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Abstract—Prior work in programming-by-demonstration
(PBD) has explored ways to enable end-users to create custom
automation without needing to write code. We propose a new
end-user specifcation model – asking the end-user to explicitly
identify parts of their natural language query that can be
generalized. We built a PBD system, ParamMacros, where users
frst generalize a concrete natural language question – identifying
parameters and their possible values – and then create a demon-
stration of how to answer the question on the website of interest.
ParamMacros then infers a generalized program by using the
user-provided parameter values to identify relevant patterns in
the website’s structure. In a lab study we found that participants
were able to meaningfully parameterize natural language queries
and felt such a parameterization and demonstration process
would be useful for creating custom automation.

Index Terms—parameterization, natural language,
programming-by-demonstration, automation, virtual assistants

I. INTRODUCTION

The Web is a rich source of information. Web automation
makes it possible to programmatically access this information
by mimicking user interactions, such as clicking on buttons
and typing text into felds, on a web page. This can be
benefcial in a variety of scenarios. For example, enabling
voice-based access [1] to web content could make it more
accessible, and macros could allow users to complete tasks
that would be tedious when performed manually. However, the
time, expertise, and effort required to write automation code
makes it impractical to support the long tail of user needs.

Prior research has shown that Programming-By-
Demonstration (PBD) [2], [3] is an effective way to allow
users—including users without programming experience—to
create user interface (UI) automation macros [4]–[8]. The
user demonstrates how to perform the task that they want
automated, and then the PBD system generates code capable
of mimicking the user’s actions on a UI. However, a challenge
of PBD systems is inferring how to generalize from one
demonstration—inferring a domain of similar tasks and
performing tasks within that domain. In this paper, we focus
on improving parameterization of PBD-generated automation
macros, in the context of natural language (NL)—specifying
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the slots in NL queries and what values they might have.
Parameterization is a key method for scaling the domain of
tasks that automation can handle.

We propose leveraging end-users to identify macro pa-
rameters and values that match their intent. We designed a
novel PBD system, ParamMacros, that allows end-users to
create custom macros that answer parameter-based questions
about website content. End-users start with a concrete natural
language question they have, then through a text annotation
interface identify parts of their question that could change (i.e.,
parameters) and provide possible alternative values. Using
this parameterized natural language question, the end-user
now selects a question instance (i.e., a value per parameter)
and demonstrates on the website the correct answer for that
question and the necessary page interactions to fnd that
answer. ParamMacros then infers a generalized program based
on the user-provided parameters and demonstration.

PBD systems Sugilite [4] and Appinite [5] also enable end-
users to create custom automation that supports their specifc
natural language requests. To identify related UI elements
during program inference, Sugilite primarily considers sibling
nodes, and Appinite uses its natural language understanding
(NLU) to interpret user NL and accordingly identify relevant
relationships from its UI knowledge graph. A key difference in
our system ParamMacros is that it leverages user-provided pa-
rameters and values to identify relevant patterns as it traverses
the Document Object Model (DOM) [9] hierarchy during pro-
gram inference. Complex relationships exist between elements
at many levels in a UI hierarchy, and we offer a new approach
to identifying those relationships.

We focus on website content that has semantic entries
and attributes (e.g., a list of movies and their metadata, a
table of sports statistics). Through a user study we show that
users can identify meaningful parameters and effectively create
demonstrations, and that users think creating such generalized
automation macros would be useful.

We contribute the following:

• The idea of having end-users identify parameters in their
natural language questions as input to PBD systems.

• A text annotation interface for identifying parameters and
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alternative values.
• ParamMacros, a PBD system for creating automation

macros that answer parameterized questions about web-
site content.

• An inference approach that leverages structural patterns in
the website DOM to identify candidate parameter values.

• A user study suggesting the feasibility and usefulness of
users generalizing their own natural language requests.

II. RELATED WORK

A. Virtual Assistants

Virtual assistants like Siri [1], Alexa [10], Google Assis-
tant [11], and Cortana [12] have become commonplace, and
are powerful because they enable hands-free interaction. Each
virtual assistant has a built-in set of common skills it supports,
but there are endless complex or obscure requests this does not
include. Our system ParamMacros enables end-users to build
question-answering programs, that potentially could be useful
to virtual assistants, without needing to write program code.

B. Writing UI Automation Scripts

Developers can write custom automation scripts that pro-
grammatically mimic a user’s interactions on a user inter-
face (UI). Popular frameworks include Selenium [13], Pup-
peteer [14], Cypress [15], and Beautiful Soup [16] for the
web, and Shortcuts [17] and App Actions [18] for mobile.
However, writing such scripts is non-trivial – for example,
it can be challenging to construct UI selectors [19] that are
robust across different inputs [20]. Record and replay tools
like Selenium IDE [21] and Cypress Studio [22] were designed
for test automation and can generate code from a single user
trace, but the code will not be generalized to work across
scenarios. ParamMacros enables users to create generalized
macros without writing code.

