
DOI: 10.1111/mice.12774

RESEARCH ARTICLE

Joint location and assignment optimization of multi-type
fire vehicles

Han Liu1 Saeid Soleimaniamiri2 Xiaopeng Li2 Siyang Xie3

1 Research Institute of Emergency
Science, China Coal Research Institute
CCRI, China Coal Technology &
Engineering Group (CCTEG), Beijing,
China
2 Department of Civil and Environmental
Engineering, University of South Florida,
Tampa, Florida, USA
3 Facebook Inc., Menlo Park, California,
USA

Correspondence
XiaopengLi,Department ofCivil and
Environmental Engineering,University of
SouthFlorida, Tampa, FL33620,USA.
Email: xiaopengli@usf.edu

Funding information
USNational ScienceFoundation through
GrantNSFCMMI#1638355

Abstract
Fire service quality relies on fast response and cooperation of various types of
responders to maintain efficient operations and reliable rescue services. This
paper investigates a joint location and assignment optimization (JLAO) problem,
where fire vehicles fromdifferent fire stations can be dispatched jointly as a coop-
erative unit in a fire rescue operation.We first propose amixed integer non-linear
program to optimize the station location and vehicle assignment decisions, aim-
ing to minimize the total system cost including facility construction, operations
cost, and fire damage losses. We proposed a Stingy-Interchange (SI) algorithm to
efficiently solve this problem to a near-optimal solution. The JLAO model and
the proposed solution method are then applied to hypothetical instances with
different sizes and parameter settings to compare the performance of the SI algo-
rithm with a commercial solver (Gurobi). An empirical case study on a major
city is conducted to reveal insights on how cost measures are affected by key
parameters.

1 INTRODUCTION

Among various types of man-made disasters in the urban
environment, urban fires are arguably the most hazardous
ones. An estimated number of 1,342,000 fires, responded
by the US fire departments in 2016, have resulted in 3390
civilian fatalities, 14,650 civilian injuries, and around $10.6
billion in direct property loss (Haynes, 2017). In China, a
total of 1407 civilians suffered fatalities in 2018, increasing
by 1%, compared with 2017 (Fire & Rescue Department of
Emergency Management Bureau, 2019).
One main goal of the fire service is to protect people’s

lives and properties to the greatest extent possible. If the
fire team arrives at the scene at the initial stage of a fire,
the fire loss can be contained efficiently. However, delay
in fire response may cause serious loss to people’s lives
and properties since the loss in a fire increases rapidly as
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responding time elapses, especially at the middle stage of
fire combustion (OFM, 2010). In a fire incident at a large
scale, a great loss can occur if some necessary types of fire
vehicles are not available or are located at a fire station too
far from the fire incident. For instance, in the fire incident
of Beijing Television Cultural Tower, the process of res-
cuing people and fighting fire required several necessary
types of vehicles (such as fire tanks, fire trucks, powerful
jet engines, helicopters, ambulances, etc.). More than 50
fire vehicles of different types responded from 16 fire sta-
tions. However, due to the late response caused by traffic
congestion and the long distance between the distributed
fire stations and the fire incident, the towerwas completely
engulfed in flames within less than 13 min, which resulted
in heavy losses of life and property (Jacobs, 2009). As
another example, in the 2005 wine storage fire in Sichuan
Province, China, nine fire vehicles from another city were
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long-distance dispatched to back up the first response of 13
fire vehicles to form a complete fire vehicle fleet sufficient
for completing the fire service (Yang & Liang, 2012).
Therefore, the response time of rescue resources (e.g.,

fire vehicles) plays an important role in fire rescue oper-
ations, especially in a cooperative operation that often
requires a combination ofmultiple fire vehicles. Onemight
address this delay issue by locating many fire vehicles in
each fire station to ensure a short response time. This
way, however, some of the located fire vehicles might
not be used frequently and will be redundant most of
the time. Also, locating many fire vehicles at each sta-
tion is very costly and not always feasible due to other
resources and spatial constraints from governments. To
strike a reasonable balance between limited resources and
fast response time, optimizing the service facility locations
and∖or service assignment (i.e., assigning a given service to
a given demand) has been a common practice in fire rescue
operations.
Location planning problems have been well investi-

gated in the literature. Early studies focused on location
decisions for a single type of service or resource. Two
fundamental mathematical programing models are the
location set covering problem (LSCP; Toregas et al., 1971)
and maximal covering location problem (MCLP; Church,
1974)models. The former aims to locate aminimal number
of single-type facilities to cover given demands, while the
latter maximizes the coverage provided by a limited num-
ber of single-type facilities. Bao et al. (2015) optimized the
watchtower locations using the classical LSCP and MCLP
models. ReVelle and Hogan (1989) proposed a maximum
availability location problem to incorporate single-type
facility availability probability. Daskin and Jones (1993)
developed a new location/allocation algorithmic approach
to address the difficulty of large-scale problems. Ng
et al. (2010) presented a bi-level optimization model to
optimally assign evacuees to shelters in natural and man-
made disasters. Smith et al. (2014) proposed a location and
assignment optimizationmodel that determines fixed stag-
ing areas andmobile processing unit locations and optimal
material shipment assignment strategies for sustainable
highway reconstruction. Xie et al. (2016) proposed a
mixed integer linear programing model and a Lagrangian-
relaxation-based heuristic algorithm for the location and
capacity planning of locomotive maintenance shops.
Further, to address the relationships between multiple
entities, multiple coverage models have been developed in
the emergency facility location context. A double coverage
model, called the double standard model, was developed
by considering two distance standards from identifiable
facilities (Gendreau et al., 1997). Larson introduced the
hypercube queuing model (Larson, 1974) and an approx-
imation method (Larson, 1975) to estimate the system

performance provided by distinguishable facilities under a
predetermined dispatching list. Daskin (1983) extended the
classic MCLP model to the maximum expected covering
location problem under the assumption of independent
and identically distributed busy probabilities of different
facilities. Badri et al. (1998) determined fire-station facility
locations by considering multiple tangible and intangible
criteria. Jiang and Adeli (2003) presented an optimization
model for user delay, accident, and maintenance costs
in freeway work zones. A method based on Boltzmann-
simulated annealing and neural networks is developed to
find global optimal solutions. An object-oriented model
was then presented for freeway work zone capacity and
queue delay estimation (Jiang & Adeli, 2004).
Despite these elegant solution methods, most of these

