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Abstract. The “asymmetry” between spatiotemporally varying passenger demand and
fixed-capacity transportation supply has been a long-standing problem in urban mass
transportation (UMT) systems around the world. The emerging modular autonomous
vehicle (MAV) technology offers us an opportunity to close the substantial gap between
passenger demand and vehicle capacity through station-wise docking and undocking op-
erations. However, there still lacks an appropriate approach that can solve the operational
design problem for UMT corridor systems with MAVs efficiently. To bridge this methodo-
logical gap, this paper proposes a continuum approximation (CA) model that can offer
near-optimal solutions to the operational design for MAV-based transit corridors very effi-
ciently. We investigate the theoretical properties of the optimal solutions to the investigat-
ed problem in a certain (yet not uncommon) case. These theoretical properties allow us to
estimate the seat demand of each time neighborhood with the arrival demand curves,
which recover the “local impact” property of the investigated problem. With the property,
a CAmodel is properly formulated to decompose the original problem into a finite number
of subproblems that can be analytically solved. A discretization heuristic is then proposed
to convert the analytical solution from the CA model to feasible solutions to the original
problem. With two sets of numerical experiments, we show that the proposed CA model
can achieve near-optimal solutions (with gaps less than 4% for most cases) to the investi-
gated problem in almost no time (less than 10 ms) for large-scale instances with a wide
range of parameter settings (a commercial solver may even not obtain a feasible solution in
several hours). The theoretical properties are verified, and managerial insights regarding
how input parameters affect system performance are provided through these numerical re-
sults. Additionally, results also reveal that, although the CA model does not incorporate
vehicle repositioning decisions, the timetabling decisions obtained by solving the CAmod-
el can be easily applied to obtain near-optimal repositioning decisions (with gaps less than
5% in most instances) very efficiently (within 10 ms). Thus, the proposed CA model pro-
vides a foundation for developing solution approaches for other problems (e.g., MAV re-
positioning) with more complex system operation constraints whose exact optimal solution
can hardly be found with discrete modeling methods.

Funding: This research is supported by the U.S. National Science Foundation [Grants CMMI1638355
and CMMI2023408].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.1085.
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1. Introduction
The “asymmetry” between spatiotemporally varying
passenger demand and fixed-capacity transportation
supply has been a long-standing problem in urban
mass transportation (UMT) systems around the world,
for example, the MTR system in Singapore (Sun et al.
2014), the Beijing Subway system (Shi et al. 2018), and
the urban transit system in The Hague, Netherlands
(Luo et al. 2018). Specifically, the passenger demand at

one UMT station fluctuates substantially over an oper-
ational day with overly crowded passengers flooding
the station during peak hours yet sparse passenger ar-
rivals during off-peak hours, leaving vehicles underu-
tilized. On the other hand, the passenger demand is
clustered at stations in central business areas, and
suburban and rural areas usually witness relatively
low passenger demand during the same period or vice
versa. A typical solution to this asymmetry in the state
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of the practice is to adjust vehicle dispatch frequencies
to make the transportation capacity better aligned with
the passenger demand level through transit timetable
design (Caimi, Kroon, and Liebchen 2017). This topic,
that is, demand-responsive transit timetable design, is
also extensively investigated in the literature, from
timetables with constant headway (e.g., Ceder 2001)
and periodic timetables (e.g., Liebchen 2007) to non-
periodic timetables (e.g., Sun et al. 2014).

However, time-varying vehicle dispatch frequency
alone cannot bridge the huge gap between passenger
demand and transit capacity. As a result, in many
UMT systems, excessive passenger queues at stations
in central business areas during peak hours (because
demand is much greater than supply) and empty vehi-
cle units in suburban and rural areas during off-peak
hours (because supply is far greater than demand) can
still be commonly observed. To further address these
issues, as discovered in our preceding papers focusing
on UMT shuttle systems with one origin and one desti-
nation (Chen, Li, and Zhou 2019, 2020), the emerging
modular autonomous vehicles (MAV) can be used as
an elastic medium reconciling the asymmetry between
demand and supply. Specifically, MAV technology al-
lows modular pods to be flexibly docked and un-
docked into modular vehicles with different formations
(or lengths, capacities) at any station in a UMT corridor
system (NEXT 2019). With this, long vehicles can be
dispatched at times and stations with intensive de-
mand and short vehicles at those with relatively sparse
demand, thereby potentially diminishing both the vehi-
cle operational cost and passenger waiting cost.

Simple though this concept seems, designing opera-
tional plans for MAV-based corridor systems with mul-
tiple origins and destinations enabling station-wise
docking is challenging. It has been well acknowledged
that conventional transit timetable design for UMT cor-
ridors (in which mainly vehicle dispatch times are de-
cided) is NP-hard and, thus, usually has to be solved
by heuristics (Caprara, Fischetti, and Toth 2002; Niu
and Zhou 2013). The investigated problem in this pa-
per, obviously, is as hard as the conventional ones at its
minimum because it involves the joint design of dis-
patch time and capacity. Indeed, several pioneering
studies have considered the option of multiple vehicle
capacity in transit timetable design (e.g., Ceder 2001;
Albrecht 2009; Hassold and Ceder 2014; Guo, Chow,
and Schonfeld 2017; Chen, Li, and Zhou 2019, 2020).
Different from these studies, we focus on corridor sys-
tems in which station-wise docking and undocking is
allowed; that is, MAVs can dock and undock at any
station along the corridor. This modification requires a
decision on vehicle length to be made at each single
station along the corridor and, thus, at least increases
the number of decision variables by a factor of the
number of the stations. Thus, the solution approaches

from previous studies cannot be directly applied to the
investigated problem in this paper. Further, none of the
aforementioned studies provides analytical results to
the investigated problem for MAV-based UMT corri-
dor systems. Such an analytical solution offers manage-
rial insights for UMT operators and, more importantly,
enables the development of efficient solution algo-
rithms to address large-scale instances. Hence, there
still lacks an appropriate approach that can solve the
joint design problem in MAV-based UMT corridor sys-
tems in real-world contexts efficiently and offer analyti-
cal insights in the meanwhile.

To enable such a solution approach, the classical
continuum approximation (CA) framework proposed
by Newell (1971) to design dispatching policies for a
transportation route should be considered. The CA
approach approximates discrete decision variables
with continuous smooth functions and decomposes
the original problem into a finite number of separable
subproblems in relatively homogeneous (time) neigh-
borhoods. The subproblems can usually be formulat-
ed with simple multivariate functions that can be ana-
lytically solved independently, rendering the CA
approach promising in tackling large-scale instances.
Thus, it has been applied to solve more complicated
transit design problems (e.g., Hurdle 1973; Newell
1974; Wirasinghe 1990; Daganzo 2009, 2010; Chen, Li,
and Zhou 2020). However, two unique challenges in
the investigated problem are not fully addressed in
these studies. First, the investigated corridor system
allows passengers to board and alight at any station,
and thus, the seat demand (i.e., the number of passen-
gers who want to board a vehicle) at a station includes
passengers boarding at its upstream stations yet re-
maining on the vehicle (i.e., with downstream destina-
tions) and those who board at the current station.
Therefore, the seat demand at a station is not simply
an exogenous input, but related to the dispatch deci-
sions at its upstream stations, which couples decisions
at different stations. Also, the passenger boarding or-
der at one station affects the dispatch decisions at its
downstream stations. Consider a simple example con-
sisting of three stations and with the passenger de-
mand at each station shown in Figure 1 with the
destination of each passenger marked above the pas-
senger’s head. Assume that the capacity of one modu-
lar pod is one passenger. If a vehicle with two modu-
lar pods is dispatched at station 1, all passengers can
board this vehicle in one dispatch (solution 1). How-
ever, if a vehicle with one modular pod is dispatched
at station 1, then the number of modular pods dis-
patched at station 2 is dependent on the passenger
boarding order at the first station (solutions 2 and 3).
To address this issue, Wirasinghe (1990) extended
Newell’s (1971) policy in a many-to-many demand
setting by replacing in Newell’s (1971) analytical
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formulas the arrival demand rate by a seat demand
rate. However, the seat demand rate was estimated
with historic counts of boarding and alighting in Wir-
asinghe’s (1990) study, which actually ignores the fact
that the seat demand is interrelated with the current
dispatch decisions. Further, Wirasinghe’s (1990) meth-
od cannot be applied in systems in which historic
boarding and alighting data are not available, for ex-
ample, the proposed MAV-based UMT corridors, new
UMT corridors, or subway systems with only passen-
ger origin–destination (OD) information. The other
challenge in modeling the investigated problem under
the CA framework is the consideration of time-
varying vehicle formations and station-wise docking.
This consideration makes the vehicle dispatch cost a
variable related to the capacity of the dispatched ve-
hicles, which has not been considered in many CA
studies except for Chen, Li, and Zhou (2020). Yet the
station-wise docking operation postulates decisions
on vehicle formations at each station along the corri-
dor, and the model in Chen, Li, and Zhou (2020) ap-
plies to shuttle systems in which these decisions are
made only at the start station. Thus, fundamental
methodological innovation is needed to develop a CA
model that can jointly design dispatch headway and
capacity for transportation corridors with MAVs en-
abling station-wise docking.

