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Divergent density of states offers an opportunity to explore a wide variety of
correlated electron physics. Inthe thinnest limit, this has been predicted and verified
in the ultraflat bands of magic-angle twisted bilayer graphene', the band touching

points of few-layer rhombohedral graphite®® and the lightly doped rhombohedral
trilayer graphene’ ™. The simpler and seemingly better understood Bernal bilayer
grapheneis also susceptible to orbital magnetism at charge neutrality’ leading to
layer antiferromagnetic states” or quantum anomalous Hall states®”. Here we report
the observation of a cascade of correlated phases in the vicinity of electric-field-
controlled Lifshitz transitions'" and van Hove singularities'® in Bernal bilayer
graphene. We provide evidence for the observation of Stoner ferromagnets in the
form of half and quarter metals'®". Furthermore, we identify signatures consistent
with a topologically non-trivial Wigner-Hall crystal' at zero magnetic field and its
transition to atrivial Wigner crystal, as well as two correlated metals whose behaviour
deviates from that of standard Fermi liquids. Our results in this reproducible, tunable,
simple system open up new horizons for studying strongly correlated electrons.

Electron-electroninteractions can give rise to macroscopic quantum
phenomenasuch as magnetism, superconductivity and quantum Hall
(QH) effects. It is well known that interaction effects can be boosted near
where the density of states (DOS) of electrons diverges. One remark-
ableexampleis twisted bilayer graphene, in which the Dirac minibands
become flattest when the twist angle is near the so-called magic angle'.
Indeed, orbital ferromagnetism', the quantum anomalous Hall (QAH)
effect’” and nematic superconductivity?® have been observed in this deli-
cately designed system®. In fact, strongly interacting behaviour has also
beendiscoveredinthe simpler, naturally occurring, Bernalbilayer gra-
phene (BLG) at charge neutrality. Under ahigh magneticfield, its bands
quantizeinto Landaulevels (LL) that are exactly flat,and both the frac-
tional QH effect and QH ferromagnetism have been reported®?*, Near
zero magneticfield, its quadratic band touching points thateach hasa
non-trivial winding number of +2 are susceptible to spontaneous gaps
driven by topological orbital magnetism’, as evidenced by a QAH octet
observed in free-standing BLG®. Interestingly, when lightly doped, the
trigonal warping of the Fermi surface of BLG (and its rhombohedral
cousins) attributed to the interlayer next-nearest-neighbour coupling®
becomes pronounced. The winding number and the C;,symmetry dic-
tate a deformation of each quadratic cone into one central Dirac cone
and three surrounding ones. An electric field can gap these cones and
even invert the central one'*". These produce multiple Lifshitz transi-
tions and van Hove singularities (vHSs) tunable by the electric field and
the charge density. However, so far, correlated phases mediated by this
trigonal warping effect have escaped experimental observationin BLG,
although ferromagnetism and superconductivity have been recently
reported in lightly doped rhombohedral trilayer graphene (RTG)™*™.

Here we show that, at large electric fields, gate-tunable correlated
insulating and metallic phases emerge in lightly doped high-quality
BLG, without the presence of a moiré potential. The two insulating
phases are consistent with a Wigner crystal and an unprecedented
Wigner-Hall crystal, respectively, and the novel metallic phases are
most likely fractional metals that develop LLs and correlated metals
that show no signs of Landau quantization.

The investigated BLG flakes are encapsulated in hexagonal boron
nitride (hBN) and equipped with graphite top and bottom gates as
well as graphite contacts in a two-terminal configuration (Extended
Data Fig.1and Methods). By varying both gate voltages, the charge
carrier density n and the perpendicular electric field £ can be tuned.
Figure 1a shows the two-terminal conductance G in arbitrary units
(a.u.) measured at zero magnetic field Band atemperature 7of 10 mK.
Acrystallographicalignment between the BLG, hBN and graphite con-
tacts that would produce a moiré pattern can be excluded, given the
clear absence of additional conductance minima at higher density**%,