studies focus on a single service and do not consider the
interaction between different services. Therefore, these
solution methods are not capable of addressing many real-
world operational problems. In the fire rescue content, for
instance, fire damage might not be controlled completely
unless all required fire vehicles arrive at the fire scene in
time. Therefore, considering the interaction between mul-
tiple fire vehicles in the fire rescue operations is essential.
This need has motivated many researchers and trans-

portation practitioners to focus on the cooperation
between multiple agencies, services, and fire vehicles
from different perspectives. For instance, a collaboration
of responders and stakeholders in emergency scenarios
has been investigated in a number of qualitative and quan-
titative studies. Berman et al. (2009) proposed a discrete
cooperative covering problem by introducing single type
coverage signals that decay by the distance. Later, a
continuous covering and cooperative covering model
was developed by Berman et al. (2013). In their model,
each facility emits a signal that decays by the distance
along the arcs of the network and each node observes
the total signal emitted by all facilities. A node is covered
if its cumulative signal exceeds a given threshold. Xie
et al. (2013) presented a colocation optimization model
with multi-type facilities and expansive capacities for the
complementary production process of agricultural crops.
Lu et al. (2018) presented a multilayer infrastructure net-
work optimization model to investigate the vulnerability
impact of unreliable infrastructures on city disasters.
These studies highlighted the importance of collaboration
between different parties in emergency response, yet
they cannot be directly applied to cooperation between
multiple resources in fire operations. While collaboration
between responders often focuses on policy, regulatory,
or institutional issues, emergency resource cooperation
usually requires careful location planning for spatial dis-
tributions of various types of resources (e.g., how multiple
types of fire vehicles are distributed across different fire
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stations) and reliable assignment mechanisms for fire
vehicle dispatching operations.
To address this requirement, another class of

studies aimed to optimize the facility location and∖or
vehicle assignment decisions considering multiple fire
vehicles and services. Batta and Mannur (1990) examined
the set covering location problem and the MCLP under
emergency situations that require multiple response units.
An et al. (2015) developed an emergency facility location
model under multiple facility reliability, queuing, and en
route congestion. Wang et al. (2016) proposed a multi-type
fire facility location and allocation model under partial
coverage and cooperative operation. Zockaie et al. (2016)
presented a discretionary service facility location model to
minimize the extra cost spent in refueling detours. Their
proposed simulated annealing algorithm outperformed
commercial solver CPLEX in solving models with large-
scale compact formulations. Park et al. (2016) proposed a
stochastic location and allocation model for emergency
units by incorporating primary and secondary incident
probabilities. Pérez et al. (2016) proposed a location and
allocation model for a number of fire stations and the
corresponding vehicle fleet to improve the coverage within
the standard response in the city of Santiago. Li et al. (2018)
proposed a cooperative maximal covering model with the
consideration of financial efficiency and uncertainty for
multiple humanitarian relief chain management. Wang
et al. (2019) proposed a multi-objective mixed integer lin-
ear model to optimize temporary debris management sites
after large-scale natural disaster. To mitigate congestion
caused by uncertain demands, Hajibabai and Saha (2019)
presented a station location and patrol route planning
model for first responders. While these studies provided
impactful insights into the facility location and allocation
problems, most of them only aimed to improve a single
objective measure. However, to efficiently provide a given
service, multiple factors and objectives might need to be
considered simultaneously. Although Smith et al. (2014)
and Xie et al. (2016) proposed optimization models with
more than three objective measures, their algorithm’s
effectiveness may be challenged in dealing with large-
scale problems. In the fire service content, for instance,
one might need to determine the fire station locations, the
number of fire vehicles with different types to be located at
each fire station, and efficiently assign fire vehicles to fire
incidents such that the construction cost of fire stations,
maintenance and travel costs of fire vehicles, and the
damage cost caused by fire at fire incidents be minimized
simultaneously. Considering all these objective measures,
however, results in a complicated problem structure that
requires substantial computational resources to obtain an
efficient solution. To the best of our knowledge, there are
no studies focusing on such a complicated, yet important,

problem that considers multiple objective measures and
multi-vehicle types in the fire service content.
The contributions of this study can be summarized as

follows.

1. This study proposes a mixed integer joint location and
assignment optimization (JLAO) model to optimally
select the fire station locations, determine the num-
ber of each type of fire vehicles to be located at each
fire station, and assign multiple types of fire vehicles to
fire incidents with the objective of simultaneously min-
imizing the facility construction cost, maintenance and
travel costs, and fire damage losses. Although the joint
facility location and vehicle assignment problem has
been well studied, to the best of our knowledge, there
are no studies focusing on such a complicated and nec-
essary problem considering multiple vehicle types and
objectivemeasures, especially in the fire rescue context.

2. This study proposes an efficient Stingy-Interchange (SI)
algorithm that can solve the investigated JLAO problem
muchmore efficiently and obtain smaller solution gaps
than the existing commercial solvers (e.g., Gurobi). This
study evaluates the effectiveness of the proposed model
and the performance of the proposed optimization algo-
rithm through a set of numerical tests and an empirical
case study with fire incident data from the Fire Depart-
ment of Harbin in 2018. This study also investigates
how different parameter settings can affect the optimal
design of the joint location and assignment problem.

The remainder of this paper is organized as follows.
Section 2 presents the JLAOmodel and illustrates the pro-
posed SI algorithm. In Section 3, we test the effectiveness
of the proposed algorithmand the state-of-the-art commer-
cial solver, Gurobi, under different scenarios and parame-
ter settings with a set of hypothetical examples. Section 4
applies the model to an empirical case and presents the
sensitivity analyses results. Finally, Section 5 provides con-
cluding remarks and future research directions.

2 JLAO PROBLEM

This section describes the investigatedmulti-type fire vehi-
cle location and assignment problem. We first introduce
the investigated problem and its parameters, variables,
and assumptions. Then, we formulate the JLAO problem
as a mixed integer programing (MIP) model that inte-
grates location and assignment decisions for multi-type
fire vehicles to minimize an objective function represent-
ing the total system cost. At last, we present the pro-
posed SI algorithm to solve the problem to a near-optimum
solution.
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TABLE 1 Notation list of the joint location and assignment optimization problem

Parameters
 ∶= {1, … , 𝐼} Set of fire stations’ locations
 ∶= {1, … , 𝐽} Set of incidents’ locations
 ∶= {1, … , 𝐾} Set of all fire vehicle types
 ∶= {0, 1, … , 𝑍} Set of different number of fire vehicle
𝐿 ∶= {1, … , 𝐿} Set of incident types
𝑊 ∶= {1, … , 𝑊} Weight level of incident
𝑆𝑖 Capacity of fire station 𝑖 ∈ 