To bridge this methodological gap, this paper pro-
poses a CA model to jointly design the dispatch head-
way and capacity for many-to-many transit corridors
in which MAVs can change their capacities through
docking and undocking operations at any station
along the corridor. One fundamental premise of the
CA framework to be applicable is the “local-impact
property”—that is, decisions in a local neighborhood

are mainly affected by settings in this and nearby
neighborhoods but not much by distant ones. Yet, in
the investigated corridor systems, the dispatch deci-
sions are spatiotemporally correlated. Specifically, dis-
patch decisions at a station affect the passenger arrival
process at its downstream stations, therefore linking
together decisions at different stations. On the other
hand, decisions at one time affect the number of pas-
sengers waiting for boarding at the following times,
therefore coupling decisions at different times togeth-
er. To address this issue, we investigate theoretical
properties of the optimal solution(s) to the investigated
problem in a special (yet not uncommon) case, which
enables us to approximately estimate the seat demand
simply with the passenger arrival counts. These prop-
erties also reveal an approximate relation between the
dispatch headway and vehicle formation, allowing
the elimination of the vehicle formation decisions from
the model. With these, the original problem regains
the local impact property and can be decomposed into
a finite number of separable problems with only one
decision variable and two constraints. Overall, this
paper makes contributions to the literature from the
following three aspects:

i. We investigate the operational design of MAV-
based transit corridor systems enabling station-wise
docking and undocking under the CA framework.
This proposed CA model presents a macroscopic
view of the system and yields a simple analytical
solution approach. The analytical results enable effi-
cient solution methods for relevant large-scale prob-
lem instances and offer managerial insights to sys-
tem operators.

ii. We prove some theoretical properties of the
optimal solution(s) to the investigated problem that

Figure 1. (Color online) An Illustrative Example for the Spatiotemporal Correlation Decisions in a UMTCorridor System
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break the spatiotemporal correlation between dis-
patch decisions and, thus, constitute a theoretical
foundation for the CA model. With this, we advance
the CA methodology to the joint design of dispatch
headway and vehicle capacity that considers many-
to-many demand patterns, station-wise vehicle ca-
pacity adjustment, and other factors (e.g., passenger
boarding order, minimum dispatch headway).

iii. We conduct two sets of numerical experiments
with realistic traffic data of various scales to test the so-
lution quality and computation speed of the CAmodel.
Results show that the proposed CAmodel can produce
near-optimal solutions to the investigated problem
very efficiently in extensive parameter settings, and its
discrete counterpart can hardly be solved to optimality
by an off-the-shelf commercial solver, Gurobi. Also, the
investigated theoretical properties are verified and in-
teresting managerial insights are offered through these
numerical experiments.

Overall, this paper fills the methodological void of
operational design for MAV-based transportation cor-
ridors enabling station-wise docking. It provides ana-
lytical and numerical methods for solving realistic
problem instances and offers managerial insights to
UMT operators. Additionally, although vehicle repo-
sitioning decisions are not considered in the proposed
CA model, we show that the CA model can be easily
extended to obtain highly accurate, near-optimal repo-
sitioning decisions in almost no time. Thus, it could
serve as a foundation for the development of efficient
solution approaches for more complex MAV-based
system design problems.

The remainder of this paper is organized as follows.
Section 2 introduces the problem setting and general
problem formulation. Section 3 reviews several classi-
cal CA models and analyzes the theoretical properties
of the investigated problem. Section 4 presents the CA
model, the analytical solution approach, and the dis-
cretization method. Section 5 verifies the computation
performance of the proposed CA model and the theo-
retical properties as well as reveals some managerial
insights with numerical experiments. Finally, Section
6 concludes the paper and briefly discusses future re-
search directions.

2. Problem Statement and General
Problem Formulation

This section presents the investigated problem and
general problem formulation. For the convenience of
the readers, the key notation used throughout the pa-
per is summarized in Online Appendix A.

2.1. Problem Statement
We consider a unidirectional UMT corridor system in
which a set of stations indexed as s,u ∈ S :� {1, 2, : : : ,S}

is placed along an urban transportation corridor with 1
and S being the start and terminal stations as shown in
Figure 2. The sets of upstream and downstream sta-
tions of s ∈ S are denoted as S−

s and S+
s , respectively.

Passengers arrive at each station continuously during
an operational horizon [0,T]. We describe the passen-
ger arrival process at station s ∈ S with cumulative ar-
rival demand curves denoted as As(t), ∀t ∈ [0,T] (the
solid curves in Figure 2).1 The corresponding passenger
arrival rate∀s ∈ S is defined as as(t) :� A′

s(t). To capture
the distribution of passenger destinations from origin
station s ∈ S among downstream station u ∈ S+

s , we de-
note the proportion of passengers arriving at station s
and heading to station u at time t (among all passen-
gers arriving at s at t) as psu(t), ∀s ∈ S,u ∈ S+

s , t ∈ [0,T].
To serve the passengers, a set of K MAVs are dis-
patched across the operational horizon, indexed as
k ∈K :� [1, 2, ⋯ K], where the index increases with the
dispatch time. These dispatches result in a cumulative
passenger departure curve at each s ∈ S denoted as
Ds(t), ∀t ∈ [0,T]. The time at the start station and vehi-
cle formation (defined in assumption (ii)) at station s
for dispatch k are denoted as tk, ∀k ∈K and
iks, ∀k ∈K, s ∈ S, respectively. For the convenience of
notation, define t0 :� 0 and tK+1 :� T. We illustrate the
operational concept and basic assumptions of the pro-
posed MAV-based transportation corridor systems as
follows.

i. The dispatched vehicles move along the corridor
from the start to the terminal stations, separated by a
minimum dispatch headway h. The vehicles’ dwell
time at each station is relatively constant, and the
travel time between two consecutive stations is time
dependent. To simplify the model formulation, we

Figure 2. (Color online) The Investigated Corridor System
(Top) and Cumulative Passenger Counts (Bottom)
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shift the time coordinate at stations s > 1 such that
the departure time of any vehicle is the same across
all stations along the corridor (Sun et al. 2014). The
passenger demand arrival curves are shifted along
with the time coordinate. Please refer to Online
Appendix B for details about the time coordinate
shifting process.

ii. Different from vehicles in existing UMT systems,
MAVs can flexibly change their formations (i.e., length
or capacity) at any station along the corridor by dock-
ing and undocking modular pods. We index vehicle
formations as i ∈ I :� {1, 2, ⋯ , I}, where I is the maxi-
mum allowable number of pods in one MAV. Each ve-
hicle formation i ∈ I consists of i identical modular
pods and, thus, has a capacity of ic, where c is the ca-
pacity of a single pod. Following Newell (1971), we
assume that the number of modular pods is always
sufficient so that there are always some vehicles in
each formation for dispatching at each station.2

iii. Following previous studies (e.g., Niu, Zhou, and
Gao 2015; Yin et al. 2017), we further assume that over-
saturated traffic is not allowed at each station. Howev-
er, note that multiple vehicle formations are considered
in the investigated problem. Thus, different from previ-
ous studies, this assumption incorporates more general
cases in which passengers waiting at the stations are
not cleared after each dispatch.

iv. At each station s ∈ S, passengers board a vehicle
following a first-in, first-served (FIFS) principle. In real-
ity, the passenger boarding order is extremely difficult
to determine (especially when there are multiple desti-
nations), but in general, passengers who arrive early
have more chances to board a vehicle than those arriv-
ing later. Therefore, this assumption is not too distant
from reality (Niu and Zhou 2013).

These operations result in two cost components in
the system, that is, the operational cost and the passen-
ger waiting cost (Yin et al. 2017). The operational cost
primarily consists of the energy cost spent on operat-
ing the vehicles. Other cost components, such as the
crew salary, can be easily incorporated into this gener-
al cost structure if needed. According to Daganzo
(2005), the operational cost of transportation systems is
subadditive. It can be divided into a constant term re-
gardless of the vehicle capacity and a component de-
pendent on the vehicle capacity. Therefore, we define
the operational cost as a concave function over the ve-
hicle formation i to account for its economics of scale
(Holmberg and Tuy 1999, Daganzo 2005). Specifically,
the operational cost of a vehicle in formation i, denoted
as fi, satisfies

λfi + (1 − λ)fj ≤ fk,∀i, j, k :� λi + (1 − λ)j ∈ I ∪ {0},
λ ∈ [0, 1], (1)

where f0 :� 0. The passenger waiting cost refers to
product of a homogeneous unit-time waiting cost
w for passengers and the total passenger waiting time.

