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A B S T R A C T

Electrical vehicles (EVs) by the nature of the technology assume a dual role of supplying transportation mobil-
ity and storing electric power. Thus, the operations of EV impact both transportation and power grid systems.
This study proposes the concept of an “energy sponge” service by de‐ signing an EV sharing system serving both
a transportation system and a power market. The proposed model investigates operations of a fleet of EVs that
may opt to serve the transportation system when the transportation demand is high or return electricity to the
grid when the power price shoots high. A Markov decision model is proposed to determine the optimal policy
on time allocation of the EV fleet over the two systems. A dynamic programming algorithm is developed to
solve the model efficiently. Real‐world data on the configurations of these two markets are used to build
numerical examples. Sensitivity analyses are constructed to draw insights into the benefits and operational pat-
terns of the service. Overall, this model provides methods and insights for EV fleet managers to decide optimal
policies for allocating the EV fleet between transportation and power markets. Besides shared mobility systems,
this model also has great potential in other logistics and supply chain systems where EVs are used to deliver
goods or services.
1. Introduction and literature review

Mobility service paradigms have experienced drastic transforma-
tions in recent years. In particular, shared mobility service, recognized
as the missing link to sustainable transportation (Britton, 2000;
Bardaka et al., 2020), integrates flexibility, mobility, and accessibility
from private vehicles and economy and sustainability from public tran-
sit. Shared mobility has tremendous impacts on the environment and
society, e.g., reducing total vehicle fleets and individual ownership
costs (Martin et al., 2010) and possibly lowering vehicle kilometers
traveled and greenhouse gas (GHG) emissions Martin and Shaheen
(2011). Due to these advantages, the car‐sharing service market has
surpassed USD 2 billion in 2020 across the world (Gminsights,
2020). Successful car‐sharing business cases include Autolib, JustShar-
eIt, and Zipcar. Moreover, ridesharing has been booming in recent
years as evidenced by the rapid successes of mega transportation net-
work companies, including Uber, Lyft, and Didi.

In conjunction with mobility service shifts, vehicle technologies
have gone through several revolutions, one of which as particularly
highlighted in recent years is electrification Quddus et al. (2019);
Guo et al. (2017). Electrical vehicles (EVs) have grown rapidly in
recent years, primarily due to their low operating costs, high energy
efficiency (Thiel et al., 2010), and reduced emission pollutants (Juul
and Meibom, 2011). The number of global EVs has increased from
1.2 million to 6.8 million in the past five years (Statista, 2020). Based
on the forecast by Becker et al. (2009), by 2030, EVs will account for
64% of U.S. light‐vehicle sales, comprise 24% of the U.S. light‐vehicle
fleet, and result in a 20–69% decline in GHG from U.S. light‐vehicles.
Intensive research efforts have been made recently in several direc-
tions including charging station deployment (Asamer et al., 2016;
Chen et al., 2016b; Yi and Bauer, 2016; Tu et al., 2016; Li et al.,
2016a; Huang et al., 2015; Li et al., 2016b) and joint routing and
charging operations (Wang et al., 2017; He et al., 2014; Alizadeh
et al., 2014; Yin et al., 2009; Ukkusuri et al., 2007; Gardner et al.,
2013; Siddiqi et al., 2011) for EV systems. Due to these advantages,
several shared mobility systems (e.g., Uber and Zipcar) have adopted
EVs in their vehicle fleets. This paper will focus on operational policies
for an electric vehicle sharing system.

Operations of a shared mobility system are largely affected by
transportation demand fluctuations over time. On the one hand, the
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idle time of shared vehicles decreases with the demand level increase,
and a higher demand usually means higher utilization rates of shared
vehicles. Therefore, demand variations usually lead to revenue fluctu-
ations. On the other hand, demand variations are often associated with
surge pricing that is particularly prevailing in the shared mobility mar-
ket (Bai et al., 2017; Cachon et al., 2017; Guda and Subramanian,
2017; Taylor, 2017; Bimpikis et al., 2016; Gardner et al., 2010), i.e.,
higher transportation demand often triggers higher unit transportation
price Nie and Liu (2010). Obviously, in addition to demand‐volume‐
induced profit changes, surge pricing further amplifies revenue fluctu-
ations of a shared mobility system. For example, the 20‐minute rev-
enue per vehicle in the New York taxi system varies widely between
$4.5 and $8.5, as Fig. 1 shows.