Magnetotransportin bilayer graphene

We focus our discussions on the hole side at large electric fields where
the most distinctive features are observed; an onset of similar phys-
icsis observed on the electron side, and the features at low electric
fields®™*1>**% exemplify the ultrahigh quality of our devices (Methods
and Extended Data Figs. 2 and 3). At larger electric fields, the trigonal
warping becomes more visible as the central hole pocket is inverted
into an electron pocket at lower energies (Fig. 1b,f). At very low doping,
the Fermi surface is consequently composed of three disconnected
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Fig.1|Magnetotransportinbilayergraphene. a, Conductancemapasa
functionof Eand nmeasuredatB=0Tand 7=10 mK.b, Calculated DOSasa
functionoftheinterlayer potential difference A and the Fermienergy £; (in
units of the constant DOS v, of the BLG without trigonal warping). The red dots
correspond to the calculated Fermisurfaces showninf. The Fermisurface
topology is classified by two invariants (i, ), where iandjare the numbers of
holeandelectron pockets, respectively. The brightest line manifests the vHS at
the Lifshitz transition between the (3, 0) and the (1, 0) Fermisurfaces for
A<0.1y,orthe (3,0)andthe (1,1) Fermisurfaces for4 > 0.1y,. The E; =-4/2line
at4 > 0.1y, shows the (dis)appearance of the central electron pocket at the
Lifshitz transition between the (1, 1) and the (1, 0) Fermisurfaces. ¢, Fan
diagram of the conductanceat £= 0.6 Vnm™. QH states are traced by black
dottedlines and correspondingfilling factors (v) are indicated by arabic
numerals. The two crossings betweenthe v=-4and v=-5QH statesare
highlighted by red circles. New correlated phases are indicated by roman
numerals.d, Calculated LL spectrumat 4 = 0.253y, for anon-degenerate Fermi
surface.Ais theinterlayer potential differenceinduced by £. y, = 400 meVis the
interlayer nearest-neighbour coupling. The filling factors of QH states are
indicated by arabicnumerals. e, The calculated Wigner-Seitzradius r,asa
function of n (see Methods for details) for the quadruply (g =4, blackline),
doubly (g=2,redlines) and singly (g =1, bluelines) degenerate Fermisurfaces,
respectively. The solid lines are for the outer hole (h*) pockets and the dashed
linesare for theinner electron (e”) pockets. The shaded regions are where the
Fermisurfaceisannularbetween the two Lifshitz transitions.r,=20and r,=34
arethe thresholds for the ferromagnetic instability and the Wigner
crystallization of 2D electron gases, respectively. f, Calculated trigonally
warped Fermisurfacesunderalarge Efield. The classifying invariants (i, ) are
definedinbabove. The arrows indicate the two Lifshitz transitions with
increasing|n|.
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Fig.2|Stonerferromagnetisminbilayergraphene. a, Conductancemapasa
function of Eand nmeasured at B=0 T for the valence band and positive
electricfields. Stoner phases arelabelled with the letters A-E and separated by
dashedlines. New correlated phases are labelled by the roman numerals I-IV.
b, Schematic of the phase diagram shownin a. ¢, Density derivative of
conductanceasafunctionof FandvatB=0.6 T.d, Hysteresis of the
conductance asafunction of the out-of-plane and in-plane magnetic fields in
phaseA(n=-8.5x10"cm™?,E=0.36 Vnm™), phase B/C (n=-2.6 x 10" cm,
E=0.65Vnm™),phaseD (n=-4.0x10"cm™?,E=0.6 Vnm™)and phaseE
(n=-5.5x10"cm™2,E=0.5Vnm™). The forward sweepsind areshowninblue
(greenfor phase D) and the backwards onesinred (orange for phase D).

The hysteresisloop areas are shaded inyellow.

hole pockets ((3, 0) panel in Fig. 1f) that move apart with increasing E.
Atslightly higher doping, these three pockets connect, and the Fermi
surface undergoes thefirst Lifshitz transition featuring a vHS and then
becomes an annulus, that is, an inner electron pocket and an outer
hole pocket ((1, 1) panel in Fig. If). As the doping increases further,
the hole pocket enlarges whereas the electron pocket contracts and
disappears in the second Lifshitz transition ((1, 0) panel in Fig. If).
Figure 1c shows the Landau fan diagram at £=0.6 V nm™. At very low
doping, the three disconnected hole pockets result in a three-fold LL
degeneracy per spin-valley, and only thefilling factorv=-3andv=-
QHferromagneticstates emergeat B<1.2 T (Fig.lcand Extended Data
Fig.3g), whereas at B> 2.5 T all the integer QH ferromagnetic states
areresolved. Between 1.5 T and 2.5 T there are two crossings between
the v=—4 and v=-5 QH states, originating from the emergence and
contraction of theinnerelectron pocket (Fig. 1f) whose LLs do not mix
with the hole LLs'". The magnetic fields and densities associated with
the observed LL crossings match well with the calculated LL spectrum
(Fig. 1d) and density range with an annular Fermi surface (Fig. 1e) for
the non-degenerate case.

Moreover, at B<1.3 T, the conductance pattern strongly deviates
from any conventional LL sequence (Fig. 1c). For example, in sharp
contrast to the established single-particle picture®*, a complex
non-monotonous E- and n-dependent variation of the conductance
emerges for £> 0.1V nm™ even at B =0 (Fig. 1a). Below we identify
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Fig.3|New correlated phases atlarge electricfields.a, Conductance map as
afunction of Fand nmeasured at B=0.25T for the valence band and negative
electricfields. Stoner phases arelabelled with the letters A-E. New correlated
phasesare labelled by the roman numerals I-1V. b, Schematic of the phase
diagramshownina. ¢, Conductance map asafunction of Band n measured at
E=-0.6Vnm™.Indication of the onset of insulating phase Vis marked by a star
(Extended DataFig.12).d, Schematic of the phase diagram showninc.e, Top:

various phases (A-E and I-V) by their conductance and evolution in
the space of temperature, density, magnetic and electric fields, and bias
current. This unexpected phase diagram of BLG stems from the intricate
interplay between electron-electroninteraction and trigonal warping.

Stoner spin-valley ferromagnetism

The prominentstepsinthe conductance thatalready startto appear
at low electric fields above 0.1V nm™in Fig. 1a are highlighted in
Fig. 2a,b for positive electric fields. We label regions of different
constant conductance with the letters A-E. Their F and n depend-
ence is reminiscent of those of half and quarter metals with sponta-
neous spin-valley polarization or coherence observed recently in
RTG, analogous to the textbook Stoner ferromagnets. Indeed, the
experimental signatures observed in our BLG agree well with the
exchange-interaction-driven ferromagnetic phases that can be well
resolved at B=0.6 T (Fig. 2c).