C. Programming by Demonstration

Programming by demonstration (PBD) [2], [3], enables end-
users to create computer programs without writing code –
instead users just provide concrete demonstrations or examples
of the desired behavior. A key challenge of PBD is inferring
user intent and generalizing from demonstrations. PBD has a
rich history, with systems that support UI creation [23], [24],
text and code editing [25]–[27], data transformation [28], [29],
constructing regular expressions [30], [31], and more.

Prior work has explored using PBD for creating web scrap-
ing scripts. Rousillon [32] and WebRobot [33] can synthesize
nested loop-based scraping logic from user demonstrations
by leveraging patterns in the DOM [9]. Our work similarly
leverages patterns in the DOM, but we focus on generating
parameterized programs that use user-provided parameters.

Task automation is another domain with a rich PBD history.
CoScripter [34], [35] lets users record their actions on the web
and generates a pseudo-natural language script. CoScripter
users can create a personal data store containing personal
information (e.g., name, email) so that the generated script
uses parameters in their place, which is important when

shared with colleagues. CoScripter focuses on form-flling and
uses parameter values to fll in form felds. Our work uses
parameters to generalize dynamic element selection.

Most similar to our work is the Sugilite suite [4]–[6],
which enables end-users to create custom automation for
responding to speech requests and completing tasks on their
mobile device. With Sugilite [4], users provide a Natural
Language (NL) request and a demonstration of the actions
to complete that request. Sugilite then infers parameters and
a generalized program to work over the different parameter
values. Sugilite infers parameters by searching for features
of a given UI event (e.g., text typed into a text feld, label
of a clicked button) within the NL request. If a parameter
is identifed, our understanding is that Sugilite then searches
for alternative parameter values by looking at the target UI
element’s sibling nodes. Appinite [5] extends Sugilite using
NL understanding (NLU) and an improved understanding of
the UI. Ahead of inference, it traverses its app view hierarchy
and builds a UI semantic and spatial relational knowledge
graph, which it uses to better understand what elements in
the UI the user’s NL request is referring to at inference time.
Pumice [6] extends Sugilite to support conditional logic. A
key difference between ParamMacros and the Sugilite suite is
that our system leverages user-provided parameters and values
to identify relevant patterns in the DOM, whereas Sugilite
primarily considers sibling nodes, and Appinite uses NLU
to identify relevant relationships in its UI knowledge graph.
Complex relationships exist between elements at many levels
in a UI hierarchy, and ParamMacros and the Sugilite suite take
different approaches to identifying those relationships.

AutoVCI [8] and VASTA [7] are two other single-
demonstration PBD systems for creating automation for
speech requests. Similar to Sugilite, both automatically iden-
tify potential parameters by mapping text in a user’s natural
language request to UI elements from the demonstration inter-
action sequence. Unlike Sugilite and ParamMacros, AutoVCI
asks the user a sequence of strategic yes/no questions to help
clarify the appropriate app, actions, and parameters. VASTA
uses computer vision to identify from a UI screenshot the
appropriate UI elements to interact with, instead of program-
matically interacting with the UI’s view implementation.

Etna [36] collects user interaction traces on a website over
time, essentially enabling it to work with multiple demonstra-
tions to identify common automation logic and parameters.
ParamMacros instead uses only a single demonstration and
relies on the user to explicitly specify parameters instead of
trying to guess them.

Savant generates task shortcuts for user NL requests – it
maps a user’s NL request to the best-matching app screen from
the Rico dataset [37] and flls in textfelds based on parameters
in the NL. With Savant, the possible task shortcuts that can be
created are based on the apps and interaction traces available in
the Rico dataset, and the parameters the researchers manually
defned. In contrast, ParamMacros can potentially support
previously unseen UIs and automation tasks because it relies
on the end-user to provide a demonstration and parameters.



D. Data and Models for UI Automation

Prior work has also explored natural language processing
approaches for interpreting a user’s natural language requests
and performing automation on a user interface. In [38], the au-
thors collect datasets of user natural language requests and the
corresponding actions that should be performed on a mobile
UI. They then train transformers to extract relevant language
and UI properties and then ground the language in the UI.
FLIN [39] explores a semantic parser approach to map a user’s
natural language to the most relevant high-level conceptual
action on the given website. ParamMacros leverages built-
in heuristics and user-provided custom demonstrations rather
than models trained on large datasets.

E. Question-Answering Systems

Question-answering systems [40] take a user’s natural lan-
guage query as input, identify potentially relevant documents
(e.g., websites on the web), and then search through those
unstructured documents to fnd the best answer. Although these
AI techniques are powerful, there will be situations where
they do not produce the answer the user wants. ParamMacros
allows users to create custom automation for their specifc
needs that are not met by an existing machine learning model.

F. Natural Language and Data

Natural language interfaces to databases (NLIDBs) [41]
enable end-users to query databases without needing to under-
stand structured query languages like SQL. NLIDBs inherently
only support answering questions about data that is already
structured. Our work helps end-users create custom automation
on-demand when there is no database already.

Prior work also explores natural language interfaces for
data visualizations [42]–[44]. DataTone [44] is an NLIDB that
allows fexibility for ambiguious natural language queries. The
system identifes tokens in the NL that it thinks are ambiguous
and their possible interpretations in the context of the database.
DataTone offers a parameter-based UI (a parameter per token)
and allows the user to select parameter values to run their
query on, similar to ParamMacros’s UI.