𝑙𝑗 Type of incident 𝑗 ∈ 

𝑤𝑗 Weight level of incident 𝑗 ∈ 

𝑓𝑗 Occurrence probability of incident 𝑗 ∈ 

𝑡𝑖,𝑗 Response time for a fire vehicle located at station 𝑖 ∈  to serve incident 𝑗 ∈ 

𝑇 ∶= {1, … , 𝑇} = ∪𝑖∈, j∈ {𝑡𝑖,𝑗} Set of all possible response times
𝜋𝑗,𝑡 Fire damage cost of incident 𝑗 ∈  with response time 𝑡 ∈ 

𝑟𝑙𝑗 ,𝑤𝑗 ,𝑘
Required number of type-𝑘 fire vehicle to serve incident 𝑗 ∈  with type 𝑙𝑗 and weight level 𝑤𝑗

𝑐𝑖,𝑘,𝑧 Cost of locating 𝑧𝑘-type fire vehicle at fire station 𝑖 ∈ 

𝑑𝑖,𝑗,𝑘 Travel cost of 𝑘-type fire vehicle travels from station 𝑖 ∈  to incident 𝑗 ∈ 

Decision variables
𝑝𝑖,𝑘,𝑧 ∈ {0, 1} 𝑝𝑖,𝑘,𝑧 = 1 if 𝑧𝑘-type fire vehicles are located at station 𝑖 ∈  and 0 otherwise
yj,t∈{0,1} yj,t=1 if incident 𝑗 ∈  is served with response time 𝑡 ∈  and 0 otherwise
xi,j,k∈ℕ+ Integer variable that denotes the number of k-type fire vehicle at station 𝑖 ∈  that have been

allocated to incident 𝑗 ∈ 

2.1 Problem statement

In this problem, each discrete location has a certain type
of potential fire incident with a certain frequency and a
fixed weight reflecting the corresponding damage sever-
ity. The types and corresponding numbers of fire vehicles
required for each incident are predetermined (e.g., by the
local fire department). If an incident requires the coopera-
tion of multiple vehicles, we assume that it is served only
after the last required vehicle arrives at the scene. In other
words, an incident requiring multiple fire vehicles will not
be served until all required vehicles arrive. The system
decisions include locating fire vehicles of different types
across candidate fire stations and allocating them properly
to each potential incident so as to minimize the long-term
cost including both facility investment and fire losses. For
the convenience of the readers, we list the key notation in
Table 1.
This study considers a network with a set of candidate

fire station locations ∶= {1, … , 𝐼} for locating the planned
fire vehicles. Each candidate location 𝑖 ∈  has a fixed
capacity 𝑆𝑖 for locating fire vehicles. We assume there are
different types of vehicles  ∶= {1, … , 𝐾} with different
functionality (e.g., high-rise trucks, high-power water sup-
ply server, nuclear and biochemical fire engines, etc.). The

cost of locating 𝑧 number of type-𝑘 vehicle at a station 𝑖
is denoted by 𝑐𝑖,𝑘,𝑧. We consider a set of potential incident
locations  ∶= {1, … , 𝐽} where 𝑙𝑗 denotes the type of inci-
dent 𝑗 ∈  . For simplicity, we assume that fire incidents
are infrequent events and no two incidents occur at the
same time. Further, each incident 𝑗 has a predetermined
level denoted by 𝑤𝑗 representing its weight. A type-𝑙 inci-
dent at weight 𝑤 must be served with a specific number
of type-𝑘 vehicles, denoted by 𝑟𝑙,𝑤,𝑘. In another word, each
incident 𝑗 must be served by 𝑟𝑙𝑗,𝑤𝑗,𝑘 number of type-𝑘 fire
vehicles. Further, the occurrence probability of incident 𝑗
is denoted by 𝑓𝑗 . An incident’s fire damage cost is the dam-
age that the lives and properties at the incident location
bear due to the response time from the start of the incident
to the completion of the cooperative fire operation with all
required fire vehicles. To be conservative, we assume this
cost is a function of the response time of the fire vehicle
combination, that is, the time duration from an incident’s
starting time to the time the last fire vehicle in the corre-
sponding combination arrives at the scene. The response
time for a fire vehicle located at station 𝑖 to serve incident 𝑗
is denoted by 𝑡𝑖,𝑗 . Let  = ∪𝑖∈,𝑗∈ {𝑡𝑖,𝑗} denote the set of
all possible response times. With this, we denote the fire
damage rate of an incident at j with response time 𝑡 as
𝜋𝑗,𝑡. Further, the location decisions aremade with a binary
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variable 𝑝𝑖,𝑘,𝑧 that denotes the number of type-𝑘 vehicles
located at station 𝑖:

𝑝𝑖,𝑘,𝑧 =

⎧⎪⎨⎪⎩
1, if the number of type -𝑘 vehicles

located at station 𝑖 is 𝑧,
0, otherwise

∀𝑖 ∈ , 𝑘 ∈ , 𝑧 ∈ 

Then the assignment decisions are incorporated with
integer variable xi,j,k that denotes the number of type-k
vehicles at station i allocated to incident j. The following
auxiliary variable for each incident j is also introduced to
determine the corresponding response times:

𝑦𝑗,𝑡 =

⎧⎪⎨⎪⎩
1,

0,

if incident 𝑗 is served
with response time 𝑡,
otherwise

∀𝑗 ∈ , 𝑡 ∈ 

For the formulation convenience, we stack the vari-
ables 𝑥∶= {𝑥𝑖,𝑗,𝑘}𝑖∈,𝑗∈ ,𝑘∈, 𝑦∶= {𝑦𝑗,𝑡}𝑗∈,𝑡∈ and 𝑝∶=

{𝑝𝑖,𝑘,𝑧}∀𝑖∈,𝑘∈,𝑧∈

2.2 Model formulation

This section presents a discrete model for the investi-
gated problem. We formulate the JLAO problem as a MIP
model that selects a set of candidate locations to build fire
stations, decides the number of each-type vehicles to be
located at each station, and allocates the fire vehicles to the
fire incidents.
We formulate the JLAO problem as

𝐽𝐿𝐴𝑂 ∶ min
𝑥,𝑦,𝑝

𝑂𝐽𝐿𝐴𝑂
(
𝑥𝑖,𝑗,𝑘, 𝑦𝑗,𝑡, 𝑝𝑖,𝑘,𝑧

)
∶

= 𝐶
(
𝑝𝑖,𝑘,𝑧

)
+ 𝐹

(
𝑦𝑗,𝑡

)
+ 𝐷

(
𝑥𝑖,𝑗,𝑘

)
(1)

subject to

𝐷
(
𝑥𝑖,𝑗,𝑘

)
=

∑
𝑖∈,𝑗∈ ,k∈

(
𝑓𝑗 .𝑑𝑖,𝑗,𝑘 . 𝑥𝑖,𝑗,𝑘

)
(2)

