
Automation in Construction 132 (2021) 103929

Available online 16 September 2021
0926-5805/© 2021 Elsevier B.V. All rights reserved.

Transformer machine learning language model for auto-alignment of
long-term and short-term plans in construction

Fouad Amer a,*, Yoonhwa Jung a, Mani Golparvar-Fard b

a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
b Civil Engineering, Computer Science and Tech Entrepreneurship, University of Illinois at Urbana-Champaign, USA

A R T I C L E I N F O

Keywords:
Construction planning
Project controls
Machine learning
Natural language processing
Artificial intelligence

A B S T R A C T

In construction, master schedules and look-ahead plans are created at different times (monthly vs. weekly), by
different personas (planner vs. superintendent), with different software (scheduling solution vs. spreadsheet),
and at different levels of granularity (milestones vs. production details). Their full-alignment is essential for
project coordination, progress updating, and payment application reviews, and its absence may lead to costly
litigation. This paper presents the first attempt to automate linking look-ahead planning tasks to master-schedule
activities following an NLP-based multi-stage ranking formulation. Our model employs distance-based matching
for candidate generation and a Transformer architecture for final matching.1 Validation results from real-world
projects demonstrate that the method helps planners match look-ahead planning tasks to master schedule ac
tivities by presenting a list of top-five matches with a precision of 76.5%. We also show that the method helps
superintendents create look-ahead plans from a master schedule by generating lists of tasks based on activity
descriptions.

1. Introduction

One of the challenges in managing field operations is reconciling
project's master schedule (long-term plan) with superintendents’ look-
ahead plans (short-term plans) [1]. For each construction project, a
master schedule is issued at the beginning of the construction phase to
outline milestones and work activities from beginning to the end. These
master schedules serve many purposes ranging from informing owners
on state of progress, establishing long-term coordination among crews
and trade contractors, to specifying terms of payment [2]. However,
these initial schedules often do not accurately capture details too far into
the future because information about actual duration, specific work
flows, and deliveries are typically not available at an early stage of a
project [3,4]. To reliably coordinate and direct various trades and crews
working on the job, superintendents create and use short-term sched
ules, often called “look-ahead plans” [5].

The look-ahead plans outline which crews and trades should be at
each specific location and what they should be doing at certain times
[6]. In addition to detailed tasks that directly correspond to activities
from the master schedule, these look-ahead plans may also document
work not included in the master schedule. Thus, in the Last Planner

System [3,7,8], look-ahead plans are often considered as the missing
link in production control. Often, issue management systems or task
constraints in the Last Planner System are also used to capture and track
those field issues that are not represented in the master schedule and/or
look-ahead plan. During coordination meetings, superintendents
communicate, explain and revise these look-ahead plans with crews and
trade contractors [9]. Superintendents use these look-ahead plans to
coordinate work through daily foremen meetings, find out how the job is
progressing, and what problems have arisen.

To ensure project managers, executives and owners are able to make
sense of what is going on in the field, it is critical to tie in the day-to-day
look-ahead planning tasks and issues (i.e., tasks in an issue management
system or the task constraints in the Last Planner System) with the master
schedule activities [10]. This is even a greater challenge in lean con
struction projects where creating weekly work/ look-ahead plans and
then updating master schedule based on these short-term plans is
common practice [11]. Bridging this gap between master schedule and
look-ahead plans to get the big picture has been a constant struggle [1].

This problem is exacerbated when progress reporting is considered
[12]. The master schedule and actual information about progress re
ported against look-ahead plans are also disconnected. Master schedules

* Corresponding author.
E-mail addresses: famer2@illinois.edu (F. Amer), yoonhwa2@illinois.edu (Y. Jung), mgolpar@illinois.edu (M. Golparvar-Fard).

1 Access to the code and a sample of the dataset can be granted upon direct request from the authors.

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.103929
Received 18 March 2021; Received in revised form 23 August 2021; Accepted 27 August 2021

mailto:famer2@illinois.edu
mailto:yoonhwa2@illinois.edu
mailto:mgolpar@illinois.edu
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2021.103929
https://doi.org/10.1016/j.autcon.2021.103929
https://doi.org/10.1016/j.autcon.2021.103929
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2021.103929&domain=pdf

Automation in Construction 132 (2021) 103929

2

reside in standard construction planning solutions (e.g., Oracle Prima
vera, Microsoft Project), while look-ahead plans containing progress
information live in spreadsheets or are printed in post-it notes on the
trailer walls (See Fig. 1). Project managers need to be constantly aware
of all activities on their sites to make sure their projects are on schedule,
however, the disconnection between the short-term and long-term
planning systems renders updating the master schedule activities from
weekly tasks a challenging and time consuming endeavor.

The task of reporting progress is also often relayed to subcontractors
or to most junior engineers on a project. It is a constant struggle making
phone calls and chasing subcontractors to get progress information,
compiling weekly progress reports, or typing up progress information
into project schedules. Hence, in many circumstances, look-ahead plans
are not progressed on a regular basis. Because look-ahead tasks and their
progress status are disconnected from the master schedule activities,
superintendents, engineers, and project managers are not aligned on the
big picture. This back and forth that happens in the field delays the
receipt of actual progress information by executives, often leaving them
with poor visibility into the real state of progress on their projects.

These challenges necessitate project-level managers, superinten
dents, schedulers and often regional executives to get together on a
monthly basis in costly meetings to discuss how much progress is made
[12], explain why certain work packages are behind schedule, review
planning alternatives, and update master schedules with progress data
for monthly owner reporting and managing payment applications [13].
The nature of updating progress information retroactively into the
master schedule leads the executive team not to consider look-ahead
plans or progress reported by the field team. Instead, they rely on
experience and gut feelings to manually update master schedules, as
opposed to using real data from the field.

To eliminate the labor-intensive nature of manually aligning master
schedules and look-ahead plans, a method is presented that automati
cally maps master schedule activities to look-ahead planning tasks. This
terminology of activities and tasks is used throughout the manuscript to
differentiate between master schedules and look-ahead plans. Our nat
ural Language Processing (NLP)-based method uses a state-of-the-art
Transformer, namely GPT-2 [14], to automatically map activities and
tasks to one another. To validate the method, we obtained data from four
construction projects and we manually linked tasks to their relevant
activities. We then trained and tested different models and compared
their ability in ranking activities based on their relevance to input tasks.
The following sections review the literature related to matching tasks to
activities, present our method, and discuss the results, limitations, and
potential future expansions.

2. Literature review

One of the core principles in lean construction is to improve work
flow reliability by continuously aligning what will be done on projects
with what should be done through collaborative planning and a system
atic application of the Make Ready Process [10,4,15]. While there is
tremendous evidence that the Last Planner System [16] improves

collaboration and reduces variability in near-term work execution [11,
17,4,15], its impact on master schedules has been a difficult subject for
systematic analysis. A key reason is that long-term and short-term
planning practices are often performed separately [1]. Because align
ing short-term and long-term plans requires significant effort, during
work execution, most project teams do not maintain their remaining
work in alignment with the master schedule targets [10]. Fig. 2 shows
two examples of these mis-alignments after importing and manually
aligning look-ahead planning tasks with their respective master
schedule activities. These issues are not specific to lean construction
projects, as they happen similarly to conventional projects between
master schedule activities and superintendent look-ahead plans.

While tracking performance of both long-term and short-term plans
is essential to improving the productivity and efficiency of the project
for future planning optimization [18], keeping all plans at every level of
detail in alignment proves to be a challenging and time-consuming task
[1]. Different scheduling software packages are used to prepare
long-term and short-term schedules such as Oracle P6 and Microsoft
Project for master schedules on one hand and Excel/spreadsheets for
look-ahead planning and weekly work plans (WWP) on the other. This
creates an epistemic bias when developing look-ahead plans due to poor
linkage between production schedules and project progress milestones
[5]. When weekly work plans or look-ahead plans are not properly
linked to long term plans, percent plan complete (PPC) becomes loosely
linked to project progress [5]. Also, the existing alignment method is
labor-intensive where a project engineer or a superintendent has to
manually update the progress of master schedule activities based on the
progress reported on the relevant weekly tasks from the look-ahead
plans. To date, formalizing the problem of aligning master schedule
activities to look-ahead planning tasks and automating the process has
received little to no attention. While there are available commercial
solutions that facilitate the creation of aligned long-term and short-term
plans, they rely on the human planner to manually perform the align
ment by adding look-ahead planning tasks within the same Work
Breakdown Structure (WBS) of the master schedule. Similarly, existing
metrics that help monitoring the alignment such as Percent Required
Completed or Ongoing (PRCO) [10] assume the alignment is already
established.