CrossData [45] identifes relationships between a writer’s
prose and embedded tables and charts – automatically ex-
tracting data values and allowing writers to explore alternative
properties. CrossData identifes parameters and values in prose
automatically using NLP techniques, whereas in our work we
ask users to identify parameters themselves.

III. SYSTEM USAGE SCENARIO

ParamMacros enables end-users to create custom param-
eterized macros for answering questions about content on
websites. In this section, we will use an example to illustrate
the process of creating such macros. The process consists
of two steps for end-users: 1) identifying the pieces of a
concrete question that can generalize and expressing these
through parameters and alternative values, and 2) creating the
automation macro through programming-by-demonstration, by

giving an example of the correct answer for a particular set of
parameter values.

Alice is a baseball fan and frequently asks questions about
player statistics, for example, “How many home runs did
Vladimir Guerrero Jr. have?”, “What was the most triples
anyone had?”, and “For the player who had the most stolen
bases, how many walks did they have?”. She decides to use
ParamMacros to create automation macros to answer these
kinds of questions from data on the Major League Baseball
(MLB) statistics web page12.

A. Generalizing a question

Alice starts by creating an automation macro to answer
a specifc question: “How many home runs did Vladimir
Guerrero Jr. have?”. She knows she might want to ask similar
questions in the future about other players, too. She expresses
this question variation in the system interface by highlighting
“Vladimir Guerrero Jr.” with her cursor to create a parameter
(Figure 1A). This parameter (which she names “player”)
replaces “Vladimir Guerrero Jr.” and serves as a slot to rep-
resent any MLB player’s name. She now needs to express the
possible MLB player names. ParamMacros proposes potential
parameter values (Figure 1B), which it extracted from the
MLB website. Alice reviews the different options, sees that the
frst two radio buttons list the player names she was expecting,
and chooses the frst one (e.g., V Guerrero, S Perez, J Abreu).
This identifes the possible values for the player parameter.

Alice knows that she also might want to ask this kind of
question not only about home runs, but about any baseball
statistic. She therefore also parameterizes “home runs” to a
parameter named statistic and selects an appropriate auto-
extracted parameter value list (e.g., “Home Runs”, “Hits”,
“Doubles”) (Figure 1C). Alice now has the generalized ques-
tion “How many <statistic> did <player> have?” that rep-
resents all the questions she might ask about any statistic for
any player.

B. Creating an automation macro

Alice can now create an automation macro for her gen-
eralized question. To do this, Alice needs to provide a
demonstration of how to answer a particular instance of the
question. ParamMacros’s inference engine will then infer a
generalized automation macro from that single demonstration,
through a process described later in this paper (section IV).
Alice demonstrates how to answer her original question “How
many Home Runs did V Guerrero have?” through Param-
Macros’s demonstration interface (not shown, but similar to
the execution interface in Figure 2). She provides the context
for the demonstration by selecting Home Runs from the
<statistic> parameter dropdown menu and V Guerrero from
the <player> parameter dropdown menu. She then clicks
the “Start recording” button. Now she searches the page

1Using a replica of https://web.archive.org/web/20220201043626/https://
www.mlb.com/stats/

2Although data in this scenario is tabular, our system also works with
websites containing other kinds of hierarchically structured data.

www.mlb.com/stats
https://web.archive.org/web/20220201043626/https


How many did have?home runs
statistic

Vladimir Guerrero Jr.
player

Choose a set of parameter values:

V Guerrero, S Perez, J Abreu, R Devers, …

Guerrero, Perez, Abreu, Devers, …

Vladimir, Salvador, Jose, Rafael, …

Vladimir, V Guerrero, Guerrero

Vladimir

None of these

Home Runs

Walks

Strikeouts

Hits

Batting Average

Doubles

… Select

A

B

C

Triples

Stolen Bases
Caught Stealing

Fig. 1. An illustration of ParamMacros’s UI for parameterizing natural language queries. The user has chosen to (A) generalize “Vladimir Guerrero Jr.” to
make the parameter player and (C) generalize “home runs” to parameter statistic. The system proposes possible alternative values (B) for each parameter for
the user to select from.

for the correct answer (the “HR”—short for Home Runs3—
column value for Vladimir Guerrero), selects the text (48—the
correct value), and clicks “Extract”. She stops recording the
demonstration and ParamMacros generates the macro.

How many did have?

statistic player

Hits R Devers

Program output: 165

PLAYER H 2B 3B HR

Salvador Perez C 169 24 0 48

Jose Abreu 1B 148 30 2 30

Rafael Devers 3B 165 37 1 38

Vladimir Guerrero 1B 188 29 1 48

Major League Baseball Statistics

Fig. 2. An illustration of ParamMacros’s execution interface and the Major
League Baseball statistics website. When the user runs the generated macro
with the inputs <statistic>=Hits and <player>=R Devers, it returns and
highlights the correct answer, 165.