The objective of this study is to find an optimal
schedule for corridor systems satisfying the aforemen-
tioned operational concepts such that the desired
objective of the system operator can be achieved. The
optimal schedule is subject to four groups of con-
straints (see Section 2.2 for details). The major deci-
sions include the number of dispatches K, dispatch
time tk, vehicle formation iks, and cumulative departure
curve Ds(t). Following previous studies (e.g., Yin et al.
2017; Chen, Li, and Zhou 2020), we aim to search for
an optimal trade-off between the operational cost and
the passenger waiting cost in the system.

2.2. General Problem Formulation
With Equation (1), the total operational cost in the
system can be formulated as

Cf (iks) :�
∑
s∈S

∑
k∈K

fiks : (2)

According to Newell (1971), the total passenger wait-
ing time at station s ∈ S can be quantified as the area
between its cumulative arrival demand curve and de-
parture curve, that is,

∫ T

0
(As(t) −Ds(t)( )dt. Because the

passenger boarding order needs to be considered in
this study, we decompose the cumulative arrival curve
As(t) as T time-dependent arrival rate curves

As(t′, t) :� 0 t ∈ [0, t′)
as(t′) t ∈ [t′,T], ∀s ∈ S, t′ ∈ [0,T],

{
each of which corresponds to the arrival demand
at time t′ ∈ [0,T], respectively. Likewise, the cumu-
lative departure curve at station s, Ds(t), can be de-
composed as T departure rate curves, denoted as
Ds(t′, t), ∀s ∈ S, t′, t ∈ [0,T]. To facilitate the illustra-
tion of these definitions, consider a simple example
with As(t) and Ds(t) shown in Figure 3(a). We see
from Figure 3(a) that two, two, and one passengers
arrive at station s at times 1, 2, and 3, respectively.
Three MAVs are dispatched to serve the passengers.
The decomposed curves are shown in Figure 3(b),
and the projections of these curves for different t′ are
plotted in Figure 3, (c)–(e). Take passengers arriving
at time 2 (i.e., t′ � 2) as an example. The time-
dependent arrival rate curve As(2, t) � 0, ∀t ∈ [0, 2)
and As(2, t) � as(2) � 2, ∀t ∈ [2, 3], and the time-
dependent departure rate curve Ds(2, t) � 0, ∀t ∈
[0, 2), Ds(2, t) � 1, ∀t ∈ [2, 3) (one passenger arriving
at t′ � 2 has been transported), and Ds(2, 3) � 2 (all
passengers arriving at t′ � 2 have been transported).
The decomposed curves for other times can be illus-
trated in a similar way.

Chen, Li, and Qu: Continuous Model for MAV Corridors with Station-wise Docking
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We further define the number of passengers who
arrive at station s at time t′ and board dispatch k as
dks(t′) :�Ds(t′, tk) −Ds(t′, tk−1), ∀k ∈K, s ∈ S, t′ ∈ [0, tk].
For dispatch k, all passengers arriving at station s no
later than tk can get on board as long as there is still
enough capacity. Thus,

∫ tk
0
dks(t′)dt′ represents the

number of passengers boarding dispatch k at station s.
Note that the right derivative is used at points that are
not differentiable (this applies throughout the paper).
For example, for the second dispatch in Figure 3, we
obtain d2s(1) � 1, d2s(2) � 1, and d2s(3) � 0. Summing
over all these values yields the number of passengers
boarding at the second dispatch at stations, that is,
two. Here, summation is used because the time hori-
zon is discretized although, in a continuous time hori-
zon, an integral of dks(t′) with respect to t′ over zero to
tk is needed.

With these definitions,
∫ T

t�0 As(t′, t) −Ds(t′, t)( )dt is

the total waiting time for passengers who arrive at sta-
tion s at t′. Then, the integral of this term over t′ from
zero to T, that is,∫ T

t′�0

∫ T

t�0
As(t′, t) −Ds(t′, t)( )dtdt′,

is the total waiting time for all passengers arriving at
station s during time horizon [0,T]. Thus, the total
passenger waiting cost can then be formulated as

Cw(Dst′ (t′, t)) :� w
∑
s∈S

∫ T

t′�0

∫ T

t�0
As(t′, t) −Ds(t′, t)( )dtdt′:

(3)

Further, define eks, ∀k ∈K, s ∈ S as the number of
passengers on board at dispatch k after passenger
boarding and alighting at station s. With this, we
formulate the objective function of the investigated
problem as

min
K,[tk,iks ,eks,∀k∈K,s∈S],{dks(t′),Ds(t′,t),∀s∈S,k∈K,t′,t∈[0,T]}

Cf (iks)
+Cw Ds(t′, t)( ), (4)

where the first term represents the total vehicle opera-
tional cost across all dispatches and the second term
the total passenger waiting cost across the operational
horizon. To reflect the general operational details of
UMT systems, the following four groups of con-
straints are considered.

i. Minimum headway requirement: These con-
straints impose a least-time separation between two

Figure 3. (Color online) An Example for Cumulative Arrival and Departure Curve Decomposition

Notes. (a) The original cumulative arrival and departure curves. (b) The decomposed time-dependent cumulative arrival and departure curves.
(c) The decomposed curves corresponding to arrival demand at time 1. (d) The decomposed curves corresponding to arrival demand at time 2.
(e) The decomposed curves corresponding to arrival demand at time 3. Here the time horizon is discretized into three time intervals for illustra-
tive purposes.
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consecutive dispatched vehicles because of safety
considerations and limited resources.

tk − tk−1 ≥ h, ∀k ∈ K \ {1}, (5)

ii. Departure curve conservation: These constraints
formulate the cumulative departure conservation pro-
cess mathematically with the time-dependent depar-
ture rate curve Ds(t′, t). Constraints (6) define that
∀t ∈ [t′,T], Ds(t′, t) increases by the number of board-
ing passengers if a vehicle is dispatched at t (i.e., t � tk)
and remains the value at the previous dispatch other-
wise (i.e., t ∈ (tk, tk+1)). Constraints (7) requireDs(t′, t) to
equal As(t′, t) at T, indicating that all passengers arriv-
ing at station s during the investigated time horizon are
transported at the end of the operational horizon.

Ds(t′, t) �
Ds(t′, tk−1) + dks(t′) ∀t � tk,

Ds(t′, tk) ∀t ∈ (tk, tk+1),

{
∀k ∈K, s ∈ S, t′ ∈ [0,T],

(6)

Ds(t′, t) � As(t′, t), ∀t � T, s ∈ S, t′ ∈ [0,T]: (7)

iii. Passenger boarding dynamics: These constraints
model the passenger boarding process. Constraints
(8) indicate passengers boarding at dispatch k at the
start station may arrive at this station at any t′ no later
than tk. At the other stations, the number of passengers
on dispatched vehicle k equals the number of passen-
gers on vehicle k at the previous station s – 1 plus the
number of passengers boarding at station s minus the
number of passengers alighting at station s. Con-
straints (9) are imposed because of the capacity limit
of each vehicle formation. Constraints (10) require that
the number of passengers boarding dispatch k at
station s at time t should be no more than the passen-
ger demand at station s at time t′. Constraints (11)
describe the FIFS rule for passenger boarding.
Note that Ds(t′, t) ≤ As(t′, t), ∀s ∈ S, t′, t ∈ [0,T], so 0 ≤
Ds(t′, t)
As(t′, t) ≤ 1, ∀s ∈ S, t′, t ∈ [0,T]. Therefore, for any t′ <

t′′ ∈ [0,T] at station s ∈ S when Ds(t′, t)
As(t′, t) < 1, ∀t ∈ [0,T]

(which means that passengers arriving at station s at
time t′ have not all boarded), Ds(t′′, t)

As(t′′, t) , ∀t ∈ [0,T]must be

zero as required by Ds(t′′, t)
As(t′′, t) ≤

⌊
Ds(t′, t)
As(t′, t)

⌋
� 0 (which means

that no passengers arriving at station s at time t′′ > t′
can board).

eks �

∫ tk

t′�0
dks(t′)dt′ if s � 1, ∀k ∈K

ek(s−1) +
∫ tk

t′�0
dks(t′)dt′ −

∑
u∈S−

s

∫ tk

t′�0
dku(t′)pus(t′)dt′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∀s ∈ S \ {1}, ∀k ∈K (8)

eks ≤ iksc, ∀k ∈K, s ∈ S, (9)

dks(t′) ≤ As(t′, tk) −Ds(t′, tk−1), ∀k ∈K, s ∈ S, t′ ∈ [0, tk],
(10)

Ds(t′′, t)
As(t′′, t) ≤

⌊
Ds(t′, t)
As(t′, t)

⌋
, ∀t′ < t′′ ∈ [0,T], t ∈ [0,T], s ∈ S,

(11)

iv. Variable domains: These constraints define the
domains of all decision variables.