Note that a large fleet of shared vehicles is actually EVs, simply
because the environmental and social benefits of shared mobility can
be further enhanced by the above‐stated advantages (Green, 2009;
Ford, 1995). Operations of EV sharing have drawn increasing attention
from researchers, and a number of studies on this topic have been con-
ducted (He et al., 2013; Asamer et al., 2016; Chen et al., 2016a; Yi and
Bauer, 2016; Tu et al., 2016; Li et al., 2016a; Huang et al., 2015). EVs,
as massive “moving batteries”, also have a huge potential of serving
the power market, particularly when they are subject to centralized
dispatches in a shared mobility system. In fact, the power market is
in great need of ancillary power supplies, primarily due to frequent
and wide power price oscillations over the course of the day. Fig. 1
shows an example of power price variations over the course of a day
in New York City. We see that the price changes rapidly across differ-
ent hours. Therefore, it might be profitable to charge EVs from the grid
during an off‐peak price time and discharge them to the grid during a
peak price time, as referred to in the vehicle‐2‐grid (V2G) technology
(Sundstrom and Binding, 2012; Gao et al., 2014; Parsons et al., 2014;
Sovacool et al., 2017; Chen et al., 2016a). Researchers outside of trans-
portation engineering have investigated this opportunity of regulating
EV charging and discharging activities to capitalize on power price
variations in recent years (Du et al., 2016; He et al., 2012; Cao
et al., 2012; Koyanagi and Uriu, 1998; Ortega‐Vazquez et al., 2013).
The integration of transportation services and ancillary power supply
in an EV sharing system is relatively new. It is an indisputable fact that
EVs assume a dual role of both supplying transportation mobility and
storing electric power, and thus hold promise for composing an “en-
ergy sponge” service interfacing with both transportation and power
grid systems. By examining fluctuations in transportation revenue
and electricity rates (Fig. 1, some interesting complementary patterns
Fig. 1. 20-minute revenue per vehicle of the New York City taxi system in 01/
01/2016 (NYC, 2016) and electricity rates in New York City in 01/01/2016
(Pjm, 2016).
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are observed during certain time intervals. For example, in the after-
noon, the power price is relatively low and the transportation revenue
has high spikes, and thus the EV sharing system can opt to serve the
transportation system for a possible higher profit during this time.
Whereas in the evening, the power price has ramped up while the
transportation revenue declines to a low level, and the EV sharing sys-
tem can switch to the power market (i.e., discharging to the grid)
instead. By dynamically switching between the two markets, the EV
sharing system not only maximizes its own profit but also balances ser-
vice and resource supplies in both markets for better overall social wel-
fare. Ren et al.(2019) predicted station‐level travel demand and
proposed an electric vehicle sharing network to address the vehicle
unbalancing issue while satisfying vehicle charging and discharging
needs. Zhang et al. (2021) constructed a space‐time‐electricity‐
expanded transportation network and optimized the operations of
shared electric vehicle fleets. Different operations were incorporated
including serving travel demand, rebalancing vehicle distribution,
staying idle, charging, and discharging. Jiao et al. (2021) investigated
a robust model to optimize electric vehicle charging and discharging
schedules. With a distributed framework, the proposed model
addressed operational uncertainties, e.g., travel demand, without
requiring the full data distribution. Caggiani et al. (2021) developed
an electric vehicle relocation strategy considering vehicle charging
and discharging operations in a vehicle‐to‐grid framework. While the
existing studies provide insights in devising shared EV operations, they
usually assume a deterministic electricity price. This assumption
makes the problem tractable yet cannot capture the stochastic nature
of the electricity price. The resulting model is not realistic and the find-
ings may be impractical. As a result, a stochastic approach is needed to
address this limitation.

This paper proposes an “energy sponge” concept and implements it
in an EV sharing system. This investigated problem is deciding the
optimal time allocations of a fleet of shared EVs on the transportation
system and the power market to maximize the total profit while con-
sidering the electricity price stochasticity. This problem is formulated
into a Markov decision problem (MDP) and we solve this problem with
an efficient dynamic programming (DP) algorithm (Mahmoudi and
Zhou, 2016). We also propose a data‐driven approach to extract input
parameters from real‐world taxi data and power price logs. With this
approach, numerical examples are constructed based on real‐world
taxi trip data and power price history in New York City. These exam-
ples are solved with both Gurobi, a commercial integer programming
solver, and the proposed DP algorithm. The results show that while the
Gurobi takes a relatively long solution time (e.g., tens of minutes) and
often cannot obtain the exact solution within the time limit, DP always
solves the exact optimum in a very short time (e.g., at most a few sec-
onds). Sensitivity analysis is also conducted to examine how the solu-
tion changes with variations of key parameters. The outcomes from
this study provide useful methods and interesting insights into allocat-
ing an EV fleet between the transportation and power markets, which
will be helpful to fleet managers in determining the most profitable
policies in EV operations. Further, the interface between transporta-
tion and power will increase the profitability of the service, e.g., by
over 40% in nominal conditions. Although this study focuses on opti-
mizing the operation of shared EV fleets, the proposed methodology is
not limited to solving EV sharing problems, it also has great potential
in other logistics and supply chain systems where EVs are used to deli-
ver goods or services.

The remainder of the paper is organized as follows. Section 2
describes the problem setting and formulates the integer programming
model. Section 3 describes the dynamic programming algorithm for
solving the proposed model. Section 4 proposes the parameter extrac-
tion methods and conducts numerical examples with real‐world data.
Section 5 concludes the paper and discusses possible future research
directions.



Fig. 2. State of the proposed network.
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2. General problem formulation

For the convenience of the readers, the major parameters and vari-
ables in this study are listed in Table 1. We consider a problem of
managing an EV fleet in a finite operational horizon of I time points,
indexed as I ¼ 1;2; :::; If g. For example, I can be a day with 24
hourly time points, i.e., i∈I ¼ 1;2; :::;24f g. At each time point
i∈I, we need to decide whether to let the fleet serve the transporta-
tion system, charge from the power grid (to recover the SoC), dis-
charge to the power grid (to gain revenue from selling electricity to
the grid), or stay idle, as illustrated in Fig. 2. Note that we view the
fleet as a whole unit and we do not consider the split of the vehicles
across different markets (or states) at the same time interval. Although
this setting may lose some optimality of the operational revenue as
opposed to individual vehicle decisions, it helps the analysis focus
on the concept of the “energy sponge” service and draws insights into
relevant operational policies. Let L denote the initial full state of
charge (SoC) of the EV fleet and f i denote the fleet SoC at each time
point i.