The challenge in automatically aligning tasks to activities lies in their
representation. Both activities and tasks are described using Natural
Language – English – expressions with little or no standardization,
grammatical errors, and project and construction-specific terms and
abbreviations [19]. Researchers have already proposed methods for
formalized representation of construction activities [20–22]. Amer et al.
[23] offers an exhaustive literature review on the entire body of
AI-driven methods in construction planning and scheduling domain. The
latest method is Amer and Golparvar-Fard [24] where an NLP-driven
pipeline is presented for deciphering construction activity descriptions
and automatically decomposing them into their different constituents,
known as the ALOR set: 〈Action, Location, Object, Responsible Party〉.
Building on the ALOR method of decomposing schedule activity de
scriptions, Amer and Golparvar-Fard [19] formalized a new

Fig. 1. A project manager's master schedule vs. a superintendent's look-ahead plan.

F. Amer et al.

Automation in Construction 132 (2021) 103929

3

representation of construction activities and leveraged Long Short-Term
Memory Recurrent Neural Networks (LSTMs) to model and learn con
struction sequencing knowledge from existing project records. Similarly,
Alikhani et al. [25] used Bidirectional LSTMs to learn activity sequences.
Zhao et al. [26] applied NLP techniques to extract construction methods
and dependency logic from construction schedules. Their method is
based on lookup tables and n-gram models to automatically detect and
rectify errors in project schedule activity descriptions, and
Part-of-Speech (POS) tagging to identify nouns and verbs as part of a
pipeline for identifying construction methods. Therefore, from a
research standpoint, the knowledge gaps are (1) the lack of a formal
ization of the problem of automatically matching short-term and
long-term plans as well as (2) the absence of methods and systems that
leverage NLP to enable and facilitate that matching.

In addition to their use for analyzing and automating scheduling
related tasks, NLP techniques have been widely applied to information
acquisition and retrieval in the construction industry [27]. In particular,
NLP techniques such as POS tagging were utilized to recognize the
syntactic and semantic features presented in an input document, such as
a construction contract, for information extraction purposes and to
support automated compliance checking. For instance, Zhang et al. [28]
used NLP techniques to automatically check and extract project infor
mation and requirements from textual regulatory documents and
Building Information Models (BIM). Also, Zhou et al. [29] presented an
NLP-based model to automatically check the compliance between
BIM-represented building designs and environmental requirements in
contract specifications. Similarly, NLP techniques such as tokenization,
parsing, and POS tagging are applied to facilitate the ordering of Re
quests for Information (RFIs) where keywords are extracted and mapped
to Industry Foundation Classes (IFC) entities and attributes [30].

The alignment of short-term to long-term plans lies at the heart of
construction progress monitoring. In the recent years, many researchers
focused on automating the process of progress detection and relaying it
back to the construction schedule. To detect progress, researchers
resorted to Photogrammetry and computer vision techniques to generate
3D point clouds from images, videos, or laser scanners to capture site
conditions for outdoor and indoor construction [31,32]. Given a
collection of unstructured site images (2D or 3D images),
Structure-from-Motion (SFM) and Multi-View Stereo (MVS) techniques
are used to reconstruct the scene in 3D with high fidelity. Similarly,
Simultaneous Localization and Mapping (SLAM) is used to recreate 3D
scenes from videos (structured and consecutive images) [12]. After the
actual site conditions are captured in 3D, the point clouds are aligned
and compared to BIM to detect progress. Similarly, [33] investigated the
use of RFID tags to track and control material deliveries and supply

chains, and [34] presented a method for detecting reporting re
quirements from construction contracts using NLP.

To the best of our knowledge, this paper presents the first attempt
towards the automatic alignment of long-term and short-term plans,
particularly using NLP techniques. We formalize the problem, and we
present a data-driven model that learns the dependencies between long-
term and short-term plans, purely based on schedule activity and look-
ahead planning tasks descriptions. The alignment knowledge learned
by the model is also employed to generate a list of look-ahead planning
tasks based on an input master schedule activity turning the model into a
generative tool that assists planning efforts and augments the knowledge
of planning engineers and superintendents. The next sections discuss the
method in detail, present the experimental setup and results, and draw
conclusions and recommendations for future research.

3. Method

3.1. Problem definition

Master schedule activities and look-ahead planning tasks are created
and organized in different formats for different purposes. In most cases,
tasks in the look-ahead plans are created in spreadsheets with minimal
to no WBS information. On the other hand, activities are created in
commonly used master scheduling solutions such as Oracle P6 or
Microsoft Project, and they are organized with reliable WBS informa
tion. While activities are developed by project planners, tasks are
created by superintendents. Tasks are more granular and activities are
more general. Because of these differences in how they are created and
organized, the language used to describe activity vs. task description is
different, and it is challenging for an automated system to align them.

We present a scalable and automated method for identifying the
relevant master activity for an input look-ahead planning task (See
Fig. 3). We formulate the problem as a ranking problem where the
master activities are ranked in order of their relevance to the input look-
ahead planning task. Mathematically, given a look-ahead planning task
wi and a set of master schedule activities A = {a1, a2 … aj}, the goal is to
rank A in the order of relevance to wi and to retrieve (a) the single
correct master activity match or (b) the top five matches to facilitate the
workflows of a human planner. Both task wi and activity aj are repre
sented using natural language expressions with little or no
standardization.

We approach the problem from multiple angles: First, we use unsu
pervised distance-based matching to establish a baseline for comparison
and to highlight the differences between task and activity representa
tions. Second, we extract semantic location information from both look-

Fig. 2. Two examples of mis-alignments between master schedule activities and their corresponding look-ahead planning tasks (activities and tasks are shown with
dark and light green colors respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

F. Amer et al.

Automation in Construction 132 (2021) 103929

4

ahead planning tasks and master activities and we match locations to
assist distance-based matching. Third, we introduce a supervised ma
chine learning model built on the state-of-the art Transformer-based
neural network GPT-2 [14], and we use it to improve matching results
in a multi-stage ranking setup [12]. On the other hand, we explicitly stay
away from using any temporal matching, i.e., matching based on the
start and end dates of tasks and activities. The reason for that is the large
variance of delays among different projects and among different activ
ities within the same project. The dataset we obtained shows tasks
linked to activities which were scheduled to start more than one month
before the task's start date as well as tasks linked to activities which are
scheduled to start in the future. Therefore, we wanted our approach to
be completely NLP driven and independent of the delays specific to each
input schedule.

3.2. Main contribution and model use case

This model is to be used to align short-term plans (look-ahead plans
and WWPs created by superintendents –during pull planning sessions in
projects following lean practices–) to their corresponding long-term
plans (master schedules created by project planners) for reporting pur
poses. We envision a tool based on this model to be used by the project
site team as follows:

“The project engineer or the project planner would start by uploading the
master schedule to the tool. Then, whenever an update is required, for
example monthly, the superintendent will upload their look-ahead plans. The
tool will then use AI to establish matches between the tasks listed on the look-
ahead plans and the master schedule activities. Based on the progress reported
for each task, the tool will update the progress of the relevant master activity
and request the feedback and approval of the superintendent. The tool will
then create a report detailing the overall site progress.”

Reaching the above level of automation requires:

• Establishing the links between the uploaded look-ahead plan tasks
and the relevant master schedule activities (focus of this
manuscript).

• Assessing the level of contribution of the look-ahead plan task to its
master relevant master schedule activity. Activities are often more
general and have large scope than their corresponding look-ahead
plan tasks. To correctly relay the progress from the look-ahead
plan to the master schedule, it is essential to understand to what
extent does finishing each task on the look-ahead plan contribute
towards finishing an activity on the master schedule.

• Creating a user-friendly interface and a document management
infrastructure that enables the upload of documents and the output
of results.

• Enabling a feedback loop that allows the user to confirm the relayed
progress as well as correct it when necessary.

