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A B S T R A C T   

In construction, master schedules and look-ahead plans are created at different times (monthly vs. weekly), by 
different personas (planner vs. superintendent), with different software (scheduling solution vs. spreadsheet), 
and at different levels of granularity (milestones vs. production details). Their full-alignment is essential for 
project coordination, progress updating, and payment application reviews, and its absence may lead to costly 
litigation. This paper presents the first attempt to automate linking look-ahead planning tasks to master-schedule 
activities following an NLP-based multi-stage ranking formulation. Our model employs distance-based matching 
for candidate generation and a Transformer architecture for final matching.1 Validation results from real-world 
projects demonstrate that the method helps planners match look-ahead planning tasks to master schedule ac
tivities by presenting a list of top-five matches with a precision of 76.5%. We also show that the method helps 
superintendents create look-ahead plans from a master schedule by generating lists of tasks based on activity 
descriptions.   

1. Introduction 

One of the challenges in managing field operations is reconciling 
project's master schedule (long-term plan) with superintendents’ look- 
ahead plans (short-term plans) [1]. For each construction project, a 
master schedule is issued at the beginning of the construction phase to 
outline milestones and work activities from beginning to the end. These 
master schedules serve many purposes ranging from informing owners 
on state of progress, establishing long-term coordination among crews 
and trade contractors, to specifying terms of payment [2]. However, 
these initial schedules often do not accurately capture details too far into 
the future because information about actual duration, specific work
flows, and deliveries are typically not available at an early stage of a 
project [3,4]. To reliably coordinate and direct various trades and crews 
working on the job, superintendents create and use short-term sched
ules, often called “look-ahead plans” [5]. 

The look-ahead plans outline which crews and trades should be at 
each specific location and what they should be doing at certain times 
[6]. In addition to detailed tasks that directly correspond to activities 
from the master schedule, these look-ahead plans may also document 
work not included in the master schedule. Thus, in the Last Planner 

System [3,7,8], look-ahead plans are often considered as the missing 
link in production control. Often, issue management systems or task 
constraints in the Last Planner System are also used to capture and track 
those field issues that are not represented in the master schedule and/or 
look-ahead plan. During coordination meetings, superintendents 
communicate, explain and revise these look-ahead plans with crews and 
trade contractors [9]. Superintendents use these look-ahead plans to 
coordinate work through daily foremen meetings, find out how the job is 
progressing, and what problems have arisen. 

To ensure project managers, executives and owners are able to make 
sense of what is going on in the field, it is critical to tie in the day-to-day 
look-ahead planning tasks and issues (i.e., tasks in an issue management 
system or the task constraints in the Last Planner System) with the master 
schedule activities [10]. This is even a greater challenge in lean con
struction projects where creating weekly work/ look-ahead plans and 
then updating master schedule based on these short-term plans is 
common practice [11]. Bridging this gap between master schedule and 
look-ahead plans to get the big picture has been a constant struggle [1]. 

This problem is exacerbated when progress reporting is considered 
[12]. The master schedule and actual information about progress re
ported against look-ahead plans are also disconnected. Master schedules 
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reside in standard construction planning solutions (e.g., Oracle Prima
vera, Microsoft Project), while look-ahead plans containing progress 
information live in spreadsheets or are printed in post-it notes on the 
trailer walls (See Fig. 1). Project managers need to be constantly aware 
of all activities on their sites to make sure their projects are on schedule, 
however, the disconnection between the short-term and long-term 
planning systems renders updating the master schedule activities from 
weekly tasks a challenging and time consuming endeavor. 

The task of reporting progress is also often relayed to subcontractors 
or to most junior engineers on a project. It is a constant struggle making 
phone calls and chasing subcontractors to get progress information, 
compiling weekly progress reports, or typing up progress information 
into project schedules. Hence, in many circumstances, look-ahead plans 
are not progressed on a regular basis. Because look-ahead tasks and their 
progress status are disconnected from the master schedule activities, 
superintendents, engineers, and project managers are not aligned on the 
big picture. This back and forth that happens in the field delays the 
receipt of actual progress information by executives, often leaving them 
with poor visibility into the real state of progress on their projects. 

These challenges necessitate project-level managers, superinten
dents, schedulers and often regional executives to get together on a 
monthly basis in costly meetings to discuss how much progress is made 
[12], explain why certain work packages are behind schedule, review 
planning alternatives, and update master schedules with progress data 
for monthly owner reporting and managing payment applications [13]. 
The nature of updating progress information retroactively into the 
master schedule leads the executive team not to consider look-ahead 
plans or progress reported by the field team. Instead, they rely on 
experience and gut feelings to manually update master schedules, as 
opposed to using real data from the field. 

To eliminate the labor-intensive nature of manually aligning master 
schedules and look-ahead plans, a method is presented that automati
cally maps master schedule activities to look-ahead planning tasks. This 
terminology of activities and tasks is used throughout the manuscript to 
differentiate between master schedules and look-ahead plans. Our nat
ural Language Processing (NLP)-based method uses a state-of-the-art 
Transformer, namely GPT-2 [14], to automatically map activities and 
tasks to one another. To validate the method, we obtained data from four 
construction projects and we manually linked tasks to their relevant 
activities. We then trained and tested different models and compared 
their ability in ranking activities based on their relevance to input tasks. 
The following sections review the literature related to matching tasks to 
activities, present our method, and discuss the results, limitations, and 
potential future expansions. 

2. Literature review 

One of the core principles in lean construction is to improve work
flow reliability by continuously aligning what will be done on projects 
with what should be done through collaborative planning and a system
atic application of the Make Ready Process [10,4,15]. While there is 
tremendous evidence that the Last Planner System [16] improves 

collaboration and reduces variability in near-term work execution [11, 
17,4,15], its impact on master schedules has been a difficult subject for 
systematic analysis. A key reason is that long-term and short-term 
planning practices are often performed separately [1]. Because align
ing short-term and long-term plans requires significant effort, during 
work execution, most project teams do not maintain their remaining 
work in alignment with the master schedule targets [10]. Fig. 2 shows 
two examples of these mis-alignments after importing and manually 
aligning look-ahead planning tasks with their respective master 
schedule activities. These issues are not specific to lean construction 
projects, as they happen similarly to conventional projects between 
master schedule activities and superintendent look-ahead plans. 