Alice now tests the macro to make sure it behaves as she
intended. She starts by running the macro with the parameter
values <statistic>=Home Runs and <player>=V Guerrero
that she used in her demonstration and sees that the output,
48, is correct. She also sees that the macro highlighted the
answer location on the page in yellow. She then tries running
the macro on different sets of parameter values to make sure it
generalized correctly. For example, she runs the macro using

3Our inference algorithm discovers that “HR” corresponds to “Home Runs”
because the “HR” UI element contains a visually hidden UI element with the
text “Home Runs”.

<statistic>=Hits and <player>=R Devers and is pleased to
see that the macro returns the correct answer, 165 (the “H”
column value for Rafael Devers) (Figure 2).

C. Program description

Although the inferences in the above example were correct,
it is important to consider how users can recover from incorrect
inferences. ParamMacros supports this through an interface
that represents a high-level description for each macro. Each
description explains the logic for which element is selected for
each program step, and whether it depends on any parameter
values. For example, the program description for “For the
player who had the <most/least> <stat1>, what was their
<stat2>?” (Figure 3A), explains that the entry (e.g., row) to
select is determined by the entry whose <stat1> parameter
value is the <most/least>, and that the <stat2> parameter
specifes which attribute (e.g., column) value to print out. We
show a comparable kind description for “flter” rules, where
the entry to select is determined by a particular parameter.

Radio buttons show alternative selection rules (e.g., in
Figure 3A to ignore the <stat2> parameter and always just
print out from the Batting Average column) if Alice believes
the default logic is wrong. The ability to adjust selection rules
could be useful if there were ambiguity in the demonstration
(e.g., if Alice had selected “Hits” for both <stat1> and
<stat2>, the inference engine would not know if the value
to print out should be <stat1> or <stat2>).

D. Refning an automation macro to support edge cases

As Alice creates her macro to answer the query “For
the player who had the <most/least> <stat1>, what was
their <stat2>?”, she decides that in addition to the list of
auto-extracted statistics for <stat2> (e.g., Home Runs and
Strikeouts), she would also like to ask about the player’s
“position” (i.e., their role on the team, such as pitcher, second
base, outfeld). However, when she runs her macro, she realizes



Main Program

Click

Influenced by:

stat1
None

Print

Entry determined by:
Superlative: most / least

over stat1 Doubles None

Take attribute: stat2 Batting Average

Refinement Program 1 (Specifically for stat2 = Position)

Click

Influenced by:

stat1
None

Print

Entry determined by:
Superlative: most / least

over stat1 Triples Walks Strikeouts Caught Stealing None

1

2

1 2

A

B

Fig. 3. Program description for “For the player who had the <most/least> <stat1>, what was their <stat2>?” The program (1) frst clicks a header in the
statistics table to sort the data, and then (2) prints out a value from the table. (A) General program logic used for all parameter input values except <stat2> 
= Position. (B) Logic generated from the user’s refnement demonstration; used only when the user runs the program with <stat2> = Position.

it only returns the correct answer for the original statistic
values and not for <stat2 = position> (the word “position”
does not appear as text on the page, so our algorithm does not
know where to fnd the answer; explained more in section IV).

To work around this problem, Alice creates a refne-
ment demonstration to create entirely separate program logic
specifcally for when the parameter <stat2> equals “position”.
Alice frst specifes the single parameter and value pair that she
wants to create the refnement demonstration for when <stat2
= position>. She then records the demonstration, using the
same process as she has in the past. The updated macro is
now comprised of two subprograms (Figure 3). Now when
Alice runs the macro, it will run “Refnement Program 1” if
Alice has set <stat2> to “position”; otherwise it will run the
original “Main Program”. The macro now correctly outputs the
position for questions of the form “For the player who had the
<most/least> <stat1>, what was their <stat2 = position>?”.

IV. INFERENCE ALGORITHM

ParamMacros’s inference algorithm takes advantage of com-
mon patterns in the Document Object Model (DOM)—a tree
that represents the webpage content. ParamMacros identifes
potential parameter values within the website DOM and infers
how users’ actions may generalize to new parameter values.

A. Parameter values

1) Proposing candidate parameter values: When the user
selects text from their question to parameterize, ParamMacros
tries to identify other possible values for this parameter. Our
algorithm frst uses fuzzy string matching to fnd the best on-
page match for the selected text above a minimum threshold.

If an on-page match for the user’s sample parameter value
is found, ParamMacros begins to search for other possible

The Food Store

Apple
Banana
Pineapple

FRUITS
Broccoli
Carrot

VEGGIES

Common Prefix XPath:
html>…>.section>.fruit 

The user selected “Apple” as a 
parameter. “Banana”,“Pineapple”, 

and “Fig” are alternates

FigNEW

$2

25¢

90¢

$1 Suffix XPath:
…>span.description 

Fig. 4. An explanatory illustration of our inference algorithm on an imaginary
website titled “The Food Store”. Here, the user has selected “Apple” as a
parameter in their NL query and wants “Banana”, “Pineapple”, and “Fig” to
be alternative values. Our algorithm infers a common suffx across candidate
parameter values and a common suffx across target elements.