The presented use case contains multiple technical challenges. In this
manuscript, we present a model that attempts solving the first step. In
other words, we only focus on the first piece of the workflow which is
related to establishing the links between master schedule activities and
look-ahead plan tasks, and we highlight the remaining steps as future
research opportunities to be tackled. The following sections detail our
approach for automating the process of mapping look-ahead plan tasks
to master schedule activities in detail. We present our model, present our
results, and discuss the contributions and limitations of our approach.

3.3. Distance-based matching baseline model

Before designing a modern supervised machine learning model, we
explored the application of simple baseline methods such as distance-
based models to map activity and task representations to one another.
To do so, task descriptions are first pre-processed for natural language
processing needs by making them lowercased, tokenized, and lemmat
ized. Similarly, all information related to a schedule activity (concate
nated WBS tags and activity description) is pre-processed similar to
tasks, and then they are concatenated together in one phrase (see Table 1
in Section 4.1). Second, we describe activities and tasks using FastText
embeddings [35] trained on data from 32 construction schedules. As
described in Amer and Golparvar-Fard [19], FastText embeddings are
used to vectorize both task and activity descriptions and project them
into a numerical space. Each activity and task is represented as the mean
of the embeddings of all the words that constitutes it as shown in Fig. 4.
Third, Cosine similarity in Eq. (1) is used to identify the closest activity
description to each task description. If a task has the same maximum
similarity to two activities, both activities are assumed to be correct
matches. Cosine similarity values range between −1 and 1 where −1
indicates that the task and activity are too distant (opposite), while 1
indicates that they are identical.

Similarity(wi, aj) =
wi⋅aj

‖wi‖
⃦
⃦aj

⃦
⃦

=

∑dk
l=1wilajl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑dk

l=1w2
il

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑dk
l=1a2

jl

√ (1)

where dk = 320 and it represents the size of vectors wi and aj. The value
of the embedding size dk is predefined and validated in previous works
such as [19].

3.4. Location extraction and matching

Locations play a significant role in construction planing, and they are
identified as one of the constraining flows of construction [36]. When
creating a master schedule, location information is often embedded in
the WBS as well as in the activity description. Similarly, when building
look-ahead plans, the work is split by location to manage production and
crew movement. In this section, we leverage the location information
available through both master schedule activity and look-ahead plan
ning task descriptions to improve the alignment between the two. To do
so, we first extract the locations of both task and activity using the
Part-of-Activity tagging method presented in Amer and Golparvar-Fard

Fig. 3. Workflow of the proposed model at training and production times.

F. Amer et al.

Automation in Construction 132 (2021) 103929

5

[24]. Second, we normalize location information by transforming (a)
(“floor”, “fl”, “l”, “lvl”) to “level” and (“first”, “second”, etc..) to (“1”, “2”,
etc.) respectively. Third, we perform fuzzy matching using Levenshtein
distance (Eq. (2)):

lev(wloc, aloc) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|wloc| if |aloc| = 0
|aloc| if |wloc| = 0
lev(tail(wloc), tail(aloc)) if wloc[0] = aloc[0]

1 + min

⎧
⎨

⎩

lev(tail(wloc), aloc)

lev(wloc, tail(aloc))

lev(tail(wloc), tail(aloc))

otherwise

(2)

where wloc and aloc are the task and activity locations respectively, and
tail(expression) is the expression without its first character. For example,

tail(“level 02”) is “evel 02”. Last, we return the list of matching-by-
location candidates to be processed by the distance-based matching
model.

3.5. Supervised neural model

In this section, we introduce our new supervised model which (1)
predicts pairwise relationships between look-ahead planning tasks and
master schedule activity descriptions, and (2) generates a list of look-
ahead planning tasks given an input master schedule activity. To ach
ieve these goals, we employ a novel Decoder Transformer architecture
[37], because transformers have shown superior performance on
ranking problems when compared to other approaches [12]. Instead of
training a classifier that takes task and activity descriptions as inputs and

Table 1
Examples from the data showing matches between master schedule activities and look-ahead planning tasks where an activity can be associated with multiple tasks.

Fig. 4. Distance-based similarity computations between activity and task descriptions.

F. Amer et al.

Automation in Construction 132 (2021) 103929

6

predicts their relationship from scratch, our approach fine-tunes the
small version of the OpenAI's GPT-2 language model [14], which is
pretrained over 40GB of Internet text. Our model can be defined as a
mapping function “Matcher” (M) that maps all tuples of 〈 task, activity 〉
into the binary space {0,1}:

M : W × A→{0, 1} (3)

lij = M(wi, aj) s.t. lij ∈ {0, 1} (4)

where W is the space of all possible tasks, A is the space of all possible
activities, and {0,1} refer to {No relationship, Relationship} respectively.
In other words, the model performs a binary classification, and the
possible classes are either “Relationship” (indicating that the master
activity is a correct match for the look-ahead plan task) or “No Rela
tionship” (indicating that the master activity is not a correct match for
the look-ahead plan task). Since both activities and tasks are expressed
using text strings and English expressions, we denote V to be the set of
all English expressions (or vocabulary) used to describe an activity or
task. Function M can then be reformulated as the mapping function
between V and {0,1} such as:

M : V2→{0, 1} (5)

Before diving into the details of the supervised model, we first pro
vide a high-level overview of Language Models (LMs) and pre-trained
language representations, as follows:

3.5.1. Language modeling
Language models – specifically forward language models – calculate

the probability of a sentence (represented as a list of tokens: t1,t2, ...,tkN)
by computing the probability of the next token (tk) given all previously
seen tokens (t1, t2, . . . , tk−1) as shown in Eq. (6) [38]. For example, given
an activity description “L27 Reshoring Pour Deck & Columns” as an
input sentence, a language model calculates the probability of
“Reshoring” given “L27”, “Pour” given “L27 Reshoring”, “Deck” given
“L27 Reshoring Pour”, etc.

P(t1, t2, ..., tN) =
∏N

k=1
P(tk|t1, t2, ..., tk−1) (6)

Language models play an essential role in traditional NLP tasks such
as text summarization, machine translation, and speech recognition.
These models learn information encoded in the training data in a
compact form and they can better represent input data for downstream
tasks compared to traditional NLP pipelines [39]. Earlier N-gram lan
guage models relied on probability distributions conditioned on N pre
vious tokens in the sentence. For example, Unigram language models use
only one token as context to predict the next token. The probability
distribution of an N-gram language model is saved in static tables which
are used later for prediction [40].

The second generation of language models is neural. These models
use context-independent word embeddings –such as Word2Vec [41] – to
represent input tokens, and then a variance of a Recurrent Neural
Network (RNN) such as a Gated Neural Network (GNN) or a Long Short
Term Memory (LSTM), to condition the prediction on the current
context [40]. These recurrence-based models are often enhanced with
attention mechanisms on their learned internal representations to be
used for downstream tasks such as neural machine translation [42].
These attention mechanisms allow the model to pay specific attention to
specific tokens of an input sentence when predicting different tokens in
the translated sentence. However, the sequential nature of recurrent
models prevents parallelization within training examples and creates
training limitations especially when parsing longer sentences.

The Transformer architecture [43] removes the reliance on recur
rence and uses only attention mechanisms to perform machine trans
lation tasks using less training time while achieving better performance.
This performance introduced the Transformer as the basic building

block for state-of-the-art language models and other NLP tasks. Trans
formers enabled language models to be trained on vast amounts of text
data [44,45]. Without supervision, these language models achieved
state-of-the-art results on many downstream NLP tasks such as question
answering and named entity recognition with little or no fine-tuning. In
this paper, we leverage the capabilities of a Transformer decoder ar
chitecture known as the GPT-2 model – small version – developed by
OpenAI [14]. We fine-tune the model to (1) predict whether pairwise
links should be established between any given input master schedule
activity and look-ahead planning task, and (2) generate a list of
look-ahead planning tasks given an input master schedule activity.

3.5.2. Multi-head attention and transformer decoder blocks
GPT-2 is composed of 12 layers of Transformer Decoder blocks [37].

These blocks enable GPT-2 to train on long sequences by removing the
encoder module from the original transformer architecture which re
duces the total number of model parameters by half. This approach
models each input example as one sequence that includes both the
training example and its label. As shown in Table 1 (see Section 4.1),
each training example is composed of two levels of WBS description in
the master schedule, the activity description, and the look-ahead plan
ning task description. To train the Transformer, each example is fed to
the model in the form of a sentence as shown in Fig. 5. As mentioned
earlier, the master activity information is composed of two WBS de
scriptions and an activity description. The special token “<SEP>” is
used to separate these entities in training and testing examples. Simi
larly, the special token “<EOS>” is used to declare the end of both ac
tivity and task descriptions.