𝐹
(
𝑦𝑗,𝑡

)
=

∑
𝑗∈ , t∈

(
𝑓𝑗 .𝑤𝑗 .𝜋𝑗,𝑡 . 𝑦𝑗,𝑡

)
(3)

𝐶
(
𝑝𝑖,𝑘,𝑧

)
=

∑
𝑖∈, k∈,𝑧∈

(
𝑐𝑖,𝑘,𝑧 .𝑝𝑖,𝑘,𝑧

)
(4)

∑
𝑧∈

(
𝑧 . 𝑝𝑖,𝑘,𝑧

)
≥ 𝑥𝑖,𝑗,𝑘, ∀𝑖 ∈ , 𝑗 ∈  , 𝑘 ∈  (5)

∑
𝑘∈,𝑧∈

(
𝑧 . 𝑝𝑖,𝑘,𝑧

)
≤ 𝑆𝑖, ∀𝑖 ∈  (6)

∑
𝑖∈

(
𝑥𝑖,𝑗,𝑘

)
= 𝑟𝑙𝑗,𝑤𝑗,𝑘 , ∀𝑗 ∈  , 𝑘 ∈  (7)

∑
𝑡∈ , 𝑡≥𝑡𝑖,𝑗

(
𝑦𝑗,𝑡

)
≥

𝑥𝑖,𝑗,𝑘

max
𝑗∈ ,𝑘∈

{
𝑟𝑙𝑗 ,𝑤𝑗 ,𝑘

} , ∀𝑖 ∈ , 𝑗 ∈  , 𝑘 ∈ 

(8)

∑
t∈

(
𝑦𝑗,𝑡

)
= 1, ∀𝑗 ∈  (9)

∑
𝑘∈

(
𝑥𝑖,𝑗,𝑘

)
≤ 𝑆𝑖, ∀𝑖 ∈ , 𝑗 ∈  (10)

∑
𝑖∈, 𝑧∈

(
𝑧 . 𝑝𝑖,𝑘,𝑧

)
≥ 𝑟𝑙𝑗 ,𝑤𝑗,𝑘, ∀𝑗 ∈  , 𝑘 ∈  (11)

∑
𝑧∈

(
𝑝𝑖,𝑘,𝑧

)
= 1, ∀𝑖 ∈ , 𝑘 ∈  (12)

𝑦𝑗,𝑡 = {0,1} , ∀𝑗 ∈  , 𝑡 ∈  (13)

𝑝𝑖,𝑘,𝑧 = {0,1} , ∀𝑖 ∈ , 𝑘 ∈ , 𝑧 ∈  (14)

𝑥𝑖,𝑗,𝑘 ∈ Integer, ∀𝑖 ∈ , 𝑗 ∈  , 𝑘 ∈  (15)

Objective function (1) minimizes the summation of
three operational costs of the system. To avoid requiring
a set of cost coefficients for different objective measures,
a set of realistic cost values are drawn from the literature
(e.g., Wang et al., 2016) and used in numerical tests. How-
ever, to investigate how prioritizing the objective measures
affects the solution quality, one can simply add a set of
cost coefficients to different objective measures without
requiring any changes in the proposed algorithm. Con-
straints (2), (3), and (4) define the travel cost, fire dam-
age cost, and installation cost, respectively. The travel cost
is the total distance traveled by all fire vehicles. The fire
damage cost is the damage cost caused by fire before the
arrival of all required fire vehicles. The installation cost is
the cost of allocating and maintaining fire vehicles at can-
didate stations. Constraint (5) ensures that the number of
type-𝑘 fire vehicles from station 𝑖 assigned to incident 𝑗
does not exceed the number of available type-𝑘 fire vehi-
cles located at station 𝑖. Constraint (6) ensures that the total
number of fire vehicles located at station 𝑖 does not exceed
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the capacity of the station. Constraint (7) enforces that the
total number of type-𝑘 fire vehicles assigned to incident 𝑗
from all the stations must be equal to the required num-
ber of type-𝑘 vehicle for incident 𝑗. Constraint (8) imposes
that the response time of incident 𝑗must be at least 𝑡𝑖,𝑗 , if at
least one fire vehicle is assigned to incident 𝑗 from station
𝑖. Constraint (9) enforces that the response time of incident
𝑗 should only have one value. Constraint (10) ensures that
the total number of type-𝑘 fire vehicles from station 𝑖 to
incident 𝑗 does not exceed the capacity of station 𝑖. Con-
straint (11) ensures that the total number of type-𝑘 vehicles
at all stations must be greater than the required number
of type-𝑘 vehicles at each incident. Further, constraint (12)
enforces that only one number in must denote the total
number of each type-𝑘 vehicles located at each station 𝑖.
Finally, constraints (13) to (15) define the binary and integer
variables.

2.3 SI algorithm

We first attempted the Lagrangian relaxation (LR)
approach for this problem due to its efficiency in solving
classic location problems (Daskin, 2011). Constraints (5)
were relaxed and a branch and bound algorithm was
applied for solving subproblems in the LR framework.
However, the bound obtained from LR was poor, and
only a small number of branches could be eliminated.
Without a tight bound, the performance of LR was much
compromised. Alternatively, we proposed an SI algo-
rithm that combines the classic Stingy and Interchange
algorithms to solve the JLAO problem to a near-optimal
solution (Nemhauser et al., 1978). The Stingy algorithm
is a heuristic algorithm that starts with a (possibly
infeasible) solution with maximal variable values (e.g.,
maxing out all types of fire vehicles at all fire stations)
and iteratively reduces variable values (e.g., removing
vehicles) until reaching certain stopping criterium. The
Interchange algorithm starts with a feasible solution and
iteratively changes the variable values within a feasible
neighborhood from the current solution until reaching
a certain stopping criterium. By integrating these two
algorithms, the proposed heuristic algorithm starts with
the Stingy algorithm and ends with the Interchange
algorithm. A high-level flowchart of the proposed SI
algorithm is presented in Figure 1, and an illustrative
example solved by the proposed SI algorithm is pre-
sented in Figure 2. Further, the key elements of the
proposed SI algorithm are summarized in the following
steps.