Phase A is close to the valence-band edge, and the v=-3and v=-6
QH statesemerge owing to the three-fold degeneracy of the trigonally
warped Fermi surface ((3, 0) panel in Fig. 1f). This phase shows slight
out-of-plane magnetic hysteresis butalarge in-plane one (Fig. 2d), and is
most consistent with a quarter metal within-plane spin polarizationand
inter-valley coherence. At higher densities, phase B/C emergesat B=0.
Atfinite magneticfields, this phase splits up into two distinct phases B
and C. Phase B exhibits two-fold LL degeneracy consistent with a half
metal® (Fig. 2c). Its strong hysteresis that is of the same order inin-plane
and out-of-plane magnetic fields (Fig. 2d) is indicative of spin polariza-
tion. Unlike phases A and B, phase C exhibits conductance oscillations
versus Einstead of n, possibly owing to a partial polarization oramore
complex order. Phase D shows similar LL degeneracy and conductance
oscillations to phase C (Fig. 2c) but no magnetic hysteresis (Fig. 2d),
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density derivative of the conductancein c. Bottom: schematic of the slopes of
thelowestinteger QH states and the phasesI-1V. The corresponding slopes are
indicated by arabic numerals. The lines are solid if the states are present and
dashed otherwise. f, Conductance asafunctionof d.c. current bias for the
phasesI-IVatE=-0.6 Vnm™and B=0T.The corresponding densities are
n=0.8x10" cm?forphasel, n=1.1x10" cmforphasell,n=1.4 x10" cm™for
phasellland n=2.2 x10" cm™for phase V.

which may indicate inter-valley coherence. Phase Eemerges at higher
densities, exhibits four-fold LL degeneracy (Fig.2c) and an absence of
magnetic hysteresis (Fig. 2d), and is most consistent with a full metal
without spin-valley polarization.

Consistently, our calculation for £= 0.6 Vnm™and the measured den-
sities reveals that with four-fold or two-fold degeneracy, the Wigner-
Seitz radius r; exceeds 20 (Fig. 1e and Methods), a threshold for the
ferromagnetic instability of two-dimensional (2D) electron gases?.
Moreover, phases A, B and E are below the first Lifshitz transitions
and the VHS of the non-, two-fold- and four-fold-degenerate Fermi
surfaces, respectively, whereas phases C and D are on the two sides of
the second Lifshitz transition of the doubly degenerate Fermi surface
(Figs.1leand 2c). As the DOS of BLG is smaller than that of RTG, phases
A-E emergein narrower density ranges.

New correlated metallic and insulating phases

Besides the Stoner phases, we can also identify several phases that
compete with them yet have not been previously reported in gra-
phene systems. We focus hereafter on these new phases in the
large-negative-electric-field range, and there are at least four distinct
phases at B=0 (I-1V, Fig. 3a-d) that can be identified by steps in the
conductance and stabilities in the space of T, n, B, Eand bias current /.
All four phases were also identified in a second device (Methods and
Extended DataFig.4). For low doping, the conductance increases with
increasing density until it reaches a plateau (phaseI). The conduct-
ance then drops significantly (phase II) with further increasing den-
sity until it increases again (phase IlI). In addition, another plateau of
higher conductance can be observed at still higher densities (phase
IV). Although these phases are all unstable against the Stoner phases
atlarge magnetic fields (B > 0.5-1.5 T), their mutual phase boundaries
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Fig.4|Temperature stability of new correlated phases.a, Conductanceasa
functionofnat E=-0.6 Vnm™and different temperatures. The new correlated
phasesI-1Varehighlightedinlight blue. b-f, Temperature dependence of the
resistanceinphaselatn=-1.3x10"cm?2 E=-0.8Vnm™and B=0T (b), phasell
atn=-1.2x10"cm? E=-0.6 Vnm'andB=0T (c), phasellatn=-1.4 x10" cm?,
E=-0.6Vnm™andB=0.6T(d), phaselllatn=-2.0x10"cm?, E=-0.8Vnm™
andB=0T(e),and phaselVatn=-3.2x10"cm=, E=-0.8Vnm™andB=0T(f).
Thelinear temperature dependencein phasesland1Vis highlighted by orange
lines. For phaseslland Il R(T) =ROeW(bluelines)isfitted by using
R,=12,932.36 Qand T,=0.1978Kinc,R,=13,581.63 Qand T,=0.1199Kind,
andR,=12,142.09 Qand T,=0.2189Kine.

and those with the Stoner phases exhibit sharp conductance changes
at small magnetic fields (Fig. 3a-e).

