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In holographic duality, dynamics along the emergent extra-dimensional space describes a renormaliza-
tion group (RG) flow of the corresponding quantum field theory (QFT). Following this idea, we develop an
emergent holographic description of a QFT, where not only the information of the RG flow is introduced
into an IR holographic dual effective field theory (HDEFT), but also the UV information of the QFT is
encoded in the HDEFT through the IR boundary condition. In particular, we argue that this dual
holographic construction is self-consistent within the assumption of bulk locality, showing the following
two aspects: The solution of the Hamilton-Jacobi equation is given by the IR boundary effective action, and
the Ward identity involving the QFT energy-momentum tensor current is satisfied naturally. We discuss the
role of the RG f-function in the bulk effective dynamics of the metric tensor near a conformally invariant
fixed point. We claim that this emergent dual gravity theory generalizes the perturbative Wilsonian RG

framework into a nonperturbative way.
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I. INTRODUCTION

Nonperturbative approaches to quantum field theory
(QFT) are highly sought after to study strongly-coupled
problems. Specifically, we need a framework in which
relevant quantum corrections to self-energies and vertices
are self-consistently resummed in the infinite order in the
renormalization group (RG) sense. The AdSp ;/CFT,
duality conjecture [1-4] has been regarded as a non-
perturbative theoretical framework, where a nonperturba-
tive RG flow of a UV field theory is realized through the
evolution along the extra-dimensional space [5—7]. Here, D
is the spacetime dimension.

The holographic approach has been applied to various
strongly-coupled problems, such as confinement and chiral
symmetry breaking in quantum chromodynamics [2,3] and
superconductivity and non-Fermi liquids in condensed matter
physics [8—17], and provided remarkable solutions, e.g.,
emergent physics of effective hydrodynamics [18-21].
These results, in view of universality, can in principle be
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applicable to a wide class of problems. However, there still
exists an unsatisfactory point; it is not entirely clear how
to relate UV microscopic degrees of freedom with IR emergent
macroscopic observables. To overcome this difficulty, various
approaches have been tried to derive an effective holographic
dual field theory based on RG transformations [22-59].

In this study, we continue to follow these lines of approach
and develop further an emergent holographic description of a
QFT. In this framework, not only the information of the RG
flow is included into an IR holographic dual effective field
theory, but also the UV information of the QFT is encoded
through the IR boundary condition. In particular, we argue
that, within the assumption of bulk locality, this dual holo-
graphic construction is self-consistent, showing the follow-
ing two aspects: The solution of the Hamilton-Jacobi
equation is given by the IR boundary effective action, and
the Ward identity involving the QFT energy-momentum
tensor current is satisfied naturally. We discuss the role of the
RG pS-function in the bulk effective dynamics of the metric
tensor near a conformally-invariant fixed point.

Recently, it has been clarified that the Wess-Zumino
consistency condition for the local RG flow of a QFT can
be translated into the Hamilton-Jacobi formulation of a
holographic dual effective field theory [46—49]. The present
study takes into account this internal consistency for the
emergent dual holographic description. The resulting holo-
graphic dual effective field theory generalizes the previous
construction, where an IR boundary condition is introduced
as the solution of the Hamilton-Jacobi equation. This IR
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boundary condition makes it manifest how to encode the UV
information of the QFT into the IR holographic dual effective
field theory even away from quantum criticality. This
framework thus extends the AdSp.,;/CFTp duality con-
jecture to systems away from criticality. More generally, we
claim that this emergent dual gravity theory is a nonpertur-
bative generalization of the perturbative Wilsonian RG
framework.

2= [ DD 505 00 - ) exp | [ aPx/aa o] Ll

Here, w,(x) (@=1,...,N) is a matter field with its
dynamics described by the Lagrangian L[y, (x), ¢ (x)].
In this study, we focus only on relativistic invariant
theories. ¢’ (x) is a formally introduced background
metric, and enforced to be the flat metric, ¢y (x) = &,
by the delta functional. The Lagrangian L[y, (x), ¢5 (x)] is
deformed by an effective interaction that is quadratic
in the energy-momentum tensor (the 77 deformation
in D spacetime dimensions) [60], where T+ (x) =

\/gB X)Llwa(x),d5 (x)]), 42>0 is the
couphng constant, and G5, (x) =345,(x)g8 (x) +
198,(x)g8 (x) — 55 9B, (x) g8, (x) is the DeWitt supermetric

[61], taking into account transverseness.