parameter values. For example, if the user asks “How much
does one <Apple> cost?” on the page in Figure 4 and selected
“Apple” as a parameter, they might want the algorithm to infer
that “Banana”, “Pineapple”, and “Fig” are alternative values.
Our algorithm frst builds an XPath45 query that uniquely
matches the element. It builds an index-based XPath (e.g., not
classes alone) since this is the easiest way to ensure a unique
XPath. For example, in Figure 4, a unique path for “Apple”
might be html >. . .> .section[1] > .fruit[1] > 
div[1] > span[2]. A key insight of our algorithm is that

4XPath is a language for querying the DOM based on HTML attributes
and hierarchy; https://en.wikipedia.org/wiki/XPath

5For the sake of brevity, we use a CSS query syntax in this paper rather
than XPath (which our system uses). In this syntax, body > div[3] > 
.cl1 > span.cl2 matches an element with the tag span and class cl2 
that is a direct child of an element with class cl1 that in turn is a direct child
of the third div (index 3) inside a body element.

https://en.wikipedia.org/wiki/XPath


html > ... > .section[1] > .fruit[1] > div[1]     > span[2] AppleUnique XPath

html > ... > .section[1] > .fruit[1] > div[index] > span[2] Apple, Banana, Pineapple

html > ... > .section[1] > .fruit[1] > div[index] > span.description Apple, Banana, Pineapple, FigGeneralized XPath

Generalize

Generalize

 Matches

A

B
 Matches

 Matches

Fig. 5. The process to transform a single value’s XPath to a generalized XPath formula that works across parameter values. The algorithm starts with a
unique XPath matching the original parameter value, “Apple”. (A) The algorithm then identifes possible “iteration points” that generate alternative parameter
values; here we show one possible iteration point, which generalizes the specifc node div[1] to div[index], resulting in the XPath formula now also
matching “Banana” and “Pineapple”. (B) The algorithm then tries to make each XPath node more robust, opting for more semantically meaningful selectors.
Here, the algorithm generalizes > span[2] to > span.description, resulting in the XPath formula now also matching “Fig”.

other candidate values often have similar paths. Replacing
div[1] with div[2] in the above XPath would yield the
text element for “Banana” (and div[3] yields “Pineapple”).

We refer to the frst portion of the query (colored red from
html to .fruit[1]) as the “common prefx”. It represents
the path to the element that contains the list of items. The
second portion (colored purple: div[1]) points to the specifc
element that contains the text “Apple”, the image of the apple,
and the price. We refer to this as the “iteration point”. The last
portion (colored blue: > span[2]) points to the portion of
that specifc element with the “Apple” text (to exclude the
image and any other irrelevant elements). We refer to this as
the “common suffx”.

Our algorithm iteratively determines the common prefx,
iteration point, and common suffx. First, the initial XPath
query it generates uses indices to identify unique elements
(as we describe in the next subsection, some of these will
be replaced with more robust class queries). Next, it tries to
identify an ideal iteration point (Figure 5A). There are many
possible iteration points for a given XPath query. In the above
query for Figure 4, placing the iteration point at .fruit,
for example, might yield “Apple” and “Broccoli” (the frst
children of similar-looking elements) as possible values. To
disambiguate, our algorithm frst iterates through all possible
iteration points and ranks them by number of valid results
(whether the common suffx leads to a text node). We ask the
user to make the fnal decision about which candidate values
to use (if any) since it often is impossible to accurately infer
the user’s intent.

Once the user selects one of the proposed parameter values
lists (or manually writes values), if the user edits or adds any
values, the algorithm goes through a similar process to identify
the parameter values’ locations (i.e., XPaths) on the page. It is
important to know the parameter values’ locations on the page
because later on, our program inference algorithm leverages
parameter values’ locations for identifying which parameters
a given demonstration event might depend on, if any.

B. Generalizing parameter value XPaths
Now that we have attempted to fnd XPaths for all of the

parameter values, the algorithm now tries to generalize these
XPaths to have a common XPath suffx (Figure 5B). This is

important because later on the inference algorithm relies on
parameter value XPaths having the same suffx when it creates
generalized rules. Parameter values that visually look similar
will not necessarily have the same XPath suffx initially. In
the example from Figures 4– 5, the frst step of our inference
algorithm produced > span[2] as the XPath suffx, to select
the second child of the parent element (as the fruit images are
the frst child of each). This would match “Apple”, “Banana”,
and “Pineapple”. It would not match “Fig”, however, because
the “Fig” text is the third child instead of the second child
(the ‘NEW’ badge is the second child).

We want to create automation macros that are robust to these
kinds of DOM variations. To create a generalized XPath suffx
that matches as many parameter values as possible, we traverse
through the generated XPath one level at a time and try to fnd
a common class or attribute name across parameter values
to replace that XPath node with. Classes and attributes are
likely more semantically meaningful than the default index-
based XPath and are robust to index offsets. For the example in
Figure 4, our algorithm would therefore fnd the more general
suffx > span.description (Figure 5B).

C. Inferring parameter-based automation logic

The algorithm then tries to infer which parameters (if any)
the user might want their program to depend on. It does this by
looking for correspondences between the user’s demonstration
events and the XPaths of the parameter values the user selected
by leveraging two techniques, described below.