Phaselisanisland of relatively high conductance at very low densities
closetothevalence-band edge. It occursin the density range below the
first Lifshitz transition with aconcomitant vHS of the non-degenerate
Fermi surface (Fig. 1e) and exhibits an £-dependent phase boundary
in the space of n and B against phase A (Fig. 3c-e and Extended Data
Figs.5and 6). Its intimate connection to the trigonal warping and the
layer polarization is also evidenced by the observation that its centre
and extent in density increase with increasing electric field (Fig. 3a,b
and Extended Data Fig. 6). Phase | exhibits intrinsic magnetism, as
revealed by its magnetic hysteresis (Extended Data Figs.5and 7) that s,
however, smaller thanthat of phase A. The in-plane magnetic hysteresis
is larger than the out-of-plane one, indicating its in-plane spin order
and inter-valley coherence. Moreover, large out-of-plane magnetic
fields (Fig. 3c-e and Extended Data Fig. 8a) or applied bias currents
(Fig. 3f and Extended Data Fig. 9) suppress phase I, which suggests
that it is a correlated metal. This is further confirmed by the strong
linear temperature dependence dR/dT=5,000 Q K™ with resistance
R=1/Gin phase I, compared with the ‘normal’ metallic phase at E=0
and the Stoner phases (Fig. 4d and Extended Data Fig. 10); this linear
behaviour is similar to that of strange metals observed in twisted
bilayer graphene?. Surprisingly, although at low electric fields LLs are
visible down to 0.2 T (Extended Data Fig. 3b), phase I shows no signs
of Landau quantization, which could result from the possible large
effective masses, open Fermi surfaces or strange-metal properties of
this phase that require future inspection.

Atslightly higher densities, an abrupt transition from phase I to phase
Il of lower conductance is visible (Fig. 3a-d and Extended Data Fig. 5).
Remarkably, phase Il shows an increasing resistance with decreas-
ing temperature (Fig. 4c,d), which is indicative of an energy gap, and

its low-temperature conductance not only matches that of the v=-2
QH state but also features a slope of -2 in the fan diagram (Fig. 3c-e
and Extended Data Fig. 3g). The presence of an energy gap is also
supported by a sudden increase in conductance at large increasing
bias currents (Fig. 3f). These together provide strong evidence for a
QAH phase with a Chern number of -2. In sharp contrast to the QAH
octetreportedin free-standing BLG™, this QAH phase Il is stabilized at
finite densities thatincrease withincreasing electric field (Fig.3a,b and
Extended Data Fig. 8e), which implies an intimate connection to the
trigonal warping. Indeed, our calculation shows that phase llemerges
between the two Lifshitz transitions of the non-degenerate annular
Fermisurface (Fig.1e) inwhichr, >34, athreshold for the Wigner crys-
tallization of 2D electron gases?, for the electron pocket. It can be sup-
pressed by the magnetic field (Extended Data Fig. 8b), bias currents
(Fig. 3f) and temperature (Fig. 4), but this QAH phase Il is present at
B=0Tfor0.3Vnm™<E<0.8Vnm™(Extended Data Fig. 6). While for
E<0.6 Vnm™alarger electric field stabilizes it against the magnetic
field, for E> 0.8 Vnm™ phase Il becomes less stable to the magnetic
field (Extended Data Figs. 6 and 8b).

The observation of aQAH phase emergingat B=0yetn # Qisextraor-
dinary. Thisindicates atopological gap opening at densities where the
non-interacting phase and even the Stoner phases would not be gapped.
Given that phase Il with alarge r,in theory is topologically insulating,
compressiblein extremely low density and incommensurate with the
BLG lattice, most consistent is a Wigner—Hall crystal phase, thatis, an
electron crystal with a quantized Hall conductance. Indeed, the tem-
perature-dependent resistance scales as R(T) ~ eV’ witha scaling
parameter T,, consistent with the anticipated Efros-Shklovskii hopping
transport for electron crystals® (Fig. 4c,d). Sucha Wigner-Hall crystal
at a finite magnetic field was originally proposed by ref. ", and here
phasellmaybe viewed asitsanomalous counterpartat B=0.Elegantly,
Wigner-Hall crystals can be described by the Diophantine equa-
tion (Methods).

Phasellisunstabletoanothergappedphaselllatslightlyhigherdensities.
The two phases competein nearly the same density space (Fig. 3a-e),and
phase llldominatesfor £> 0.8 Vnm™at B =0 (Extended DataFig. 6). Phase
llIshows asimilar resistance and temperature scaling to phase Il (Fig. 4e)
but shows neither aslope nor asignofany LL in the fan diagram, andin
factitcanbesuppressed by the magneticfield (Fig.3c-e). Along asimilar
line of arguments, apotential candidate for phase Illisa Wigner crystal.
Phaseslland Il exhibit magnetic hysteresis of similar magnitudes, with
stronger in-plane ones (Extended DataFig. 7). Their phase boundary does
notshift withincreasingin-plane magnetic field (Extended DataFig.11).
This suggests that phases Il and Il probably carry similar in-plane spin
order and inter-valley coherence. Compared with phase I, both phases
probably have larger magnitudes of spin polarization as they are more
stable against large in-plane magnetic fields.

Athigher densities the system enters ametallic phase IV of high con-
ductance but unstable at the magnetic fields that favour the Stoner
phases. In the fan diagram (Fig. 3c-e), phase IV has a similar shape to
phaselbutalarger critical magnetic field thatincreases with increasing
E (Extended Data Fig. 8d). Phase IV competes with the half metals B/C
and appearsclose to but below the vHS of the doubly degenerate Fermi
surface (Fig. 1e). Compared with phase I, phase IV shows stronger and
more isotropic magnetic hysteresis (Extended Data Fig. 7). Its linear
temperature-dependent resistance (Fig. 4f) and stability in density,
electricand magnetic fields, and bias current (Fig. 3f) are very similar
to phasel. These together suggest phase IV to be a spin polarized cor-
related metal.