While tracking performance of both long-term and short-term plans 
is essential to improving the productivity and efficiency of the project 
for future planning optimization [18], keeping all plans at every level of 
detail in alignment proves to be a challenging and time-consuming task 
[1]. Different scheduling software packages are used to prepare 
long-term and short-term schedules such as Oracle P6 and Microsoft 
Project for master schedules on one hand and Excel/spreadsheets for 
look-ahead planning and weekly work plans (WWP) on the other. This 
creates an epistemic bias when developing look-ahead plans due to poor 
linkage between production schedules and project progress milestones 
[5]. When weekly work plans or look-ahead plans are not properly 
linked to long term plans, percent plan complete (PPC) becomes loosely 
linked to project progress [5]. Also, the existing alignment method is 
labor-intensive where a project engineer or a superintendent has to 
manually update the progress of master schedule activities based on the 
progress reported on the relevant weekly tasks from the look-ahead 
plans. To date, formalizing the problem of aligning master schedule 
activities to look-ahead planning tasks and automating the process has 
received little to no attention. While there are available commercial 
solutions that facilitate the creation of aligned long-term and short-term 
plans, they rely on the human planner to manually perform the align
ment by adding look-ahead planning tasks within the same Work 
Breakdown Structure (WBS) of the master schedule. Similarly, existing 
metrics that help monitoring the alignment such as Percent Required 
Completed or Ongoing (PRCO) [10] assume the alignment is already 
established. 

The challenge in automatically aligning tasks to activities lies in their 
representation. Both activities and tasks are described using Natural 
Language – English – expressions with little or no standardization, 
grammatical errors, and project and construction-specific terms and 
abbreviations [19]. Researchers have already proposed methods for 
formalized representation of construction activities [20–22]. Amer et al. 
[23] offers an exhaustive literature review on the entire body of 
AI-driven methods in construction planning and scheduling domain. The 
latest method is Amer and Golparvar-Fard [24] where an NLP-driven 
pipeline is presented for deciphering construction activity descriptions 
and automatically decomposing them into their different constituents, 
known as the ALOR set: 〈Action, Location, Object, Responsible Party〉. 
Building on the ALOR method of decomposing schedule activity de
scriptions, Amer and Golparvar-Fard [19] formalized a new 

Fig. 1. A project manager's master schedule vs. a superintendent's look-ahead plan.  
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representation of construction activities and leveraged Long Short-Term 
Memory Recurrent Neural Networks (LSTMs) to model and learn con
struction sequencing knowledge from existing project records. Similarly, 
Alikhani et al. [25] used Bidirectional LSTMs to learn activity sequences. 
Zhao et al. [26] applied NLP techniques to extract construction methods 
and dependency logic from construction schedules. Their method is 
based on lookup tables and n-gram models to automatically detect and 
rectify errors in project schedule activity descriptions, and 
Part-of-Speech (POS) tagging to identify nouns and verbs as part of a 
pipeline for identifying construction methods. Therefore, from a 
research standpoint, the knowledge gaps are (1) the lack of a formal
ization of the problem of automatically matching short-term and 
long-term plans as well as (2) the absence of methods and systems that 
leverage NLP to enable and facilitate that matching. 

In addition to their use for analyzing and automating scheduling 
related tasks, NLP techniques have been widely applied to information 
acquisition and retrieval in the construction industry [27]. In particular, 
NLP techniques such as POS tagging were utilized to recognize the 
syntactic and semantic features presented in an input document, such as 
a construction contract, for information extraction purposes and to 
support automated compliance checking. For instance, Zhang et al. [28] 
used NLP techniques to automatically check and extract project infor
mation and requirements from textual regulatory documents and 
Building Information Models (BIM). Also, Zhou et al. [29] presented an 
NLP-based model to automatically check the compliance between 
BIM-represented building designs and environmental requirements in 
contract specifications. Similarly, NLP techniques such as tokenization, 
parsing, and POS tagging are applied to facilitate the ordering of Re
quests for Information (RFIs) where keywords are extracted and mapped 
to Industry Foundation Classes (IFC) entities and attributes [30]. 

The alignment of short-term to long-term plans lies at the heart of 
construction progress monitoring. In the recent years, many researchers 
focused on automating the process of progress detection and relaying it 
back to the construction schedule. To detect progress, researchers 
resorted to Photogrammetry and computer vision techniques to generate 
3D point clouds from images, videos, or laser scanners to capture site 
conditions for outdoor and indoor construction [31,32]. Given a 
collection of unstructured site images (2D or 3D images), 
Structure-from-Motion (SFM) and Multi-View Stereo (MVS) techniques 
are used to reconstruct the scene in 3D with high fidelity. Similarly, 
Simultaneous Localization and Mapping (SLAM) is used to recreate 3D 
scenes from videos (structured and consecutive images) [12]. After the 
actual site conditions are captured in 3D, the point clouds are aligned 
and compared to BIM to detect progress. Similarly, [33] investigated the 
use of RFID tags to track and control material deliveries and supply 

chains, and [34] presented a method for detecting reporting re
quirements from construction contracts using NLP. 

To the best of our knowledge, this paper presents the first attempt 
towards the automatic alignment of long-term and short-term plans, 
particularly using NLP techniques. We formalize the problem, and we 
present a data-driven model that learns the dependencies between long- 
term and short-term plans, purely based on schedule activity and look- 
ahead planning tasks descriptions. The alignment knowledge learned 
by the model is also employed to generate a list of look-ahead planning 
tasks based on an input master schedule activity turning the model into a 
generative tool that assists planning efforts and augments the knowledge 
of planning engineers and superintendents. The next sections discuss the 
method in detail, present the experimental setup and results, and draw 
conclusions and recommendations for future research. 

3. Method 

3.1. Problem definition 

Master schedule activities and look-ahead planning tasks are created 
and organized in different formats for different purposes. In most cases, 
tasks in the look-ahead plans are created in spreadsheets with minimal 
to no WBS information. On the other hand, activities are created in 
commonly used master scheduling solutions such as Oracle P6 or 
Microsoft Project, and they are organized with reliable WBS informa
tion. While activities are developed by project planners, tasks are 
created by superintendents. Tasks are more granular and activities are 
more general. Because of these differences in how they are created and 
organized, the language used to describe activity vs. task description is 
different, and it is challenging for an automated system to align them. 