K ∈ Z
+; tk ∈ [0,T], ∀k ∈ K; iks ∈ I , eks ∈ R

+,
dks(t′) ∈ R

+, ∀k ∈ K, s ∈ S, t′ ∈ [0,T]: (12)

For a realistic urban transportation corridor system,
the defined problem is a very complex optimization
problem that is difficult to solve to its exact optimum
(optima) because of a large number of decision varia-
bles and its nonlinear problem structure. The purpose
of the original model formulation presented here is to
illustrate the complexity of the investigated problem
and the formulation we try to approximate in the next
section. However, there are other ways to formulate
the investigated problem. For example, the problem
can be formulated as a mixed integer programming
model if the operational time horizon is discretized. A
discrete mixed integer programming model, even in
its linear form, involves a large amount of decision
variables and requires excessive computational re-
sources for solving an optimal or even a near-optimal
solution (see Section 5.1.2 for numerical results). Thus,
this study aims to tackle the investigated problem via
a parsimonious continuous model with a continuous
time representation. We focus on situations in which
the passenger arrival demand rate varies relatively
slowly (within a time scale comparable to the optimal
vehicle dispatch headways) across the operational ho-
rizon at each station. This slowly varying property of
passenger demand indicates that the total cost in a
time neighborhood only depends on the dispatch de-
cisions (i.e., dispatch headway and vehicle capacity)
around this and nearby neighborhoods and is not
much affected by the distant settings. This feature ena-
bles us to develop a continuum approximation (CA)
approach to solve near-optimal solution(s) to the in-
vestigated problem very efficiently.

3. Theoretical Properties
In this section, we study the theoretical properties of
the optimal solution(s) to the investigated problem.
These properties offer critical insights into the (near-)
optimal solution structure of the investigated problem
and a theoretical foundation for solving the problem
with the CA framework.
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3.1. Review of Classic CA Models
We first review several classic CA models that are
highly pertinent to the investigated problem to help
the readers better understand the challenges in apply-
ing the CA method to the investigated problem. As
pointed out previously, the first challenge in modeling
the investigated problem with the CA method is the
spatiotemporal correlation of dispatch decisions. To
address this challenge, Newell (1971) aggregated the
passenger demand at each station s ∈ S along a trans-
portation route at any time t ∈ [0,T] as

a(t) :�∑
s∈S

as(t), ∀t ∈ [0,T]:

This way, the corridor system was converted to a one-
to-one shuttle system in which passenger boarding
and alighting dynamics are ignored. Then, Newell
(1971) approximated the cost component in the con-
verted shuttle system as∑

k∈K

∫ tk

tk−1

fIc
h(t) +

wh(t)a(t)
2

( )
dt �

∫ T

0

fIc
h(t) +

wh(t)a(t)
2

( )
dt,

where h(t) is the vehicle dispatch headway at t ∈ [0,T]
and the first and second terms represent the opera-
tional cost and passenger waiting cost, respectively.
Note that only one vehicle formation is considered in
Newell’s (1971) model, and thus, without loss of gen-
erality, we use formation I in the preceding equation.
To minimize this integral function is equivalent to
minimizing its integrand, so the optimal headway, de-
noted as h∗(t), can be analytically solved as

h∗(t) �max

�������
2fIc
wa(t)

√
,
Ic
a(t)

{ }
, ∀t ∈ [0,T]:

However, this approximation implicitly ignores the
passenger alighting pattern along the corridor so
that a(t) is usually greater than the actual seat de-
mand. Taking the case in Figure 1 as an example,
with Newell’s (1971) model, we would use three as
the passenger demand in the converted shuttle sys-
tem, but the actual seat demand is two and one at
stations 1 and 2, respectively. Thus, Newell’s (1971)
policy tends to provide a lower bound for the opti-
mal dispatch headway (and upper bound for vehicle
formation in this study) in a many-to-many corridor
system. In light of this issue, Wirasinghe (1990) esti-
mates the seat demand at the maximum load point,
denoted as s(t), with historical boarding and alight-
ing counts from each dispatch in the existing sched-
ule and revises Newell’s (1971) policy as

h∗(t) � max

�������
2fIc
wa(t)

√
,
Ic
s(t)

{ }
, ∀t ∈ [0,T]:

Simple though Wirasinghe’s (1990) method is, it
ignores the fact that the seat demand at a station is
related to the current dispatch decisions rather than
some historic schedules. For example, assume that
solution 2 is used as the existing schedule for the
system shown in Figure 1, which produces a seat de-
mand of one at station 2. If the current decision at
station 1 is to dispatch a vehicle with two modular
pods, the actual seat demand at station 2 is two.
Therefore, the actual seat demand values estimated
with historic boarding and alighting counts are not
necessarily true. Also note that using the estimated
seat demand at the maximum load point, Wira-
singhe’s (1990) method essentially solves the prob-
lem for a transportation corridor by transforming it
into a one-to-one shuttle system. Thus, the decision
correlation between different stations in a transpor-
tation corridor is not effectively addressed in the ex-
isting CA literature.

The other challenge, adopting multiple vehicle
formations at any station along the corridor, has not
been considered in most CA studies. In the analyti-
cal formulas of Newell’s (1971) and Wirasinghe’s
(1990) models, the passenger waiting cost is not as-
sociated with the vehicle capacity. These formulas
hold when only unsaturated traffic and one vehicle
formation are considered because all passengers are
cleared after a vehicle leaves a station. However, in a
system with unsaturated traffic and multiple vehicle
formations as investigated in this paper, the number
of passengers left behind at a station after a dispatch
and the associated waiting cost are dependent on the
vehicle formation decisions. Further, the operational
cost is a given input independent of the dispatch de-
cisions on vehicle formations in previous studies,
rendering it inapplicable to design the optimal vehi-
cle formations at each station for each dispatch. To
the best of the research team’s knowledge, the only
CA model that has considered multiple vehicle for-
mations in the operational design for transit systems
is proposed in Chen, Li, and Zhou (2020). However,
this preceding study focuses on shuttle systems in
which decisions on vehicle formations only need to
be made at the start station.

3.2. Theoretical Properties
To address the challenges in applying the CA model
to tackle the investigated problem, this section investi-
gates analytical properties of the optimal solution(s).
We first rewrite Constraints (8) and (10). Integrating
both sides of Constraints (10) over t′ yields∫ tk

t′�0
dks(t′)dt′ ≤

∫ tk

t′�0
As(t′, tk) −Ds(t′, tk−1)( )dt′,

∀k ∈K, s ∈ S:
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Applying this inequality to Constraints (8) yields

eks ≤

∫ tk

t′�0
As(t′, tk) −Ds(t′, tk−1)( )dt′ s � 1

:

ek(s−1) −
∑
u∈S−

s

∫ tk

t′�0
dku(t′)pus(t′)dt′

+
∫ tk

t′�0
As(t′, tk) −Ds(t′, tk−1)( )dt′ s > 1, ∀k ∈ K:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

Further, we define the number of passengers left at
station s ∈ S right after a dispatch k as the passenger
queue at station s, that is,

qs(tk) :�
∫ tk

t′�0
As(t′, tk) −Ds(t′, tk)( )dt′

( )
, ∀s ∈ S,

and the number of passengers who are left at any up-
stream station of s (inclusive) and destined to any sta-
tion in the downstream direction of station s as the
cross-sectional passenger queue at station s, that is,

q̃s(tk) :�
∑

u∈S−
s+1

∑
v∈S+

s

∫ tk

t′�0
Au(t′, tk) −Du(t′, tk)( )puv(t′)dt′

( )
,

∀s ∈ S:

Define q̃s(t0) � 0, ∀s ∈ S for the convenience of nota-
tion. With these, we next investigate properties of
queued passengers after each dispatch in the optimal
solution(s) in the following three propositions.

Proposition 1. An optimal solution {K, tk, iks, eks,dks(t′),
Ds(t′, t)} to Problems (4)–(12) with time-dependent arrival
rate curves As(t′, t), ∀s ∈ S and time-dependent departure
rate curves Ds(t′, t), ∀s ∈ S must satisfy one of the follow-
ing conditions for each dispatch k ∈K: (i) tk − tk−1 � h or
(ii) there exists at least one s ∈ S such that qs(tk) � 0.

Proof. This proposition is proven by contradiction. If
the condition in this proposition does not hold, then,
in this optimal solution, there exists a k̄ ∈K with tk̄ −
tk̄−1 > h and qs(tk̄ ) > 0, ∀s ∈ S. Then, we can construct
an alternate solution {K̂, t̂k, îks, êks, d̂ks(t′), D̂s(t′, t)} with
the following steps: (i) keep the number of dispatches
and vehicle formations the same as those in the opti-
mal solution, that is, K̂ � K, îks � iks, ∀k ∈K, s ∈ S; and
(ii) push the dispatch time of k̄ forward until either
t̂ k̄ − t̂ k̄−1 � h or we find an s̄ ∈ S such that q̂ s̄(tk̄ ) � 0
while keeping t̂k � tk for all other k indexes. Note that,
with this construction process, the resultant alternate
solution obviously satisfies Constraints (5).

