signs of Landau quantization.

The investigated BLG flakes are encapsulated in hexagonal boron 
nitride (hBN) and equipped with graphite top and bottom gates as 
well as graphite contacts in a two-terminal configuration (Extended 
Data Fig. 1 and Methods). By varying both gate voltages, the charge 
carrier density n and the perpendicular electric field E can be tuned. 
Figure 1a shows the two-terminal conductance G in arbitrary units 
(a.u.) measured at zero magnetic field B and a temperature T of 10 mK. 
A crystallographic alignment between the BLG, hBN and graphite con-
tacts that would produce a moiré pattern can be excluded, given the 
clear absence of additional conductance minima at higher density24,25.

Magnetotransport in bilayer graphene
We focus our discussions on the hole side at large electric fields where 
the most distinctive features are observed; an onset of similar phys-
ics is observed on the electron side, and the features at low electric 
fields6,14,15,24,25 exemplify the ultrahigh quality of our devices (Methods 
and Extended Data Figs. 2 and 3). At larger electric fields, the trigonal 
warping becomes more visible as the central hole pocket is inverted 
into an electron pocket at lower energies (Fig. 1b,f). At very low doping, 
the Fermi surface is consequently composed of three disconnected 
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hole pockets ((3, 0) panel in Fig. 1f) that move apart with increasing E. 
At slightly higher doping, these three pockets connect, and the Fermi 
surface undergoes the first Lifshitz transition featuring a vHS and then 
becomes an annulus, that is, an inner electron pocket and an outer 
hole pocket ((1, 1) panel in Fig. 1f). As the doping increases further, 
the hole pocket enlarges whereas the electron pocket contracts and 
disappears in the second Lifshitz transition ((1, 0) panel in Fig. 1f). 
Figure 1c shows the Landau fan diagram at E = 0.6 V nm−1. At very low 
doping, the three disconnected hole pockets result in a three-fold LL 
degeneracy per spin–valley, and only the filling factor 𝜈 = −3 and 𝜈 = −6 
QH ferromagnetic states emerge at B < 1.2 T (Fig. 1c and Extended Data 
Fig. 3g), whereas at B > 2.5 T all the integer QH ferromagnetic states 
are resolved. Between 1.5 T and 2.5 T there are two crossings between 
the 𝜈 = −4 and 𝜈 = −5 QH states, originating from the emergence and 
contraction of the inner electron pocket (Fig. 1f) whose LLs do not mix 
with the hole LLs14,15. The magnetic fields and densities associated with 
the observed LL crossings match well with the calculated LL spectrum 
(Fig. 1d) and density range with an annular Fermi surface (Fig. 1e) for 
the non-degenerate case.

Moreover, at B < 1.3 T, the conductance pattern strongly deviates 
from any conventional LL sequence (Fig. 1c). For example, in sharp 
contrast to the established single-particle picture6,26, a complex 
non-monotonous E- and n-dependent variation of the conductance 
emerges for E > 0.1 V nm−1 even at B = 0 (Fig. 1a). Below we identify 
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Fig. 1 | Magnetotransport in bilayer graphene. a, Conductance map as a 
function of E and n measured at B = 0 T and T = 10 mK. b, Calculated DOS as a 
function of the interlayer potential difference Δ and the Fermi energy EF (in 
units of the constant DOS ν0 of the BLG without trigonal warping). The red dots 
correspond to the calculated Fermi surfaces shown in f. The Fermi surface 
topology is classified by two invariants (i, j), where i and j are the numbers of 
hole and electron pockets, respectively. The brightest line manifests the vHS at 
the Lifshitz transition between the (3, 0) and the (1, 0) Fermi surfaces for 
Δ < 0.1γ1 or the (3, 0) and the (1, 1) Fermi surfaces for Δ > 0.1γ1. The EF = −Δ/2 line 
at Δ > 0.1γ1 shows the (dis)appearance of the central electron pocket at the 
Lifshitz transition between the (1, 1) and the (1, 0) Fermi surfaces. c, Fan 
diagram of the conductance at E = 0.6 V nm−1. QH states are traced by black 
dotted lines and corresponding filling factors (𝜈) are indicated by arabic 
numerals. The two crossings between the 𝜈 = −4 and 𝜈 = −5 QH states are 
highlighted by red circles. New correlated phases are indicated by roman 
numerals. d, Calculated LL spectrum at Δ = 0.253γ1 for a non-degenerate Fermi 
surface. Δ is the interlayer potential difference induced by E. γ1 ≈ 400 meV is the 
interlayer nearest-neighbour coupling. The filling factors of QH states are 
indicated by arabic numerals. e, The calculated Wigner–Seitz radius rs as a 
function of n (see Methods for details) for the quadruply (g = 4, black line), 
doubly (g = 2, red lines) and singly (g = 1, blue lines) degenerate Fermi surfaces, 
respectively. The solid lines are for the outer hole (h+) pockets and the dashed 
lines are for the inner electron (e−) pockets. The shaded regions are where the 
Fermi surface is annular between the two Lifshitz transitions. rs = 20 and rs = 34 
are the thresholds for the ferromagnetic instability and the Wigner 
crystallization of 2D electron gases, respectively. f, Calculated trigonally 
warped Fermi surfaces under a large E field. The classifying invariants (i, j) are 
defined in b above. The arrows indicate the two Lifshitz transitions with 
increasing |n|.
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Fig. 2 | Stoner ferromagnetism in bilayer graphene. a, Conductance map as a 
function of E and n measured at B = 0 T for the valence band and positive 
electric fields. Stoner phases are labelled with the letters A–E and separated by 
dashed lines. New correlated phases are labelled by the roman numerals I–IV.  
b, Schematic of the phase diagram shown in a. c, Density derivative of 
conductance as a function of E and 𝜈 at B = 0.6 T. d, Hysteresis of the 
conductance as a function of the out-of-plane and in-plane magnetic fields in 
phase A (n = −8.5 × 1010 cm−2, E = 0.36 V nm−1), phase B/C (n = −2.6 × 1011 cm−2, 
E = 0.65 V nm−1), phase D (n = −4.0 × 1011 cm−2, E = 0.6 V nm−1) and phase E 
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various phases (A–E and I–V) by their conductance and evolution in 
the space of temperature, density, magnetic and electric fields, and bias 
current. This unexpected phase diagram of BLG stems from the intricate 
interplay between electron–electron interaction and trigonal warping.