Without loss of generality, we only consider integer SoC levels. In
this study, we assume that the availability of EV charging/discharging
stations is high, and the access time to a station anytime anywhere is
negligible compared to a time interval duration. With this, the
cost/revenue from charging/discharging decisions are additive across
time points. Following most practices, we assume that the fleet SoC is L
at the beginning and the end of the operational horizon (e.g., a day)
and it has to be maintained between 0 and L during the horizon.
Let dþ denote the EV charging rate for every time interval
i; iþ 1½ �; 8i∈I; i.e., the vehicle’s fleet SoC fiwill raise by dþ after being
charged for a time interval i; iþ 1½ �; 8i∈I until reaching full SoC L. We
consider a time‐varying and stochastic EV charging cost that is
assumed to be known at the beginning. Denote the cost to charge
the fleet during the time interval i; iþ 1½ �; 8i∈I as ci. We assume that

ci follow a Poisson distribution: ci∼λci ;P ci ¼ kð Þ ¼ λci
� �ke�λci

� �
=k!;

k∈ 1; � � � ;1½ �, where λci denotes the expected cost of charging during
the time interval i; iþ 1½ �; 8i∈I. Similarly, we let d� denote the SoC
decreasing rate for every time interval i; iþ 1½ �; 8i∈I when the EV
fleet is put to serve the power grid by discharging electricity to the
Table 1
Notation for key variables and parameters.

Parameters Definition

I Set of time points, I ¼ 1; :::; i; :::; If g
Ji Set of transportation service durations,

Ji ¼ 1; 2; :::; j; :::;min J; I � if gf g
dij Energy consumption for the fleet to serve demand during the time

interval i; iþ j½ �;8iþ j∈I; 8i∈I; 8j∈J

Ii Set of time point and transportation service duration pairs
(i0 ∈I; j0 ∈J) such that the fleet will serve the transportation system
at time point i; i.e., Ii :¼ i0; j0 ji0 ∈I; j0 ∈J; i0 ≤ i≤ i0 þ j0 � 1ð Þ;8i∈I

bij Revenue of serving the transportation system during the time interval
i; iþ j½ �; 8iþ j∈I;8i∈I;8j∈J

ci Charging cost during the time interval i; iþ 1½ �;8i∈I

si Revenue of discharging during the time interval i; iþ 1½ �;8i∈I

dþ Increase of state of charge (SoC) when charging in every time interval
i; iþ 1½ �; 8i∈I

d� Decrease of SoC when discharging in every time interval
i; iþ 1½ �; 8i∈I

L Initial SoC of the EV fleet

Variables
xij Whether choose to serve the transportation system during the time

interval i; iþ j½ �;8iþ j∈I; 8i∈I; 8j∈J

yi Whether to charge the fleet at time point i, 8i∈I

zi Whether to discharge the fleet at time point i, 8i∈I

f i SoC at time point i, 8i∈I
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grid. Let si denote the stochastic revenue of discharging from time
point i to time point iþ 1 or during the time interval i; iþ 1½ �; 8i∈I.
Again, we assume that the revenue of discharging si follows a Poisson

distribution si∼λsi ; P si ¼ kð Þ ¼ λsi
� �ke�λsi

� �
=k!; k∈ 1; � � � ;1½ Þ where λsi

denotes the expected revenue of discharging during the time interval
i; iþ 1½ �; 8i∈I.

Further, when we decide to dispatch the EV fleet to serve travel
demands, note that the corresponding revenue, unlike the discharging
service, is not necessarily additive across time intervals. This is
because some trips in the transportation system may be comparable
or longer than one time interval i; iþ 1½ �; 8i∈I, which will restrict
the trips the fleet can serve if the fleet is allocated to the transportation
system just for a short period. Further, the waiting times in between
trips may also affect the revenue. Therefore, the average revenue per
time interval might be different across different service durations,
and thus the transportation revenue cannot be simply separated and
become independent across time intervals as the discharging revenue.
To address this issue, we define a specific revenue for each possible
service duration for travel demands in a transportation system. Let
Ji :¼ 1;2;3; :::j; :::;min J; I � if gf g be the set of all possible service
durations at time point i. J can be set to a number such that most trip
durations are much less than J time intervals, and at the scale of this
duration, the revenue of serving travel demands can be separated
without much error. Define dij and bij as the corresponding energy con-
sumption and the stochastic revenue to serve travel demands starting
from time point i to time point iþ j, or during the time interval i; iþ j½ �.
Similarly, we assume that the revenue of serving travel demands bij

follows a Poisson distribution: bij∼λbij;P bij ¼ k
� � ¼ λbij

� �k
e�λbij

� �
=k!;

k∈ 1; � � � ;1½ Þ, where λbij denotes the expected revenue of serving travel
demands during the time interval i; iþ j½ �; 8iþ j∈I; 8i∈I; 8j∈J.