The type of theory in (1) can be studied by using the
“recursive RG transformations”; Performing the functional
RG transformation (with the Hubbard-Stratonovich trans-
formation) in a recursive way, one can construct an IR
holographic dual effective field theory, which describes the
evolution of the metric tensor in the RG (energy) scale. The
resulting theory takes the form of emergent gravity, with
emergent extra dimension representing the RG scale of the

|

II. EMERGENT DUAL HOLOGRAPHY AS
A RENORMALIZATION GROUP FLOW

A. Construction of holographic dual effective
field theory

The starting point of our analysis is the following
Euclidean path integral in D spacetime dimensions,

5O+ oy WG, 70 . ()

problem [43-45,50-53]. In the following, we coordinatize
the extra dimension by z, and z = 0, and z; by convention
represent the UV and IR energy scales, respectively.

The details of the steps to derive the holographic theory
starting from specific UV quantum field theories with
double trace interactions can be found in [43-45,50-53].
In general, the functional RG transformations give rise to
nonlocal effective interactions. Such emergent nonlocal
interactions can however be “localized” at the cost of
introducing higher-spin fields to decompose them in
a local fashion based on the corresponding group structure
[62—66]. In other words, integrating over such higher-spin
fields gives rise to an effective gravity theory including
only up to spin two fields, but in the presence of effective
nonlocal interactions between gravitons. In most cases, we
will work with a proper local truncation of these RG-
generated nonlocal terms [67], keeping the original form of
the effective Lagrangian as in the conventional RG trans-
formation [50,51].

With the locality assumption in mind, in this paper, we
propose a generic dual holographic effective theory result-
ing from the recursive RG transformations. It is given by

Z = [ Dy(x)Dg (2. 2) D (5,2 DN (1. 2D (3. 2)3( (3.0) g ()

xexp[ /de,/g x.27) Ll (x), ¢ (x. 2y)]
N [z [ dPx{a2)0ug . 2) N N (2R . @)

Here, the emergent bulk dynamical metric tensor is given by

= (NM2(x.2) + N, (x, ) N#(x, 2))dz2
+ ZNu(L z)dx'dz + g,,(x,z)dx"dx".  (3)

N (x,z) and N#(x,z) are the lapse function and the shift
vector, respectively, and g,w(x, z) is the D-dimensional

|
metric tensor in the Arnowitt-Deser-Misner (ADM) decom-
position [68]. The dynamics of the metric tensor is
governed by the effective Hamiltonian

A1
H =2 e (%, 2) Gy (x, 2)777 (%, 2)

2/9(x,2)

+ My + H,, (4)
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that can be regarded as a generator of the RG transformation
along the z direction. Here, 7#* (x, z) is the momentum that is
canonically conjugate to the metric tensor g,,(x,z), and
Gyupy (%, 2) is the bulk supermetric tensor. The first term in
this bulk effective Hamiltonian results from the energy-
momentum tensor deformation at UV [60].

|

The last part of this effective Hamiltonian originates
from quantum fluctuations of matter fields in the RG
transformation, expressed by the vacuum-energy functional
of the renormalized effective Lagrangian at a given RG
scale z,

[ axrt, = 0 [ Dt e{ = [ a0 0]

82

(=D)ftr 1n<

Here, [ Dy (x) represents to take high-energy quantum
fluctuations of matter fields at a given RG scale z,
and F =0 (F =1) when the matter fields are bosonic
(fermionic). Performing the gradient expansion for the
metric tensor, one finds the Einstein-Hilbert action H, =

#(R(x, z) —2A), referred to as induced gravity

[69,70], where higher-curvature terms are not taken into
account [71]. Here, both the cosmological constant A and
the effective gravitational one x can in principle be
determined by performing the gradient expansion on a
general curved spacetime manifold explicitly, while it can
be demanding in practice due to renormalization effects. In
this study we regard them as input parameters.

The second part of this effective Hamiltonian is given by

Hy = =" (x, 2)Biw[ g (%, 2)]. (6)

where f,[g,,(x.z)] is the RG p-function of the metric
tensor and given by

Bl (5.2)] = = S2G (. )T (2. 2)).

- ™

Here, Cg is a numerical constant of order one and

)

2
N V(x. z) 89,y (x. )
x (V9(x,2)Llwa(x), ¢ (x,2)])  (8)

is the energy-momentum tensor defined in terms of the
effective Lagrangian for the matter field at a given
RG-transformation slice z.