Because all decisions before dispatch k̄ in the alter-
nate solution are the same as those in the optimal so-
lution, we have êks � eks, ∀k < k̄, s ∈ S, d̂ks(t′) �
dks(t′), ∀k < k̄, s ∈ S, t′ ∈ [0,T], and

D̂s(t′, t) �Ds(t′, t), ∀s ∈ S, t′ ∈ [0,T], t ∈ [0, t̂ k̄):

Next, we solve êks, d̂ks(t′), and D̂s(t′, t) for time in-
dexes since dispatch k̄ in the alternate solution.
Based on how we construct the alternate solution,
we have∫ T

t′�0
A1(t′, t̂k̄ ) −D1(t′, t̂ k̄−1)
( )

dt′

�
∫ t̂ k̄

t′�0
A1(t′, t̂k̄ ) −D1(t′, t̂ k̄−1)
( )

dt′ ≥ ik̄1c:

This inequality together with Equations (9) and
(13) (k replaced by k̄) yield êk̄1 � ik̄1c. We apply this
result into Equation (8) and then solve it with
D̂s(t′, t) �Ds(t′, t), ∀s ∈ S, t′ ∈ [0,T], t ∈ [0, t̂ k̄ ) (proved
earlier) and Equations (10) and (11) (with k � k̄),
which results in d̂k̄1(t′) � dk̄1(t′), ∀t′ ∈ [0,T]. Apply-
ing this equation into Equation (6) with k � k̄,
we further obtain D̂1(t′, t̂ k̄) �D1(t′, t̂k̄−1) + dk̄1(t′), ∀t′∈ [0,T]. Next, at station 2, again, based on the way
we construct the alternate solution, we obtain

êk̄1 −
∫ t̂ k̄

t′�0
d̂k̄1(t′)p12(t′)dt′

+
∫ t̂ k̄

t′�0
A2(t′, t̂ k̄) −D2(t′, t̂ k̄−1)
( )

dt′

≥ ik̄2c:

With the same analysis used earlier, we obtain
êk̄2 � ik̄2c, d̂k̄2(t′) � dk̄2(t′), ∀t′ ∈ [0,T], and D̂2(t′, t̂ k̄) �
D2(t′, t̂ k̄−1) +dk̄2(t′), ∀t′ ∈ [0,T]. Applying this analysis
over stations 3 to S, we obtain êk̄s � ik̄sc, ∀s ∈ S,
d̂k̄s(t′) � dk̄s(t′), ∀t′ ∈ [0,T], s ∈ S, and D̂s(t′, t̂ k̄) �
Ds(t′, t̂k̄−1) + dk̄s(t′), ∀t′ ∈ [0,T], s ∈ S. Further, because
no MAVs are dispatched until t̂ k̄+1, we obtain from
Constraints (6) that

D̂s(t′, t) � D̂s(t′, t̂ k̄ ) �Ds(t′, t̂k̄−1) + dk̄s(t′) �Ds(t′, tk̄), ∀s
∈ S, t′ ∈ [0,T], t ∈ [t̂ k̄ , tk̄]:

Then, because t̂k � tk, îks � iks, ∀k > k̄, s ∈ S, we obtain
êks � eks, ∀k > k̄, s ∈ S, d̂ks(t′) � dks(t′), ∀k > k̄, s ∈ S, t′ ∈
[0,T], and

D̂s(t′, t) �Ds(t′, t), ∀s ∈ S, t′ ∈ [0,T], t ∈ (tk̄ ,T]:

These results indicate that the alternate solution also
satisfies Constraints (6)–(12). Therefore, the alternate
solution is feasible to the investigated problem.

Regarding the change in the objective value, the op-
erational cost of the alternate solution is obviously the
same as that of the optimal solution because
îks � iks, ∀k ∈K, s ∈ S. Further, the difference between
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the passenger waiting cost of the optimal solution and
that of the alternate solution is

w
∑
s∈S

∫ T

t′�0

∫ T

t�0
As(t′, t) −Ds(t′, t)( )dtdt′

[

−∑
s∈S

∫ T

t′�0

∫ T

t�0
(As(t′, t) − D̂s(t′, t))dtdt′

]

� w
∑
s∈S

∫ T

t′�0

∫ T

t�0
(D̂s(t′, t) −Ds(t′, t))dtdt′

[ ]

� w
∑
s∈S

∫ T

t′�0

∫
t�t̂ k̄

tk̄ (dk̄s(t′))dtdt′
[ ]

:

� w(tk̄ − t̂k̄)
∑
s∈S

∫ T

t′�0
(dk̄s(t′))dt′

[ ]
> 0:

Thus, the objective value of the alternate solution
is always strictly smaller than that of the optimal
solution, which is a contradiction. This completes
the proof. w

Proposition 2. Any dispatch k in an optimal solution
{K, tk, iks, eks,dks(t′),Ds(t′, t)} to Problems (4)–(12) with
time-dependent arrival rate curves As(t′, t), ∀s ∈ S and
time-dependent departure rate curves Ds(t′, t), ∀s ∈ S must
satisfy q̃s(tk) < c, ∀s ∈ S if the following conditions hold:

i. S( f2 − f1) < cwh.
ii.

∑
u∈S−

s+1
∑

v∈S+
s
(∫ tk
t′�tk−1

(Au(t′, t′))puv(t′)dt′) ≤ (I − 1)c,
∀s ∈ S:

Proof. This proposition is proven with induction.
Base case: First, investigate the case with k � 1. If

there exists a s̄ ∈ S such that q̃s̄(t1) ≥ c, we define the
first origin station at which there are passengers in
cross-sectional queue q̃s̄(t1) as

s1 :� argmin
u<s̄∈S

∑
v∈S+̄

s

∫ t1

t′�0
Au(t′, t1) −Du(t′, t1)( )puv(t′)

( )
> 0

{ }
,

and the last destination station to which passengers in
cross-sectional queue q̃s̄(t1) travel as

s2 :� argmax
v>s̄∈S

∑
u∈S−

s̄+1

∫ t1

t′�0
Au(t′, t1) −Du(t′, t1)( )puv(t′)dt′

( )
> 0

{ }
:

Then, we construct an alternate solution {K̂,
t̂k, îks, êks, d̂ks(t′), D̂s(t′, t)}, where K̂ � K, t̂k � tk, ∀k ∈ K,
îks � iks, ∀k > 1, s ∈ S, and

î1s � i1s + 1 if s ∈ [s1, s2]
i1s otherwise , ∀s ∈ S:

{
That is, at the first dispatch, we increase the number
of modular pods by one between s1 and s2 (inclu-
sive) while keeping the vehicle formations at other

stations the same as those in the optimal solution.
With condition (ii), we obtain î1s ≤ I − 1, ∀s ∈ S. Fur-
ther, because the optimal solution satisfies Con-
straints (7) (i.e., all passengers are transported at T),
the alternate solution increases the vehicle’s capaci-
ty at the first dispatch and, thus, obviously also sat-
isfies Constraints (7). Thus, the constructed vehicle
formations are always feasible to the investigated
problem.

To analyze the change in the objective value, we first
solve variables ê1s, ∀s ∈ S, d̂1s(t′), ∀s ∈ S, t′ ∈ [0,T],
and Ds(t′, t), ∀s ∈ S, t′ ∈ [0,T], t ∈ [0, t2). Based on the
way we construct the alternate solution, these varia-
bles can be computed for three types of stations sepa-
rately as follows.