Stoner spin–valley ferromagnetism
The prominent steps in the conductance that already start to appear 
at low electric fields above 0.1 V nm−1 in Fig. 1a are highlighted in 
Fig. 2a,b for positive electric fields. We label regions of different 
constant conductance with the letters A–E. Their E and n depend-
ence is reminiscent of those of half and quarter metals with sponta-
neous spin–valley polarization or coherence observed recently in 
RTG10, analogous to the textbook Stoner ferromagnets. Indeed, the 
experimental signatures observed in our BLG agree well with the 
exchange-interaction-driven ferromagnetic phases that can be well 
resolved at B = 0.6 T (Fig. 2c).

Phase A is close to the valence-band edge, and the 𝜈 = −3 and 𝜈 = −6 
QH states emerge owing to the three-fold degeneracy of the trigonally 
warped Fermi surface ((3, 0) panel in Fig. 1f). This phase shows slight 
out-of-plane magnetic hysteresis but a large in-plane one (Fig. 2d), and is 
most consistent with a quarter metal with in-plane spin polarization and 
inter-valley coherence. At higher densities, phase B/C emerges at B = 0. 
At finite magnetic fields, this phase splits up into two distinct phases B 
and C. Phase B exhibits two-fold LL degeneracy consistent with a half 
metal10 (Fig. 2c). Its strong hysteresis that is of the same order in in-plane 
and out-of-plane magnetic fields (Fig. 2d) is indicative of spin polariza-
tion. Unlike phases A and B, phase C exhibits conductance oscillations 
versus E instead of n, possibly owing to a partial polarization or a more 
complex order. Phase D shows similar LL degeneracy and conductance 
oscillations to phase C (Fig. 2c) but no magnetic hysteresis (Fig. 2d), 

which may indicate inter-valley coherence. Phase E emerges at higher 
densities, exhibits four-fold LL degeneracy (Fig. 2c) and an absence of 
magnetic hysteresis (Fig. 2d), and is most consistent with a full metal 
without spin–valley polarization.

Consistently, our calculation for E = 0.6 V nm−1 and the measured den-
sities reveals that with four-fold or two-fold degeneracy, the Wigner–
Seitz radius rs exceeds 20 (Fig. 1e and Methods), a threshold for the 
ferromagnetic instability of two-dimensional (2D) electron gases27. 
Moreover, phases A, B and E are below the first Lifshitz transitions 
and the vHS of the non-, two-fold- and four-fold-degenerate Fermi 
surfaces, respectively, whereas phases C and D are on the two sides of 
the second Lifshitz transition of the doubly degenerate Fermi surface 
(Figs. 1e and 2c). As the DOS of BLG is smaller than that of RTG, phases 
A–E emerge in narrower density ranges.