Finally, the last bulk term of the holographic dual
effective field theory (2) is given by

(T77(x,2))

H' = 2D, 7" (x, z), 9)
where D, is the covariant derivative in the ADM decom-
position. This is the generator for diffeomorphism of the
D-dimensional spacetime. Performing the path integral for
N, (x,z), we obtain the constraint D,z**(x,z) = 0 [72].

X

Sy (VI L) 1. 2)) ).

(5)

This corresponds to the Ward identity involved with the
D-dimensional QFT energy-momentum tensor current at a
given z. We will show that the canonical momentum tensor
7" (x,zy) is given by the energy-momentum tensor of the
renormalized IR QFT at the IR boundary z = z;.

Once again, the holographic dual effective field theory
(2) can in principle be derived, starting from a given UV
field theory, by following the recursive RG procedures in
[43-45,50-53]. We expect to end up with the holographic
dual effective field theory (2). Instead of pursuing the top-
down approach, we will verify, in the next Sec. II B, that the
effective holographic theory (2), once discretized, leads to
the recursive RG transformations. In Sec. II C, we further
discuss self-consistency of the holographic dual effective
theory, in particular, the compatibility of the Callan-
Symanzik equation dInZ/dz; =0 and the Hamilton
(Hamilton-Jacobi) equation of motion derived from (2).

Before proceeding to these discussions, we make a few
brief comments here.

First, we note that if we start from the UV boundary
theory which is conformal as in AdSp,/CFTp, the beta
function vanishes and we do not have the H; term that is
linear in 7#*(x, z). The holographic dual effective theory (2)
is more generic, and incorporate the effect of the nonzero
beta function.

Second, compared with the holographic effective theo-
ries considered in [43-45,50-53], Eq. (2) is written in a
covariant way by incorporating the lapse function and the
shift vector. Taking the limit of 4 — 0 with gauge fixing
N(x,z) = 1 and NV ,(x,z) = 0, we obtain the RG flow of
the metric tensor, 0.9, (x, z) = i[9, (x. z)] after the path
integral over 7*(x, z). Solving the RG equation for the
metric with a suitable boundary condition, we obtain the
renormalized metric g, (x, z) in IR, which in turn enters in
the IR effective Lagrangian L[y, (x), ¢ (x, z;)] and deter-
mines the IR boundary condition. g,,(x,z) thus needs
to be determined self-consistently [50-53]. Both the
RG p-function and the IR boundary condition complete
the UV-IR mapping manifestly, which will be more
clarified below.
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B. The holographic dual effective field theory and recursive RG transformations

To verify the above construction and make a contact with the recursive RG transformations, we perform the path integral
with respect to the canonical momentum 7**(x, z) and obtain the Lagrangian formulation as follows:

7= /Dy/a( x)Dg,, (x,2)8(¢"(x,0) — ") exp[ /de\/gx 2p) Llwa(x), ¢ (x, Zf)}

z 2 u
—N/ e { Py \/ (x,2) VI Gy )< e Z)-l—igﬂmﬂ(x,z) V9(x,2) Llyy(x), ¢ (x, Z)D)
0

g(x,2) 89ap(x. 2)
y . 2C, N mﬁwa (x). ¢ (x.2)])
<azgpy( 2)+ 905, 2) Gprap (X, 2 SGup (%, 2) )
+ (=D)fr ln<W V9(x, 2) Llwa(x), ¢ (x, Z)])>H (10)

Here, the normal coordinate system of ds*(x,z) = dz* + G (. 2)dx"dx” has been considered with gauge fixing
N(x,z) =1 and N, (x,z) = 0. We emphasize that all the essential information of the bulk effective action is given

by the effective renormalized UV field theory L[w,(x), ¢*“(x, z)] at a given RG scale z in a self-consistent way as it should.

Now, we make the extradimensional space z discrete and introduce the discrete coordinate k that represents the RG
transformation step,

2= [ Duala)Daf2 09ty 1) = ) exp | [ a2 (3 o). o0

f \/7
—N(d dPx /wpy ( P({/;—U .
(Z)kzl{ / (9 (*) = g (x)
G ) (0 () _ k1)
+ g<k_1)(x) g,wa/i( )5921;_1)(x)< g(k—l)( x) Ly (x), g"k 0 (x )]>> <gpy( ) — gk (x)
2Cy -1 ) )
- m Gpperp () m < 9=y () Ly a(x). g (x)]>>

¥ <—1>Ftr1n<W (Voo )t st )} (1)

Here, dz is an energy scale for the RG transformation, and z; = fdz is the energy scale where quantum fluctuations of

matter fields are integrated out. The above discrete expression is consistent with the recursive RG-transformation method of
our previous studies [50-53].