As shown in Fig. 6, each Decoder block applies a multi-headed self-
attention mechanism followed by a fully connected layer to create a
distribution over the target vocabulary:

h0 = LayerNorm(XWe + Wp) (7)

h(i) = block(h(i−1))∀i ∈ [1, n = 12] (8)

where X is the input sentence, We holds the weights of the word em
beddings, Wp contains the input positional embeddings which provide
information about the position of each token in the input training
example, LayerNorm is a normalization function to regulate the gradi
ents during the training process, h0 is the output embedding that is fed to
GPT-2, h(i) is the output of decoder block i, and block is the mapping
function performed by a decoder block and is described by the
following:

h(i) = LayerNorm
(
Attention(Q, K, V) + Residual(h(i−1))

)
WD (9)

where WD holds the weights of the fully connected layer of the decoder
block, Residual is a bypass that enables downstream decoder blocks to
digest the original model input, and Attention is the transformation
applied by the masked self-attention block (see Fig. 7 for an illustration
of the performed computations) and is defined as:

Attention(Q, K, V) = softmax
(

QKT

̅̅̅̅̅
dk

√

)

V (10)

where dk is the size of the input vector embeddings, Q, K, V refer to
“Queries”, “Keys”, and “Values” which are abstractions that enable the
model to perform the attention computations. The “Queries” refer to the
input vector to the decoder block after being transformed using a
learnable fully connected layer having the weight matrix WQ:

Q = h(i−1)WQ (11)

Similarly, “Keys” refer to the matrix containing a transformed version
of the input vector to the decoder block h(i−1) repeated n times where n is
the size of h(i−1). To create “Keys”, h(i−1) is transformed using a fully
connected layer having the weight matrix WK such that:

F. Amer et al.

Automation in Construction 132 (2021) 103929

7

K = h(i−1)WK (12)

This formulation of “Queries” and “Keys” enables the computation of
self attention scores by simply computing QKT as shown in Eq. (10).
Lastly and similar to “Queries”, “Values” is a transformed version of h(i−1)

(Eq. (13) where WV is the weight of the fully connected layer), and it
enables the application of the computed scores (QKT) to be applied to the
input vector h(i−1) as described by Eq. (10).

V = h(i−1)WV (13)

As described by Fig. 7, within every block and for every embedding
at position j in the block's input, attentions are learned and computed
over all embeddings at positions [0,...,j]. The masks shown in Fig. 7
demonstrate how the model is unidirectional. The output embeddings of
block i are then fed into block i+1 as shown by Eq. (8).

To enable our model to perform both pairwise predictions and task
description generation, at the end of the computations of the last
decoder block, we channel the final outcome h(12) into (1) a language
modeling head (LMhead) and (2) a classification head (Chead) (Fig. 8). The
LMhead consists of a fully connected layer followed by a Softmax layer
such that:

LMhead : Zlm = Softmax(h12WLM) (14)

where WLM are the weights of the LMhead's fully connected layer and Zlm
is the probability distribution over every word in the vocabulary (50,260
words in total) at every position i in the input sentence given all previous
positions [0, . . . , i − 1]. This is used to teach the model to generate look-

Fig. 5. Training example composed of master activity details, look-ahead plan task details, and a label that indicates the relationship between the two. The master
activity is described using two levels of WBS and the activity description. The special token <SEP> is used to separate the different components of the activity
description, and the special token <EOS> is used to indicate the end of both the activity and the task.

Fig. 6. The input, output, and architecture of the first decoder block in the
GPT-2 model.

Fig. 7. Computations performed by a Decoder Transformer self-attention head.

F. Amer et al.

Automation in Construction 132 (2021) 103929

8

ahead planning task descriptions given the description of a master
schedule activity. As discussed later in Section 4.1, the training data
have both positive examples where the look-ahead planning task is
related to the master activity and negative examples where the task and
activity are independent. To train the language modeling head, we only
update its parameters when the model parses positive examples so that it
learns dependencies only from examples where the task is linked to the
activity.

On the other hand, the Chead is trained on both positive and negative
examples and it performs a binary classification task as described earlier
by Eq. (3). It is composed of three fully connected layers validated
empirically, and it employs LeakyRelu activation functions followed by a
Softmax layer as follows:

Zc1 = LeakyRelu(h12Wc1) (15)

Zc2 = LeakyRelu(Zc1 Wc2) (16)

Zc3 = LeakyRelu(Zc2 Wc3) (17)

Zc = Softmax(Zc3) (18)

where Wc1 , Wc2 and Wc3 are the weights of the fully connected layers and
LeakyRelu for an input x is a defined as:

LeakyRelu(x) = max(0, x) − 0.01 × min(0, x) (19)

The classification performed by the model is a pairwise judgment of
the likelihood that a look-ahead planning task wi matches a master ac
tivity aj. However, the ultimate goal is to identify the most relevant
master activity for any input task. In other words, for each task, the
model is used to perform a pairwise judgment of the likelihood of
matching every available master activity. The pairwise judgements are
then used for ranking different activities. The scores of the classification
head (Zc in Eq. (18)) for the activities predicted by the model to be
positive matches for the input task are used to rank the relevance of the
activities with respect to the input task. Those scores represent the
probabilities of being a correct match as calculated by the Softmax
function). A higher score indicates a higher confidence by the model that
the positive prediction is correct. This is a typical use of pairwise pre
diction models for ranking [12]. This approach for ranking is useful to
filter out false positive predictions and to insure the returned results are
those judged by the model to be the fittest matches.

3.6. Multi-stage architectures

As opposed to using different models in isolation, the distance-based
model, the location-based matching, and the supervised transformer
model were used together in hierarchical multi-stage architectures to
improve matching performance and to validate design choices. For
instance, we test the following combinations, and we select the model
combination that achieves the best Precision, Recall, and f1 Score:

• Candidates generation using location-based matching followed by
distance-based matching

• Candidates generation using location-based matching followed by
transformer-based matching

• Candidates generation using distance-based matching followed by
transformer-based matching

• Candidates generation using both location-based and distance-based
matching followed by transformer-based matching

The next sections discuss the data used for validating the model, the
quantitative and qualitative results, and the contributions and limita
tions of the presented method.

4. Experimental setup, results and discussion

4.1. Data

The experimental data is composed of master schedules of four
different commercial building projects and 30 look-ahead plans that
cover partial periods of those projects. Overall, 2131 logic links were
manually established between 460 master schedule activities and 1905
look-ahead planning tasks by three expert annotators (project planners)
so that the ground truth can be properly quality controlled. The rela
tionship between look-ahead planning tasks and master schedule ac
tivities is many-to-one where only one master schedule activity can be
linked to a look-ahead planning task while many look-ahead planning
tasks can be linked to the same master activity. Table 1 shows examples
of the activity-vs.-task alignments. It can be seen that among these pairs
of activities and tasks, the WBS, level of detail, and expressions are
different.

The initial data was only composed of activity-vs.-task links that

Fig. 8. Supervised Transformer model architecture. The GPT-2 transforms the
input information of look-ahead planning tasks and master activities into the
embedding space, the language modeling head learns to generate task de
scriptions given a master schedule activity, and the classification head learns to
predict the relationship status between the task and the activity.

F. Amer et al.

Automation in Construction 132 (2021) 103929

9

should exist (positive examples). However, to enable training the su
pervised model, the data was augmented to include negative examples
where the look-ahead planning task and master schedule activity are
irrelevant and should not be linked together. To do so, we randomly
sample one task and one activity and flag their links as negative if it was
not seen in the list of positive links within each of the four available
projects. This is only possible because the annotators insured the list of
positive links is exhaustive; i.e., all links that should be established be
tween look-ahead planning tasks and master schedule activities are
identified and approved through consensus among three expert anno
tators. Overall, the number of generated negative examples was 4262, i.
e., two negative examples for every positive example. This ratio was set
and validated empirically based on trial and error.