1) Inferring row/column-based selection: For a given
demonstration event, the algorithm tries to identify if the
target element is within a table (either an HTML table or a
div-based table). The algorithm tries to identify semantically
similar siblings (i.e., potential rows and columns) by traversing
up through the DOM hierarchy and at each level computing
the children nodes’ similarity with each other, using Dice’s
coeffcient to measure the string similarity of the nodes’
outerHTML (i.e., the node and its full subtree). We then use
the two DOM levels with the highest similarity scores and
consider these as our rows and columns (we discuss limitations
of this approach in section IV-D), and identify where the target
element falls within these rows/columns.



Now the algorithm can try to infer if the target element’s row
and/or column could be based on the specifed parameter/value
pairs. For identifying whether the selected target element
column could correspond to a parameter, we essentially try
to determine if the table’s columns correspond to a particular
parameter’s set of values by trying to align columns with
parameter value elements. Once we identify which parameter
p’s values (if any) the table’s columns correspond to, we
now check if the value the user assigned to parameter p
for this demonstration matches the target element’s column’s
parameter value. If these align, then we infer that the target
element’s column is determined by parameter p.

The algorithm relatedly uses its knowledge about the table
and selected parameter/value pairs to infer the reason that the
target element’s row was selected. It checks to see 1) if a
selected parameter value appears as text in the row, acting as
a flter for the row (e.g., fltering by the player name) and 2) if
the selected row satisfes a superlative for one of its columns
(e.g., row with the highest number of Home Runs).

2) Inferring entry-based selection: If the algorithm cannot
fnd a meaningful row/column pattern, it tries to determine if
the target element is an “attribute” associated with a specifc
parameter value. In Figure 4, if the user asks “What is the price
of <fruit>?” and demonstrates the answer “$2” for <fruit
= Pineapple>, the algorithm infers that “$2” was printed
because it was “closer” to “Pineapple” than to any of the
other fruit values, i.e., because $2 and Pineapple have the
same parent, whereas $2 and the other fruits only share the
grandparent html >. . .> .section > .fruit.

Our algorithm then identifes the relative XPath relationship
between the parameter value and the target element so it can
form a general rule to apply for other parameter values in the
future. For example, here, the XPath suffx for the “Pineapple”
text is > span.description and the XPath suffx for
Pineapple’s price ($2) is > span[3]. The inferred rule would
be to get the XPath for the input parameter value (e.g., Apple,
Banana) and replace span.description with span[3] 
to fnd the new target element (the price) to return to the user.

At this point, this inferred rule will work if the macro is
run with <fruit> set to “Apple”, “Banana”, or “Pineapple”,
but will return the wrong answer when run for “Fig”. This is
because the suffx for Apple, Banana, and Pineapple’s price is
> span[3] but the suffx for Fig’s price is > span[4] 

(because of the offset due to the ‘NEW’ badge). Therefore,
the XPath the macro infers for Fig’s price would erroneously
return the “Fig” label itself.

To be robust to index offsets like this, the algorithm now
tries to generalize this XPath suffx using a similar approach
to section IV-B. However, a key difference is that since we are
generalizing the demonstration target element’s XPath suffx,
we do not have a ground truth target element for each of the
other parameter values. Therefore, we simply try to generalize
the XPath suffx such that some target node is matched for
each parameter value, and we opt to use classes and attributes
which are semantically more meaningful than indices. For the
example in Figure 4, the algorithm generalizes the target XPath

suffx to be > span.price.

D. Limitations

1) Natural language understanding: The current algorithm
does not leverage any natural language understanding (NLU)
beyond simple text string matching. This means that if the
user provides a parameter value that does not appear on the
page, then no inferences will be made for that value.

2) Identifying rows and columns: The current approach for
identifying table rows and columns looks for levels of the
DOM where the children nodes have high similarity (note: this
is to identify “semantic” tables, e.g., implemented with divs).
If more than two levels of the DOM have high similarity
scores, then our algorithm might choose the wrong two levels
to use as its rows and columns. For example, the Forbes
billionaires website 6 shows one semantic table (the hundreds
of rows of billionaires), but the table is actually broken up by
ads into 15-row subtables. Our algorithm currently identifes
the 15-row subtables and the individual rows as the two levels
with the highest similarity scores, therefore not considering
the table columns in its inference.

3) Identifying parameter attributes from non-tabular hierar-
chically structured data: Our algorithm is currently not well-
equipped to extract a parameter-based attribute from a list
of entries, for example to answer questions like “What is
the <attribute> of <movie>?” on the IMDb website7, where
<attribute> could be “rating”, “duration”, “gross”, etc. This
is because the algorithm currently assumes a set of attribute
values will appear side-by-side as siblings or equivalent rela-
tives. This is less often the case for non-tabular hierarchically
structured data, for example, on the IMDb website, a movie’s
duration and genre are sibling nodes, but user rating, director,
and votes appear in other parent nodes within a given entry.

4) Operating across multiple pages: The algorithm cur-
rently only operates on a single page of a website. It would
be useful to support operations across multiple pages of a
website, in particular searching for and performing superlative
operations across results that are paginated (e.g., multiple
pages of MLB players or movie titles).

V. USER STUDY SETUP

We conducted a lab study as a frst step to assess the
usability and usefulness of ParamMacros’s natural language
parameterization and program creation workfows.