Type 1: s ∈ [1, s1) ∪ (s2,S]. Because t̂k � tk, îks � iks,
∀k ∈K, s ∈ [1, s1) ∪ (s2,S] and the cross-sectional queue
at station s̄ does not affect these stations, it is obvious
that ê1s � e1s, ∀s ∈ [1, s1) ∪ (s2,S], d̂1s(t′) � d1s(t′), ∀s ∈
[1, s1) ∪ (s2,S], t′ ∈ [0,T], and

D̂s(t′, t) �Ds(t′, t), ∀s ∈ [1, s1) ∪ (s2,S], t′ ∈ [0,T],
t ∈ [0, t2):

Type 2: s ∈ [s1, s̄]. Because q̃s(t1) < c,∀s ∈ [s1, s̄) in
the optimal solution, all passengers in the cross-
sectional queue at station s ∈ [s1, s̄) can be accommo-
dated by increasing the number of modular pods at
this station by one, that is, ê1s � e1s + q̃s(t1), ∀s ∈[s1, s̄) (Constraints (9) and (13)). For s̄, we obtain
ê1s̄ � e1s̄ + c. To further compute dks(t′) and Ds(t′, t),
we define

t11s :� arginf
t′∈[0,T]

As(t′, t1) −Ds(t′, t1) > 0{ }, ∀s ∈ S

to represent the smallest arrival time index of the
passengers at station s who are not served by the
first dispatch in the optimal solution (also the arrival
time index of the first passenger boarding the addi-
tional modular pod at dispatch 1 in the alternate so-
lution based on Constraints (11)). With this, we solve
the arrival time index of the last passenger who
boards the additional modular pods at dispatch 1 at
station s in the alternate solution as

t21s :� arginf
t′′∈[t11s,T]

∫ t′′

t′�t11s
As(t′, t1) −Ds(t′, t1)( )dt′ ≥ o1s

{ }
, ∀s ∈ S,

where

o1s :� ê1s −
∑
u∈S−

s

∑
v∈S+

s

∫ t1

t′�0
d̂1u(t′)puv(t′)
( )

dt′
( )

− e1s −
∑
u∈S−

s

∑
v∈S+

s

∫ t1

t′�0
d1u(t′)puv(t′)( )

dt′
( )( )

, ∀s ∈ S
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represents the number of passengers boarding the ad-
ditional modular pod at dispatch 1 at s. Then, with
similar analysis as in Proposition 1, we obtain

d̂1s(t′) � d2s(t′) if t′ ∈ [t11s, t21s]
d1s(t′) otherwise

, ∀s ∈ [s1, s̄], t′ ∈ [0,T]:
{

D̂s(t′, t) � Ds(t′, t2) if t′ ∈ [t11s, t21s], t ∈ [t1, t2)
Ds(t′, t) otherwise,

{
∀s ∈ [s1, s̄], t′ ∈ [0,T], t ∈ [0, t2):

Type 3: s ∈ (s̄, s2]. Similar to type 2 stations, the cross-
sectional queue at this type of station can also be
cleared in the alternate solution by a single modular
pod. Thus, we have

ê1s � e1s +
∑
u∈S−

s

∑
v∈S+

s

∫ t1

t′�0
d̂1u(t′)puv(t′)
( )

dt′
( )

+ qs(t1),

∀s ∈ (s̄, s2]:
Then, with the same analysis as at type 2 stations, we
obtain that the analytical formulas of d̂1s(t′) and
D̂s(t′, t) for s ∈ [s1, s̄] also hold for s ∈ (s̄, s2].

From this discussion, we have that D̂s(t′, t1) ≥
Ds(t′, t1),∀s ∈ S, t′ ∈ [0,T]. Because t̂k � tk, îks � iks,∀k >
1, s ∈ S, we obtain D̂s(t′, t) ≥Ds(t′, t), ∀s ∈ S, t′ ∈
[0,T], t ∈ (t1,T] based on Constraints (8)–(10) (i.e., the
same amount of passengers are transported at each
dispatch, if not more, in the alternate solution because
of the increased capacity at dispatch 1).

With this, the difference between the operational
cost between the optimal solution and the alternate
solution is

�Cf :�
∑
s∈S

∑
k∈K

fiks − fîks
( )

� ∑
s∈[s1, s2]

f(i1s) − f i1s+1( )
( )

≥ S(f1 − f2):

The difference of the passenger waiting cost be-
tween the optimal and alternate solution is

�Cw :� w
∑
s∈S

∫ T

t′�0

∫ T

t�0
As(t′, t) −Ds(t′, t)( ) dtdt′

[

−∑
s∈S

∫ T

t′�0

∫ T

t�0
As(t′, t) − D̂s(t′, t)
( )

dtdt′
]

≥ w
∑
s∈S

∫ t21s

t′�t11s

∫ t2

t�t1
D̂s(t′, t) −Ds(t′, t)
( )

dtdt′
[ ]

� w
∑
s∈S

∫ t21s

t′�t11s

∫ t2

t�t1
Ds(t′, t2) −Ds(t′, t1)( ) dtdt′

[ ]

� w(t2 − t1)
∑
s∈S

∫ t21s

t′�t11s
d2s(t′)( )dt′

[ ]
≥ wc(t2 − t1) ≥ �i1s̄ cwh:

Then, based on condition (i) in this proposition, we
obtain that the difference between the objective func-
tion of the optimal and alternate solutions is

�Cf +�Cw ≥ S( f1 − f2) + cwh > 0:

This forms a contradiction. We repeat this process un-
til q̃s̄ (t1) < c is satisfied. Thus, q̃s(t1) < c,∀s ∈ S must
hold for the base case.

Induction step: Assume that, for a k ∈ K \ {K},
q̃s(tk) < c, ∀s ∈ S. At time tk+1, if there exists a s̄ ∈ S
such that q̃s̄(tk+1) ≥ c, then similar to the base case,
we can construct an alternate solution {K̂, t̂k, îks,
êks, d̂ks(t′), D̂s(t′, t)} by raising the number of modular
pods at dispatch k to i(k+1)s + 1 at the origin and desti-
nation stations of passengers in q̃s(tk), and K and
t̂k, ∀k ∈K, îks for other k, s indexes remain the same
as those in the optimal solution. Then, with a similar
analysis as that to prove the base case, we can show
that the alternate solution is feasible to the investi-
gated problem and that its objective value is always
strictly lower than that of the optimal solution,
which forms a contradiction. Therefore, q̃s(tk+1) < c,
∀s ∈ S also holds. This completes the proof. w

Proposition 3. Any dispatch k in an optimal solution
{K, tk, iks, eks, dks(t′),Ds(t′, t)} to Problems (4)–(12) with
time-dependent arrival rate curves As(t′, t), ∀s ∈ S and
time-dependent departure rate curves Ds(t′, t), ∀s ∈ S
must satisfy qs(tk) < c, ∀s ∈ S if the following conditions
hold:

i. S( f2 − f1) < cwh.

ii.
∑

u∈S−
s+1

∑
v∈S+

s

(∫ tk

t′�tk−1
(Au(t′, t′))puv(t′)dt′

)
≤ (I− 1)c,

∀s ∈ S:

Proof. Based on Proposition 2, q1(tk) � q̃1(tk) < c. Fur-
ther, with the definitions of q̃s(tk) and qs(tk), we obtain

q̃2(tk) �
∫ tk

t′�0
A1(t′, tk) −D1(t′, tk)( )puv(t′)dt′ + q2(tk)

< q1(tk) + q2(tk) < c,

which, together with 0 ≤ q1(tk) < c, yields q2(tk) < c.
Then, this proposition can be easily proved by itera-
tively applying this relationship; that is, q̃s(tk) < q1(tk)
+q2(tk)+⋯ +qs(tk) < c. This completes the proof. w

Propositions 1–3 give necessary condition(s) for
the optimal solution(s) to the investigated problem.
Proposition 1 indicates that the dispatch headway
should be the minimum usable value unless the pas-
senger queue is zero at at least one station. Note that
no special conditions are needed for Proposition 1,
and thus, it is a general property for the investigated
problem. Propositions 2 and 3 indicate that the
number of passengers after each dispatch would be
relatively small values (i.e., less than the capacity of a
single modular pod) at each station. Although the
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conditions in Propositions 2 and 3 are not universal,
they enable us to draw analytical insights into the opti-
mal solution structure that would otherwise be impos-
sible. Further, the applicability domain of this theoreti-
cal result is quite wide in real-world cases. Condition
(i) usually holds for commonUMT systems because the
passenger waiting cost is usually of a highermagnitude
compared with the associated vehicle operational cost
(Huang et al. 2017; Yin et al. 2017; Chen, Li, and Zhou
2019, 2020). Condition (ii) is generally approximately
true under the unsaturated demand scenario. Even for
cases in which the conditions are not satisfied, we
found that the resultant approximation error of a con-
tinuous approximationmodel guided by these theoreti-
cal findings are relatively small. Indeed, the passenger
queue at each station can be cleared (not just bounded
by c) after each dispatch most of the time in the optimal
solution(s) (see Section 5.1.3 for numerical results).
Hence, the conditions stated in these propositions, albe-
it nonexhaustive, provide important analytical insights
into the nature of the (near-)optimal solutions and a
theoretical foundation for breaking the spatiotemporal
correlation between dispatch decisions.