The data is split into five validation folds. Each fold contains training
and testing data from all four projects. At test time, for each look-ahead
planning task, the master schedule activities of the same project are
ranked based on relevance according to the model used for testing. As
mentioned in Section 3, we test the performance of our method on fully
automated matching by returning the single correct master schedule
activity match for each look-ahead planning task. We also test the
method's fitness to be part of a human-in-the-loop approach where the
model returns the top five matches and leaves the final decision to the
project planner to pick the correct match.

4.2. Supervised GPT-2 model pairwise prediction results (pre-ranking)

First, we share results on the performance of the supervised GPT-2
transformer model on the pairwise classification task. As shown in
Table 2, the model can correctly predict a positive match with Precision,
Recall, and f1-Score of 82.1%, 78.54%, and 80.1% respectively. Simi
larly, the model can predict a correct negative relationship (accurate
prediction of a “No Relationship”) with Precision, Recall, and f1-Score of
89.4%, 91.1%, and 90.2% respectively.

Table 3 shows qualitative examples of the pairwise predictions made
by the model. Examples 1 and 2 show accurate predictions. Examples 3
and 4 show false negative predictions where the ground truth is positive
but the prediction is negative. And, Examples 5 and 6 show false positive
predictions where the ground truth is negative but the prediction is
positive.

4.3. Location-based matching results

Table 4 shows examples of the performance of ALOR tagging [24] in
terms of identifying location related terms in both look-ahead planning
tasks and master schedule activities. The table also highlights the per
formance of Levenshtein distance-based location matching model in
identifying potential matching activities that have the same location as
the look-ahead planning task under consideration.

4.4. Ablation study and ranking results

The goal of the ablation study is to explore whether the process of
linking look-ahead planning tasks to master schedule activities can be
expedited to help site engineers and superintendents review and then
align their short-term and long-term plans for production planning and
reporting purposes. To that end, we test two different approaches: (1)
The first approach attempts the full automation of the task to activity

matching process by identifying the most relevant master activity for
any given look-ahead planning task. (2) The second approach examines
semi-automating the process following a human-in-the-loop approach
where the model suggests to the engineer a list of top-five activities that
are most relevant to a look-ahead planning task. For each approach, we
deploy and test six different model designs which are all validated
following a five-fold validation schema as discussed in Section 4.1. A
discussion on the reasons for considering a semi-automated approach is
further discussed in Section 5.

Table 5 shows the results of the first approach, i.e., the mean and
standard deviations of Precision, Recall and f1 Score for returning the
exact correct master activity match for a given look-ahead planning task,
across all validation folds. The best performing design was the distance-
based model followed by the Transformer model achieving a Precision,
Recall, and f1 Score of 51.1%, 40.3%, and 44.9% respectively. On the
other hand, Table 6 shows the results of the second approach where
Precision, Recall, and f1 Score are measured based on whether the
correct match appears in the returned list or not. Similar to the fully
automated approach, the best performing design was the distance-based
model followed by the Transformer model which achieved a Precision,
Recall, and f1 Score of 76.5%, 64.3%, and 69.8% respectively. The
dataset we used for training and validation contained a master schedule
activity match for each look-ahead planning task. The validation on our
model's ability to identify tasks that do not have a corresponding master
activity is therefore limited to the results of the pairwise predictions
shown in Table 2 where the f1 Score on predicting a negative relation
ship is 90.2%.

As shown in Tables 5 and 6, some of the tested model designs use
multistage ranking architectures such as “Distance + Transformer”
where the Distance-based model is used to generate candidate matches
for the Transformer model which then fine-tunes the results. To identify
the ideal number of candidates to be generated by the distance-based
model, we tested different configurations on one of the models (the
model tested on validation fold #1) and we show the results in Figs. 9
and 10 for the first and second approaches respectively. The best results
were achieved by setting the number of candidates to ten for the first
approach and 25 for the second approach. This number was then fixed
for all the experiments across all validation folds.

In addition to reporting the performance of different models on the
matching problem, we also investigated the amount of time required by
different models to match a single look-ahead planning task. This is
essential to understand the usability of different models and their ability
to scale to actual industry requirements. Table 7 shows the time in
milliseconds required to match a single look-ahead planning task per
master activity. This time is the average recorded across all four projects
and all five validation folds. The best performing model – Dis
tance + Transformer – required 0.108 ms per look-ahead planning task
per activity. In other words, for a look-ahead plan of 50 tasks and a
master schedule of 2000 activities, the required overall time is 10.8 s.

4.4.1. Generation of tasks from activities
As mentioned in Section 3, our supervised model has a generative

language modeling head with the ability to generate look-ahead plan
ning tasks using a master schedule activity as input. To do so, our model
ingests the description and WBS tag of a master schedule activity and
returns a list of look-ahead planning tasks that has the highest proba
bility of matching that activity. As defined in Eq. (14), task descriptions
are generated at an individual word level; i.e., the model generates the
description of every look-ahead planning task word-by-word as opposed
to selecting a full look-ahead planning task description from a pre-
defined list of tasks. Given the sequence of words in the master activ
ity WBS and description, the model maintains the smallest between (a)
the list of top k-words [46] where k is empirically set to 25 or (2) the list
of words whose sum of probabilities is equal to a p-value [47] of 0.9.
Urging the probabilities of the top list of words to be above 0.9 causes
the model to generate less than five sentences in the cases where that

Table 2
Pairwise predictions Precision, Recall, and f1 Scores of the supervised GPT-2
Transformer model across five validation folds.

Precision Recall f1 Score

μ σ μ σ μ σ

Relationship 0.821 0.025 0.785 0.051 0.801 0.018
No Relationship 0.894 0.018 0.911 0.021 0.902 0.004

F. Amer et al.

Automation in Construction 132 (2021) 103929

10

requirement is not satisfied for a large pool of words. The probability
mass is then redistributed over the list of top words, and a second word is
chosen accordingly. Additionally, since multiple look-ahead planning
tasks can be associated with one master schedule activity, the model
performs multiple simultaneous searches for the next word in parallel to
ensure the generation of multiple look-ahead planning tasks. In our
experiment, we empirically set the number of simultaneous searches to
50. In each parallel search, the chosen word is added to the input used to

generate the following word until the special token “<EOS>” is
encountered or a maximum task length of 50 is reached. Since task
descriptions are often short, this max task length works as an upper limit
and is almost never encountered. Among the 50 generated task de
scriptions, the model picks the top five that achieve the highest pre
diction scores. The values of the hyper-parameters chosen for the
generation task are all based on empirical testing, and the degree of their
influence on the quality of the results can be further investigated in

Table 3
Qualitative examples of the predictions made by the supervised GPT-2 model.

Table 4
Examples of location extraction and matching between look-ahead planning tasks and master schedule activities.

Table 5
Precision, Recall, and f1 Score of all six tested model configurations on identifying the most relevant master activity to an input look-ahead planning task. (a)
The “Distance Only” model uses Cosine similarity and pre-trained FastText embeddings, (b) the “Location + Distance” uses Location matching to generate candidates
for the distance-based matching model. (c) The “Transformer Only” model uses the supervised transformer model to perform pairwise predictions on the relationship of
the input look-ahead planning task and every available master activity and then ranks the results based on the probability of a positive relationship. (d) The last three
models “Location”, “Distance”, and “Location + Distance” matching to generate candidates for the Transformer model which then performs the final ranking.

Precision Recall f1 Score

μ σ μ σ μ σ

Distance Only 0.328 0.009 0.328 0.009 0.328 0.009
Location + Distance 0.320 0.015 0.320 0.015 0.320 0.015
Transformer Only 0.282 0.032 0.300 0.021 0.289 0.015
Location + Transformer 0.387 0.019 0.318 0.042 0.348 0.031
Distance + Transformer 0.511 0.022 0.403 0.027 0.449 0.013
Location + Distance + Transformer 0.516 0.034 0.384 0.041 0.439 0.034

The values in Bold are those of the best performing model.

F. Amer et al.

Automation in Construction 132 (2021) 103929

11

future research efforts. Table 10 shows test examples of tasks generated
by the model given activity description prompts. For instance, the first
example shows a list of tasks generated based on the activity “finishes
level 4”. In The next section, we discuss the results and explain our
thought process and design considerations.