New correlated metallic and insulating phases
Besides the Stoner phases, we can also identify several phases that 
compete with them yet have not been previously reported in gra-
phene systems. We focus hereafter on these new phases in the 
large-negative-electric-field range, and there are at least four distinct 
phases at B = 0 (I–IV, Fig. 3a–d) that can be identified by steps in the 
conductance and stabilities in the space of T, n, B, E and bias current I. 
All four phases were also identified in a second device (Methods and 
Extended Data Fig. 4). For low doping, the conductance increases with 
increasing density until it reaches a plateau (phase I). The conduct-
ance then drops significantly (phase II) with further increasing den-
sity until it increases again (phase III). In addition, another plateau of 
higher conductance can be observed at still higher densities (phase 
IV). Although these phases are all unstable against the Stoner phases 
at large magnetic fields (B > 0.5–1.5 T), their mutual phase boundaries 
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density derivative of the conductance in c. Bottom: schematic of the slopes of 
the lowest integer QH states and the phases I–IV. The corresponding slopes are 
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dashed otherwise. f, Conductance as a function of d.c. current bias for the 
phases I–IV at E = −0.6 V nm−1 and B = 0 T. The corresponding densities are 
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and those with the Stoner phases exhibit sharp conductance changes 
at small magnetic fields (Fig. 3a–e).

Phase I is an island of relatively high conductance at very low densities 
close to the valence-band edge. It occurs in the density range below the 
first Lifshitz transition with a concomitant vHS of the non-degenerate 
Fermi surface (Fig. 1e) and exhibits an E-dependent phase boundary 
in the space of n and B against phase A (Fig. 3c–e and Extended Data 
Figs. 5 and 6). Its intimate connection to the trigonal warping and the 
layer polarization is also evidenced by the observation that its centre 
and extent in density increase with increasing electric field (Fig. 3a,b 
and Extended Data Fig. 6). Phase I exhibits intrinsic magnetism, as 
revealed by its magnetic hysteresis (Extended Data Figs. 5 and 7) that is, 
however, smaller than that of phase A. The in-plane magnetic hysteresis 
is larger than the out-of-plane one, indicating its in-plane spin order 
and inter-valley coherence. Moreover, large out-of-plane magnetic 
fields (Fig. 3c–e and Extended Data Fig. 8a) or applied bias currents 
(Fig. 3f and Extended Data Fig. 9) suppress phase I, which suggests 
that it is a correlated metal. This is further confirmed by the strong 
linear temperature dependence dR/dT = 5,000 Ω K−1 with resistance 
R = 1/G in phase I, compared with the ‘normal’ metallic phase at E = 0 
and the Stoner phases (Fig. 4d and Extended Data Fig. 10); this linear 
behaviour is similar to that of strange metals observed in twisted 
bilayer graphene28. Surprisingly, although at low electric fields LLs are  
visible down to 0.2 T (Extended Data Fig. 3b), phase I shows no signs 
of Landau quantization, which could result from the possible large 
effective masses, open Fermi surfaces or strange-metal properties of 
this phase that require future inspection.

At slightly higher densities, an abrupt transition from phase I to phase 
II of lower conductance is visible (Fig. 3a–d and Extended Data Fig. 5). 
Remarkably, phase II shows an increasing resistance with decreas-
ing temperature (Fig. 4c,d), which is indicative of an energy gap, and 

its low-temperature conductance not only matches that of the 𝜈 = −2 
QH state but also features a slope of −2 in the fan diagram (Fig. 3c–e 
and Extended Data Fig. 3g). The presence of an energy gap is also 
supported by a sudden increase in conductance at large increasing 
bias currents (Fig. 3f). These together provide strong evidence for a 
QAH phase with a Chern number of −2. In sharp contrast to the QAH 
octet reported in free-standing BLG13, this QAH phase II is stabilized at 
finite densities that increase with increasing electric field (Fig. 3a,b and 
Extended Data Fig. 8e), which implies an intimate connection to the 
trigonal warping. Indeed, our calculation shows that phase II emerges 
between the two Lifshitz transitions of the non-degenerate annular 
Fermi surface (Fig. 1e) in which rs > 34, a threshold for the Wigner crys-
tallization of 2D electron gases27, for the electron pocket. It can be sup-
pressed by the magnetic field (Extended Data Fig. 8b), bias currents 
(Fig. 3f) and temperature (Fig. 4), but this QAH phase II is present at 
B = 0 T for 0.3 V nm−1 < E < 0.8 V nm−1 (Extended Data Fig. 6). While for 
E < 0.6 V nm−1 a larger electric field stabilizes it against the magnetic 
field, for E > 0.8 V nm−1 phase II becomes less stable to the magnetic 
field (Extended Data Figs. 6 and 8b).