Discussion and outlook

Ourresults reveal acascade of density- and field-dependent correlated
phasesinBLG. Transportevidenceis provided for Stoner phases includ-
ingthe halfand quarter metals, electron crystalsincluding the Wigner
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crystal and the unprecedented Wigner-Hall crystal (topologically
non-trivial), and two correlated metals whose behaviour deviates from
that of standard Fermi liquids. Indicated by the tunable vHS and the
larger, (Fig.1e), these new phases are driven by the complexinterplay
between electron-electroninteraction, Fermisurface trigonal warping
with vHS and the interlayer electric field. However, deciphering
the origin of each phase and deeper understanding of this strongly
correlated electron system call for further experiments and more theo-
retical works. Likely there exist finer and weaker phases such as the
Stoner phase E and another gapped phase V (Methods and Extended
DataFig.12).

Note added in proof:During the submission of our work, we became
awareoftworelated experimentalworksbyZhouetal.**and delaBarrena
etal.*ontrigonally warped Bernalbilayer graphene. They bothreported
the metallic Stoner phases but not the new correlated phases (I-V) with
metallic and insulating behaviour.
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Methods

Device fabrication

Bilayer graphene flakes, graphite flakes and hBN flakes, synthesized as
described previously*, were exfoliated on silicon (Si)/silicon dioxide
(Si0,) substrates and subsequently identified with optical microscopy.
Raman spectroscopy was used to confirm the number of layers of the
bilayer graphene flakes. The encapsulated bilayer graphene devices
were fabricated using the same dry transfer method as described in
ref. . An hBN flake, two few-layer graphite flakes serving as contacts,
a bilayer graphene flake, alower hBN flake and a graphite flake serv-
ing as a bottom gate were picked up and then placed onto a highly
doped Si/SiO, substrate. Afterwards, the samples were annealed in a
vacuum chamber at 200 °C for 12 h. In a second step, a top hBN flake
and, subsequently, a graphite flake serving as a top gate were picked
up and released onto the annealed heterostructures. The thicknesses
of the hBN flakes serving as dielectrics were determined to be 34 nm
(topdielectricof device A), 42 nm (bottomdielectric of device A), 13 nm
(top dielectric of device B) and 32 nm (bottom dielectric of device B)
by using atomic force microscopy. Metal contacts (chromium/gold,
5nm/60 nm for device A and 2 nm/45 nm for device B) that connect
the graphite contacts and gates with larger pads were then structured
using electron-beam lithography and were evaporated onto the sam-
ple. Optical images and a schematic of our devices are shown in the
Extended Data Fig. 1.

Electrical measurements

All quantum transport measurements were conducted in a dilution
refrigerator equipped with a superconducting magnet. Unless stated
otherwise, the sample temperature was10-20 mK. Two-terminal con-
ductance measurements were performed using ana.c. bias current of
1-10 nA at 78 Hz using Stanford Research Systems SR865A and SR830
lock-in amplifiers. Home-built low-pass filters were used to reduce
high-frequency noises. Gate voltages were applied using Keithley 2450
SourceMeters.

Device characterization

The charge carrier density (n) and the electric field (£) can be tuned
independently by varying the top-gate and bottom-gate voltages (V,
and V,, respectively) and are defined as follows:

n= %(Ctl/ﬁ vab)

and

1
E= Z—%(Ctl/t— Cbe) y

where g, is the vacuum permittivity, and C,and C, are the top-gate and
bottom-gate capacitances. C,and C, were extracted at low electric
fields by aligning the integer QH plateaus at finite magnetic fields with
their corresponding slopesinafandiagram (Extended DataFig.3a,b).
The observed LL crossings at different filling factors (Extended Data
Fig. 3c,d) show excellent agreement with those observed previ-
ously®***, Owing to the screening of Coulomb interaction by hBN,
theinteractioninduced spontaneously gapped phaseatE=0andn=0
is absent, unlike in free-standing BLG*'>>,

Comment on graphite contacts

Using graphite contacts allows us to avoid etching into the insulating
hBN layers, which is usually required for metal contacting but would
lower the accessible electric-field range. However, using graphite con-
tacts makesit technically demanding to use four-probe contacts, and
thus two-point measurements were used here.

At B=0, we see aline of decreased conductance across £ = O that
depends only onthe applied bottom-gate voltage butisindependent of
the top-gate voltage (Extended Data Fig. 3f). We assume that this effect
comes from the region of the BLG that is located below the graphite
contacts. Here the contacts screen the field of the top gate, whichis why
we observe only a dependence of the bottom gate. It is worth noting
thatallthe correlated phases that we observe depend onboth the top
gate and the bottom gate (Extended Data Fig. 3f) and can therefore
not be related to the line of decreased conductance that depends on
only the bottom-gate voltage. Apart from this line, we see no sudden
changes in conductance as a function of density and electric field at
small electric fields where the physics is known (Extended Data Fig. 3).

The contact resistance is also visible in the presence of a magnetic
field. By tracing the measured conductance along one QH state as a
function of the magnetic field, one can observe a linearly decreasing
conductance with increasing magnetic field (without any stepsin the
conductance, right panelin Extended Data Fig. 3a), which we attribute
toamagnetic-field-dependent contact resistance of our graphite con-
tacts. This makes it difficult to extract contact resistances for entire
fan diagrams. Thus, the measured conduction is given in arbitrary
unitsinmost of the figures. Nevertheless, the contactresistance canbe
determined and subtracted for constant magnetic fields by recording
density versus conductance sweeps and by assigning the resistance
plateaus to the assigned fillings factors. An exemplary density versus
conductance sweepisshown for B=2Tand £=0.08 Vnm™inExtended
DataFig. 3e. Here, the contactresistance was determined to be 7,800 Q.