A. Participants

We recruited 12 participants from our University mailing
lists and Slack workspaces. Participants (5 female, 6 male,
1 non-binary) were ages 21–42 (median 28). At the time of
the study 9 participants were students (1 undergraduate, 5
master’s, 5 PhD), 1 a technology consultant, 1 a fundraising
professional, and 1 a senior product manager. One participant

6https://web.archive.org/web/20220401164932/https://www.forbes.com/
billionaires/

7https://web.archive.org/web/20220327010150/https://www.imdb.com/
search/title/?count=100&groups=oscar best picture winners&sort=year%
2Cdesc&ref =nv ch osc

https://7https://web.archive.org/web/20220327010150/https://www.imdb.com
https://6https://web.archive.org/web/20220401164932/https://www.forbes.com


reported no programming experience, three reported less than
1 year, two reported 1–2 years, two reported 2–5 years, one
reported 5–10 years, and three reported more than 10 years
of experience. The study lasted one hour and we compensated
participants with a $25 USD Amazon gift card.

B. Study Design

Our user study involved two meaningfully different sites: the
Forbes billionares list6 and an IMDb movie list7. The Forbes
website included a table of the top 25 billionaires and their
metadata (e.g., age, country, net worth), and enabled us to
evaluate queries with multiple parameters. The IMDb website
included a list of 25 movies and their metadata (e.g., rating,
director, gross revenue), and enabled us to evaluate queries on
non-tabular hierarchically structured data. We used replicas
of the original sites in order to work around some of our
system’s inference limitations. The goal of this study was to
understand how users interact with ParamMacros within the
scope of inferences it supports. We used a between-subjects
design. Participants were assigned to one of the two websites
(six participants per website). The study included three stages:

1) Enumerating Queries: We showed each participant their
assigned website and asked them to write 5 queries that could
be objectively answered using the content on that website.

2) Parameterizing Queries: We showed participants a tu-
torial video parameterizing the query “For the person with
the most home runs, how many did they have?” on the
Major League Baseball website. We showed how to gen-
eralize “home runs” and “most” to parameters <statistic> 
and <superlative>, respectively. We then gave each partic-
ipant three queries to parameterize: two queries they wrote
themselves and one pre-determined query (identical across
participants per given website)8. This allowed us to see variety
in how people parameterize different queries, as well as
observe patterns for a common query.

3) Creating a program: We showed participants a tutorial
video creating a demonstration and validating the generated
program. We then presented participants with two pre-made
parameterized queries to create programs for. We chose to
use pre-made queries to ensure they were domain-appropriate
for the webpage, suffciently challenging, comparable across
users, and supported by our inference engine. The queries for
Forbes were “What is the <metadata> of the <most/least> 
<age/net worth> billionaire in <country>?” and “What is
<person>’s net worth?”. The queries for IMDb were “What
was the rating for <movie>?” and “What was the gross for
the <most/least> grossing movie?”.

After participants completed all three stages, we adminis-
tered a seven-point Likert scale survey regarding ease of use
and usefulness, and conducted a semi-structured interview.

VI. USER STUDY RESULTS

Overall, participants found ParamMacros’s program creation
process to be intuitive and useful. We found that the param-

8 One participant per website did not complete the common pre-determined
task due to an adjustment to the study design.

eterization process is promising but some participants needed
time before becoming comfortable with it.

A. Parameterizing questions

1) Parameterization patterns: The target webpage provided
important context that helped ground participants’ param-
eterizations. Participants often parameterized proper nouns,
attributes, and numbers in questions. As an example, for
the common question we presented for Forbes, “Who is the
youngest billionaire in the United States?”, all fve8 par-
ticipants parameterized “youngest” to be a superlative and
“United States” to be a country. For the common question
for IMDb, “What was the rating for Nomadland?”, all fve8

participants parameterized “Nomadland” to be a movie, and
three of fve participants parameterized “rating” to be an
attribute, allowing alternative values such as “gross”, “genre”,
and “runtime”. Two participants also parameterized generic
terms to allow more specifc values, e.g., P9 parameterized
“movie” to have alternative values “thriller” and “action”.

In addition to using parameters to allow alternative values
with different meanings, three participants created parameters
to allow fexibility in word choice and phrasing. For example,
P9 parameterized “How long” to also allow the value “What’s
the length of”. These participants understood that “there is no
one way to make a statement or to ask a question” (P7) and
the potential implications of that.

Two participants commented that there were multiple gran-
ularities at which they could parameterize questions, and
they were unsure what granularity to choose. For example,
a coarse-grained parameterization of “What was the rating for
Nomadland?” would simply parameterize “Nomadland” to any
kind of “movie”. A fner-grained parameterization would also
parameterize “rating” to “attribute” (e.g., genre, gross), or even
parameterize “What” to different question types.

2) Alternative values: Participants found auto-extracted al-
ternative values useful when they matched the user’s expec-
tation. Participants commonly leveraged auto-extracted values
when parameterizing proper nouns, e.g., movie titles (all six
IMDb participants) and countries (fve of six Forbes partici-
pants). This is likely because these proper nouns are distinct,
so our algorithm was successful at fnding them on the page.