The observation of a QAH phase emerging at B = 0 yet n ≠ 0 is extraor-
dinary. This indicates a topological gap opening at densities where the 
non-interacting phase and even the Stoner phases would not be gapped. 
Given that phase II with a large rs in theory is topologically insulating, 
compressible in extremely low density and incommensurate with the 
BLG lattice, most consistent is a Wigner–Hall crystal phase, that is, an 
electron crystal with a quantized Hall conductance. Indeed, the tem-
perature-dependent resistance scales as ∼R T( ) e T T/0  with a scaling 
parameter T0, consistent with the anticipated Efros–Shklovskii hopping 
transport for electron crystals29 (Fig. 4c,d). Such a Wigner–Hall crystal 
at a finite magnetic field was originally proposed by ref. 17, and here 
phase II may be viewed as its anomalous counterpart at B = 0. Elegantly, 
Wigner–Hall crystals can be described by the Diophantine equa-
tion (Methods).

Phase II is unstable to another gapped phase III at slightly higher densities.  
The two phases compete in nearly the same density space (Fig. 3a–e), and 
phase III dominates for E > 0.8 V nm−1 at B = 0 (Extended Data Fig. 6). Phase 
III shows a similar resistance and temperature scaling to phase II (Fig. 4e) 
but shows neither a slope nor a sign of any LL in the fan diagram, and in 
fact it can be suppressed by the magnetic field (Fig. 3c–e). Along a similar 
line of arguments, a potential candidate for phase III is a Wigner crystal. 
Phases II and III exhibit magnetic hysteresis of similar magnitudes, with 
stronger in-plane ones (Extended Data Fig. 7). Their phase boundary does 
not shift with increasing in-plane magnetic field (Extended Data Fig. 11). 
This suggests that phases II and III probably carry similar in-plane spin 
order and inter-valley coherence. Compared with phase I, both phases 
probably have larger magnitudes of spin polarization as they are more 
stable against large in-plane magnetic fields.

At higher densities the system enters a metallic phase IV of high con-
ductance but unstable at the magnetic fields that favour the Stoner 
phases. In the fan diagram (Fig. 3c–e), phase IV has a similar shape to 
phase I but a larger critical magnetic field that increases with increasing 
E (Extended Data Fig. 8d). Phase IV competes with the half metals B/C 
and appears close to but below the vHS of the doubly degenerate Fermi 
surface (Fig. 1e). Compared with phase I, phase IV shows stronger and 
more isotropic magnetic hysteresis (Extended Data Fig. 7). Its linear 
temperature-dependent resistance (Fig. 4f) and stability in density, 
electric and magnetic fields, and bias current (Fig. 3f) are very similar 
to phase I. These together suggest phase IV to be a spin polarized cor-
related metal.

Discussion and outlook
Our results reveal a cascade of density- and field-dependent correlated 
phases in BLG. Transport evidence is provided for Stoner phases includ-
ing the half and quarter metals, electron crystals including the Wigner 
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crystal and the unprecedented Wigner–Hall crystal (topologically 
non-trivial), and two correlated metals whose behaviour deviates from 
that of standard Fermi liquids. Indicated by the tunable vHS and the 
large rs (Fig. 1e), these new phases are driven by the complex interplay 
between electron–electron interaction, Fermi surface trigonal warping  
with vHS and the interlayer electric field. However, deciphering 
the origin of each phase and deeper understanding of this strongly 
correlated electron system call for further experiments and more theo-
retical works. Likely there exist finer and weaker phases such as the 
Stoner phase E and another gapped phase V (Methods and Extended 
Data Fig. 12).

Note added in proof: During the submission of our work, we became 
aware of two related experimental works by Zhou et al.30 and de la Barrena  
et al.31 on trigonally warped Bernal bilayer graphene. They both reported 
the metallic Stoner phases but not the new correlated phases (I–V) with 
metallic and insulating behaviour.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-022-04937-1.
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Methods