At large electric fields, we can also subtract a linearly magnetic-
field-dependent contact resistance and find constant conductancesin
filling factors, and can further determine the conductance of phasell to
beapproximately 2 e h™,where eis the charge of abare electron,and h
is Planck's constant (Extended Data Fig. 3g). Owing to the dependence
of the bottom-gate voltage, the contact resistance varies slightly for
different electric fields and charge carrier densities.

Apartfrom abottom-gate and magnetic-field dependence, the con-
tact resistance of graphite contacts can also depend on temperature.
To exclude distortion of our temperature-dependent measurements at
highelectricfields, we further investigated theresistance as afunction
of temperature without electric field where the temperature depend-
ence in bilayer graphene is well known. Consistent with previous
results®, we find that the measured resistance only slightly increases
withincreasing temperature (approximately 750 Q from10 mKto10 K),
whereas we see much larger changes inresistance inall the correlated
phasesin the same temperature range (Extended Data Fig. 10). Thus,
we do not expect large changes in our contact resistance with varying
temperature.

In Fig.1a and in the temperature-dependent measurements shown
in Fig. 4 and Extended Data Figs. 10 and 12c, we show the measured
conductance or resistance (thatincludes contact resistance) to provide
the readers with the original values.

Model Hamiltonian
The following four-band Hamiltonian®® was used to describe the
non-interacting physics near the valley K of BLG

A2 ver' O v

vom  A/2 % 0
1oy -A2 et

vstt 0 ugr  -AJ2

inthe sublattice basis (4,, B;, A,, B,). Here A is the interlayer potential
difference, m=p, +ip,is the complex momentum operator with p, and

p,the xand y components of the momentum vector, a=0.246 nmiis
the graphene lattice constant, v;= 73% with i the reduced Planck's

constant, and y;(i=0, 1, 3) depict the nearest-neighbour intralayer
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hoppingand the vertical and skew interlayer hopping processes. Other
remote hopping processes in the Slonczewski-Weiss-McClure para-
metrization can be added into the model conveniently but have little
effect on any of the calculated results and were thus ignored for sim-
plicity. In the calculations, y, =400 meV and v, = 0.1v, were used.

When a perpendicular magnetic field is applied, the momentum
operator pbecomesp =-ihaV + eA, where eisthe charge of abare elec-
tron, and A = (0, Bx) is the magnetic vector potential in the Landau
gauge. ' and ract as raising and lowering operators of the LLs of a
simple quadraticband, thatis,|n)(n=0, 1, 2...) with the following iden-
tities

n*|n>=%/z<n+1> In+1), miny=- %m In-1), 70)=0,
B B

where #;is the magneticlength. To obtain the LLs of trigonally warped
BLG, the following eigenstates

(ZAn i, Y B, 1m, ¥ Cpim, YD, |n>)T

witha cut-off N.=100 were constructed to diagonalize the Hamiltonian.
Diagonalizing the coefficient matrix in the basis (A4,, By, Cy, Do, Ay, By,
C, D,,...) produced the LL structure in Fig. 1d.

Generalized Wigner-Seitz radius

To evaluate theimportant roles of electron-electroninteractionsin
alow-density electron gas system, it is suggested to examine the
dimensionless Wigner-Seitz radius? r, = U/W, where U= e./mn /e is
the estimated Coulomb potential, Wis the average kinetic (band)
energy of electrons/holes with respect to the band bottom/top, nis
the charge carrier density and e is the dielectric constant. The r, cal-
culationis extremely neat for a perfect quadratic band with a constant
isotropic effective mass, and W turns out to be exactly half of the
Fermienergy £ in two dimensions. However, the r calculation is com-
plex for the current case, because the Fermi surface is trigonally
warped, because the effective mass varies strongly with momentum
and electric field, and because the electron and hole pockets can
coexistinbetween the two Lifshitz transitions. Nevertheless, the net
charge density n and the average kinetic energy W were naturally
defined as follows

-

E>Ep

d’k
(2m?*’

d’k
m?*

1
w=— [ [E-&d
E>Ep

where E, is the band energy at momentumk, and £y, is the valence-band
energy maximum. When the electron and hole pockets coexist, the
charge density n,, the average kinetic energy W, and the estimated
Coulomb potential U, for the electrons in the inner (in) pocket were
naturally defined as follows

d2k U e’ mn,
(m? ° e '

d’k 1
ne.= e~

2 ’
n
E<Eg, kein (2”) € E<Eg, ke€in

[Ek_Eo]

where E, is the band energy at k = 0. It follows that the charge density
n,,, the average kinetic energy W, and the estimated Coulomb potential
U, forthe holes in the outer pocket(s) read

e’ [mn,
nh:n+ne, Wh: w+ M/E' thi.

Thus, for the electrons r,= U./W,, whereas for the holes r,= U,/W,.
Whentheinnerelectron pocketis absent, r, = U,/W, = U/W.Inthe esti-
mations, the experimentally extracted € = 3 was used.