F IGURE 1 Flowchart of the proposed Stingy-Interchange (SI)
algorithm

1. Initialization: Start with an infeasible solution where at
each station 𝑖, there are 𝑆𝑖 numbers of each 𝑘-type vehi-
cle located (see Figure 2a). Find the corresponding opti-
mal assignment.

2. Stingy-step1: At each iteration, create the neighborhood
of the current solution by removing one vehicle from
the stations that have more vehicles than their capac-
ity (see Figure 2b). Each solution in the neighborhood
must contain the minimum number of each 𝑘-type fire
vehicle required to address all fire incidents (e.g., two
green and two red fire vehicles in the example shown
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F IGURE 2 Illustration of the proposed SI algorithm

in Figure 2). Choose the neighborhood solution with
the lowest cost as the current solution. Repeat this itera-
tively until no station hasmore vehicle than its capacity
(see Figure 2c).

3. Stingy-step2: At each iteration, create the neighborhood
of the current solution by removing one vehicle from

a station (see Figure 2d). Each solution in the neigh-
borhood must contain the minimum number of each
𝑘-type fire vehicle required to address all fire incidents
(e.g., two green and two red fire vehicles in the exam-
ple shown in Figure 2). If the neighborhood solution
with the lowest cost has a cost lower than the current
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solution, choose it as the current solution and repeat
this. Otherwise, go to the next step (see Figure 2e).

4. Interchange: At each iteration, create the neighborhood
of the current solution by changing the station of one
vehicle or switching the locations of two fire vehicles
with different types (see Figure 2f). If the neighborhood
solution with the lowest cost has a cost lower than the
current solution, choose it as the current solution and
proceed iteratively. Otherwise, the algorithm completes
and returns the best solution.

Further, at each step of the SI algorithm, fire vehicles are
optimally assigned to fire incidents by iterating over a set
of possible allocations. Note that since the proposed Stingy
algorithm finds a feasible solution by iteratively removing
one fire vehicle from a fire station, the maximum number
of the iterations in the Stingy algorithm is limited to
the sum of fire station capacities multiplied by the total
number of fire vehicle types, for example, 𝐾 ×

∑
𝑖∈

𝑆𝑖 .
Therefore, the proposed Stingy algorithm is expected
to obtain a feasible solution efficiently. The proposed
Interchange algorithm, however, can be computationally
expensive depending on the number of allocated fire
vehicles to fire stations at the end of the Stingy algorithm.
But the purpose of the proposed Interchange algorithm
is to improve the solution quality rather than obtaining a
feasible solution. Therefore, the proposed SI algorithm can
guarantee finding a feasible solution efficiently while it
can improve the solution quality until a stopping criterium
(e.g., reaching the computational time limit, no better
solution can be found) is met. With this, we can solve the
JLAO problem to a near-optimal solution efficiently.

3 NUMERICAL TEST

Numerical experiments built on hypothetical grid net-
works of various sizes are performed on different scales
and dispatch policies to verify the effectiveness of our sug-
gested algorithmby comparing itwith a commercial solver,
Gurobi. All algorithms are coded in the Visual Studio plat-
form with the C++ language at a 64-bit Intel i7-5600U
computer with 2.60 Hz and 2.59 Hz CPU and 16 GB RAM.
The maximal solution time limit for each instance is set to
3600 s.
An n × n grid network is generated to construct a hypo-

thetical case region with n2 nodes and 2𝑛 × (2𝑛 − 1) links,
where n varies among {7, 8, 9, 10, 11, 12}. The n2 nodes are
indexed as 1, 2,. . . , n2, ascending from left to right and then
from bottom to top. Every node is considered both as a
demand point for a potential fire incident and as a can-
didate point for a fire station. The length of every edge
between two adjacent nodes is set to 1. Parameters L, Z,

F IGURE 3 A 7 × 7 grid network illustration

W, and T are set to be 4, 5, 5, and 2𝑛, respectively. Param-
eters 𝑙𝑗 , 𝑓𝑗 , 𝑤𝑗 , and 𝑆𝑖 are generated randomly as integers
within predetermined ranges (𝑙𝑗 ∈ [1,4], 𝑓𝑗 ∈ [1,7], 𝑤𝑗 ∈
[1,5], 𝑆𝑖 ∈ [1,4]). Figure 3 illustrates a 7 × 7 grid network
with our parameter designs.
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TABLE 2 Matrix of 𝑟𝑙𝑗 ,𝑤𝑗 ,𝑘
under two scenarios

Scenario I Scenario II
l w k1 k2 . . . k5 k1 k2 k3
1 1 1 1 . . . 1 1 1 1
2 1 2 2 . . . 2 2 1 1
3 1 3 3 . . . 3 4 2 2
4 1 4 4 . . . 4 6 4 3
1 2 1 1 . . . 1 2 1 1
2 2 2 2 . . . 2 2 2 1
3 2 3 3 . . . 3 4 3 2
4 2 4 4 . . . 4 6 4 4
1 3 1 1 . . . 1 2 2 1
2 3 2 2 . . . 2 2 2 2
3 3 3 3 . . . 3 4 3 3
4 3 4 4 . . . 4 6 5 4
1 4 1 1 . . . 1 2 2 2
2 4 2 2 . . . 2 3 2 2
3 4 3 3 . . . 3 4 4 3
4 4 4 4 . . . 4 6 5 5
1 5 1 1 . . . 1 3 2 2
2 5 2 2 . . . 2 3 3 2
3 5 3 3 . . . 3 4 4 4
4 5 4 4 . . . 4 6 6 5

When there is no vehicle located at a station, (i.e.,Z= 0),
the parameter 𝑐𝑖,𝑘,𝑧 would be 0. Otherwise, we assume
𝑐𝑖,𝑘,𝑧 as an increasing but not linear function of the number
of type-𝑘 fire vehicle located at station 𝑖 as follow:

𝑐𝑖,𝑘,𝑧 = 𝑧 ∗ 𝑐𝑖,𝑘,1 + 2 (𝑧 − 1) ∗ 𝜀, ∀𝑖 ∈ , 𝑘 ∈ , 𝑧 ∈ ,

where parameter 𝑐𝑖,𝑘,1 (the cost of locating one type-k
vehicle at station i) is generated randomly with the uni-
form distribution of [225, 275], and 𝜀 is a random valuewith
the range [10,19].
We also generate a random function for𝜋𝑗,𝑡. In each net-

work scale, when 𝑡 is smaller than 20% of 𝑇max (e.g., the
max value in {𝑡𝑖,𝑗}), 𝜋𝑗,𝑡 is set to be 0; when 𝑡 is larger than
80% of 𝑇max , 𝜋𝑗,𝑡 is set to be 1; otherwise, 𝜋𝑗,𝑡 is equal to