To establish an MDP model, we firstly define the state network
¼ i; fð Þ , which is the combination of time point i and the SoC level
of the EV fleet f ∈ 1; L½ �. We further define the state transition action
as a ¼ s; s0ð Þ ¼ i; f ; i0; f 0ð Þ. An example of state transition from time i
to i0 is shown in Fig. 2. The corresponding action reward for action
a∈A sð Þ is denoted as r að Þ. Therefore, for charging operation the tran-
sition action is a ¼ ac ¼ i; f ; iþ 1; f þ dþ

� �
and the corresponding

reward is r acð Þ ¼ ci. Similarly, the discharging action is
a ¼ ad ¼ i; f ; iþ 1; f � d�ð Þ and the reward is r ad

� � ¼ si. The action
of serving travel demand for time length j∈J is
a ¼ at ¼ i; f ; iþ j; f � dij

� �
and the reward is r atð Þ ¼ bij. Moreover, the

action of staying idle is a ¼ a0 ¼ i; f ; iþ 1; fð Þ and the reward is
r a0ð Þ ¼ 0.

With a given state distribution θs; s∈ S, a parameterized stochastic
policy πθ ajs; θsð Þ is defined as the probability that action a is chosen.
An exponential softmax distribution is applied to calculate the policy,
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πθ ajs; θsð Þ ¼ exp θs � ρað Þ
∑a0 ∈A sð Þexp θsρa0ð Þ ; ð1Þ

where ρa is the rate of the current action a and ρa0 is the rate of the pre-
vious action a0 . For the action of rebalancing distribution or serving tra-
vel demand, the rate is ρar ¼ λi;j;t . For the action of charging, the rate is
calculated as ρac ¼ Ci=Δ� λci;t . Similarly, the rate for discharging action

is calculated as ρad ¼ Di=Δ� λdi;t .

The proportion of time that vehicles spend in the state s0 with pol-
icy πθ is formulated as ηs ¼ ∑s0 ∈ Sηs0∑aπθ ajs0 ; θs

� �
p s; rjs0 ; a� �

where
p s; rjs0 ; a� �

is the probability of transition from state s0 to state s with
action a and reward r. By parameterizing the time distribution, the
on‐policy distribution should be the fraction of time spent in each state
to the sum of time spent in all states: μs ¼ ηs

∑s∈ Sηs
. The average reward

thus can be calculated as follows (Sutton and Barto, 2017).

r πθð Þ ¼ ∑s0 ∈ Sμs0 ∑a∈A sð Þπθ ajs; θsð Þ∑s0 ∈ S;rp s; rjs0 ; a� �
r að Þ: ð2Þ

To maximize the average reward, the differential action‐value func-
tion is needed to calculate the gradient of Equation (7). It can be cal-
culated by solving the following Bellman’s equation (Sutton and Barto,
2018).

qπθ s; að Þ ¼ ∑r;s0 p s; rjs0 ; a� �
r að Þ � r πθð Þ þ∑a0πθ a

0 js0 ; θs0
� �

qπθ s0; a0ð Þ� 	 ð3Þ

where qπθ s; að Þ and qπθ s0; a0ð Þ are the expected differential returns of pol-

icy π for state‐action pair s; að Þ and s0 ; a0� �
, respectively.

The gradient is calculated as follows.

rJ θsð Þ ¼ ∑sμ sð Þ∑aqπθ s; að Þrπ ajs; θsð Þ ð4Þ
The gradient is updated iteratively at each iteration ,

θkþ1
s ¼ θks þ αkrJ θkS

� � ð5Þ
To compute rJ θð Þ, we need the gradient of the softmax function

π ajs; θsð Þ, which is the partial derivative of the policy probability cor-
responding to the input s, which can be updated with the algorithm
proposed in the next section.
3. Algorithm

We propose a customized dynamic programming (DP) method that
is shown to be able to obtain the optimal state value and the optimal
solution efficiently, even for large‐scale instances. To apply DP to the
proposed MDP model, we set each time point i∈I as a decision stage.
At each stage i, with the state s ¼ f i and the active space a∈A sð Þ, the
state transition from stage i with state s ¼ f i with action a∈A sð Þ to
s0 ¼ f iþj at stage iþ j is essentially determined by the change of SoC
as written in the following state transfer function:

s0 ¼ f iþjjs ¼ f i; a∈A sð Þ ¼

min f i þ dþ; L
� 	

; if a ¼ ac;
f i � d�; if a ¼ ad;

f i; if a ¼ a0;
f i � dij; if a ¼ at ;

8a∈A sð Þ

8>>><
>>>:

ð6Þ

Without the loss of generality, we set the final state s ¼ f I is L in
stage I, we may need to further reduce the action space as follows:

A s ¼ f Ið Þ ¼ a ¼ i; f ; iþ j; f 0
� �

∈A s ¼ f ið Þjf 0 ¼ L; if iþ j ¼ I
� 	 ð7Þ

Besides, without the loss of generality, we set the state at time point
i ¼ 0 as s ¼ f 0 ¼ L. The state spaces in the remaining stages can be
obtained with the following iterative state search (SC) algorithm:

SC‐0: Set s ¼ f 0 ¼ Lf g; s ¼ f i ¼ ∅; 8i∈I and ¼ 0 .

SC‐1: For each s ¼ f i ∈ S; a ¼ i; f i; iþ j; f iþj

� �
∈A sð Þ; add s ¼ f iþj

into .
4

SC‐2: If i < I, update i ¼ iþ 1 and repeat SC‐1; otherwise, return
with θs; s ¼ f I ¼ L .