We present a scalable and automated method for identifying the 
relevant master activity for an input look-ahead planning task (See 
Fig. 3). We formulate the problem as a ranking problem where the 
master activities are ranked in order of their relevance to the input look- 
ahead planning task. Mathematically, given a look-ahead planning task 
wi and a set of master schedule activities A = {a1, a2 … aj}, the goal is to 
rank A in the order of relevance to wi and to retrieve (a) the single 
correct master activity match or (b) the top five matches to facilitate the 
workflows of a human planner. Both task wi and activity aj are repre
sented using natural language expressions with little or no 
standardization. 

We approach the problem from multiple angles: First, we use unsu
pervised distance-based matching to establish a baseline for comparison 
and to highlight the differences between task and activity representa
tions. Second, we extract semantic location information from both look- 

Fig. 2. Two examples of mis-alignments between master schedule activities and their corresponding look-ahead planning tasks (activities and tasks are shown with 
dark and light green colors respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ahead planning tasks and master activities and we match locations to 
assist distance-based matching. Third, we introduce a supervised ma
chine learning model built on the state-of-the art Transformer-based 
neural network GPT-2 [14], and we use it to improve matching results 
in a multi-stage ranking setup [12]. On the other hand, we explicitly stay 
away from using any temporal matching, i.e., matching based on the 
start and end dates of tasks and activities. The reason for that is the large 
variance of delays among different projects and among different activ
ities within the same project. The dataset we obtained shows tasks 
linked to activities which were scheduled to start more than one month 
before the task's start date as well as tasks linked to activities which are 
scheduled to start in the future. Therefore, we wanted our approach to 
be completely NLP driven and independent of the delays specific to each 
input schedule. 

3.2. Main contribution and model use case 

This model is to be used to align short-term plans (look-ahead plans 
and WWPs created by superintendents –during pull planning sessions in 
projects following lean practices–) to their corresponding long-term 
plans (master schedules created by project planners) for reporting pur
poses. We envision a tool based on this model to be used by the project 
site team as follows: 

“The project engineer or the project planner would start by uploading the 
master schedule to the tool. Then, whenever an update is required, for 
example monthly, the superintendent will upload their look-ahead plans. The 
tool will then use AI to establish matches between the tasks listed on the look- 
ahead plans and the master schedule activities. Based on the progress reported 
for each task, the tool will update the progress of the relevant master activity 
and request the feedback and approval of the superintendent. The tool will 
then create a report detailing the overall site progress.” 

Reaching the above level of automation requires:  

• Establishing the links between the uploaded look-ahead plan tasks 
and the relevant master schedule activities (focus of this 
manuscript).  

• Assessing the level of contribution of the look-ahead plan task to its 
master relevant master schedule activity. Activities are often more 
general and have large scope than their corresponding look-ahead 
plan tasks. To correctly relay the progress from the look-ahead 
plan to the master schedule, it is essential to understand to what 
extent does finishing each task on the look-ahead plan contribute 
towards finishing an activity on the master schedule.  

• Creating a user-friendly interface and a document management 
infrastructure that enables the upload of documents and the output 
of results.  

• Enabling a feedback loop that allows the user to confirm the relayed 
progress as well as correct it when necessary. 

The presented use case contains multiple technical challenges. In this 
manuscript, we present a model that attempts solving the first step. In 
other words, we only focus on the first piece of the workflow which is 
related to establishing the links between master schedule activities and 
look-ahead plan tasks, and we highlight the remaining steps as future 
research opportunities to be tackled. The following sections detail our 
approach for automating the process of mapping look-ahead plan tasks 
to master schedule activities in detail. We present our model, present our 
results, and discuss the contributions and limitations of our approach. 

3.3. Distance-based matching baseline model 

Before designing a modern supervised machine learning model, we 
explored the application of simple baseline methods such as distance- 
based models to map activity and task representations to one another. 
To do so, task descriptions are first pre-processed for natural language 
processing needs by making them lowercased, tokenized, and lemmat
ized. Similarly, all information related to a schedule activity (concate
nated WBS tags and activity description) is pre-processed similar to 
tasks, and then they are concatenated together in one phrase (see Table 1 
in Section 4.1). Second, we describe activities and tasks using FastText 
embeddings [35] trained on data from 32 construction schedules. As 
described in Amer and Golparvar-Fard [19], FastText embeddings are 
used to vectorize both task and activity descriptions and project them 
into a numerical space. Each activity and task is represented as the mean 
of the embeddings of all the words that constitutes it as shown in Fig. 4. 
Third, Cosine similarity in Eq. (1) is used to identify the closest activity 
description to each task description. If a task has the same maximum 
similarity to two activities, both activities are assumed to be correct 
matches. Cosine similarity values range between −1 and 1 where −1 
indicates that the task and activity are too distant (opposite), while 1 
indicates that they are identical. 

Similarity(wi, aj) =
wi⋅aj

‖wi‖
⃦
⃦aj

⃦
⃦

=

∑dk
l=1wilajl

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑dk

l=1w2
il

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑dk
l=1a2

jl

√ (1)  

where dk = 320 and it represents the size of vectors wi and aj. The value 
of the embedding size dk is predefined and validated in previous works 
such as [19]. 

3.4. Location extraction and matching 

Locations play a significant role in construction planing, and they are 
identified as one of the constraining flows of construction [36]. When 
creating a master schedule, location information is often embedded in 
the WBS as well as in the activity description. Similarly, when building 
look-ahead plans, the work is split by location to manage production and 
crew movement. In this section, we leverage the location information 
available through both master schedule activity and look-ahead plan
ning task descriptions to improve the alignment between the two. To do 
so, we first extract the locations of both task and activity using the 
Part-of-Activity tagging method presented in Amer and Golparvar-Fard 

Fig. 3. Workflow of the proposed model at training and production times.  
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[24]. Second, we normalize location information by transforming (a) 
(“floor”, “fl”, “l”, “lvl”) to “level” and (“first”, “second”, etc..) to (“1”, “2”, 
etc.) respectively. Third, we perform fuzzy matching using Levenshtein 
distance (Eq. (2)): 

lev(wloc, aloc) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|wloc| if |aloc| = 0
|aloc| if |wloc| = 0
lev(tail(wloc), tail(aloc)) if wloc[0] = aloc[0]

1 + min

⎧
⎨

⎩

lev(tail(wloc), aloc)

lev(wloc, tail(aloc))

lev(tail(wloc), tail(aloc))

otherwise

(2)  

where wloc and aloc are the task and activity locations respectively, and 
tail(expression) is the expression without its first character. For example, 

tail(“level 02”) is “evel 02”. Last, we return the list of matching-by- 
location candidates to be processed by the distance-based matching 
model. 