Focusing on the first iteration of the RG transformation, we consider k = 1 and obtain
0 1 v v v
Z = [ D)Dg (3D ()5t () = 5 exp {— [ @x iy, o)

el f ol

g (%) = g (%)

6

F 60, (x )< 50 (D Llyal0) g <x>]>) (gpm ()
F/ 0 (V0 (o) 1>)
a’/}’

e w7 (a0 vt ) ) || (12)
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Taking the 12— 0 limit, we find the RG flow of

the metric tensor is given by g,(llb) (x)= gff;) (x) —
2C, (0) o) v :
G0 )57 0 Ll (). This

turns out to be identical with the RG transformation at
the one-loop level [50-53]. The next iteration step is to

separate slow and fast degrees of freedom for both g,(,lp) (x)
and y,(x), and to perform the path integral with respect to
all fast degrees of freedom. As a result, g,(ﬁ,) (x) renormalizes

into gf,zy) (x), where the RG f function is now given by

g,(,i) (x). The renormalized metric tensor g,(,%) (x) appears into

the renormalized effective Lagrangian. Repeating this RG-
transformation procedure, we obtain Eq. (11) in a discrete
form and Eq. (10) in a continuum expression.

We recall that this RG-transformation procedure is analo-
gous to the numerical renormalization-group (NRG) method
[73,74]. First, we perform exact diagonalization in the so-
called Wilson chain, and truncate the resulting Hilbert space
into its low-energy subspace, regarded to be coarse graining.
Then, we increase the system size, adding one site into the
Wilson chain, and repeat the RG procedure until it converges.
The present recursive RG-transformation method imple-
ments the NRG philosophy in an analytic way, representing
|

z= / Dy a(x)Dgy (x. 2) D™ (x. 2)3(g (x.0) — g (x)) exp {— / N1

_N / i / de{nMazg,w — Bild) +

It is straightforward to find the bulk Hamilton’s equation
of motion at z < z; for metric and its conjugate momenta:

A
Zgﬂy ﬁﬂl/ = 7§gﬂl//)o'ﬂ/)”
P __ po PO ﬂ/’" o
gﬂpgyoaz” =T 4\/—g;w7[ gk/lpaﬂ —Tyuslty
1 1 1
+ﬁ”ﬂvﬂpp+ﬂ Rﬂy—igﬂyR—i-gm,A .
(14)

Note that the boundary equations of motion at z = z; is
given by the variation of &g, (x, zy)
I=if

o
— [ dPxbg,,(x,z [
/ 90 %) | 30
(15)

where the second term arises from the variation of g, in the
second line of (13). Using the definition of the energy-

(VELWwr ™) +an} o,

renormalization effects of coupling functions as an RG flow
of the metric tensor through the emergent extra-dimensional
space with a single-trace deformation of the energy-momen-
tum tensor current. This above demonstrates how the present
holographic dual effective field theory takes into account
quantum corrections in a nonperturbative way, i.e., all-loop
order resummed through the RG flow in the extra-dimen-
sional space [54].

C. Self-consistency of the holographic dual effective
field theory in the Hamilton-Jacobi formulation

We now study the self-consistency of the holographic
dual effective field theory, including the case of non-
conformal theories, ﬁﬁy # 0. In particular, we examine
the Hamilton-Jacobi equation. As before, we gauge-fix
and consider the normal coordinate system, ds?(x,z) =
dz? + g, (x,2)dx*dx”, ie, N*¥ =0 and N =1
Furthermore, we assume that vacuum fluctuations of
high-energy matter fields, performing the gradient expan-
sion, are approximated by the Einstein-Hilbert action,
H, =35-1/9(R = 2A). (For the explicit evaluation of M,
for specific models, see [50-53].) The holographic dual
effective field theory is then given by

I=zf

Al 1
oy ™"+ % VY(R—2A) H .