Note that due to the definition of A að Þ and Equation (7), the SC
algorithm always yields f I ¼ L. With this, the associated benefit for
each action in stage i is formulated as

r að Þ ¼

�ci; if a ¼ ac;
si; if a ¼ ad;
0; if a ¼ a0;
bij; if a ¼ at ;

8 action; jð Þ∈Ai; i∈IfI

8>>><
>>>:

ð8Þ

Let Bi sð Þ be the optimal cumulative benefit from stage i through
stage I conditioning on the stage at stage i is s ¼ f i, then with the cor-
responding Bellman equation, this problem can be solved with the fol-
lowing backward iteration (BI) algorithm:

BI‐0: Set BI Lð Þ ¼ 0 and ¼ I � 1.
BI‐1: Solve the following Bellman equation,

Bi s ¼ f ið Þ ¼ max
a∈A sð Þ

r að Þ þ Biþj f iþj

� �
ja ¼ i; f i; iþ j; f iþj

� �n o
; 8s ¼ f i ∈ S

Let a�i Bi;Biþj
� �

denote the optimal solution to the above equation.
BI‐2: If i >0, update i ¼ iþ 1 and repeat BI‐1; otherwise, initialize

optimal decision set A� and go to the next step to use a backward
search to pinpoint the series of the optimal states and actions.

BI‐3: Initialize the last state, optimal objective, and stage
i0 ¼ I; s ¼ f I ¼ L; Bi Lð Þ; i0 ¼ I.

BI‐4: Get the last decision in a�i Bi;Bi0ð Þ, and append it into a set A*.
BI‐5: If i > 0, repeat BI‐4; otherwise, return Bi Lð Þ as the optimal

objective and A* as the optimal decision, where each element a∈A
denotes that at stage i, the optimal SoC is s ¼ f and the optimal action
is a*.

4. Case studies

This section applies the proposed model to case studies with real‐
world shared mobility data. Section 4.1 describes the method on
how to extract the parameters by processing real‐world dis‐
aggregated taxi and power data. Section 4.2 compares the DP algo-
rithm’s performance with a commercial solver. Section 4.3 shows the
detailed time allocation solutions for two benchmark instances. Sec-
tion 4.4 conducts sensitivity analysis to draw insights into how param-
eter values affect the optimal operational policy. It is noted that the
proposed approach does not limit to a specific EV sharing system,
the presented procedure can be applied to any real‐world instance as
long as the required data is available.

4.1. Data-driven based simulation and computational environment

This section describes the procedure to obtain the parameters.
Instead of making simple assumptions on the values of parameters,
we set the values by processing massive real‐world data. As we obtain
demand revenue in the time dimension, we need to ensure that the
spatial distribution of real‐world travel demands is consistent with
the values of transportation revenue parameters. To this end, we pro-
pose a data‐driven‐based EV sharing simulation method to prove the
external validity of the revenue estimation.

The first data set is a set of trip records collected in the Taxicab &
Livery Passenger Enhancement Programs for New York City (NYC) in
January 2016. The investigated time horizon I is set to be a period
within this month. This dataset is used to extract transportation rev-
enue matrix bij


 �
and electricity consumption matrix

dij

 �

; 8i∈ I; 8j∈ J. Since we intend to investigate an EV sharing system,
we treat each taxi as an EV. The data set contains a total of 10,906,858
trips, denoted as P, from a group of 13,587 yellow cab taxis. For each
trip p∈P, it records the pickup time, pickup location, drop‐off time,
drop‐off location, and the corresponding taxi fare. Let t0p ; t

1
p denote
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pickup time and drop‐off time. For a trip p associated with time win-
dow i; iþ j½ � (or window ij for short), there are three possible cases:
(i) admissible to window ij if this trip is completely enclosed within
this window, i:e:; i≤ t0p ; t

1
p ≤ iþ j ; (ii) intersecting with window ij if it

crosses one window border, i.e., t0p < i < t1p ≤ iþ jori≤ t0p < iþ j < t1p ;
or (iii) passing window ij if t0p < iandiþ j < t1p . Note that if we decide
to dispatch the EV fleet to server travel demand in window ij in the
proposed model, they can only serve trips admissible to window ij,
and thus the relevant cost and revenue shall be referred only from
these admissible trips. Let Pij denote the set of all admissible trips to
window ij. We assume that if the EV fleet is dispatched in window ij,
they can only serve trips inPij but not other trips, even those intersect-
ing with window ij. For each trip p∈Pij, we have the corresponding
taxi fare in the data set, denoted by vp, and the corresponding driving
cost, denoted as v0p . This information is extracted from (NEWSROOM,
2016). With this, revenue bij can be estimated as the average revenue

of admissible trip set Pij during window ij, i.e., ∑p∈Pij
vp � v0p

� �
=jPijj:

Based on the trip distance hp for each trip p ∈ P in the data set, we
can easily calculate the average trip distance within time window ij,

i.e., h
�
ij ¼ ∑p∈Pij

hp=Pij. For illustration purposes, we assume the config-

urations of an EV are the same as the Tesla Model S. Then with Tesla
Model S’s energy consumption rate per mile provided by the Environ-
mental Protection Agency (Wikipedia, 2021), we can obtain dij as a
product of this rate and the hij length.