3.5. Supervised neural model 

In this section, we introduce our new supervised model which (1) 
predicts pairwise relationships between look-ahead planning tasks and 
master schedule activity descriptions, and (2) generates a list of look- 
ahead planning tasks given an input master schedule activity. To ach
ieve these goals, we employ a novel Decoder Transformer architecture 
[37], because transformers have shown superior performance on 
ranking problems when compared to other approaches [12]. Instead of 
training a classifier that takes task and activity descriptions as inputs and 

Table 1 
Examples from the data showing matches between master schedule activities and look-ahead planning tasks where an activity can be associated with multiple tasks.  

Fig. 4. Distance-based similarity computations between activity and task descriptions.  
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predicts their relationship from scratch, our approach fine-tunes the 
small version of the OpenAI's GPT-2 language model [14], which is 
pretrained over 40GB of Internet text. Our model can be defined as a 
mapping function “Matcher” (M) that maps all tuples of 〈 task, activity 〉
into the binary space {0,1}: 

M : W × A→{0, 1} (3)  

lij = M(wi, aj) s.t. lij ∈ {0, 1} (4)  

where W is the space of all possible tasks, A is the space of all possible 
activities, and {0,1} refer to {No relationship, Relationship} respectively. 
In other words, the model performs a binary classification, and the 
possible classes are either “Relationship” (indicating that the master 
activity is a correct match for the look-ahead plan task) or “No Rela
tionship” (indicating that the master activity is not a correct match for 
the look-ahead plan task). Since both activities and tasks are expressed 
using text strings and English expressions, we denote V to be the set of 
all English expressions (or vocabulary) used to describe an activity or 
task. Function M can then be reformulated as the mapping function 
between V and {0,1} such as: 

M : V2→{0, 1} (5) 

Before diving into the details of the supervised model, we first pro
vide a high-level overview of Language Models (LMs) and pre-trained 
language representations, as follows: 

3.5.1. Language modeling 
Language models – specifically forward language models – calculate 

the probability of a sentence (represented as a list of tokens: t1,t2, ...,tkN ) 
by computing the probability of the next token (tk) given all previously 
seen tokens (t1, t2, . . . , tk−1) as shown in Eq. (6) [38]. For example, given 
an activity description “L27 Reshoring Pour Deck & Columns” as an 
input sentence, a language model calculates the probability of 
“Reshoring” given “L27”, “Pour” given “L27 Reshoring”, “Deck” given 
“L27 Reshoring Pour”, etc. 

P(t1, t2, ..., tN) =
∏N

k=1
P(tk|t1, t2, ..., tk−1) (6) 

Language models play an essential role in traditional NLP tasks such 
as text summarization, machine translation, and speech recognition. 
These models learn information encoded in the training data in a 
compact form and they can better represent input data for downstream 
tasks compared to traditional NLP pipelines [39]. Earlier N-gram lan
guage models relied on probability distributions conditioned on N pre
vious tokens in the sentence. For example, Unigram language models use 
only one token as context to predict the next token. The probability 
distribution of an N-gram language model is saved in static tables which 
are used later for prediction [40]. 

The second generation of language models is neural. These models 
use context-independent word embeddings –such as Word2Vec [41] – to 
represent input tokens, and then a variance of a Recurrent Neural 
Network (RNN) such as a Gated Neural Network (GNN) or a Long Short 
Term Memory (LSTM), to condition the prediction on the current 
context [40]. These recurrence-based models are often enhanced with 
attention mechanisms on their learned internal representations to be 
used for downstream tasks such as neural machine translation [42]. 
These attention mechanisms allow the model to pay specific attention to 
specific tokens of an input sentence when predicting different tokens in 
the translated sentence. However, the sequential nature of recurrent 
models prevents parallelization within training examples and creates 
training limitations especially when parsing longer sentences. 

The Transformer architecture [43] removes the reliance on recur
rence and uses only attention mechanisms to perform machine trans
lation tasks using less training time while achieving better performance. 
This performance introduced the Transformer as the basic building 

block for state-of-the-art language models and other NLP tasks. Trans
formers enabled language models to be trained on vast amounts of text 
data [44,45]. Without supervision, these language models achieved 
state-of-the-art results on many downstream NLP tasks such as question 
answering and named entity recognition with little or no fine-tuning. In 
this paper, we leverage the capabilities of a Transformer decoder ar
chitecture known as the GPT-2 model – small version – developed by 
OpenAI [14]. We fine-tune the model to (1) predict whether pairwise 
links should be established between any given input master schedule 
activity and look-ahead planning task, and (2) generate a list of 
look-ahead planning tasks given an input master schedule activity. 

3.5.2. Multi-head attention and transformer decoder blocks 
GPT-2 is composed of 12 layers of Transformer Decoder blocks [37]. 

These blocks enable GPT-2 to train on long sequences by removing the 
encoder module from the original transformer architecture which re
duces the total number of model parameters by half. This approach 
models each input example as one sequence that includes both the 
training example and its label. As shown in Table 1 (see Section 4.1), 
each training example is composed of two levels of WBS description in 
the master schedule, the activity description, and the look-ahead plan
ning task description. To train the Transformer, each example is fed to 
the model in the form of a sentence as shown in Fig. 5. As mentioned 
earlier, the master activity information is composed of two WBS de
scriptions and an activity description. The special token “<SEP>” is 
used to separate these entities in training and testing examples. Simi
larly, the special token “<EOS>” is used to declare the end of both ac
tivity and task descriptions. 

As shown in Fig. 6, each Decoder block applies a multi-headed self- 
attention mechanism followed by a fully connected layer to create a 
distribution over the target vocabulary: 

h0 = LayerNorm(XWe + Wp) (7)  

h(i) = block(h(i−1))∀i ∈ [1, n = 12] (8)  

where X is the input sentence, We holds the weights of the word em
beddings, Wp contains the input positional embeddings which provide 
information about the position of each token in the input training 
example, LayerNorm is a normalization function to regulate the gradi
ents during the training process, h0 is the output embedding that is fed to 
GPT-2, h(i) is the output of decoder block i, and block is the mapping 
function performed by a decoder block and is described by the 
following: 

h(i) = LayerNorm
(
Attention(Q, K, V) + Residual(h(i−1))

)
WD (9)  

where WD holds the weights of the fully connected layer of the decoder 
block, Residual is a bypass that enables downstream decoder blocks to 
digest the original model input, and Attention is the transformation 
applied by the masked self-attention block (see Fig. 7 for an illustration 
of the performed computations) and is defined as: 