Device fabrication
Bilayer graphene flakes, graphite flakes and hBN flakes, synthesized as 
described previously32, were exfoliated on silicon (Si)/silicon dioxide 
(SiO2) substrates and subsequently identified with optical microscopy. 
Raman spectroscopy was used to confirm the number of layers of the 
bilayer graphene flakes. The encapsulated bilayer graphene devices 
were fabricated using the same dry transfer method as described in 
ref. 33. An hBN flake, two few-layer graphite flakes serving as contacts, 
a bilayer graphene flake, a lower hBN flake and a graphite flake serv-
ing as a bottom gate were picked up and then placed onto a highly 
doped Si/SiO2 substrate. Afterwards, the samples were annealed in a 
vacuum chamber at 200 °C for 12 h. In a second step, a top hBN flake 
and, subsequently, a graphite flake serving as a top gate were picked 
up and released onto the annealed heterostructures. The thicknesses 
of the hBN flakes serving as dielectrics were determined to be 34 nm 
(top dielectric of device A), 42 nm (bottom dielectric of device A), 13 nm 
(top dielectric of device B) and 32 nm (bottom dielectric of device B) 
by using atomic force microscopy. Metal contacts (chromium/gold, 
5 nm/60 nm for device A and 2 nm/45 nm for device B) that connect 
the graphite contacts and gates with larger pads were then structured 
using electron-beam lithography and were evaporated onto the sam-
ple. Optical images and a schematic of our devices are shown in the 
Extended Data Fig. 1.

Electrical measurements
All quantum transport measurements were conducted in a dilution 
refrigerator equipped with a superconducting magnet. Unless stated 
otherwise, the sample temperature was 10–20 mK. Two-terminal con-
ductance measurements were performed using an a.c. bias current of 
1–10 nA at 78 Hz using Stanford Research Systems SR865A and SR830 
lock-in amplifiers. Home-built low-pass filters were used to reduce 
high-frequency noises. Gate voltages were applied using Keithley 2450 
SourceMeters.

Device characterization
The charge carrier density (n) and the electric field (E) can be tuned 
independently by varying the top-gate and bottom-gate voltages (Vt 
and Vb, respectively) and are defined as follows:

n C V C V=
1
e

( + )t t b b

and

E
ε

C V C V=
1

2
( − ) ,

0
t t b b

where ε0 is the vacuum permittivity, and Ct and Cb are the top-gate and 
bottom-gate capacitances. Ct and Cb were extracted at low electric 
fields by aligning the integer QH plateaus at finite magnetic fields with 
their corresponding slopes in a fan diagram (Extended Data Fig. 3a,b). 
The observed LL crossings at different filling factors (Extended Data 
Fig. 3c,d) show excellent agreement with those observed previ-
ously6,34,35. Owing to the screening of Coulomb interaction by hBN, 
the interaction induced spontaneously gapped phase at E = 0 and n = 0 
is absent, unlike in free-standing BLG6,12,13,36.

Comment on graphite contacts
Using graphite contacts allows us to avoid etching into the insulating 
hBN layers, which is usually required for metal contacting but would 
lower the accessible electric-field range. However, using graphite con-
tacts makes it technically demanding to use four-probe contacts, and 
thus two-point measurements were used here.

At B = 0, we see a line of decreased conductance across E = 0 that 
depends only on the applied bottom-gate voltage but is independent of 
the top-gate voltage (Extended Data Fig. 3f). We assume that this effect 
comes from the region of the BLG that is located below the graphite 
contacts. Here the contacts screen the field of the top gate, which is why 
we observe only a dependence of the bottom gate. It is worth noting 
that all the correlated phases that we observe depend on both the top 
gate and the bottom gate (Extended Data Fig. 3f) and can therefore 
not be related to the line of decreased conductance that depends on 
only the bottom-gate voltage. Apart from this line, we see no sudden 
changes in conductance as a function of density and electric field at 
small electric fields where the physics is known (Extended Data Fig. 3).

The contact resistance is also visible in the presence of a magnetic 
field. By tracing the measured conductance along one QH state as a 
function of the magnetic field, one can observe a linearly decreasing 
conductance with increasing magnetic field (without any steps in the 
conductance, right panel in Extended Data Fig. 3a), which we attribute 
to a magnetic-field-dependent contact resistance of our graphite con-
tacts. This makes it difficult to extract contact resistances for entire 
fan diagrams. Thus, the measured conduction is given in arbitrary 
units in most of the figures. Nevertheless, the contact resistance can be 
determined and subtracted for constant magnetic fields by recording 
density versus conductance sweeps and by assigning the resistance 
plateaus to the assigned fillings factors. An exemplary density versus 
conductance sweep is shown for B = 2 T and E = 0.08 V nm−1 in Extended 
Data Fig. 3e. Here, the contact resistance was determined to be 7,800 Ω.

At large electric fields, we can also subtract a linearly magnetic- 
field-dependent contact resistance and find constant conductances in 
filling factors, and can further determine the conductance of phase II to 
be approximately 2 e2 h−1,where e is the charge of a bare electron, and h 
is Planck's constant (Extended Data Fig. 3g). Owing to the dependence 
of the bottom-gate voltage, the contact resistance varies slightly for 
different electric fields and charge carrier densities.