2
[

momentum tensor in (8), we get the boundary condition for
o (x,zf)

(13)

V9
o (x, zf) = — N (T (x,2y)). (16)
If we substitute this relation into the first equation of (14),

we have

(17)

A
_g/wpy(x’zf) <Tm/('x’zf)>'

8ZgﬂV(x’Zf) _ﬁ'Zv(X,Zf) = N

We point out that this holographic dual effective field
theory is reduced to that of the AdSp,;/CFTp duality
conjecture when S, [g,, (x.z)] = 0 regardless of z. This
indicates that L[y, (x),¢"(x,zs)] remains at its confor-
mally invariant fixed point under the RG transformation,
which corresponds to a special case.

This set of the Hamilton’s equation of motion can also be
reformulated as an Euler-Lagrange equation of motion.
Performing the path integral with respect to the canonical
momentum 7**(x, z), we obtain an effective Lagrangian as
follows:
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z= / Do) D™ (x. 2)8(¢#* (x. 0) — ¢ (x)) exp [— / P90 7)) Llya). ¢ (x. 27)]

N Az;. dz dDJC\/M{_%VﬂV(X’ 2)GHr (x, Z)pr()@ 7) + %{ (R(x,z) — 2/\)}] , (18)

where GM7° is the inverse DeWitt metric satisfying
gaﬂyﬁgyé/w = 6((1”5[?)”

1 1
G =59"9" +5979° — 99", (19)

and we introduced an auxiliary field V,,,

Vi (%, 2) = 0.9, (%, 2) = Binlgu(x,2)], (20

to lighten notations.
Accordingly, the Euler-Lagrange equation is given by

Vv
g/wcgl/ﬁ az (\ﬁggaﬂyé Vy&) _ <9/w aff _ nﬂuaﬂ) goz/}y&v}/(S

NG 4
¢° 1 1
+7(Vypvua_ V/vaﬂ) +ﬂ RMU_Eg;JUR+AgMD =0.

(21)

Here, we introduce

1 0

(02, 9u(x. 27)) N g (x.2))

+ (%, 2¢) (0, G (¥, 25) — Bl G (x. 2¢)]) +

1
+ —

2K g(x, Zf)(R(x’ Zf) — 2[\) -0

One may regard this equation as the Callan-Symanzik
equation [76] for the free-energy functional in the large N
limit. We recall the IR boundary canonical momentum
tensor is given by Eq. (15). In addition, it is natural to

assume 0 (\/g(x,z7)Llwq(x), ¢ (x,27)]) =0, e,
the IR boundary Lagrangian does not depend explicitly
on the boundary coordinate z, since all the cutoff depend-
ence is through the running of the coupling constants as a
function of z. As a result, the RG invariance of the free
energy (24) is reduced to the Hamilton-Jacobi equation

A 1
0= zmﬂm’(x, Zf)g/u/py(x, Z)ﬂ'/)y(x’ Zj)
= 7%, 2p) B G (%, 2]

o 92 (R(xzp) = 20), (25)

2Kk

2/g(x.zp)

)
Wﬁgﬂ (G (x, 2)]- (22)

ﬂﬂyaﬂ(x’ Z) =
We recall that the RG f-function for the metric tensor is
given by the energy-momentum tensor of the renormalized
QFTat a given RG scale z. It is natural to call 17,,,,,4(x, z) the
viscosity tensor, as it is given by the derivative of the
energy-momentum tensor with respect to the metric tensor.
The role of this viscosity tensor in the dynamics of metric
fluctuations will be discussed below.

We now discuss the self-consistency of the present
formulation, in particular, the consistency of the RG
invariance, and the Hamilton (Hamilton-Jacobi) equations
[75]. The generating functional has to be invariant under the
RG transformation in the sense that

L hz—o. (23)
dzg

This holds true if the following condition is satisfied

(V906 2p) Llwalx), ¢ (x. 2¢)]) + %%( 9%, 2p) Llya(x), 9 (x, 27)])

1
v ing ()C, Zf)g;w/)y (xv Z)ﬂm/ (x7 Zf)

(24)

|
where 7 = 65/6g,,. We emphasize that the solution of
this Hamilton-Jacobi equation is given by the IR boundary
condition [Eq. (15)], where Ly, (x).¢"(x,z/)] is the
IR boundary effective Lagrangian determined self-
consistently. Again, this Hamilton-Jacobi equation be-
comes that of the AdSp,/CFTp duality conjecture when
ﬁzl/ [g/w(xv Z)] =0.