Attention(Q, K, V) = softmax
(

QKT

̅̅̅̅̅
dk

√

)

V (10)  

where dk is the size of the input vector embeddings, Q, K, V refer to 
“Queries”, “Keys”, and “Values” which are abstractions that enable the 
model to perform the attention computations. The “Queries” refer to the 
input vector to the decoder block after being transformed using a 
learnable fully connected layer having the weight matrix WQ: 

Q = h(i−1)WQ (11) 

Similarly, “Keys” refer to the matrix containing a transformed version 
of the input vector to the decoder block h(i−1) repeated n times where n is 
the size of h(i−1). To create “Keys”, h(i−1) is transformed using a fully 
connected layer having the weight matrix WK such that: 
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K = h(i−1)WK (12) 

This formulation of “Queries” and “Keys” enables the computation of 
self attention scores by simply computing QKT as shown in Eq. (10). 
Lastly and similar to “Queries”, “Values” is a transformed version of h(i−1) 

(Eq. (13) where WV is the weight of the fully connected layer), and it 
enables the application of the computed scores (QKT) to be applied to the 
input vector h(i−1) as described by Eq. (10). 

V = h(i−1)WV (13) 

As described by Fig. 7, within every block and for every embedding 
at position j in the block's input, attentions are learned and computed 
over all embeddings at positions [0,...,j]. The masks shown in Fig. 7 
demonstrate how the model is unidirectional. The output embeddings of 
block i are then fed into block i+1 as shown by Eq. (8). 

To enable our model to perform both pairwise predictions and task 
description generation, at the end of the computations of the last 
decoder block, we channel the final outcome h(12) into (1) a language 
modeling head (LMhead) and (2) a classification head (Chead) (Fig. 8). The 
LMhead consists of a fully connected layer followed by a Softmax layer 
such that: 

LMhead : Zlm = Softmax(h12WLM) (14)  

where WLM are the weights of the LMhead's fully connected layer and Zlm 
is the probability distribution over every word in the vocabulary (50,260 
words in total) at every position i in the input sentence given all previous 
positions [0, . . . , i − 1]. This is used to teach the model to generate look- 

Fig. 5. Training example composed of master activity details, look-ahead plan task details, and a label that indicates the relationship between the two. The master 
activity is described using two levels of WBS and the activity description. The special token <SEP> is used to separate the different components of the activity 
description, and the special token <EOS> is used to indicate the end of both the activity and the task. 

Fig. 6. The input, output, and architecture of the first decoder block in the 
GPT-2 model. 

Fig. 7. Computations performed by a Decoder Transformer self-attention head.  

F. Amer et al.                                                                                                                                                                                                                                    



Automation in Construction 132 (2021) 103929

8

ahead planning task descriptions given the description of a master 
schedule activity. As discussed later in Section 4.1, the training data 
have both positive examples where the look-ahead planning task is 
related to the master activity and negative examples where the task and 
activity are independent. To train the language modeling head, we only 
update its parameters when the model parses positive examples so that it 
learns dependencies only from examples where the task is linked to the 
activity. 

On the other hand, the Chead is trained on both positive and negative 
examples and it performs a binary classification task as described earlier 
by Eq. (3). It is composed of three fully connected layers validated 
empirically, and it employs LeakyRelu activation functions followed by a 
Softmax layer as follows: 

Zc1 = LeakyRelu(h12Wc1 ) (15)  

Zc2 = LeakyRelu(Zc1 Wc2 ) (16)  

Zc3 = LeakyRelu(Zc2 Wc3 ) (17)  

Zc = Softmax(Zc3 ) (18)  

where Wc1 , Wc2 and Wc3 are the weights of the fully connected layers and 
LeakyRelu for an input x is a defined as: 

LeakyRelu(x) = max(0, x) − 0.01 × min(0, x) (19) 

The classification performed by the model is a pairwise judgment of 
the likelihood that a look-ahead planning task wi matches a master ac
tivity aj. However, the ultimate goal is to identify the most relevant 
master activity for any input task. In other words, for each task, the 
model is used to perform a pairwise judgment of the likelihood of 
matching every available master activity. The pairwise judgements are 
then used for ranking different activities. The scores of the classification 
head (Zc in Eq. (18)) for the activities predicted by the model to be 
positive matches for the input task are used to rank the relevance of the 
activities with respect to the input task. Those scores represent the 
probabilities of being a correct match as calculated by the Softmax 
function). A higher score indicates a higher confidence by the model that 
the positive prediction is correct. This is a typical use of pairwise pre
diction models for ranking [12]. This approach for ranking is useful to 
filter out false positive predictions and to insure the returned results are 
those judged by the model to be the fittest matches. 

3.6. Multi-stage architectures 

As opposed to using different models in isolation, the distance-based 
model, the location-based matching, and the supervised transformer 
model were used together in hierarchical multi-stage architectures to 
improve matching performance and to validate design choices. For 
instance, we test the following combinations, and we select the model 
combination that achieves the best Precision, Recall, and f1 Score:  

• Candidates generation using location-based matching followed by 
distance-based matching  

• Candidates generation using location-based matching followed by 
transformer-based matching  

• Candidates generation using distance-based matching followed by 
transformer-based matching  

• Candidates generation using both location-based and distance-based 
matching followed by transformer-based matching 

The next sections discuss the data used for validating the model, the 
quantitative and qualitative results, and the contributions and limita
tions of the presented method. 

4. Experimental setup, results and discussion 

4.1. Data 

The experimental data is composed of master schedules of four 
different commercial building projects and 30 look-ahead plans that 
cover partial periods of those projects. Overall, 2131 logic links were 
manually established between 460 master schedule activities and 1905 
look-ahead planning tasks by three expert annotators (project planners) 
so that the ground truth can be properly quality controlled. The rela
tionship between look-ahead planning tasks and master schedule ac
tivities is many-to-one where only one master schedule activity can be 
linked to a look-ahead planning task while many look-ahead planning 
tasks can be linked to the same master activity. Table 1 shows examples 
of the activity-vs.-task alignments. It can be seen that among these pairs 
of activities and tasks, the WBS, level of detail, and expressions are 
different. 