Apart from a bottom-gate and magnetic-field dependence, the con-
tact resistance of graphite contacts can also depend on temperature. 
To exclude distortion of our temperature-dependent measurements at 
high electric fields, we further investigated the resistance as a function 
of temperature without electric field where the temperature depend-
ence in bilayer graphene is well known. Consistent with previous 
results37, we find that the measured resistance only slightly increases 
with increasing temperature (approximately 750 Ω from 10 mK to 10 K), 
whereas we see much larger changes in resistance in all the correlated 
phases in the same temperature range (Extended Data Fig. 10). Thus, 
we do not expect large changes in our contact resistance with varying 
temperature.

In Fig. 1a and in the temperature-dependent measurements shown 
in Fig. 4 and Extended Data Figs. 10 and 12c, we show the measured 
conductance or resistance (that includes contact resistance) to provide 
the readers with the original values.

Model Hamiltonian
The following four-band Hamiltonian23 was used to describe the 
non-interacting physics near the valley K of BLG
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in the sublattice basis (A1, B1, A2, B2). Here Δ is the interlayer potential 
difference, π = px + ipy is the complex momentum operator with px and 
py the x and y components of the momentum vector, a = 0.246 nm is 
the graphene lattice constant, v =i
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ħ

3
2

i  with ħ the reduced Planck's 
constant, and γi (i = 0, 1, 3) depict the nearest-neighbour intralayer 
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hopping and the vertical and skew interlayer hopping processes. Other 
remote hopping processes in the Slonczewski–Weiss–McClure para-
metrization can be added into the model conveniently but have little 
effect on any of the calculated results and were thus ignored for sim-
plicity. In the calculations, γ1 = 400 meV and v3 = 0.1v0 were used.

When a perpendicular magnetic field is applied, the momentum 
operator p becomes ħ e= − i ∇ +p A, where e is the charge of a bare elec-
tron, and A = (0, Bx) is the magnetic vector potential in the Landau 
gauge. π† and π act as raising and lowering operators of the LLs of a 
simple quadratic band, that is, n  (n = 0, 1, 2...) with the following iden-
tities

π n n n π n n n π| =
i

2( + 1) | + 1 , | = −
i

2 | − 1 , |0 = 0,†

B B

ℏ
ℓ

ℏ
ℓ

where ℓB is the magnetic length. To obtain the LLs of trigonally warped 
BLG, the following eigenstates
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with a cut-off Nc = 100 were constructed to diagonalize the Hamiltonian. 
Diagonalizing the coefficient matrix in the basis (A0, B0, C0, D0, A1, B1, 
C1, D1, ...) produced the LL structure in Fig. 1d.

Generalized Wigner–Seitz radius
To evaluate the important roles of electron–electron interactions in 
a low-density electron gas system, it is suggested to examine the 
dimensionless Wigner–Seitz radius27 rs = U/W, where U e πn= /ϵ2  is 
the estimated Coulomb potential, W is the average kinetic (band) 
energy of electrons/holes with respect to the band bottom/top, n is 
the charge carrier density and ϵ is the dielectric constant. The rs cal-
culation is extremely neat for a perfect quadratic band with a constant 
isotropic effective mass, and W turns out to be exactly half of the 
Fermi energy EF in two dimensions. However, the rs calculation is com-
plex for the current case, because the Fermi surface is trigonally 
warped, because the effective mass varies strongly with momentum 
and electric field, and because the electron and hole pockets can 
coexist in between the two Lifshitz transitions. Nevertheless, the net 
charge density n and the average kinetic energy W were naturally 
defined as follows
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where Ek is the band energy at momentum k, and EM is the valence-band 
energy maximum. When the electron and hole pockets coexist, the 
charge density ne, the average kinetic energy We and the estimated 
Coulomb potential Ue for the electrons in the inner (in) pocket were 
naturally defined as follows
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where E0 is the band energy at k = 0. It follows that the charge density 
nh, the average kinetic energy Wh and the estimated Coulomb potential 
Uh for the holes in the outer pocket(s) read
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2
h

Thus, for the electrons rs = Ue/We, whereas for the holes rs = Uh/Wh. 
When the inner electron pocket is absent, rs = Uh/Wh = U/W. In the esti-
mations, the experimentally extracted ϵ = 3 was used.

Calculations of LLs and rs values
In Fig. 1, the experimental fan diagram at E = 0.6 V nm−1 and two types 
of theoretical calculation are compared. First, by using experimental 
relevant parameter values, we can estimate the interlayer potential 
difference Δ to be around 0.25γ1, and then calculate the LL structure for 
the non-degenerate valence band. The LL crossings between the 𝜈 = −4 
and 𝜈 = −5 QH states are well matched between the experiment (Fig. 1c) 
and the calculation (Fig. 1d). Next, we use the same set of parameters 
to calculate the Wigner–Seitz radius rs as a function of the charge car-
rier density n.