Calculations of LLs and r, values

InFig. 1, the experimental fan diagram at £= 0.6 Vnm™ and two types
of theoretical calculation are compared. First, by using experimental
relevant parameter values, we can estimate the interlayer potential
difference 4 to be around 0.25y;, and then calculate the LL structure for
the non-degenerate valence band. The LL crossings between the v=-4
and v=-5QH states are well matched between the experiment (Fig. 1c)
and the calculation (Fig. 1d). Next, we use the same set of parameters
to calculate the Wigner-Seitz radius r,as a function of the charge car-
rier density n.

First, assuming afour-fold (spin and valley) degeneracy for all the
states, we find that no Lifshitz transition can be reached in the density
range of the experimental fan diagram, and that the corresponding
ry(black curvein Fig. 1e) is always larger than 34, a threshold for the
Wigner crystallization of 2D electron gases®, not to mention 20, a
threshold for the ferromagnetic instability of 2D electron gases®. Fol-
lowing this result, next, we assume all the states to be ferromagnetic
and two-fold (either spin or valley) degenerate, and find that both
Lifshitz transitions canbe reached, and that the r, values (red curves
inFig. 1e) of the outer hole (h*) and inner electron (e”) pockets are
generally larger than 20. Following this result, lastly, we assume all
the ferromagnetic states to be non-degenerate, and find that both
Lifshitz transitions can be reached, and that the r, (blue curves in
Fig. 1e) of the outer hole (inner electron) pocket is smaller (larger)
than 20 (34).

Relation between critical densities and correlated phases

When compared with our experimental findings, these theoreti-
cal calculations at least suggest the following five facts. (1) The
observed LL crossing can be attributed to the annular Fermi sur-
face in between the two Lifshitz transitions of the quarter metal
(Fig.1d). Consistently, asimilar crossing canbe seenat B=2.4 T and
n=-4x10"cm™2(Fig. 1c), near which the half metal has an annular
Fermi surface. (2) The result r,< 20 for the non-degenerate case is
consistent with that phase A is a non-degenerate quarter metal at
low densities where there is noinner electron pocket. (3) The result
r,>34 for the non-degenerate electron pocket is consistent with
that phases Il and Il are non-degenerate Wigner crystals. In addi-
tion, we observe indications of another insulating phase similar to
phasell (phaseV, only at finite B; Extended Data Fig. 12) near the
density in which the doubly degenerate inner electron pocket is
present, consistent with the result r, > 34 for the doubly degenerate
electron pocket. (4) Phases I and IV are metallic, with very similar
behaviour in temperature (Fig. 4), bias current (Fig. 3f), and both
in-plane and out-of-plane magnetic fields (Extended Data Figs. 6
and 7). Thisis consistent with that they both occurinadensity range
closetobutbelow the Lifshitz transition associated with the vHS. (5)
The phase boundary between D and C and that between C and B at
E=0.6Vnm™(Fig.2c) are almost coincident with the two calculated
Lifshitz transition densities for the states being doubly degenerate
(half metal), that is, the boundaries of the light red shaded regionin
Fig.le.

Diophantine equation and Wigner-Hall crystals

Wigner-Hall physics can be captured by the Diophantine equation
n=vn,+nAy, wherevis the total Chernnumber, n,, = eBh ‘isthe den-
sity of magnetic flux quanta, is the band filling and A, is the unit cell
areaofelectroncrystal”. AWigner crystal hasv=0and 5 # O (for exam-
ple, phase Ill), whereas a Hall crystal or a QH state hasv=0and n=0.
The more unusual case for v# 0 and r # O is the Wigner-Hall crystal.
For phaseIl, one possible scenariois v=-2 and n # 0: the doped holes
spontaneously crystallize with the formation of Chern bands”*, or
they form a Wigner crystal on top of the undoped system thatisin one
state of the QAH octet™.



Device quality

Extended Data Fig. 3ashows the conductance plotted as afunction of
the density and the magnetic fieldat £= 0.0 Vnm™ Itis clear that the
lowest QH states start to emerge at very low magnetic fields of 0.2 T,
demonstrating the high quality of our device®. At higher magnetic
fields, all integer filling factors appear owing to spontaneous sym-
metry breaking®. Extended Data Fig. 3¢ shows the conductance as a
function of the density and the electric field at B=2 T. All integer QH
states are clearly visible. In addition, one can see several transitions
in the electric field that mark the collapse of different LLs owing to
the interplay of spin and valley splitting®*. We further investigated
the v=0 QH state as afunction of the electric field and the magnetic
field (Extended Data Fig.3d). We observed unusual sharp conductance
peaks marking the transition between the canted antiferromagnetic
phase and the fully layer polarized phase. This underlines the high
quality of our device®.

The conductance map shows slight asymmetryinelectricfield, prob-
ably owing to the different cleanliness levels of the two sides of BLG.
Nevertheless, the mainsignatures described are the same for both the
negative and positive electric fields.