The initial data was only composed of activity-vs.-task links that 

Fig. 8. Supervised Transformer model architecture. The GPT-2 transforms the 
input information of look-ahead planning tasks and master activities into the 
embedding space, the language modeling head learns to generate task de
scriptions given a master schedule activity, and the classification head learns to 
predict the relationship status between the task and the activity. 
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should exist (positive examples). However, to enable training the su
pervised model, the data was augmented to include negative examples 
where the look-ahead planning task and master schedule activity are 
irrelevant and should not be linked together. To do so, we randomly 
sample one task and one activity and flag their links as negative if it was 
not seen in the list of positive links within each of the four available 
projects. This is only possible because the annotators insured the list of 
positive links is exhaustive; i.e., all links that should be established be
tween look-ahead planning tasks and master schedule activities are 
identified and approved through consensus among three expert anno
tators. Overall, the number of generated negative examples was 4262, i. 
e., two negative examples for every positive example. This ratio was set 
and validated empirically based on trial and error. 

The data is split into five validation folds. Each fold contains training 
and testing data from all four projects. At test time, for each look-ahead 
planning task, the master schedule activities of the same project are 
ranked based on relevance according to the model used for testing. As 
mentioned in Section 3, we test the performance of our method on fully 
automated matching by returning the single correct master schedule 
activity match for each look-ahead planning task. We also test the 
method's fitness to be part of a human-in-the-loop approach where the 
model returns the top five matches and leaves the final decision to the 
project planner to pick the correct match. 

4.2. Supervised GPT-2 model pairwise prediction results (pre-ranking) 

First, we share results on the performance of the supervised GPT-2 
transformer model on the pairwise classification task. As shown in 
Table 2, the model can correctly predict a positive match with Precision, 
Recall, and f1-Score of 82.1%, 78.54%, and 80.1% respectively. Simi
larly, the model can predict a correct negative relationship (accurate 
prediction of a “No Relationship”) with Precision, Recall, and f1-Score of 
89.4%, 91.1%, and 90.2% respectively. 

Table 3 shows qualitative examples of the pairwise predictions made 
by the model. Examples 1 and 2 show accurate predictions. Examples 3 
and 4 show false negative predictions where the ground truth is positive 
but the prediction is negative. And, Examples 5 and 6 show false positive 
predictions where the ground truth is negative but the prediction is 
positive. 

4.3. Location-based matching results 

Table 4 shows examples of the performance of ALOR tagging [24] in 
terms of identifying location related terms in both look-ahead planning 
tasks and master schedule activities. The table also highlights the per
formance of Levenshtein distance-based location matching model in 
identifying potential matching activities that have the same location as 
the look-ahead planning task under consideration. 

4.4. Ablation study and ranking results 

The goal of the ablation study is to explore whether the process of 
linking look-ahead planning tasks to master schedule activities can be 
expedited to help site engineers and superintendents review and then 
align their short-term and long-term plans for production planning and 
reporting purposes. To that end, we test two different approaches: (1) 
The first approach attempts the full automation of the task to activity 

matching process by identifying the most relevant master activity for 
any given look-ahead planning task. (2) The second approach examines 
semi-automating the process following a human-in-the-loop approach 
where the model suggests to the engineer a list of top-five activities that 
are most relevant to a look-ahead planning task. For each approach, we 
deploy and test six different model designs which are all validated 
following a five-fold validation schema as discussed in Section 4.1. A 
discussion on the reasons for considering a semi-automated approach is 
further discussed in Section 5. 

Table 5 shows the results of the first approach, i.e., the mean and 
standard deviations of Precision, Recall and f1 Score for returning the 
exact correct master activity match for a given look-ahead planning task, 
across all validation folds. The best performing design was the distance- 
based model followed by the Transformer model achieving a Precision, 
Recall, and f1 Score of 51.1%, 40.3%, and 44.9% respectively. On the 
other hand, Table 6 shows the results of the second approach where 
Precision, Recall, and f1 Score are measured based on whether the 
correct match appears in the returned list or not. Similar to the fully 
automated approach, the best performing design was the distance-based 
model followed by the Transformer model which achieved a Precision, 
Recall, and f1 Score of 76.5%, 64.3%, and 69.8% respectively. The 
dataset we used for training and validation contained a master schedule 
activity match for each look-ahead planning task. The validation on our 
model's ability to identify tasks that do not have a corresponding master 
activity is therefore limited to the results of the pairwise predictions 
shown in Table 2 where the f1 Score on predicting a negative relation
ship is 90.2%. 

As shown in Tables 5 and 6, some of the tested model designs use 
multistage ranking architectures such as “Distance + Transformer” 
where the Distance-based model is used to generate candidate matches 
for the Transformer model which then fine-tunes the results. To identify 
the ideal number of candidates to be generated by the distance-based 
model, we tested different configurations on one of the models (the 
model tested on validation fold #1) and we show the results in Figs. 9 
and 10 for the first and second approaches respectively. The best results 
were achieved by setting the number of candidates to ten for the first 
approach and 25 for the second approach. This number was then fixed 
for all the experiments across all validation folds. 

In addition to reporting the performance of different models on the 
matching problem, we also investigated the amount of time required by 
different models to match a single look-ahead planning task. This is 
essential to understand the usability of different models and their ability 
to scale to actual industry requirements. Table 7 shows the time in 
milliseconds required to match a single look-ahead planning task per 
master activity. This time is the average recorded across all four projects 
and all five validation folds. The best performing model – Dis
tance + Transformer – required 0.108 ms per look-ahead planning task 
per activity. In other words, for a look-ahead plan of 50 tasks and a 
master schedule of 2000 activities, the required overall time is 10.8 s. 

4.4.1. Generation of tasks from activities 
As mentioned in Section 3, our supervised model has a generative 

language modeling head with the ability to generate look-ahead plan
ning tasks using a master schedule activity as input. To do so, our model 
ingests the description and WBS tag of a master schedule activity and 
returns a list of look-ahead planning tasks that has the highest proba
bility of matching that activity. As defined in Eq. (14), task descriptions 
are generated at an individual word level; i.e., the model generates the 
description of every look-ahead planning task word-by-word as opposed 
to selecting a full look-ahead planning task description from a pre- 
defined list of tasks. Given the sequence of words in the master activ
ity WBS and description, the model maintains the smallest between (a) 
the list of top k-words [46] where k is empirically set to 25 or (2) the list 
of words whose sum of probabilities is equal to a p-value [47] of 0.9. 
Urging the probabilities of the top list of words to be above 0.9 causes 
the model to generate less than five sentences in the cases where that 

Table 2 
Pairwise predictions Precision, Recall, and f1 Scores of the supervised GPT-2 
Transformer model across five validation folds.   