To prove the external validity of demands revenue, we reproduce
travel demands in NYC and simulate EV operations to serve the
demands and calculate the average demand serving revenue. In the
simulation system, we deploy a fleet of 3000 EVs in New York City
to serve travel demands. The demand data are collected in the Taxicab
& Livery Passenger Enhancement Programs for New York City (NYC)
(NYC, 2016) on January 01, 2016. The time interval is 10 mins
between each two consecutive time points i; iþ 1½ �; 8i∈I. The loca-
tion data of charging stations in NYC are extracted from OpenData
(NYC Open data, 2016). We consider the set of transportation service
duration Ji at each time point i as Ji ¼ 1;2;3;4;5;6f g; 8i∈I. In the
beginning, the fleet of EVs is randomly distributed in charging sta-
tions. To estimate the average revenue of serving travel demands for
a transportation service duration j∈Ji, the fleet will serve travel
demands in Pij, the set of all admissible trips in window ij. For each
demand, it will be served by the nearest EV. If there are idle EVs at
a certain time window ij, they will rebalance to the nearest charging
stations and charge until the SoC of the EV reaches its capacity L or
until time point iþ j. In case that the SoC of an EV is less than 20
kWh, it will rebalance to charge for a time duration j in the nearest
charging station. To estimate the average revenue to serve travel
demands dij in time window ij, we calculate the sum of the revenue
of the fleet in time window ij and divide it by the fleet size 3000.
We operate the system 20 times and take the average value of dij.
The resulting dij is $14.332 while the average revenue calculated from
the original dataset is $14.858. The small difference verifies the effec-
tiveness of the above configuration.

The second data set is the electricity rates in New York City, Jan-
uary 2016 (Pjm, 2016). This dataset together with the charging and
discharging rates of Tesla Model S yields charging cost ci and discharg-
ing price si for each interval i; iþ 1½ �; i∈I. We can also obtain the
increase of SoC for charging in one time interval, dþ, and the decrease
of SoC for discharging at one time interval, d�, and the initial battery
level L .

Note that with different time discretization intervals and time hori-
zon durations, we can populate data sets of different sizes. In the fol-
lowing experiments, we vary the discretization interval from 5 to
30 min and the time horizon from one day to the full month to gener-
ate a series of instances.
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4.2. Model performance

In this section, we analyze the performance of the DP method pro-
posed in Section 3. The algorithm is implemented with the Python lan-
guage on a computer with a 3.60 GHz CPU, 16.0 GB RAM, and the
Windows 7‐x64 OS. We build the model with the data sets populated
in Section 4.1. The results are summarized in Table 2. The considered
time interval, denoted by t0 is 5 min, 10 min, 15 min, 20 min, and
30 min in time horizon T for 1, 2, 7, 15, 30 days. Therefore, the num-
ber of time intervals I is equal to T � 24� 60=t0. As more than 95% of
travel demands are completed in 60 mins, we set the maximum travel
demand serving time as 60 min. In the table, we see that when the
instance size increases, the DP solution time increases linearly and
yields the optimal solution below one second for most cases and
always no greater than 7 s. Overall, the proposed DP method can effi-
ciently solve the problem and correspond to a more detailed represen-
tation of system dynamics and more flexible service options for the EV
sharing system.

4.3. Comparison with benchmark

4.3.1. Comparison of time allocation solutions
In this section, we test the time allocation solutions to two bench-

mark instances by varying the revenue of serving the transportation
system and the price of electricity in the power system. We set the
default value of the time interval as 10 min and the time horizon as
30 days. In Fig. 3, we show the optimal time allocations at the first
24 time points in different scenarios. The choices of charging, dis-
charging, serving the transportation system, and staying idle are
labeled as Sc; Sd; St and Si respectively.

In Fig. 3(a), we test the time allocation solution to instances with
different revenue profiles of serving the transportation system. In the
figure, the scenarios are populated by artificially varying the revenue
profiles in the following way. We define the mean and variance coef-
ficients of the revenue profile as rb with a default value of 1 and vb with
a default value of 250, respectively, and then populate these scenarios
with the following formula with various rb and vb:

b
0
ij ¼ max 0; rb �mb þ εij vb

� �� vb
� 	

; 8i∈I; j∈Ji;

where mb is the mean of the original transportation revenues,

mb ¼ ∑i∈I;j∈Ji
bij

I�J ; εij vb
� �

is a number randomly populated following the
Poisson distribution with variance vb (and thus {εij vb

� �
} values across

different indexes are populated independently), and we use the func-

tion max {} to ensure populated revenue b
0
ij

n o
values being positive.

In these instances, we choose rb among {0.1, 1, 2.5} and vb among
{0, 250, 500} 2Þð to explore the impacts of different magnitudes and
variances of transportation revenues (here, the mean transportation
revenue mb is 13.57 ($) and variance values are set compatible to
the default variance of revenue series {bijg; i∈I; j∈Ji, 247.32 ($)).
With this, in instances ‘RS’, ‘LT’, ‘HT’, ‘LTV’, ‘HTV’, the values for
(rb; vb) are set to (1, 250), (0.1, 250), (2.5, 250), (1, 0) and (1, 500),
respectively, and the default {bijg values are replaced with the corre-

sponding b
0
ij

n o
values in each instance. This way, instance ‘RS’ cap-

tures the default transportation revenue scenario; instances ‘LT’ and
‘HT’ capture low and high transportation revenue scenarios, respec-
tively; and instances ‘LTV’ and ‘HTV’ capture low and high transporta-
tion revenue variance scenarios, respectively.