1 − {1∕(1 + exp[𝐴(𝑡 − (0.2 ⋅ 𝑇max + 0.8 ⋅ 𝑇max)∕2)]},

whereA is a constant number set to be 0.25. Since different
vehicle numbers in r may impact the performance of the
algorithm, we have designed two scenarios with different
numbers of fire vehicle types and different required num-
bers of fire vehicles by fire incidents as shown in Table 2.
In the first scenario, each number is identical to level 𝑙. We
consider different K values from 3 through 5. In the sec-
ond scenario, more heterogeneous vehicle numbers when

K = 3 are used to reflect heterogeneous needs of different
incident types in the real world.
The quantitative results of the model and algorithm are

shown in Table 3. In Scenario I (K equals to 3, 4, and 5), for
small-scale networks (e.g., the 7 × 7 networks), Gurobi can
find a better solution than the SI algorithm. However, in a
larger scale network in Scenario I, as well as all scales in
Scenario II, the SI algorithm can find near-optimal solu-
tions with shorter computational times and smaller opti-
mality gaps. We also observe that the gap advantage of
the SI algorithm becomes more and more significant as
the problem size increases in each scenario. For example,
the gap benefit of SI algorithm over Gurobi in Scenario I
(K = 3) improves from 0.66% to 32.38% with the network
scale increases from 8 × 8 to 12 × 12. Further, it seems that
the optimality gaps of both solution methods decrease as
K increases from 3 to 5. The reason behind this might be
the increase in number of eliminated solutionswith tighter
constraints at lagerK. In practical data list in Scenario II, SI
algorithm shown to bemore effective than that in Scenario
I (K = 3) in each scale. The SI algorithm can reach a near-
optimum solution with a significantly smaller optimality
gap. For example, the SI algorithm leaves a gap of 5.51%,
while Gurobi keeps a gap of 5.94% in 7 × 7 network. In an 8
× 8 network, the Gurobi gap is 12.85%, but the SI gap is only
11.36% (improved by (12.85%–11.36%)/12.85%= 11.6%).How-
ever, in 8 × 8 network of Scenario I, the SI gap improves
only 4.6% [(14.39%–13.73)/14.39%].
Overall, as the network size increases, finding an effi-

cient solution becomesmore challenging. Gurobi is shown
to be able to obtain near-optimum solutions with negli-
gible optimality gaps for up to 7 × 7 grid networks with
multi-type demands. In comparison, the solutions found
by the SI algorithm are in fact quite closer to the true opti-
mal solutions or best known feasible solutions within a
reasonable (even shorter) amount of computation time.
Especially in larger scales, the SI algorithm produces bet-
ter solutions within a relatively short computational time,
compared with Gurobi. Also note that the effectiveness of
the SI algorithm improves when K (the number of vehicle
types) increases, or when the numbers in r table are erratic,
which is more common in practice.
To investigate how the algorithm performance varies

with the imposed computational time limit, we test the
SI algorithm and Gurobi in Scenario I (K = 3) with var-
ious time limits (e.g., 1800, 3600, 5400, 7200, 9000, and
10,800 s). The heat map results of this sensitivity analysis
are shown in Figure 4. The results indicate that the SI algo-
rithm can obtain a closer gap than Gurobi, especially in
large-scale network scenarios. For instance, the proposed
SI algorithm can obtain a near optimum solution with
around a 52.0% optimality gap, while the optimality gap of
the solution found byGurobi cannot become less than 85%.
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TABLE 3 Algorithm performance under two test scenarios

Vehicle type
number

Network
scale

Gurobi
objective
value

Gurobi
gap (%)

Gurobi
time (s)

Stingy-
Interchange (SI)
objective value SI gap (%)

SI time
(s)

Scenario I
(K = 3)

7 × 7 3745 6.04 >3600 3799 7.36 345
8 × 8 4319 14.39 >3600 4286 13.73 968
9 × 9 4902 36.60 >3600 4144 25.01 1317
10 × 10 13,704 78.31 >3600 4691 36.62 2506
11 × 11 24,650 87.72 >3600 6063 50.09 >3600
12 × 12 19,956 85.14 >3600 6276 52.76 >3600

Scenario I
(K = 4)

7 × 7 4791 0.32 3359 4896 2.45 661
8 × 8 5659 15.31 >3600 5330 10.07 1507
9 × 9 5613 18.91 >3600 5122 11.14 2485
10 × 10 16,403 75.56 >3600 6617 39.41 >3600
11 × 11 8990 56.60 >3600 7240 46.12 >3600
12 × 12 26,641 85.40 >3600 7281 46.59 >3600

Scenario I
(K = 5)

7 × 7 5642 0.00 730 5770 2.22 1289
8 × 8 5776 0.53 >3600 5950 3.43 2326
9 × 9 7515 24.79 >3600 6711 15.77 >3600
10 × 10 8336 30.41 >3600 7248 19.95 >3600
11 × 11 20,545 71.30 >3600 8363 29.48 >3600
12 × 12 28,476 83.43 >3600 9468 50.16 >3600

Scenario II 7 × 7 4913 5.94 >3600 4890 5.51 360
8 × 8 5506 12.85 >3600 5413 11.36 841
9 × 9 6064 31.99 >3600 5242 21.32 1408
10 × 10 10,482 61.51 >3600 5712 29.37 2682
11 × 11 26,597 84.36 >3600 7040 40.90 >3600
12 × 12 22,433 81.78 >3600 7507 45.56 >3600

The results also show that both SI algorithm and Gurobi
are not able to significantly decrease the optimality gap
as the imposed computational time limit increases. This
shows that the investigated problem is extremely compli-
cated and requires much higher computational resources
to be solved to the exact optimum solution. Therefore,
an efficient heuristic algorithm that can achieve a near-
optimum solution with a relatively low optimality gap is
essential when dealing with such a problem. This shows
that our suggested algorithm can effectively solve the joint
location and assignment problem for large-scale networks
and also has significant effects onmore practical scenarios.