Precision Recall f1 Score  

μ σ μ σ μ σ 

Relationship 0.821 0.025 0.785 0.051 0.801 0.018 
No Relationship 0.894 0.018 0.911 0.021 0.902 0.004  
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requirement is not satisfied for a large pool of words. The probability 
mass is then redistributed over the list of top words, and a second word is 
chosen accordingly. Additionally, since multiple look-ahead planning 
tasks can be associated with one master schedule activity, the model 
performs multiple simultaneous searches for the next word in parallel to 
ensure the generation of multiple look-ahead planning tasks. In our 
experiment, we empirically set the number of simultaneous searches to 
50. In each parallel search, the chosen word is added to the input used to 

generate the following word until the special token “<EOS>” is 
encountered or a maximum task length of 50 is reached. Since task 
descriptions are often short, this max task length works as an upper limit 
and is almost never encountered. Among the 50 generated task de
scriptions, the model picks the top five that achieve the highest pre
diction scores. The values of the hyper-parameters chosen for the 
generation task are all based on empirical testing, and the degree of their 
influence on the quality of the results can be further investigated in 

Table 3 
Qualitative examples of the predictions made by the supervised GPT-2 model.  

Table 4 
Examples of location extraction and matching between look-ahead planning tasks and master schedule activities.  

Table 5 
Precision, Recall, and f1 Score of all six tested model configurations on identifying the most relevant master activity to an input look-ahead planning task. (a) 
The “Distance Only” model uses Cosine similarity and pre-trained FastText embeddings, (b) the “Location + Distance” uses Location matching to generate candidates 
for the distance-based matching model. (c) The “Transformer Only” model uses the supervised transformer model to perform pairwise predictions on the relationship of 
the input look-ahead planning task and every available master activity and then ranks the results based on the probability of a positive relationship. (d) The last three 
models “Location”, “Distance”, and “Location + Distance” matching to generate candidates for the Transformer model which then performs the final ranking.   

Precision Recall f1 Score  

μ σ μ σ μ σ 

Distance Only 0.328 0.009 0.328 0.009 0.328 0.009 
Location + Distance 0.320 0.015 0.320 0.015 0.320 0.015 
Transformer Only 0.282 0.032 0.300 0.021 0.289 0.015 
Location + Transformer 0.387 0.019 0.318 0.042 0.348 0.031 
Distance + Transformer 0.511 0.022 0.403 0.027 0.449 0.013 
Location + Distance + Transformer 0.516 0.034 0.384 0.041 0.439 0.034 

The values in Bold are those of the best performing model. 
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future research efforts. Table 10 shows test examples of tasks generated 
by the model given activity description prompts. For instance, the first 
example shows a list of tasks generated based on the activity “finishes 
level 4”. In The next section, we discuss the results and explain our 
thought process and design considerations. 

5. Discussion 

Although the embeddings used to perform distance-based matching 

are trained on construction scheduling specific data, the distance model 
achieved an f1 Score of 32.8%. Table 8 shows qualitative ground truth 
examples (positive examples) from the data where the similarity be
tween tasks and activities is minimal. These examples highlight the 
difference in granularity between look-ahead planning task descriptions 
and activity descriptions where tasks are more fine-grained while ac
tivities are more general and encompassing. It also highlights the dif
ferences in the language used by different project stakeholders who 
create the master schedule (project planners) and the look-ahead plans 
(project superintendents). Table 9 (Examples 1, 2, and 3) show cases 
where the similarity in describing activity and tasks yielded correct 
model predictions. On the other hand, Table 9 (Examples 4, 5, and 6) 
show cases of inaccurate predictions made by the distance-based model, 
i.e., examples where the similarity is the highest but the matching is 
inaccurate. For instance, in Example 4, the word “deck” in “steel and 
deck” caused the model to inaccurately predict “Steel and Deck” as the 
master activity match to “L26 deck install tables” although the WBS in
formation of “steel and deck” shows that this activity is not being un
dertaken in “L26” (26th floor) but in “Bridge”. Similarly, in example 5, 
the ground truth master schedule activity “elevator > lagging” only has 
one word in common with the look-ahead planning task description, 
while the predicted activity is more similar. Lastly, Example 6 shows a 
case where the embedding model failed to capture the similarity be
tween “MEPFP” and “fire protection” and instead assumed “masonry” and 
“stair” to be more similar causing the predicted master activity to be 
inaccurate. This example also highlights the sensitivity of the distance- 
based model to the length of the task and activity descriptions where 
extra words can cause the similarity between tasks and activities to 
decrease even if they both contain other similar expressions. 

By checking the results of the “Location + Distance” model in 
Table 5, we can see that adding a filtering by location step before 
distance-based matching performed worse compared to the distance- 
based matching alone with an f1 Score of 32%. Since location-based 
matching is performed using Levenshtein distance measurements, it 
has a similar behavior to the FastText embeddings used by the distance- 
based model where both models consider sub-word representations. The 
differences are that (a) location-based matching is performed only on 

Table 6 
Precision, Recall, and f1 Score of all six tested model configurations on identifying a list of five master activities that contain the most relevant master activity to 
an input look-ahead planning task. (a) The “Distance Only” model uses Cosine similarity and pre-trained FastText embeddings, (b) the “Location + Distance” uses 
Location matching to generate candidates for the distance-based matching model. (c) The “Transformer Only” model uses the supervised transformer model to perform 
pairwise predictions on the relationship of the input look-ahead planning task and every available master activity and then ranks the results based on the probability of 
a positive relationship. (d) The last three models “Location”, “Distance”, and “Location + Distance” matching to generate candidates for the Transformer model which 
then performs the final ranking.   

Precision Recall f1 Score  

μ σ μ σ μ σ 

Distance Only 0.650 0.021 0.650 0.021 0.650 0.021 
Location + Distance 0.616 0.019 0.616 0.019 0.616 0.019 
Transformer Only 0.634 0.028 0.569 0.029 0.599 0.023 
Location + Transformer 0.652 0.025 0.494 0.037 0.561 0.027 
Distance + Transformer 0.765 0.023 0.643 0.043 0.698 0.028 
Location + Distance + Transformer 0.712 0.026 0.568 0.050 0.631 0.038 

The values in Bold are those of the best performing model. 

Fig. 9. Precision, Recall, and f1 Score of the “Distance + Transformer” model 
on identifying the most relevant master activity to an input look-ahead plan
ning task based on the number of candidates generated by the distance-based 
matching model. 