As a further consistency check, we point out that the
holographic dual effective field theory will follow the
constraint. Inserting the Hamilton’s equation for the metric
tensor into the constraint D,z (x, z) = 0, it is natural to
expect that the covariant derivative for the metric tensor
would vanish [72], regarded to be a part of full equations of
motion [77], and that for the RG f-function also becomes
zero, nothing but the energy-momentum tensor-current
conservation law. It seems to be a natural generalization
to introduce the RG g-function of the metric tensor into the
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bulk effective action for gravity, expected to work away
from quantum criticality.

D. Discussion

1. Entanglement entropy perspectives

The present RG-reformulated dual gravity action may
be reinterpreted in perspectives of entanglement entropy
[78-82]. The entanglement entropy is given by

Ser = SEE(2r) + Sge(zy) (26)

in our holographic dual effective field theory. Here, S¥) is
the entanglement entropy of the UV effective QFT defined
at the UV boundary z = 0. S{f(z;) is the entanglement
entropy of the emergent dual gravity bulk action with the IR
boundary z = z;. S¥;(z;) is that of the IR boundary action
at z = z;. This seemingly natural formula can be derived
from the holographic dual effective field theory [50] using
the replica trick [83,84].

Since the entanglement entropy of the UV effective QFT
does not depend on the IR boundary coordinate z;, we
obtain the following Callan-Symanzik equation for the
entanglement entropy as

0 =0, SEi(zf) + 0y, Sy (2y)- (27)

Resorting to the replica trick for the gravitational
effective action [84], one may argue that SR (z,) is given
by an area of the Ryu-Takayanagi minimal surface [85,86].
Since we did not address the role of the RG f function in
the Ryu-Takayanagi minimal surface yet, we used the term
of “may argue”. Essentially the same replica trick gives rise
to the area law of S¥;(z,) [83] at the IR boundary. Here, we
represent both entanglement entropies as follows:

ART(Zf) -AQFT(Zf)
4GD+1’ 4G,

GR
SEE

(zr) = Ske(zs) = (28)
Agr(zs)isa(D — 1)-dimensional Ryu-Takayanagi minimal-
surface area at z =z, and Gpy, is (D + 1)-dimensional
Newton constant in S¢X(z;). Agrr(zs) is a (D — 2)-dimen-
sional surface area of the QFT with renormalization at z = zy,
and G, is D-dimensional Newton constant in S¥;(z;).

As a result, we obtain

0— 8Z‘/ART(Zf> n azfAQFT(Zf)
- 4Gpy, 4Gy,

. (29)

This area formulation interprets the appearance of the
RG-reformulated dual gravity action in a geometrical
way. The decrease of the (D — 2)-dimensional surface
area of the QFT, representing the decrease of the entangle-
ment entropy in the QFT, gives rise to the increase of the

(D — 1)-dimensional Ryu-Takayanagi minimal-surface
area, describing the increase of the entanglement entropy
in the bulk gravity theory, where the RG transformation is
performed at z = z;. It would be interesting to show this
relation explicitly.

2. Role of the viscosity tensor in the dynamics
of metric fluctuations

Finally, we discuss the role of the RG fS-function in the
bulk dynamics of metric fluctuations. It is not easy to solve
Eq. (21) and find the RG flow of the metric tensor because
the RG f-function gives rise to higher-curvature corrections
in the D-dimensional Einstein-Hilbert action. Performing
the gradient expansion in Eq. (7) with Eq. (8) [83], one can
express the average of the energy-momentum tensor in
terms of curvature tensors, which results in higher-curva-
ture terms in the case of 1 # 0. Here, we consider a near
fixed-point solution of the metric tensor, which allows us to
investigate the bulk dynamics of metric fluctuations in a
linearized fashion around the fixed-point background
geometry.

We recall the IR boundary condition (17). Taking the
7y — oo limit, quantum fluctuations of matter fields are
integrated out completely. As a result, the average of the
energy-momentum tensor cannot but vanish. Since the RG
p-function also vanishes, the resulting IR boundary con-
dition is given by

z}i_rgoazguv<x’ Z)|z:zf =0. (30)

In this limit, the RG flow equation of the metric tensor is
reduced to

aZV/w(xv Z) _g/w(x’z)g/w(x’ Z)azvpa(xvz)

/ <R#U(X’Z)_%R(X’Z)gﬂu(x’z>+Ag,w(x7Z)>-

ZZK\/g(x,z)
(31)

We recall V,,(x,z) = 0.9,,(x.2) — fiw]gu(x.2)]. This
equation is identical to that of the conventional holography
if lim; o O-Bu[gu (x. 2)]|.—;, = 0 is assumed near an IR
fixed point. Here, gauge fixing is assumed as discussed
before. The background solution is an (thermal) AdSp.,
geometry at zero temperature (below the Hawking-Page
transition temperature) and an AdSp | black hole above the
Hawking-Page transition temperature [87].