4 HARBIN CASE STUDY

In this section, ourmathematicalmodel is applied to a full-
scale location and assignment problem for cooperative ser-
vices of Harbin City (China) and investigates the proposed
algorithm’s performance focusing on more practical sce-
narios. As the largest city in northern China, Harbin has

a gross domestic product of more than 61.53 billion dol-
lars per year. Since Harbin City is located in a relatively
cold zone, vehicle travel time is usually considered due
to the conditions of snow and ice (Liao, 2019). For inci-
dents that require cooperative rescue, the response time of
vehicles will significantly increase if the planned layout of
the responding vehicle is not reasonable, whichmay cause
great losses in fire or accidents lasted for a longer time.
With this, the proposedmodel is tested on a real-world case
with fire incident data from 2018, obtained from the Fire
Department of Harbin. The purpose of this case study is
not only to illustrate the proposed methodology in a realis-
tic context but also to cast insights into the impacts of sig-
nificant parameters in the JLAO problem.

4.1 Assumptions and data preparation

Figure 5 shows the fire system layout of urban Harbin city,
which has 50 fire station locations, 420 demand points,
and thus 21,000 links. Fire station locations are marked as
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F IGURE 4 The gap sensitivity results of Gurobi and the SI
algorithm

F IGURE 5 Fire protection areas in the Harbin City

TABLE 4 Matrix of 𝑟𝑙𝑗𝑘 in Harbin Case

l w range k1 k2 k3
1 [0, 30.77) 1 1 1
2 [30.77, 153.85) 2 1 1
3 [153.85, 307.69) 4 2 2
4 [307.69, +] 6 4 3
1 [0, 61.54) 2 1 1
2 [61.54, 307.69) 2 2 1
3 [307.69, 615.38) 4 3 2
4 [615.38, +] 6 4 4
1 [0, 92.31) 2 2 1
2 [92.31, 461.54) 2 2 2
3 [461.54, 923.08) 4 3 3
4 [923.08, +] 6 5 4
1 [0, 123.08) 2 2 2
2 [123.08, 615.38) 3 2 2
3 [615.38, 1230.77) 4 4 3
4 [1230.77, +] 6 5 5
1 [0, 153.85) 3 2 2
2 [153.85, 769.23) 3 3 2
3 [769.23, 1538.46) 4 4 4
4 [1538.46, +] 6 6 5

red pentagrams. Demand points including 103 Level-1 (L1)
points, 183 Level-2 (L2) points, 122 Level-3 (L3) points, and
12 Level-4 (L4) points are marked by pink, yellow, green,
and blue colors, respectively.
We assume that fire damage cost 𝜋𝑗,𝑡 follows a sigmoid

function of the response time (Karasakal & Karasakal,
2004) as follows:

𝜋𝑗,𝑡 =

⎧⎪⎨⎪⎩
0 if 𝑡 ≤ 𝑇0,

1 −
1

1+𝑒
𝐴

(
𝑡−

𝑇0+𝑇𝑒
2

) if 𝑇0 < 𝑡 < 𝑇𝑒,

1 otherwise,

∀𝑗, 𝑡 ∈ [0, 𝑇]

where A is set to be 0.25 based on the experience of Harbin
fire officials. Te is set to be 60 min, which is approximately
the longest durable time for demand points on fire, based
on REI (The REI marking identifies the fire-resistance rat-
ing of a structure. R = Load-bearing. E = Integrity. I =
Thermal Insulation.) 60 fire resistance standard “EN13501-
2.” T0 is set to be 5 min, which is the official response time
in China (Ministry of Emergency Management of the Peo-
ple’s Republic of China, 2018).
There are three types of fire vehicles (fire tanks, fire

trucks, powerful jet engines) and the installation costs for
one vehicle of each type are nearly $40,000, $63,077, and
$89,231, respectively. If multiple vehicles are located at a
station, the concentration of the same-type vehicles can
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TABLE 5 Algorithm performance of Gurobi and SI in the Harbin case study

Computational time limit

Algorithm
Performance
measures 1800 3600 5400 7200 9000 10,800 12,600 14,400

Gurobi Objective value 14,418.92 6401.69 1567.54 373.38 346.46 346.46 311.38 311.38
Gap 1.000 0.978 0.872 0.462 0.413 0.413 0.347 0.347
Computational time 1800 3600 5400 7200 9001 10,801 12,601 14,401
Fire damage cost 14,243.85 6211.38 1277.08 73.08 74.15 74.15 109.23 109.23
Travel cost 79.23 31.23 22.77 22.62 22.46 22.46 26.15 26.15
Installation cost 95.85 159.08 267.69 277.69 249.85 249.85 176.15 176.15
Vehicle number 30 59 96 100 92 92 65 65
Response tme 23.91 15.68 6.05 5.80 5.85 5.85 6.53 6.53

SI Objective value 327.38 327.38 306.15 302.46 298.31 294.46 290.46 289.54
Gap – 0.569 0.346 0.336 0.318 0.309 0.299 0.297
Computational time 3673 3901 5526 7308 9000 10,800 12,791 14,598
Fire damage cost 124.31 124.31 101.85 101.08 101.69 107.54 104.31 104.15
Travel cost 28.62 28.62 28.62 28.31 28.00 28.31 28.15 28.00
Installation cost 174.46 174.46 175.69 173.08 168.62 158.62 157.85 157.38
Vehicle number 66 66 66 65 64 61 60 60
Response time 5.81 5.81 5.65 5.52 5.68 5.91 5.86 5.85

reduce the installation costs. The capacity for each can-
didate fire station is set to be 4. The distances between
fire stations and incidents are measured along the short-
est path in the actual road network and then transferred to
the travel time 𝑡 ∈ {0, 1, 2, … , 76} (in minutes). The matrix
of 𝑟𝑙𝑗 ,𝑤𝑗,𝑘 in the Harbin case is shown in Table 4.

4.2 Computational results and analysis

After the computational time limit of 14,400 s is reached,
the SI algorithm provides an acceptable solution with
a gap of 29.7% and an objective value of 289.54, which
is 5% smaller than the one Gurobi provides (a near-
optimum solution with a gap of 34.7% and an objec-
tive value of 311.38). The outputs of the SI algorithm
and Gurobi and their computational times are shown in
Table 5.
In the initial stages (e.g., 1800 to 7200 s), Gurobi searches

for an optimal solution by increasing vehicle numbers
from 30 to 100, which shortens the response time from
23.91 to 15.68 min. However, the optimality gap of the solu-
tion obtained by Gurobi cannot go below 50% when the
computational time limit is less than 7200 s. In later stages,
the vehicle number decision decreases to 92 and ends with
65 with a 14,400 s time limitation. The SI algorithm, how-
ever, can efficiently estimate the number of required fire
vehicles even when the imposed computational time limit
is short (the number of fire vehicles decreases from 66 to
60 as the computational time limit increases from 1800 to

TABLE 6 Impact of the demand growth rate on the optimal
system cost and the fire vehicle number

Demand growth rate 1 2 3 4
Objective value 327.38 439.69 518.33 570.40
Fire damage cost 124.31 203.80 248.06 278.05
Travel cost 28.62 25.36 22.77 22.42
Installation cost 174.46 210.52 247.50 269.93
Vehicle number 66 80 98 105
Response time 5.81 5.39 5.09 4.97

14,400 s). Consequently, the SI algorithmcanobtain anear-
optimum solution with much less operational costs, com-
pared with the one reported by Gurobi.