With these results, we further investigate properties
of the optimal vehicle formations. Define the seat de-
mand at time t at station s, denoted as ãs(t), as those
who would travel through the segment between sta-
tion s and s + 1 at this time, that is,

ãs(t) :�
∑

u∈S−
s+1

∑
v∈S+

s

Au(t′, t′)puv(t)( ) � ∑
u∈S−

s+1

∑
v∈S+

s

au(t)puv(t)( )
,

∀s ∈ S, t ∈ [0,T]:

Note that this is different from the one defined in
Wirasinghe (1990) because historic cumulative de-
parture curves are not involved. Let ãks, iks, and īks
be the seat demand, conditional lower-bound vehi-
cle formation, and upper-bound vehicle formation
for dispatch k at station s, respectively. For dis-
patch k, the actual seat demand at station s also in-
cludes the cross-sectional passenger queue of this
station from the previous dispatch. Thus, the seat
demand for dispatch k at station s can be formulat-
ed as ãks :� q̃s(tk−1) +

∫ tk
tk−1

ãs(t)dt, ∀k ∈K, s ∈ S. With

this, we define the conditional lower-bound vehicle
formation as iks :�min 	ãksc 
, I

{ }
, which represents the

longest vehicle formation whose capacity is smaller
than the seat demand (i.e., the shortest one that
results in q̃s(tk) < c). Likewise, we define the upper-
bound vehicle formation as īks :�min �ãksc �, I

{ }
, which

represents the shortest vehicle formation whose
capacity is greater than the seat demand (i.e., the
shortest one that results in q̃s(tk) � 0). With these defi-
nitions, the following result regarding the lower

bound to the optimal vehicle formation must hold
because, otherwise, Proposition 2 is violated.

Proposition 4. Any dispatch k in an optimal solution
{K, tk, iks, eks, dks(t′),Ds(t′, t)} to Problems (4)–(12) with
time-dependent arrival rate curves As(t′, t), ∀s ∈ S and
time-dependent departure rate curves Ds(t′, t), ∀s ∈ S must
satisfy iks ≤ iks, ∀s ∈ S if the following conditions hold:

i. S( f2 − f1) < cwh.
ii.

∑
u∈S−

s+1
∑

v∈S+
s

(∫ tk

t′�tk−1
Au(t′, t′)( )puv(t′)dt′

)
≤ (I− 1)c,

∀s ∈ S:

Finally, the following proposition reveals the upper
bound to the optimal vehicle formation in general.

Proposition 5. An optimal solution {K, tk, iks, eks,
dks(t′),Ds(t′, t)} to Problems (4)–(12) must satisfy
iks ≤ īks, ∀k ∈K, s ∈ S.

Proof. This proposition is also proven by contradic-
tion. If the condition in this proposition does not hold,
then there exist k̄ ∈K and s̄ ∈ S such that ik̄ s̄ > ī k̄ s̄ in

this optimal solution. Note that ī k̄ s̄ < I (i.e., ī k̄ s̄ �
⌈ ã k̄ s̄

c

⌉
)

because, otherwise, this optimal solution is not feasi-
ble. Then, we can construct an alternate solution
{K̂, t̂k, îks, êks, d̂ks(t′), D̂s (t′, t)}, where K̂ � K, t̂k � tk,
∀k ∈K, î k̄ s̄ � ī k̄ s̄ , and îks � iks for all other k and s index-

es. Because ī k̄ s̄ �
⌈ ã k̄ s̄

c

⌉
, we obtain ik̄ s̄ c > î k̄ s̄ c ≥ ãk̄ s̄ ,

meaning that both î k̄ s̄ and ik̄ s̄ can transport all passen-
gers who want to board dispatch k̄ at station s̄. There-
fore, êks � eks, ∀k ∈K, s ∈ S, d̂ks(t′) � dks(t′), ∀k ∈K, s ∈
S, t′ ∈ [0,T], D̂s(t′, t) �Ds(t′, t), ∀k ∈K, s ∈ S, t′ ∈ [0,T],
t ∈ [0,T]: Thus, the constructed alternate solution is
feasible to the investigated problem. Further, this re-
sult also indicates that the passenger waiting costs are
the same between the alternate and optimal solutions.
Thus, the difference between the objective value of the
optimal solution and that of the alternate solution is∑

s∈S

∑
k∈K

fiks − fîks
( )

� f ik̄ s̄( ) − f îk̄ s̄( ) > 0,

which forms a contradiction. This completes the
proof. w

These two propositions offer an analytical solution
to the upper bound and the conditional lower bound
for the optimal vehicle formations and, thus, consti-
tute a theoretical foundation for designing efficient
discretization methods for the CA approach.

4. CA
This section presents the CA approach to obtaining
near-optimal solutions to the investigated problem ef-
ficiently. We first present how we approximate the
original problem in a relatively homogeneous setting
and the resulting problem decomposition. Then,
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analytical solutions to the decomposed problem and
the discretization approach are discussed.

4.1. Model Formulation
With the theoretical findings in the previous section,
we can reformulate the original Problems (4)–(12) un-
der the CA framework. Given an optimal solution o :�
{tk ,iks}∀k∈K,s∈S to Problems (4)–(12) with time-
dependent arrival rate curves As(t′, t) and time-
dependent departure rate curves Ds(t′, t), ∀s ∈ S, we
define the dispatch headway at time t ∈ [0,T] as ĥ(t) :�
tk − tk−1, (s.t.) t ∈ [tk−1, tk),∃k ∈K, and the vehicle for-
mation at station s ∈ S at time t ∈ [0,T] as îs(t) :� iks,
s.t. t ∈ [tk−1, tk),∃k ∈K, ∀s ∈ S. For convenience of no-
tation, we define ĥ(tK) :� tK − tK−1 and îs(tK) :� iKs,
∀s ∈ S. With this, the objective value corresponding to
optimal solution o can be formulated as

OP(o) :�∑
s∈S

∑
k∈K

fiks +w
∫ T

t′�0

∫ T

t�0
As(t′, t) −Ds(t′, t)( )dtdt′

( )

�∑
s∈S

∫ T

0

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt+w

∫ T

t′�0

∫ T

t�0
As(t′, t)(

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−Ds(t′, t))dtdt′): (14)

s.t. (5)–(12).
Propositions 1–3 and empirical experiments show

that the passenger queue at each station is relatively
small after each dispatch most of the time in the opti-
mal solution(s) when only unsaturated traffic is pre-
sent. This finding enables us to relax the FIFS rule
when describing passenger boarding behavior. There-
fore, we can replace the time-dependent arrival and
departure rate curves by the original ones to compute
the passenger waiting cost. This results in a first ap-
proximation to the original objective function (4) as

OP(o) ≈ ∑
s∈S

∫ T

0

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dt + w As(t) −Ds(t)( ) dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ∑
s∈S

∑
k∈K

∫ tk

tk−1

f îs(t)
( )
ĥ(t) + w As(t) −Ds(t)( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

Note that As(t) is very close to Ds(t) at each t � tk, ∀k ∈
K (Propositions 1–3). Hence, we have as(t) �
As(t)−As(tk−1)

t−tk−1 ≈ As(t)−Ds(tk−1)
t−tk−1 , t ∈ [tk−1, tk), ∀k ∈K, which yields

OP(o) ≈∑
s∈S

∑
k∈K

∫ tk

tk−1

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt+w

∫ tk

tk−1
As(t) −Ds(t)( )dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈∑
s∈S

∑
k∈K

∫ tk

tk−1

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt+w

∫ tk

tk−1
as(t)(t− tk−1)( )dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

(15)

Because as(t) changes relatively slowly between two
consecutive dispatches, we treat it as constant and
pull it out of the integral, which yields

OP(o) ≈∑
s∈S

∑
k∈K

∫ tk

tk−1

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt+was(t)

2
(tk − tk−1)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�∑
s∈S

∑
k∈K

∫ tk

tk−1

f îs(t)
( )
ĥ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt+was(t)

2

∫ tk

tk−1
tk − tk−1( )dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈
∫ T

0

∑
s∈S

f îs(t)
( )
ĥ(t) +was(t)ĥ(t)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt: (16)

The difference between (16) and (15) is

∑
s∈S

∑
k∈K

∫ tk

tk−1
As(tk−1) −Ds(tk−1)( )dt

( )[ ]
< cTS,

which is a relatively small value compared with
OP(o). Additionally, numerical experiments with ex-
act solution methods show that As(tk) −Ds(tk) � 0
most of the time. Thus, we feel safe to say that this
approximation mostly holds, particularly for large in-
stances. Solving the investigated problem with an ap-
proximated objective function (16), however, is not
much different from solving it with the original one
because both ĥ(t) and îs(t), ∀s ∈ S are step functions.
To further simplify this, we replace ĥ(t) and îs(t), ∀s ∈
S with continuous functions h(t) and is(t), ∀s ∈ S, re-
spectively, and obtain

OP(o) ≈
∫ T

0

∑
s∈S

f is(t)( )
h(t) +was(t)h(t)

2

( )( )
dt, (17)

where the operational cost of continuous vehicle for-
mation is(t) ∈ [0, I] is defined as f is(t)( ) :� fi, s.t.
is(t) ∈ (i− 1, i],∃i ∈ I , ∀t ∈ [0,T], s ∈ S. For convenience
of notation, define f (0) :� 0. To ensure that the approx-
imation is accurate, the following relationship should
hold: ∫ T