Additional magnetotransport data

In the main text, we have focused on the hole side where the most dis-
tinct features were observed. Although we did not find signatures of
phasesI-IVontheelectronside (Fig.1a), there could be Stoner phases
inthe conduction band. In Extended Data Fig. 2, we show the deriva-
tive of the conductance as a function of the filling factor v (v> 0) and
the electric field and highlight regions with two-fold and four-fold
degeneracies that potentially correspond to half and full metal phases.
For completeness, the conductance as well as its derivative as func-
tions of the charge carrier density and the magnetic field are shownin
Extended DataFig. 6 for different electric fields not shownin the main
text. Furthermore, the derivative of the conductance as a function of
the charge carrier density and the magnetic field at an electric field of
-0.8 Vnmis shown for a second device (device B) in Extended Data
Fig. 4. Even though device B is not as clean as device A, we still iden-
tified all the phases discussed in the main text. The four phases I-1V
show approximately the same density, electric field and magnetic field
behaviour in both devices (Extended Data Fig. 8).

Data availability

The datathat support the findings of this study are available from the
corresponding authors upon reasonable request.
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v,
Extended DataFig.1|Bilayer graphenedevices studied here.a, b, Optical blue, thelower hBN flake in yellow, and the lower graphite flake in purple.
images of device A (presented in the main manuscript) (a) and device B (b). c,Schematicof the bilayer graphene devices. The colours of different flakes
Thetop hBNisencircledingrey, the upper graphite flake ingreen, the upper matchthoseina,b.

hBNflakeinred, the graphite contactsin pink, the bilayer graphene flake in
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Extended DataFig.2|Stoner physicsinthe conductionband. Density
derivative of the conductance as afunction of the filling factor vand the
electricfield at B=0.8T for positive filling factors. Two-fold and four-fold LL
degeneracies are marked.
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Extended DataFig. 3 |Device Characterizations. a, Fandiagramat E=0V/
nm. The QHstates v=-4,-2,and 2 are traced as function of the magnetic field
andthe charge carrier density. b, Derivative of the conductanceina.

¢, Conductanceasafunction of the charge carrier density and the electric field
atB=2T.Transitionsinduced by the electric field are marked by dashed circles.
(Ina-c, Integer QH states are labelled by numerals.) d, Conductanceasa
function of theelectric field and the magnetic field at v= 0. The phase
transitions between the canted antiferromagnetic (CAF) and fully layer
polarized (FLP) phases areindicated by arrows. e, Conductance as a function of

the charge carrier density at F=0.08 V/nmand B=2T (extracted fromdatainc).
Here a contactresistance of 7800 Q was subtracted. f, Conductanceasa
function of the top and bottom-gate voltagesat B= 0 T in the space of -7 x 10"
cm?<n<7x10"cm2and-0.7V/nm<E<0.7V/nm.g, Conductanceasa
function of charge carrier density and magnetic field at £= 0.6 V/nm. A contact
resistance of R,= 2000 Q+3000 Q/T xB(T) was subtracted from the measured
values. The data are the same measurements presented in Fig 1c of the main
manuscript.
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Extended DataFig. 6 | Additional magnetotransport data at various electricfields. Conductance and its density derivative plotted as functions of the charge
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Extended DataFig.7|Magnetic field hysteresis of phases I-1V. Hysteresis of
the conductance as afunction of the out-of-plane magneticfield B, (a, b) and
thein-plane magnetic field B, (c) at E=-0.6 V/nmand charge carrier densities
correspondingtophasel (n=-0.85x10" cm™), phasell (n=-1.2x10" cm™),
phaselll (n=-1.5x10"cm™),and phase IV (n=-2.2x10" cm™), respectively. The

forward sweeps are shownin blue while the backward onesinred.

The hysteresisloop areas are shaded inyellow. The datashownina, b stem from
two different sets of measurement. The magnetic field sweeps were started at
-1Tand -0.1T respectively.In(a) the B rangesin which phasesI-1V are stable
are highlightedingreen.
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Extended DataFig.11|In-plane magneticfield dependence of phasesI-IV.
Conductance as afunction of charge carrier density and in-plane magnetic
field Bjat B,=0and £=-0.6 V/nm. The phase boundary between phase Il and Il
doesnotshift withincreasing the in-plane magnetic field suggesting that both
phaseslikely carry similarin-plane spin order and inter-valley coherence.
Compared withphasel, both phaseslikely have larger magnitudes of spin
polarizationsince they are more stable against large in-plane magnetic fields.
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Extended DataFig.12 | Experimental indications of afurther novel phase
close to theLifshitz transition of the half metal, termed phase V. We find
thisadditional phase near the density in which the doubly degenerate inner
electron pocketis present, consistent with theresultr, >34 (dashed red) for the
electron pocketin Figle of the main manuscript. Potentially this phase
resembles phaselland/or Illbut for the doubly degenerate case.

a, Conductanceasafunction of charge carrier density for different
temperaturesat £=-0.6 V/nmand B=0.6 T. Theinsulating correlated phases
are highlighted in blue. The maximum/minimum charge carrier density at
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which phase Visstable is marked by ablack square/circle. b, Zoom-in of
aaround phaseV. ¢, Resistance as afunction of temperature 7 for phase V at
E=-0.6V/nm,B=0.6T,and n=-3.4x10"cm™.d, Conductance as afunction of
charge carrier density and magnetic field at £=-0.6 V/nm. The maximum/
minimum charge carrier density at which phase Vis stableat B= 0.6 Tis marked
byablacksquare/circle. e, Conductance as afunction of charge carrier density
andelectricfield at B= 0.6 T. The maximum/minimum charge carrier density at
which phase Visstableat £=-0.6 V/nmis marked by ablack square/circle.
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