4.3 Sensitivity to parameters

In this subsection, we investigate how different parame-
ter settings can affect the optimal design of the joint loca-
tion and assignment problem. The investigated parameters
are the demand growth rate, the travel cost rate, T0, and
A. In each sensitivity analysis, only one parameter varies
at a time, while other parameters are kept at their default
values.
Table 6 shows the results of the sensitivity analysis

performed on the demand growth rate. As the demand
growth rate increases within the range [1, 4] (implying a
weight growth of demand), more fire vehicles are located
to decrease the fire damage cost. Table 6 also shows that the
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TABLE 7 Impact of the travel cost rate on the optimal system
cost

Travel cost rate 0 0.5 1 1.5 2
Objective value 303.41 314.55 327.38 344.64 355.12
Fire damage cost 127.00 124.14 124.31 128.26 123.90
Travel cost 0.00 14.20 28.62 39.79 52.93
Installation cost 176.40 176.22 174.46 176.60 178.29
Vehicle number 68 67 66 67 68
Response time 5.95 5.81 5.81 5.81 5.63

TABLE 8 Impact of parameter T0 on the optimal system cost
and fire vehicle response design

T0 5 10 15 20
Objective value 327.38 238.67 164.25 138.09
Fire damage cost 124.31 64.17 31.05 21.70
Travel cost 28.62 32.72 34.04 37.79
Installation cost 174.46 141.78 99.17 78.60
Vehicle number 66 55 39 30
Response time 5.81 7.92 8.67 9.77

travel cost decreases while the installation cost increases
as the demand growth rate increases. This indicates that a
higher demand would require more fire stations to ensure
amore urgent response. Finally, the response time shows a
decreasing trend, which is the result of the higher number
of considered fire stations.
Table 7 illustrates the sensitivity analysis results of the

travel cost rate. It is shown in Table 7 that the increase in
the travel cost rate causes few fluctuations in the number of
fire stations and located fire vehicles. Further, the response
time and fire damage cost decreases with the increase in
the travel cost rate as a result of shorter travel.
Table 8 illustrates the sensitivity of the optimal system

cost to parameter T0 in 𝜋𝑗,𝑡 function. Note that a lower
value of T0 indicates that fire incidents need to be served
more urgently. Therefore, as the value of T0 increases, the
fire incidents become less urgent, and thus the number of
installed stations and located fire vehicles decreases. The
fire resource layouts with different T0 values are shown in
Figure 6.
Finally, Table 9 illustrates the sensitivity of the opti-

mal system cost to A, another parameter of the 𝜋𝑗,𝑡 func-
tion. As the value of A increases, the growth curve of 𝜋𝑗,𝑡
becomes steeper in the middle range, leading to a slower
initial loss of a fire accident. Therefore, the relaxation of
response time reduces the number of located fire vehicles
and disperse their locations. At the same time, the greater
workload of each vehicle causes an upward trend in travel
cost and response time. It can be seen that the fire devel-
opment curve is very important for the reasonable layout

F IGURE 6 Fire resource layouts with different T0 values

TABLE 9 Impact of parameter A on the optimal system cost
and fire vehicle response design

A 0.05 0.15 0.25 0.35 0.45
Objective value 2259.75 661.36 327.38 235.86 173.73
Fire damage cost 1911.89 336.96 124.31 91.37 49.50
Travel cost 22.23 22.75 28.62 32.60 33.83
Installation cost 325.62 301.66 174.46 111.89 90.40
Vehicle number 122 116 66 44 36
Response time 4.42 4.80 5.81 7.84 9.90

of fire vehicles as well as the system cost control. In the
joint location and assignment design, the fire development
function should be modeled accurately by evaluating the
characteristics of local flammable materials so that more
benefits can be obtained with fewer resources by the fire
department.
In our experiments, we also find that the solution gap of

the proposed algorithm tends to decrease gradually as the
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demand growth rate and T0 increase. This is likely since a
greater demand growth rate and T0 imply a higher weight
of fire damage cost and a smaller scale of the problem
instance, respectively. As such, the proposed algorithm
tends to cut more branches in the early stages and thus
computes with smaller sets of candidate fire vehicles when
these parameters increase.

5 CONCLUSION

This paper focuses on a joint location and assign-
ment problem, motivated by fire service practices imple-
mented for the operations of multiple professional vehi-
cles. Assuming the fire damage cannot be controlled unless
the last required fire vehicle arrives at the scene, an MIP
model is proposed to address the vehicle location problem
and vehicle assignment problem in an integrated frame-
work.
Since LR has shown to have poor performance on the

joint location and assignment problem, we develop an
SI algorithm and compare its computational performance
with a commercial solver Gurobi. Several hypothetical
example problems are applied to test the algorithm’s effec-
tiveness. The results show that the proposed SI algorithm
can obtain a near-optimal solution to the joint location and
assignment problem within a shorter time and lower opti-
mality gap, especially for large-scale networks and prac-
tical scenarios. In the Harbin case study, we optimized
the location and allocation of fire vehicles in Harbin city
based on the gathered real data from the Fire Department
of Harbin. Finally, sensitivity analyses are performed on
a series of important parameters to reveal how different
parameter values affect the optimal design.
It should be noted that the model andmethodology pro-

posed in this paper are actually quite general; it can also
be applied to other emergency location and assignment
designs with joint servers, such as the coronavirus disease
2019 response system performed by medical vehicles and
police vehicles.
Due to the high complexity of the JLAO problem, we

simplified the assumptions of the problem that could be
relaxed in future research. One of the limitations is that
the impact of different types of fire on fire development is
not considered. Fire damage cost rates for different poten-
tial hazards can be further explored formore accurate deci-
sions. Another limitation is the fixed probability assump-
tion of the incident occurrence. It can be addressed with
other more complex modeling methods (e.g., stochastic
and robust programing). Furthermore, itwill be interesting
tomeasure the impact of vehicle operational speed (caused
by vehicle types or traffic congestion) on the performance

of the proposed joint location and assignmentmodel in the
future.
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