Compared with benchmark instance ‘RS’, instances ‘LT’ and ‘LTV’
have shorter times allocated to the transportation system while
instances ‘HT’ and ‘HTV’ have longer transportation service times,
which indicates that the transpiration service time allocation increases
with the transportation revenue magnitude and the variance of trans-
portation revenues. A higher mean indicates a higher revenue per unit



Table 2
Comparison between dynamic programming and Gurobi.

Time horizon T (day) Time interval t0 (min) Solution time (sec) Cc ($) Bd($) Bt($) B($)

1 30 0.01 11.98 26.23 114.82 129.07
1 20 0.02 13.30 29.98 142.83 159.51
1 15 0.03 11.85 11.88 184.12 184.14
1 10 0.07 13.56 0.00 240.13 226.57
1 5 0.22 21.57 0.00 383.19 361.61
2 30 0.02 21.05 39.47 244.99 263.41
2 20 0.06 26.79 61.21 294.38 328.81
2 15 0.05 22.65 11.88 387.98 377.20
2 10 0.11 26.92 0.00 489.81 462.88
2 5 0.40 43.29 0.00 767.01 723.72
7 30 0.06 130.45 418.34 673.44 961.33
7 20 0.17 167.81 660.25 730.61 1223.05
7 15 0.21 157.02 555.87 950.42 1349.27
7 10 0.45 144.16 308.96 1431.97 1596.77
7 5 1.50 185.47 0.00 2712.56 2527.09
15 30 0.15 283.26 913.84 1443.64 2074.22
15 20 0.28 374.57 1494.52 1522.58 2642.54
15 15 0.49 335.76 1154.31 2089.75 2908.29
15 10 1.00 310.06 662.33 3127.68 3479.95
15 5 3.05 408.42 116.39 5708.48 5416.44
30 30 0.27 483.78 1489.69 2960.81 3966.72
30 20 0.54 620.13 2270.32 3412.32 5062.51
30 15 0.87 532.70 1469.46 4712.39 5649.15
30 10 1.83 510.45 680.25 6722.55 6892.35
30 5 6.30 768.48 123.32 11795.20 11150.03

Fig. 3. Comparison of time allocation solutions: (a) varying transportation revenues; and (b) varying electric prices.
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time, which intuitively draws longer transportation service times.
When the variance is higher, the fleet may find more time intervals
where the transportation revenues are higher than the power market
returns and thus are more prone to the transportation market.

Fig. 3(b) shows the time allocation solutions to instances with dif-
ferent mean and variance values of electricity rates. We denote the
mean and variance of the electricity rates as me with a default value
of 30 ($/KWh) and ve with a default value of 200 ($2/KWh2), respec-
tively. Then these scenarios are populated with the following formula
with various me and ve values:

pei ¼ max 0;me þ εi veð Þ � vef g;8i∈I;

where pei is the electricity rate at time point 8i∈I; εi veð Þ is a number
randomly populated following the Poisson distribution with variance
ve and function max{} is used to ensure pei is positive. In these instances,
we choose me among {20, 30, 40} and vb among {0, 200, 400}($2) to
explore the impacts of different magnitudes and variances of electricity
rates. With this, in instances ‘RS’, ‘LE’, ‘HE’, ‘LEV’, ‘HEV’, the values for
(me; ve) are set to (30, 200), (20, 200), (40, 200), (30, 0) and (30, 400),
respectively, and the default sif g and cif g values are replaced with the
corresponding pei

� 	
values in each scenario. This way, instance ‘RS’ cap-

tures the default electricity rate scenario; instances ‘LE’ and ‘HE’ cap-
ture low and high electricity rate scenarios, respectively; and
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instances ‘LEV’ and ‘HEV’ capture low and high electricity rate variance
scenarios, respectively.

Comparing with benchmark instance ‘RS’, we see that the numbers
of time intervals that the EV fleet is discharging in instances ‘LE’ and
‘HE’ are similar. However, instance ‘LEV’ has a shorter discharging
time, and instance ‘HEV’ has a longer discharging time than instance
‘RS’. It is interesting to note that the mean of electricity rates does
not likely influence the optimal time allocation. Actually, the increase
in the mean electric price indicates that both charging cost and dis-
charging income increase at the same magnitudes across all times, thus
they offset each other during repeated discharging charging cycles –

the fleet is not better off from a longer discharging, which has to be
followed by a longer charging to maintain the power conservation in
a long run. Whereas the variance of electricity rates obviously influ-
ences the optimal time allocation, as the fleet finds more opportunities
for discharging at relatively high sale prices and charging at relatively
low costs when the variance of electricity rates is higher.
4.3.2. Comparison of optimal total profits
In this section, we compared the optimal total profits of the EV

sharing fleet providing discharging services with the optimal total
profits of the EV fleet not providing discharging services to the power
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system. We set a time interval as 10 min and the time horizon as
30 days.