Considering small fluctuations around this background
geometry g,, as

G (X, 2) = G (X, 2) + Iy (%, 2), (32)

the linearized “Einstein” equation for the metric tensor is
given by
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g/mgvﬂ o
= z /1

Vi

?]ﬂuvaﬁ ﬁpwaﬁ Papyd s 1 .a/,w

N L VA S, V.o — [ 2

( 24 A >g P\ 4
gpa

A
274, "Ryy0 = 2h% Ry + V7 (

[@

Vap —

‘7/4/7 vo V/u/f/po') +
1

+ u'tpv

4k
+ g;w

where G*7° and VW are the background quantities and

5,GP% = —(her )b 4 pPlrgpla — pebgrs — gop prd)

6h V{lﬂ = azh(lﬁ =+ hp”ﬁpmz/}' (34)
Here, #,,,5(x,z) is the viscosity tensor with a
background  black hole  geometry, 7,,,5(x,2) =

mﬁgﬂ[gaﬁ(x, Dllge(v0)=g(ve) [s€€ (22)]. This may
not vanish near the fixed point z; — co while the RG p
function itself becomes zero. It is interesting to observe that
this viscosity tensor can result in instability of metric
fluctuations near the fixed-point background geometry. We
speculate that this potential instability originates from
higher-curvature corrections to the Einstein-Hilbert action
[71]. More generally, we suspect that the RG pS-function
of the metric tensor may encode the so-called Ricci flow
[88-93]. The Ricci flow equation is to describe the
deformation of a Riemannian metric g,,(x,z) with an
extra-dimensional space coordinate z, which plays the
same role as time. This evolution equation may be regarded
as an analog of the diffusion equation for geometries, given
by a parabolic partial differential equation. The deforma-
tion is governed by the Ricci curvature, and leads to
homogeneity of geometry. In principle, one may consider
that this Ricci flow equation arises from the gradient
expansion of the Green’s function with respect to the mass
parameter [50]. Actually, this instability of the background
geometry may be interpreted as a runaway RG flow toward
a fixed point different from the present one. It would be
interesting to study how the universal lower bound of the
ratio between the shear viscosity and the entropy [21] is
modified by this viscosity tensor [94].

ITII. CONCLUSION

We proposed a prescription for an emergent dual holo-
graphic description of a quantum field theory, expected to
work even away from quantum criticality. Although we
invoke the bulk locality assumption and do not include

V,h, +V,h

vy

1 ~ - ~ ~ ~ ~
(5 PGV 5+ (81G777) V5 + G706 Vy(s))} +

2110 9)p

\/.5 SLIULAY,
el vaadd

A

(Vﬂp(éhvvp) + (5h‘7ﬂﬂ>‘7vp -

(7R, — 9,9, 007 + 979, 7,) — hy (R~ 20)] = 0,

ﬂvlﬂ) (5hg(/}y6) v]/(s _ﬁvaﬁgrﬂyﬁv}/ﬁ

14

v

(5h Vpa) - (5hv;w)‘7pa)
-V, h,) =V, V1,

(33)

higher-spin fields, the holographic dual effective field
theory takes into account quantum corrections in a non-
perturbative way through a nonperturbative RG flow in the
emergent extra-dimensional space. Self-consistency of this
nonperturbative framework was claimed based on the
Hamilton-Jacobi equation, the solution of which is given
by the IR boundary effective action.

We would like to mention that the emergent holographic
duality between the quantum field theory and emergent
gravity partition functions holds beyond the large N limit.
However, the self-consistency discussed in Sec. II C and the
equation of motion shown in Sec. II D are on the level of an
effective on-shell action, based on the duality relation to
hold in the large N limit.

Before closing, we point out that it is straightforward to
generalize the present dual holographic description to the
case with additional effective interactions. For example,
one may consider either spontaneous chiral symmetry
breaking or effective interactions between U(1) conserved
currents. Such interactions are responsible for appearance
of dual scalar fields and U(1) gauge fields, respectively, in
the corresponding holographic dual effective field theory.
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