Fig. 10. Precision, Recall, and f1 Score of the “Distance + Transformer” model 
on returning a list of five master activities which contain the most relevant 
activity to an input look-ahead planning task based on the number of candi
dates generated by the distance-based matching model. 

Table 7 
Average time in milliseconds required to retrieve the master activity match for a 
single look-ahead planning task.   

Time per Task per Activity (ms) 

Distance Only 0.130 
Location + Distance 0.058 
Transformer Only 0.891 
Location + Transformer 0.245 
Distance + Transformer 0.182 
Location + Distance + Transformer 0.108  
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location terms while distance-based matching is performed on the full 
task and activity descriptions, and (b) FastText embeddings learn the 
“distributional similarity” between words that do not share common 
characters – i.e., the similarity based on where words and sub-word 
representations appear in training data – while Levenshtein distance 
measurements only compare word characters. As a result, if the correct 
master activity match has a completely different location term than the 
look-ahead planning task, it will be filtered out by the location-based 
matching step before the distance-based model can assess its similarity 
to the look-ahead planning task even if all other terms that describe the 
activity are similar to those that describe the task. On the other hand, 
using location-based matching before ranking using the Transformer 
model improved the results from 28.9% to 34.8% by filtering out wrong 
candidates. The best results where achieved by generating a list of 
candidates by the distance-based matching model and then fine tuning 
the ranking using the Transformer model. The achieved f1 Score is 
44.9% which shows a 36.8% improvement over the distance-based 
model and a 55.36% improvement over the Transformer-based model 
when these models are used in isolation. It is important to notice that 
although the Transformer model achieved an f1 Score of 80.1% on 
pairwise predictions, i.e., examples of individual look-ahead planning 
tasks and master activities, this performance did not translate to a high 
matching score. This is caused by the amount of predictions the Trans
former model has to perform for each look-ahead planning task where 
that task needs to be checked against all the available master activities 
which decreases the probability of the model picking the exact correct 
match [12]. Introducing a multi-stage ranking process where a 
distance-based model generates a list of candidates for the Transformer 
model improves the results because it mostly eliminates wrong candi
dates and reduces the overall number of judgements required by the 
Transformer model. 

Although the Transformer model presented significant improve
ments over the distance-based matching model, an f1 Score of 44.9% can 
still be low for the system to be used fully automatically. To that end, we 
test our system's ability to fulfil a semi-automated workflow where the 
model returns a list of five master activities as opposed to only one. By 
comparing the results of the semi-automated approach (Table 6) to the 
results of the fully-automated approach (Table 5), one can identify a 
55.4% improvement in the f1 Score which increased from 44.9% to 
69.8%. While the results of the fully-automated approach suggest a need 
for additional enhancements, the results of the semi-automated 
approach are promising and show potential for being tested in 
production. 

In regards to the generation of look-ahead plan tasks from master 
schedule activities, Table 10 highlights how the model accurately broke 
down the master activity into production tasks such as installing bath
room accessories, painting, and installing wall and floor tiles. Similarly, 
the last example shows task predictions associated with “L11 Reshoring 
and Pour Deck & Columns”. While the model accurately generated tasks 
related to Rebar, PT [Post-Tension], Pouring, and top embeds which are 
all concrete related activities, it also falsely generated activities that are 
related to finishing activities instead of concrete placement activities. 
These results highlights the potential of modern language models such 
as GPT-2 [14] even when fine-tuned on relatively small datasets such as 
ours. The task descriptions generated by our model are comparable to 
those actually written by superintendents (Tables 1 and 8) in terms of 
sentence structure and composition as well as coherence and style. 

In terms of limitations, our model learns the biases, mistakes, and 
particularities that exist in the training data. Like other data-driven 
models, those biases and irregularities are expected to be minimized 
as we train the model on larger datasets. Similarly, one other inherent 
limitation of data-driven approaches is the unpredictability of the nature 

Table 8 
Examples showing ground truth alignments between master schedule activities and look-ahead planning tasks where the activities and tasks have little similarity 
between their descriptions.  

The values in Bold are those of the best performing model. 

Table 9 
Qualitative examples of the predictions made by the distance-based model.  
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and gravity of their mistakes. To that end, this model is intended as an 
assistant as opposed to being a fully automated system that replaces the 
work done by human planners. We envision this model to be a sugges
tive model within a human-in-the-loop approach that assist superin
tendents create the look-ahead planning tasks based on the master 
activities created by the planners, as well as help planners identify look- 
ahead planning tasks related to different master schedule activities for 
reporting purposes. Furthermore, the presented research can be tightly 
linked to AI-based automated progress monitoring models. While these 
models focus on capturing the actual site conditions to enable progress 
reporting, the ScheduleAlignmentAide model presented in this manu
script can help translate the progress detected on the look-ahead plan 
task level into its master schedule level and vice versa by establishing 
and maintaining the link between the two. This enables automated 
progress monitoring methods to reflect progress on both short-term and 
long-term plan levels. 

6. Conclusions 

This paper presented first-of-its-kind (a) new formalization, (b) NLP 
solution for automatically matching look-ahead planning tasks to master 
schedule activities, and (c) AI solution that can generate look-ahead 
planning tasks from an input master activity prompt. A ranking prob
lem was formulated where we focus on retrieving the most relevant 
master schedule activity for an input look-ahead planning task. We 
examined multiple models to the solution including combinations of 
distance, location, and deep learning-based ranking models and two 
approaches: a fully automated approach where matching is performed 
completely automatically, and a semi-automated approach that follows 
a human-in-the-loop methodology where the model suggests a list of 
potential matches to the human planner and the planner performs the 
final assignment. Our findings show that the semi-automated approach 
can be performed with 76.5% Precision when using a multi-stage 
matching model where distance-based matching is used to generate 
candidates to a supervised Transformer-based model which then per
forms the final ranking. On the other hand, the fully automated 
approach is still immature to be used in the industry where the best 
model scored 51.1% Precision. Future efforts can build on top of this 
work by improving the matching results through training on larger 
datasets, fine tuning hyper-parameters, or trying new matching models 
altogether. Additional efforts can also be invested in building a human- 
in-the-loop solution that enables a human planner to easily interact with 

the outputs of the model and uses the corrections made by the planner to 
further improve the matching results. Similarly, A/B testing with the 
help of a control group on an on-going construction project can help 
highlight the value and the immediate benefits of the proposed method. 
Lastly, the possibility of mapping project constraints and issues to look- 
ahead plans and master schedules can be investigated. 
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