5. Discussion

Although the embeddings used to perform distance-based matching

are trained on construction scheduling specific data, the distance model
achieved an f1 Score of 32.8%. Table 8 shows qualitative ground truth
examples (positive examples) from the data where the similarity be
tween tasks and activities is minimal. These examples highlight the
difference in granularity between look-ahead planning task descriptions
and activity descriptions where tasks are more fine-grained while ac
tivities are more general and encompassing. It also highlights the dif
ferences in the language used by different project stakeholders who
create the master schedule (project planners) and the look-ahead plans
(project superintendents). Table 9 (Examples 1, 2, and 3) show cases
where the similarity in describing activity and tasks yielded correct
model predictions. On the other hand, Table 9 (Examples 4, 5, and 6)
show cases of inaccurate predictions made by the distance-based model,
i.e., examples where the similarity is the highest but the matching is
inaccurate. For instance, in Example 4, the word “deck” in “steel and
deck” caused the model to inaccurately predict “Steel and Deck” as the
master activity match to “L26 deck install tables” although the WBS in
formation of “steel and deck” shows that this activity is not being un
dertaken in “L26” (26th floor) but in “Bridge”. Similarly, in example 5,
the ground truth master schedule activity “elevator > lagging” only has
one word in common with the look-ahead planning task description,
while the predicted activity is more similar. Lastly, Example 6 shows a
case where the embedding model failed to capture the similarity be
tween “MEPFP” and “fire protection” and instead assumed “masonry” and
“stair” to be more similar causing the predicted master activity to be
inaccurate. This example also highlights the sensitivity of the distance-
based model to the length of the task and activity descriptions where
extra words can cause the similarity between tasks and activities to
decrease even if they both contain other similar expressions.

By checking the results of the “Location + Distance” model in
Table 5, we can see that adding a filtering by location step before
distance-based matching performed worse compared to the distance-
based matching alone with an f1 Score of 32%. Since location-based
matching is performed using Levenshtein distance measurements, it
has a similar behavior to the FastText embeddings used by the distance-
based model where both models consider sub-word representations. The
differences are that (a) location-based matching is performed only on

Table 6
Precision, Recall, and f1 Score of all six tested model configurations on identifying a list of five master activities that contain the most relevant master activity to
an input look-ahead planning task. (a) The “Distance Only” model uses Cosine similarity and pre-trained FastText embeddings, (b) the “Location + Distance” uses
Location matching to generate candidates for the distance-based matching model. (c) The “Transformer Only” model uses the supervised transformer model to perform
pairwise predictions on the relationship of the input look-ahead planning task and every available master activity and then ranks the results based on the probability of
a positive relationship. (d) The last three models “Location”, “Distance”, and “Location + Distance” matching to generate candidates for the Transformer model which
then performs the final ranking.

Precision Recall f1 Score

μ σ μ σ μ σ

Distance Only 0.650 0.021 0.650 0.021 0.650 0.021
Location + Distance 0.616 0.019 0.616 0.019 0.616 0.019
Transformer Only 0.634 0.028 0.569 0.029 0.599 0.023
Location + Transformer 0.652 0.025 0.494 0.037 0.561 0.027
Distance + Transformer 0.765 0.023 0.643 0.043 0.698 0.028
Location + Distance + Transformer 0.712 0.026 0.568 0.050 0.631 0.038

The values in Bold are those of the best performing model.

Fig. 9. Precision, Recall, and f1 Score of the “Distance + Transformer” model
on identifying the most relevant master activity to an input look-ahead plan
ning task based on the number of candidates generated by the distance-based
matching model.

Fig. 10. Precision, Recall, and f1 Score of the “Distance + Transformer” model
on returning a list of five master activities which contain the most relevant
activity to an input look-ahead planning task based on the number of candi
dates generated by the distance-based matching model.

Table 7
Average time in milliseconds required to retrieve the master activity match for a
single look-ahead planning task.

Time per Task per Activity (ms)

Distance Only 0.130
Location + Distance 0.058
Transformer Only 0.891
Location + Transformer 0.245
Distance + Transformer 0.182
Location + Distance + Transformer 0.108

F. Amer et al.

Automation in Construction 132 (2021) 103929

12

location terms while distance-based matching is performed on the full
task and activity descriptions, and (b) FastText embeddings learn the
“distributional similarity” between words that do not share common
characters – i.e., the similarity based on where words and sub-word
representations appear in training data – while Levenshtein distance
measurements only compare word characters. As a result, if the correct
master activity match has a completely different location term than the
look-ahead planning task, it will be filtered out by the location-based
matching step before the distance-based model can assess its similarity
to the look-ahead planning task even if all other terms that describe the
activity are similar to those that describe the task. On the other hand,
using location-based matching before ranking using the Transformer
model improved the results from 28.9% to 34.8% by filtering out wrong
candidates. The best results where achieved by generating a list of
candidates by the distance-based matching model and then fine tuning
the ranking using the Transformer model. The achieved f1 Score is
44.9% which shows a 36.8% improvement over the distance-based
model and a 55.36% improvement over the Transformer-based model
when these models are used in isolation. It is important to notice that
although the Transformer model achieved an f1 Score of 80.1% on
pairwise predictions, i.e., examples of individual look-ahead planning
tasks and master activities, this performance did not translate to a high
matching score. This is caused by the amount of predictions the Trans
former model has to perform for each look-ahead planning task where
that task needs to be checked against all the available master activities
which decreases the probability of the model picking the exact correct
match [12]. Introducing a multi-stage ranking process where a
distance-based model generates a list of candidates for the Transformer
model improves the results because it mostly eliminates wrong candi
dates and reduces the overall number of judgements required by the
Transformer model.

Although the Transformer model presented significant improve
ments over the distance-based matching model, an f1 Score of 44.9% can
still be low for the system to be used fully automatically. To that end, we
test our system's ability to fulfil a semi-automated workflow where the
model returns a list of five master activities as opposed to only one. By
comparing the results of the semi-automated approach (Table 6) to the
results of the fully-automated approach (Table 5), one can identify a
55.4% improvement in the f1 Score which increased from 44.9% to
69.8%. While the results of the fully-automated approach suggest a need
for additional enhancements, the results of the semi-automated
approach are promising and show potential for being tested in
production.

In regards to the generation of look-ahead plan tasks from master
schedule activities, Table 10 highlights how the model accurately broke
down the master activity into production tasks such as installing bath
room accessories, painting, and installing wall and floor tiles. Similarly,
the last example shows task predictions associated with “L11 Reshoring
and Pour Deck & Columns”. While the model accurately generated tasks
related to Rebar, PT [Post-Tension], Pouring, and top embeds which are
all concrete related activities, it also falsely generated activities that are
related to finishing activities instead of concrete placement activities.
These results highlights the potential of modern language models such
as GPT-2 [14] even when fine-tuned on relatively small datasets such as
ours. The task descriptions generated by our model are comparable to
those actually written by superintendents (Tables 1 and 8) in terms of
sentence structure and composition as well as coherence and style.

In terms of limitations, our model learns the biases, mistakes, and
particularities that exist in the training data. Like other data-driven
models, those biases and irregularities are expected to be minimized
as we train the model on larger datasets. Similarly, one other inherent
limitation of data-driven approaches is the unpredictability of the nature

Table 8
Examples showing ground truth alignments between master schedule activities and look-ahead planning tasks where the activities and tasks have little similarity
between their descriptions.

The values in Bold are those of the best performing model.

Table 9
Qualitative examples of the predictions made by the distance-based model.

F. Amer et al.

Automation in Construction 132 (2021) 103929

13

and gravity of their mistakes. To that end, this model is intended as an
assistant as opposed to being a fully automated system that replaces the
work done by human planners. We envision this model to be a sugges
tive model within a human-in-the-loop approach that assist superin
tendents create the look-ahead planning tasks based on the master
activities created by the planners, as well as help planners identify look-
ahead planning tasks related to different master schedule activities for
reporting purposes. Furthermore, the presented research can be tightly
linked to AI-based automated progress monitoring models. While these
models focus on capturing the actual site conditions to enable progress
reporting, the ScheduleAlignmentAide model presented in this manu
script can help translate the progress detected on the look-ahead plan
task level into its master schedule level and vice versa by establishing
and maintaining the link between the two. This enables automated
progress monitoring methods to reflect progress on both short-term and
long-term plan levels.