First, assuming a four-fold (spin and valley) degeneracy for all the 
states, we find that no Lifshitz transition can be reached in the density 
range of the experimental fan diagram, and that the corresponding 
rs (black curve in Fig. 1e) is always larger than 34, a threshold for the 
Wigner crystallization of 2D electron gases27, not to mention 20, a 
threshold for the ferromagnetic instability of 2D electron gases27. Fol-
lowing this result, next, we assume all the states to be ferromagnetic 
and two-fold (either spin or valley) degenerate, and find that both 
Lifshitz transitions can be reached, and that the rs values (red curves 
in Fig. 1e) of the outer hole (h+) and inner electron (e−) pockets are 
generally larger than 20. Following this result, lastly, we assume all 
the ferromagnetic states to be non-degenerate, and find that both 
Lifshitz transitions can be reached, and that the rs (blue curves in 
Fig. 1e) of the outer hole (inner electron) pocket is smaller (larger) 
than 20 (34).

Relation between critical densities and correlated phases
When compared with our experimental findings, these theoreti-
cal calculations at least suggest the following five facts. (1) The 
observed LL crossing can be attributed to the annular Fermi sur-
face in between the two Lifshitz transitions of the quarter metal 
(Fig. 1d). Consistently, a similar crossing can be seen at B = 2.4 T and 
n = −4 × 1011 cm−2 (Fig. 1c), near which the half metal has an annular 
Fermi surface. (2) The result rs < 20 for the non-degenerate case is 
consistent with that phase A is a non-degenerate quarter metal at 
low densities where there is no inner electron pocket. (3) The result 
rs > 34 for the non-degenerate electron pocket is consistent with 
that phases II and III are non-degenerate Wigner crystals. In addi-
tion, we observe indications of another insulating phase similar to 
phase II (phase V, only at finite B; Extended Data Fig. 12) near the 
density in which the doubly degenerate inner electron pocket is 
present, consistent with the result rs > 34 for the doubly degenerate 
electron pocket. (4) Phases I and IV are metallic, with very similar 
behaviour in temperature (Fig. 4), bias current (Fig. 3f), and both 
in-plane and out-of-plane magnetic fields (Extended Data Figs. 6 
and 7). This is consistent with that they both occur in a density range 
close to but below the Lifshitz transition associated with the vHS. (5) 
The phase boundary between D and C and that between C and B at 
E = 0.6 V nm−1 (Fig. 2c) are almost coincident with the two calculated 
Lifshitz transition densities for the states being doubly degenerate 
(half metal), that is, the boundaries of the light red shaded region in  
Fig. 1e.

Diophantine equation and Wigner–Hall crystals
Wigner–Hall physics can be captured by the Diophantine equation 
n νn η A= +ϕ 0

−1, where ν is the total Chern number, n eBh=ϕ
−1 is the den-

sity of magnetic flux quanta, η is the band filling and A0 is the unit cell 
area of electron crystal17. A Wigner crystal has ν = 0 and η ≠ 0 (for exam-
ple, phase III), whereas a Hall crystal or a QH state has ν ≠ 0 and η = 0. 
The more unusual case for ν ≠ 0 and η ≠ 0 is the Wigner–Hall crystal. 
For phase II, one possible scenario is ν = −2 and η ≠ 0: the doped holes 
spontaneously crystallize with the formation of Chern bands7,38, or 
they form a Wigner crystal on top of the undoped system that is in one 
state of the QAH octet7,13.



Device quality
Extended Data Fig. 3a shows the conductance plotted as a function of 
the density and the magnetic field at E = 0.0 V nm−1. It is clear that the 
lowest QH states start to emerge at very low magnetic fields of 0.2 T, 
demonstrating the high quality of our device13. At higher magnetic 
fields, all integer filling factors appear owing to spontaneous sym-
metry breaking6. Extended Data Fig. 3c shows the conductance as a 
function of the density and the electric field at B = 2 T. All integer QH 
states are clearly visible. In addition, one can see several transitions 
in the electric field that mark the collapse of different LLs owing to 
the interplay of spin and valley splitting34. We further investigated 
the 𝜈 = 0 QH state as a function of the electric field and the magnetic 
field (Extended Data Fig. 3d). We observed unusual sharp conductance 
peaks marking the transition between the canted antiferromagnetic 
phase and the fully layer polarized phase. This underlines the high 
quality of our device39.

The conductance map shows slight asymmetry in electric field, prob-
ably owing to the different cleanliness levels of the two sides of BLG. 
Nevertheless, the main signatures described are the same for both the 
negative and positive electric fields.