In other cases, participants noticed that the extracted values
were not meaningful or that no extracted values were returned.
In these cases, participants just wrote their desired alterna-
tive values manually. To improve confdence amongst users
and provide meaningful alternative values in more situations,
future work should leverage natural language understanding
to better interpret the website and parameter of interest, and
should embed context alongside the candidate values to reveal
their source (e.g., their location on the page).

3) Understandability: Participants had varying opinions
on the parameterization workfow. Nine of 12 participants
responded that they “somewhat agree” (5), “agree” (3), or
“strongly agree” (1) on a seven-point Likert scale that the
parameterizatiton workfow was easy to use. Some participants
said it took them “some time to fgure out what a parameter



actually means” (P10) but that they better understood after
seeing parameters applied later in the program creation stage.

B. Creating a program

All Forbes participants successfully created correct pro-
grams for each of the two program creation tasks (with the
exception of P5, whose browser stopped working during the
study). All IMDb participants successfully created correct
programs for the “What was the gross for the <most/least> 
grossing movie?” task. Note that during the study we discov-
ered an inference limitation in automating the other IMDb
task (“What was the rating for <movie>?”)—participants’
programs returned the correct rating for some movies, but for
others exhibited an off-by-one error, returning the rating for
the next movie in the list.

Participants had largely positive feedback on the program
creation process, saying it was “intuitive” (P2, P3) and that
“starting the recording, clicking different areas, extracting,
that made a lot of sense to me” (P1). 11 of 12 participants
responded that they “somewhat agree” (4), “agree” (4), or
“strongly agree” (3) on a seven-point Likert scale that the
demonstration workfow was easy to use.

C. Usefulness

Participants were positive about the usefulness of the over-
all system. All participants responded that they “somewhat
agree” (3), “agree” (6), or “strongly agree” (3) on a seven-
point Likert scale that the system was useful for creating
macros. Seven participants thought that these macros would
be useful for answering questions about data in spreadsheets.
One participant (P1) said for her work in fundraising she
frequently asks questions like “Who’s giving the most?” when
creating strategies for reaching out to donors. Two participants
(P5 and P12) commented that they ask questions like “Which
participant had the highest <x>, and how old were they?” in
their user research. Two participants said they use intelligent
voice assistants for personal tasks (e.g., playing music on
Spotify, searching for bus routes) and would appreciate the
ability to customize and correct errors.

D. Threats to Validity

Since we conducted a lab study and provided participants
with predetermined websites, participants might not have had
as intrinsic a motivation or understanding of meaningful ques-
tions to be asked or answered on the website, as compared with
websites they encounter in the wild. In future work, it would
be useful to study automation systems like ParamMacros in the
wild to further assess usability and understand usage patterns.

VII. DISCUSSION AND FUTURE WORK

Parameterizing natural language and creating a demonstra-
tion seems to be a promising approach for enabling end-
users to create custom question-answering automation. Most
of our user study participants were able to create meaningful
question parameterizations and working programs. Although
it took some participants some time to understand what parts

of their questions made sense to parameterize, we believe this
is a reasonable learning curve and suspect that end-users who
already know the kinds of questions they want to automate
will know what parameterizations are helpful.

In practice, there is diversity in how people may phrase
the same question, but parameterized questions follow a very
specifc phrasing. To support natural speaking patterns, an
important area of future work would be to use natural language
understanding to map end-user freeform questions to the flled-
in parameterized questions they best match.

Our current inference algorithm focuses on structural pat-
terns in the website DOM to identify candidate parameter
values and to generalize the user’s demonstration. This works
for content that follows a consistent DOM structure, but has
limitations if there is variation. Incorporating natural language
understanding [5] would enable us to uncover semantic pat-
terns that cannot be found based on structure alone, which
would help identify alternative parameter values and more
intelligently infer likely target elements. Regardless, there will
always be edge case data or patterns in the DOM that an
inference algorithm will not correctly understand. To still
allow users to create custom automation in these situations,
PBD systems may want to enable users to write small chunks
of code to extract the desired data [46].

ParamMacros assumes the user largely wants to generalize
the same behavior across all parameter values. If the user
instead wants drastically different behavior in a particular
situation, the user can create a refnement demonstration which
simply just creates a different program to run in that situation.
Future work should explore more holistic approaches for
enabling the end-user to encode conditional logic, perhaps
leveraging or building on approaches in Pumice [6].

VIII. CONCLUSION

We propose leveraging end-users to parameterize natural
language queries that they want to create automation macros
for. End-users know the kinds of questions they want their
automation macro to support, so we leverage their under-
standing of their goals to identify meaningful parameters
and possible values. A meaningful set of parameters and
their values provides programming-by-demonstration systems
a scope of the set of tasks they should support and hints on
how to generalize. We designed a PBD system, ParamMacros,
that applies this approach and enables end-users to create
custom automation macros for answering questions about
website content. End-users identify parameters in their natural
language question and then create a demonstration of how
to answer that question on the website. Results from our user
study suggest that users can identify meaningful parameters in
natural language questions and would fnd a parameterization
and PBD workfow useful for their automation needs.
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