6. Conclusions

This paper presented first-of-its-kind (a) new formalization, (b) NLP
solution for automatically matching look-ahead planning tasks to master
schedule activities, and (c) AI solution that can generate look-ahead
planning tasks from an input master activity prompt. A ranking prob
lem was formulated where we focus on retrieving the most relevant
master schedule activity for an input look-ahead planning task. We
examined multiple models to the solution including combinations of
distance, location, and deep learning-based ranking models and two
approaches: a fully automated approach where matching is performed
completely automatically, and a semi-automated approach that follows
a human-in-the-loop methodology where the model suggests a list of
potential matches to the human planner and the planner performs the
final assignment. Our findings show that the semi-automated approach
can be performed with 76.5% Precision when using a multi-stage
matching model where distance-based matching is used to generate
candidates to a supervised Transformer-based model which then per
forms the final ranking. On the other hand, the fully automated
approach is still immature to be used in the industry where the best
model scored 51.1% Precision. Future efforts can build on top of this
work by improving the matching results through training on larger
datasets, fine tuning hyper-parameters, or trying new matching models
altogether. Additional efforts can also be invested in building a human-
in-the-loop solution that enables a human planner to easily interact with

the outputs of the model and uses the corrections made by the planner to
further improve the matching results. Similarly, A/B testing with the
help of a control group on an on-going construction project can help
highlight the value and the immediate benefits of the proposed method.
Lastly, the possibility of mapping project constraints and issues to look-
ahead plans and master schedules can be investigated.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This material is in part based upon works supported by the National
Science Foundation [1446765, 2020227]. The support and help of
construction companies in collecting schedule data and validating the
system prototype is greatly appreciated. The opinions, findings, and
conclusions or recommendations expressed are those of the authors and
do not reflect the views of the NSF, or the companies mentioned above.

References

[1] F.R. Hamzeh, G. El Samad, S. Emdanat, Advanced metrics for construction
planning, J. Construct. Eng. Manage. 145 (11) (2019) 04019063, https://doi.org/
10.1061/(ASCE)CO.1943-7862.0001702.

[2] D.W. Halpin, B.A. Senior, Construction Management, John Wiley & Sons, 2011.
ISBN: 978-1-119-25680-9.

[3] H.G. Ballard, The Last Planner System of Production Control, University of
Birmingham, 2000. https://leanconstruction.org/uploads/wp/media/docs/
ballard2000-dissertation.pdf (visited 21.08.21) (Ph.D. Thesis).

[4] R. Sacks, O. Sepp“anen, V. Priven, J. Savosnick, Construction flow index: a
metric of production flow quality in construction, Construct. Manage. Econ. 35
(1–2) (2017) 45–63, https://doi.org/10.1080/01446193.2016.1274417.

[5] F.R. Hamzeh, G. Ballard, I.D. Tommelein, Improving construction workflow-the
connective role of lookahead planning, in: Proceedings for the 16th Annual
Conference of the International Group for Lean Construction, 2008, pp. 635–646,
https://doi.org/10.13140/RG.2.1.3804.3685.

[6] F. Hamzeh, G. Ballard, I. Tommelein, Rethinking lookahead planning to optimize
construction workflow, Lean Construct. J. (2012) 15–34.

[7] G. Ballard, G.A. Howell, An update on last planner, in: 11th Annual Conference of
the International Group for Lean Construction, Virginia, USA, 2003.

[8] J.L. Fernandez-Solis, V. Porwal, S. Lavy, A. Shafaat, Z.K. Rybkowski, K. Son,
N. Lagoo, Survey of motivations, benefits, and implementation challenges of last
planner system users, J. Construct. Eng. Manage. 139 (4) (2013) 354–360, https://
doi.org/10.1061/(ASCE)CO.1943-7862.0000606.

Table 10
Qualitative results showing the generative capabilities of the supervised matching model. The tasks highlighted in blue are accurate tasks generated by the model while
those highlighted in red are inaccurate look-ahead planning task suggestions.

F. Amer et al.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001702
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001702
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0010
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0010
https://leanconstruction.org/uploads/wp/media/docs/ballard2000-dissertation.pdf
https://leanconstruction.org/uploads/wp/media/docs/ballard2000-dissertation.pdf
https://doi.org/10.1080/01446193.2016.1274417
https://doi.org/10.13140/RG.2.1.3804.3685
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0030
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0030
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0035
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0035
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000606
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000606

Automation in Construction 132 (2021) 103929

14

[9] J.J. Lin, M. Golparvar-Fard, Visual data and predictive analytics for proactive
project controls on construction sites, in: Domer B., I. Smith (Eds.), Advanced
Computing Strategies for Engineering – 25th EG-ICE International Workshop 2018,
Proceedings, vol. 10863 of Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Springer, Germany, 2018, pp. 412–430, https://doi.org/10.1007/978-3-319-
91635-4_21.

[10] S. Emdanat, M. Azambuja, Aligning near and long term planning for LPS
implementations: a review of existing and new metrics, Lean Construct. J. (2016)
90–101.

[11] B. Dave, J.-P. H”am“al”a inen, L. Koskela, et al., Exploring
the recurrent problems in the last planner implementation on construction
projects, in: Proceedings of the Indian Lean Construction Conference, Institute for
Lean Construction Excellence, Mumbai, India, 2015, p. 9. http://urn.fi/URN:NBN:
fi:aalto-201503031948.

[12] J.J. Lin, M. Golparvar-Fard, Construction progress monitoring using cyber-physical
systems, in: C.J. Anumba, N. Roofigari-Esfahan (Eds.), Cyber-Physical Systems in
the Built Environment, Springer, 2020, pp. 63–87, https://doi.org/10.1007/978-3-
030-41560-0_5.

[13] J.J. Lin, M. Golparvar-Fard, Visual and virtual production management system for
proactive project controls, J. Construct. Eng. Manage. 147 (7) (2021) 04021058,
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002045.

[14] X. Wu, M. Lode, Language models are unsupervised multitask learners, OpenAI
Blog 1 (8) (2019). http://www.persagen.com/files/misc/radford2019language.pdf
(visited 21.08.21).

[15] B. Dave, R. Sacks, Production control systems for construction at the nexus of lean
and BIM, in: Lean Construction: Core Concepts and New Frontiers, Routledge,
2020, pp. 54–84, https://doi.org/10.1201/9780429203732.

[16] G. Ballard, I. Tommelein, Current process benchmark for the last planner system,
Lean Construct. J. (2016) 57–89.

[17] R. Sacks, What constitutes good production flow in construction? Construct.
Manage. Econ. 34 (9) (2016) 641–656, https://doi.org/10.1080/
01446193.2016.1200733.

[18] D. Heigermoser, B.G. de Soto, E.L.S. Abbott, D.K.H. Chua, BIM-based last planner
system tool for improving construction project management, Autom. Construct.
104 (2019) 246–254, https://doi.org/10.1016/j.autcon.2019.03.019.

[19] F. Amer, M. Golparvar-Fard, Modeling dynamic construction work template from
existing scheduling records via sequential machine learning, Adv. Eng. Inform. 47
(2021) 101198, https://doi.org/10.1016/j.aei.2020.101198.

[20] M.A. Fischer, F. Aalami, Scheduling with computer-interpretable construction
method models, J. Construct. Eng. Manage. 122 (4) (1996) 337–347, https://doi.
org/10.1061/(ASCE)0733-9364(1996)122:4(337.

[21] C. Hendrickson, C. Zozaya-Gorostiza, D. Rehak, E. Baracco-Miller, P. Lim, Expert
system for construction planning, J. Comput. Civ. Eng. 1 (4) (1987) 253–269,
https://doi.org/10.1061/(ASCE)0887-3801(1987)1:4(253.

[22] A. Darwiche, R.E. Levitt, B. Hayes-Roth, OARPLAN: generating project plans by
reasoning about objects, actions and resources, Artif. Intell. Eng. Des. Anal. Manuf.
2 (3) (1988) 169–181, https://doi.org/10.1017/S0890060400000639.

[23] F. Amer, H.Y. Koh, M. Golparvar-Fard, Automated methods and systems for
construction planning and scheduling: critical review of three decades of research,
J. Construct. Eng. Manage. 147 (7) (2021), https://doi.org/10.1061/(ASCE)
CO.1943-7862.0002093.

[24] F. Amer, M. Golparvar-Fard, Automatic understanding of construction schedules:
part-of-activity tagging, in: Proceedings of the 2019 European Conference for
Computing in Construction, vol. 1, 2019, pp. 190–197, https://doi.org/10.35490/
ec3.2019.196.