Additional magnetotransport data
In the main text, we have focused on the hole side where the most dis-
tinct features were observed. Although we did not find signatures of 
phases I–IV on the electron side (Fig. 1a), there could be Stoner phases 
in the conduction band. In Extended Data Fig. 2, we show the deriva-
tive of the conductance as a function of the filling factor 𝜈 (𝜈 > 0) and 
the electric field and highlight regions with two-fold and four-fold 
degeneracies that potentially correspond to half and full metal phases. 
For completeness, the conductance as well as its derivative as func-
tions of the charge carrier density and the magnetic field are shown in 
Extended Data Fig. 6 for different electric fields not shown in the main 
text. Furthermore, the derivative of the conductance as a function of 
the charge carrier density and the magnetic field at an electric field of 
−0.8 V nm−1 is shown for a second device (device B) in Extended Data 
Fig. 4. Even though device B is not as clean as device A, we still iden-
tified all the phases discussed in the main text. The four phases I–IV 
show approximately the same density, electric field and magnetic field 
behaviour in both devices (Extended Data Fig. 8).

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Bilayer graphene devices studied here. a, b, Optical 
images of device A (presented in the main manuscript) (a) and device B (b).  
The top hBN is encircled in grey, the upper graphite flake in green, the upper 
hBN flake in red, the graphite contacts in pink, the bilayer graphene flake in 

blue, the lower hBN flake in yellow, and the lower graphite flake in purple. 
c, Schematic of the bilayer graphene devices. The colours of different flakes 
match those in a, b.
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Extended Data Fig. 2 | Stoner physics in the conduction band. Density 
derivative of the conductance as a function of the filling factor 𝜈 and the 
electric field at B = 0.8 T for positive filling factors. Two-fold and four-fold LL 
degeneracies are marked.



Article

Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Device Characterizations. a, Fan diagram at E = 0 V/
nm. The QH states 𝜈 = −4, −2, and 2 are traced as function of the magnetic field 
and the charge carrier density. b, Derivative of the conductance in a. 
c, Conductance as a function of the charge carrier density and the electric field 
at B = 2 T. Transitions induced by the electric field are marked by dashed circles. 
(In a–c, Integer QH states are labelled by numerals.) d, Conductance as a 
function of the electric field and the magnetic field at 𝜈 = 0. The phase 
transitions between the canted antiferromagnetic (CAF) and fully layer 
polarized (FLP) phases are indicated by arrows. e, Conductance as a function of 

the charge carrier density at E = 0.08 V/nm and B = 2 T (extracted from data in c). 
Here a contact resistance of 7800 Ω was subtracted. f, Conductance as a 
function of the top and bottom-gate voltages at B = 0 T in the space of −7 x 1011 
cm−2 < n < 7 x 1011 cm−2 and −0.7 V/nm < E < 0.7 V/nm. g, Conductance as a 
function of charge carrier density and magnetic field at E = 0.6 V/nm. A contact 
resistance of Rc =  2000 Ω + 3000 Ω/T x B (T) was subtracted from the measured 
values. The data are the same measurements presented in Fig 1c of the main 
manuscript.



Article
d /dG n ( )a.u. 1-1

B
(T

)

0 0.

2.0

1.0

2.0

1.5

0.5

1.0

0.5

1.5

III

a

Density ( cm )1011 -2

0-2-4

b

-6

1-1

IQH
Phase I
Phase II
Phase III
Phase VI

IQH
Phase I
Phase II
Phase III
Phase VI

Device A Device B

IIIV
III

III

II II

IIIII IIIIIIIIV

B
(T

)

0 0.

2.0

1.0

2.0

1.5

0.5

1.0

0.5

1.5

d /d a.u.G n ( )

-2

0 0
00 00

-2-2

-1
-3-3

-2

-1

Density ( cm )1011 -2

0-2-4-6
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Extended Data Fig. 5 | Zoom-in of phases I–III and A. a, Conductance as a 
function of charge carrier density and magnetic field at E = −0.8 V/nm showing 
the clear distinction between phases I and A. b, Schematic of phases A and I-III 
at E = −0.8 V/nm. c,d, Magnetic hysteresis of phase A (c)and phase I (d). The 
forward sweeps are shown in blue while the backward ones in red. The 

hysteresis loop areas are shaded in yellow. e, f, Conductance as a function of 
charge carrier density and magnetic field at E = −0.6 V/nm (e) and E = −0.8 V/nm 
(f) showing the clear distinction between phases I, II and III and B and C that 
show distinct values in conductance and clear steps of conductance at the 
phase boundaries.
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