As shown in Fig. 4, we vary four crucial parameters in the system to
compare the optimal total profit (denoted by Bdis) of the “energy
sponge” service (i.e., with discharging services) and that (denoted by
Bnodis) of the traditional shared EV service (i.e., without discharging
services). These four figures obviously show that the “energy sponge”
service can always yield much more profit at all parameter settings.
For instance, as Fig. 4(c) shows, in nominal conditions, the “energy
sponge” service improves the profit by over 40% on average. In
Fig. 4(a), as transportation revenue mean coefficient rb increases from
0.1 to 2.5, we see both services yield higher profits, yet their difference
remains approximately the same. While increasing the transportation
revenue obviously raises the total system profit, it is interesting to
see that the profit difference is insensitive to the profitability of the
transportation market alone. This indicates that even when the trans-
portation market is quite profitable, introducing the “energy sponge”
service remains beneficial. In Fig. 4(b), as the variance of the trans-
portation revenue vb increases from 0 to 500 ($2), both services have
higher profits and their difference slightly increases as well. This indi-
cates that it will be even more profitable to serve both transportation
and power systems when the transportation market is more volatile. In
Fig. 4(c), as the mean of electric rates me increases from 20 to 40 ($/
KWh), the profits from both systems remain stable. This indicates that
the profitability of both services is robust against systematic changes in
the average electricity price. In Fig. 4(d), as the variance of electricity
rate ve increases from 0 to 400 ($2/KWh2), we see that while the tra-
Fig. 4. Comparison of optimal total profits: (a) varying magnitude of transportatio
electric prices; and (d) varying variance of electric prices.
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ditional shared EV service is not much impacted, the profit of the “en-
ergy sponge” service keeps increasing. This is because when the
electricity rate varies more, there are more opportunities for the fleet
to charge at lower costs and discharge at higher prices. It implies this
new service will become more attractive as the power market gets
more volatile.
4.4. Sensitivity analysis

In this section, we conduct the sensitivity analysis to test how the
optimal time allocation and the optimal benefit change with different
settings of transportation revenues and electricity rates. The default
parameter values are consistent with Section 4.3. We set the time
interval as 10 min and the time horizon as 30 days. The optimal time
allocation solutions and revenue are shown in Fig. 5.

In Fig. 5(a and b), we test the influence of the magnitude of trans-
portation revenues and set rb from 0.1 to 2.5. We see that the trans-
portation service duration and the corresponding revenue both
increase as rb grows. Again, this result verifies that a higher trans-
portation revenue magnitude will make the transportation market
preferable for longer times over the power market.

In Fig. 5(c and d), we vary the variance of transportation revenues
vb from 0 to 500 ($2). We see that as the EV vb increases, the EV fleet
serves the transportation system for a longer time while discharging
for a shorter time, and the overall transportation revenue and the total
benefit grow up. This again confirms that a higher transportation vari-
n revenues; varying variance of transportation revenues; (c) varying mean of



Fig. 5. Sensitivity analysis. (a), (b) varying magnitude of transportation revenues; (c), (d) varying variance of transportation revenues; (e), (f) varying mean of
electric prices; (g), (h) varying variance of electric prices.
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ance creates more opportunities to profit greater from the transporta-
tion market.

In Fig. 5(e and f), we change the mean of electricity rates me from
20 ($/KWh) to 40 ($/KWh). When me increases, the time allocations
of different services do not change obviously and the total benefit nei-
ther varies much. The charging cost and the discharging revenue
increase because of increased electricity rates. This shows that an over-
all shift of electricity rates does not much influence the optimal time
allocation and the total benefit, again, due to the lack of creating elec-
tric price discrepancies across different times.

In Fig. 5(g and h), we change the variance of electricity rates ve
from 0 to 400 ($2/KWh2). It is shown that the EV fleet discharges
for a longer time and serves transportation for a shorter time when
ve increases, and the overall discharging revenue and the total benefit
increases with ve. This is consistent with the finding that a higher elec-
tric price variance creates more opportunities for higher electricity sale
prices and cheaper charging costs across different times.

5. Conclusion and future research

This paper proposes the concept of an “energy sponge” for an EV
sharing system that enables this system to serve both transportation
and power markets. This concept can improve the carsharing system’s
profitability by taking advantage of dynamics in both transportation
and power markets. To realize this concept in time allocation decisions
in an EV sharing system, we formulate an integer programming model
and propose an efficient dynamic programming algorithm to solve it.
We also propose a novel method to extract model input parameters
from real‐world data. The numerical example shows the high effi-
ciency of the proposed DP algorithm regarding the solution time and
the precision of optimal solutions and benefits. The sensitivity analysis
reveals interesting insights into how the optimal time allocations and
the benefit components change with the key parameter settings. We
find that the system profit is improved by the proposed “energy
sponge” service by over 40% on average in nominal conditions and
is further amplified as the variances of the transportation revenue
and the electricity price increase. Although this study focuses on opti-
mizing the operation of shared EV fleets, the proposed methodology
also has great potential in other logistics and supply chain systems
where EVs are used to deliver goods or services.

The current model can be extended to several directions. First, it is
interesting to consider spatial heterogeneity of the demand and EV dis-
tributions. Incorporating detailed routes of individual EVs (instead of a
fleet as a whole) based on spatially distributed travel demands can fur-
ther improve the system efficiency and reduce its costs. Second, the
current model assumes future travel demand and the price of electric-
ity are known in advance. While this assumption suffices for certain
planning purposes, it may not satisfy real‐time operation needs. This
can be addressed by integrating travel demand and electricity rate pre-
diction models into this study. Last, while the current model focuses on
the profitability of the EV fleet alone, it is also important to investigate
how to utilize the “energy sponge” service in dampening the oscilla-
tions in both transportation and power markets and enhancing the
resilience of both systems.
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