[25] H. Alikhani, C. Le, H.D. Jeong, A deep learning algorithms to generate activity
sequences using historical as-built schedule data, in: Creative Construction e-
Conference 2020, Budapest University of Technology and Economics, 2020,
pp. 2–6, https://doi.org/10.3311/CCC2020-039.

[26] X. Zhao, K.-W. Yeoh, D.K.H. Chua, Extracting construction knowledge from project
schedules using natural language processing, in: 10th International Conference on
Engineering, Project, and Production Management, Springer, 2020, pp. 197–211,
https://doi.org/10.1007/978-981-15-1910-9_17.

[27] M. Bilal, L.O. Oyedele, J. Qadir, K. Munir, S.O. Ajayi, O.O. Akinade, H.A. Owolabi,
H.A. Alaka, M. Pasha, Big data in the construction industry: a review of present
status, opportunities, and future trends, Adv. Eng. Inform. 30 (3) (2016) 500–521,
https://doi.org/10.1016/j.aei.2016.07.001.

[28] J. Zhang, N.M. El-Gohary, Automated reasoning for regulatory compliance
checking in the construction domain, in: Construction Research Congress 2014:
Construction in a Global Network, 2014, pp. 907–916, https://doi.org/10.1061/
9780784413517.093.

[29] P. Zhou, N. El-Gohary, Automated extraction of environmental requirements from
contract specifications, in: Proceedings of the 16th International Conference on
Computing in Civil and Building Engineering, vol. 1676, 2016, p. 1669.

[30] J.-R. Lin, Z.-Z. Hu, J.-P. Zhang, F.-Q. Yu, A natural-language-based approach to
intelligent data retrieval and representation for cloud bim, Comput. Aided Civ.
Infrastruct. Eng. 31 (1) (2016) 18–33, https://doi.org/10.1111/mice.12151.

[31] M. Kopsida, I. Brilakis, P. Vela, A review of automated construction progress
monitoring and inspection methods, in: Proceedings of the 32nd International
Conference of CIB W78, Eindhoven, The Netherlands, 2015 27-29 October,
pp. 421–431.

[32] B. Ekanayake, J.K.-W. Wong, A.A.F. Fini, P. Smith, Computer vision-based interior
construction progress monitoring: a literature review and future research
directions, Autom. Construct. 127 (2021) 103705, https://doi.org/10.1016/j.
autcon.2021.103705.

[33] T. Sawyer, Model. Supply Chains 260 (14) (2008) 24–27. http://worldcat.org/issn
/08919526 (visited 21.08.21).

[34] P. Jafari, M. Al Hattab, E. Mohamed, S. AbouRizk, Automated extraction and time-
cost prediction of contractual reporting requirements in construction using natural
language processing and simulation, Appl. Sci. 11 (13) (2021), https://doi.org/
10.3390/app11136188.

[35] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with
subword information, Trans. Assoc. Comput. Linguist. 5 (2017) 135–146.

[36] N.P. Garcia-Lopez, M. Fischer, A construction workflow model for analyzing the
impact of in-project variability, in: Construction Research Congress 2016, 2016,
pp. 1998–2007, https://doi.org/10.1061/9780784479827.199.

[37] P.J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, N. Shazeer, Generating
Wikipedia by Summarizing Long Sequences, 2018. http://arxiv.org/abs/1801.101
98 (visited 21.08.21).

[38] M.E. Peters, M. Neumann, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep
contextualized word representations, in: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol. 1 (Long Papers), Association for Computational
Linguistics, New Orleans, Louisiana, 2018, pp. 2227–2237, https://doi.org/
10.18653/v1/N18-1202.

[39] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, Y. Wu, Exploring the Limits of
Language Modeling, 2016. http://arxiv.org/abs/1602.02410 (visited 21.08.21).

[40] S. Merity, N. Shirish Keskar, R. Socher, Regularizing and Optimizing LSTM
Language Models, CoRR (2017). http://arxiv.org/abs/1708.02182 (visited
21.08.21).

[41] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, in: Y. Bengio, Y. LeCun (Eds.), 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
2013. May 2–4, 2013, Workshop Track Proceedings.

[42] D. Bahdanau, K.H. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference
on Learning Representations, ICLR, San Diego, CA, USA, May 7–9, 2015.

[43] A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
L. Kaiser, I. Polosukhin, Attention is all you need, CoRR (2017). http://arxiv.
org/abs/1706.03762 (visited 21.08.21).

[44] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving Language
Understanding by Generative Pre-Training, 2018. https://www.semanticscholar.
org/paper/Improving-anguage-Understanding-by-Generative-Radford-Narasimha
n/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035 (visited 21.08.21).

[45] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep
bidirectional transformers for language understanding, CoRR (2018). https://arxiv
.org/abs/1810.04805 (visited 21.08.21).

[46] A. Fan, M. Lewis, Y. Dauphin, Hierarchical neural story generation, in: I. Gurevych,
Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July 15–20, 2018,
Volume 1: Long Papers, Association for Computational Linguistics, 2018,
pp. 889–898, https://doi.org/10.18653/v1/P18-1082.

[47] A. Holtzman, J. Buys, L. Du, M. Forbes, Y. Choi, The Curious Case of Neural Text
Degeneration, 2019. http://arxiv.org/abs/1904.09751 (visited 21.08.21).

F. Amer et al.

https://doi.org/10.1007/978-3-319-91635-4_21
https://doi.org/10.1007/978-3-319-91635-4_21
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0050
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0050
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0050
http://urn.fi/URN:NBN:fi:aalto-201503031948
http://urn.fi/URN:NBN:fi:aalto-201503031948
https://doi.org/10.1007/978-3-030-41560-0_5
https://doi.org/10.1007/978-3-030-41560-0_5
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002045
http://www.persagen.com/files/misc/radford2019language.pdf
https://doi.org/10.1201/9780429203732
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0080
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0080
https://doi.org/10.1080/01446193.2016.1200733
https://doi.org/10.1080/01446193.2016.1200733
https://doi.org/10.1016/j.autcon.2019.03.019
https://doi.org/10.1016/j.aei.2020.101198
https://doi.org/10.1061/(ASCE)0733-9364(1996)122:4(337
https://doi.org/10.1061/(ASCE)0733-9364(1996)122:4(337
https://doi.org/10.1061/(ASCE)0887-3801(1987)1:4(253
https://doi.org/10.1017/S0890060400000639
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002093
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002093
https://doi.org/10.35490/ec3.2019.196
https://doi.org/10.35490/ec3.2019.196
https://doi.org/10.3311/CCC2020-039
https://doi.org/10.1007/978-981-15-1910-9_17
https://doi.org/10.1016/j.aei.2016.07.001
https://doi.org/10.1061/9780784413517.093
https://doi.org/10.1061/9780784413517.093
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0145
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0145
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0145
https://doi.org/10.1111/mice.12151
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0155
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0155
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0155
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0155
https://doi.org/10.1016/j.autcon.2021.103705
https://doi.org/10.1016/j.autcon.2021.103705
http://worldcat.org/issn/08919526
http://worldcat.org/issn/08919526
https://doi.org/10.3390/app11136188
https://doi.org/10.3390/app11136188
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0175
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0175
https://doi.org/10.1061/9780784479827.199
http://arxiv.org/abs/1801.10198
http://arxiv.org/abs/1801.10198
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1708.02182
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0205
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0205
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0205
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0205
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0210
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0210
http://refhub.elsevier.com/S0926-5805(21)00380-0/sbref0210
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://www.semanticscholar.org/paper/Improving-anguage-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-anguage-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-anguage-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P18-1082
http://arxiv.org/abs/1904.09751

	Transformer machine learning language model for auto-alignment of long-term and short-term plans in construction
	1 Introduction
	2 Literature review
	3 Method
	3.1 Problem definition
	3.2 Main contribution and model use case
	3.3 Distance-based matching baseline model
	3.4 Location extraction and matching
	3.5 Supervised neural model
	3.5.1 Language modeling
	3.5.2 Multi-head attention and transformer decoder blocks

	3.6 Multi-stage architectures

	4 Experimental setup, results and discussion
	4.1 Data
	4.2 Supervised GPT-2 model pairwise prediction results (pre-ranking)
	4.3 Location-based matching results
	4.4 Ablation study and ranking results
	4.4.1 Generation of tasks from activities

	5 Discussion
	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