0
ĥ(t)
( )

dt ≈
∫ T

0
h(t)( )dt,∫ T

0
îs(t)
( )

dt ≈
∫ T

0
is(t)( )dt, ∀s ∈ S:

Until now, the spatiotemporal correlation between
dispatch decisions is eliminated, and we can solve the
problem for each time point independently. However,
the approximated objective function (17) still has S + 1
number of decision variables for which the solution
approach might not be very simple. Thus, we need to
further simplify the model formulation. Specifically,
we obtain that, for t ∈ [tk−1, tk), ∀k ∈ K, is(t)c ≈ îs(t)c �
îs(tk)c ≈

∫ tk
tk−1

ãs(t)dt ≈ (tk − tk−1)ãs(t) � h(t)ãs(t): Applying
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this relationship to Equation (17) yields the final ap-
proximate objective function with only one decision
variable as

OP(o) ≈
∫ T

0

∑
s∈S

f h(t)ã s(t)
c

( )
h(t) +was(t)h(t)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt: (18)

Clearly, the h(t) value that minimizes Equation (18)
also minimizes the integrand at every t ∈ [0,T], so the
original problem can be decomposed across the opera-
tional horizon as the following set of subproblems,
each for one time point t.

c∗(t) :�min
h(t)

ct h(t)( ) :�∑
s∈S

f h(t)ãs(t)
c

( )
h(t) +was(t)h(t)

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

∀t ∈ [0,T]:

This is s.t.

h ≤ h(t) ≤ Ic
ãs(t) , ∀s ∈ S, t ∈ [0,T]: (20)

Constraints (20) are imposed because of the minimum
headway constraints and the vehicle capacity con-
straints in the original problem. These unit-time
problems at each time point t ∈ [0,T] have only one de-
cision variable h(t) and two constraints, and they can
be independently solved analytically at each time
t ∈ [0,T]. Thus, these single-variable optimization
problems are much simpler to solve than the original
problem. After solving the unit-time problems across
the entire operational horizon, we can apply c∗(t) to
the following equation to obtain an approximate objec-
tive value to optimal solution o:

OP(o) ≈
∫ T

0
c∗(t)dt: (21)

4.2. Analytical Solution
This section presents an analytical solution approach
to the unit-time problems (19) and (20). The proposed
solution approach first divides the feasible region of
h(t) into a finite number of subregions, in each of
which a local minimum to the objective function (19)
exists. Then, the local minimum in each subregion can
be analytically solved. Finally, a comparison between
all local minima can easily lead us to the global mini-
mum of the unit-time problems. The following discus-
sion applies to each t ∈ [0,T], but we omit the index ∀
t ∈ [0,T] in the formulas for convenience of notation.

We first present how to divide the feasible region
into a finite number of subregions in which ct h(t)( ) is
strictly unimodal as shown in Figure 4. According to
the definition of f is(t)( ) in the previous section, for

each station, s ∈ S, f h(t)ãs(t)
c

( )
is a step function specified

by a set of discrete points (joints between pairs of

consecutive pieces of the function) denoted as

Hs(t) :� ic
ãs(t) | h ≤ ic

ãs(t) ≤min Ic
ãs(t) ,T

{ }
, ∀i ∈ I

{ }
, where the

elements are ascendingly ordered. With this, we can
divide the feasible region for all possible headway val-
ues into a finite number of subregions with a set of
segregation points denoted as an ascendingly ordered
set H(t) :� ∪s∈SHs(t). For convenience of notation, de-
note the lth element in H(t) as hl(t) in the following

analysis. Define Xl−1(t) :� ∑
s∈S f

h(t)ã s(t)
c

( )
> 0, Y(t) :�∑

s∈S
wãs(t)

2 ≥ 0, which are both constant over h(t) ∈
hl−1(t),hl(t)( ] based on the definition of the step func-
tion. Then, ct(h(t)) � Xl−1(t)=h(t) +Y(t)h(t) is a strictly
convex economic order quantity (EOQ) function of

h(t). Solving c′t(h(t)) � 0 yields h(t) �
�������
Xl−1(t)
Y(t)

√
, and thus,

there are three cases regarding the monotonicity of
ct h(t)( ) in subregion (hl−1(t),hl(t)], ∀l ∈ [2, ⋯ , |H(t) |]
as follows:

Case 1. If hl(t) <
�������
Xl−1(t)
Y(t)

√
, then ct h(t)( ) is strictly de-

creasing over hl−1(t),hl(t)( ]. In this case, the local mini-
mum is achieved at h(t) � hl(t).

Case 2. If hl−1(t) >
�������
Xl−1(t)
Y(t)

√
, then ct h(t)( ) is strictly

increasing over hl−1(t),hl(t)( ]. In this case, the local min-
imum is obtained at h(t) � hl−1(t) (which is rolled back
to the previous piece of the step function with a slight
abuse of notation).

Case 3. If hl−1(t) ≤
�������
Xl−1(t)
Y(t)

√
≤ hl(t), ct h(t)( ) is strictly de-

creasing ∀h(t) ∈ hl−1(t),
�������
Xl−1(t)
Y(t)

√( )
and then strictly in-

creasing ∀h(t) ∈ [
�������
Xl−1(t)
Y(t)

√
,hl(t)]. In this case, the local

minimum is obtained at h(t) �
�������
Xl−1(t)
Y(t)

√
.

Figure 4. (Color online) Subregion Division for the Feasible
Region of h(t) for Unit-Time Problems
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This yields an analytical solution to the optimal h(t)
in subregion hl−1(t),hl(t)( ] denoted as h∗l−1(t) as follows

h∗l−1(t)�

hl−1(t), if
���������
Xl−1(t)
Y(t)

√
<hl−1(t);���������

Xl−1(t)
Y(t)

√
, if hl−1(t)≤

���������
Xl−1(t)
Y(t)

√
≤hl(t),

∀l∈ [2, : : : , |H(t) |];
hl(t), if

���������
Xl−1(t)
Y(t)

√
>hl(t): (22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Then, we can obtain the local minimum in subregion
[hl−1(t),hl(t)], denoted as c∗l−1(t), by applying Equa-
tion (22) to ct h(t)( ), that is, c∗l−1(t) � ct(h∗l−1(t)). With
the local minima in all subregions [hl−1(t),hl(t)],
∀l ∈ [2, ⋯ , |H(t) |], the global minimum over the en-
tire feasible region can be obtained as

c∗(t) � min
l∈[2,: : : ,|H(t)|]

c∗l−1(t),

with the minimizer as

l∗(t) � argmin
l∈[2, : : : , |H(t)|]

c∗l−1(t):

This yields the optimal headway as

h∗(t) � h∗l∗(t)(t),
and the optimal vehicle formation as

i∗s(t) �
h∗(t)ãs(t)

c
, ∀s ∈ S:

Finally, after solving the unit-time problems ∀t ∈
[0,T], we can plug c∗(t), ∀t ∈ [0,T] into Equation (21)
to obtain an approximate value of OP(o).

4.3. Discretization Issues
The continuous solution h∗(t), i∗s(t)

{ }
, ∀s ∈ S, t ∈ [0,T]

obtained from the analytical solution approach approxi-
mates the optimal dispatch headways and vehicle forma-
tions and allows us to find an near-optimal total cost
without explicitly solving the original problem. Howev-
er, this continuous solution cannot be directly applied for
discrete vehicle dispatching decisions. A discretization
method is needed to convert h∗(t) into discrete time
points for each dispatch t∗k and i∗s(t) into discrete vehi-
cle formation i∗ks.Wefirst discuss themethod to discretize
h∗(t). Several methods are proposed to find an approxi-
mate step function to the continuous headway function
h∗(t) in the literature, such as Daganzo (2005) and Chen,
Li, and Zhou (2020). Here, we opt to adopt the one
presented in Chen, Li, and Zhou (2020) because of its
simplicity and computational efficiency. This method es-
sentially iteratively applies the definition of headway,
that is, h∗(t∗k−1) � t∗k − t∗k−1, ∀k � K,K− 1, ⋯ , 1. Specifi-
cally, because a vehicle must be dispatched at T (other-
wise Constraints (7) are violated), this algorithm sets T as

the time for the last dispatch, that is, t∗K � T. Starting from
the point (t � T,h∗(t) � 0), this algorithmdraws a 45◦ line
backward in time and find its intersection with h∗(t),
which locates the time for the previous dispatch, that is,
t∗K−1, as the abscissa of this intersection point. This pro-
cess is then repeated from t∗K−1 to locate t∗K−2 from t∗K−2 to
t∗K−3 until we reach a point t∗k < h. Note that this algorithm
also determines the values ofK∗ andK∗.

Once the discrete time points t∗k, ∀k ∈K∗ are ob-
tained, we can move on to discretize i∗s(t), ∀s ∈ S.
Chen, Li, and Zhou (2020) compute the weighted av-
erage of all vehicle formations in time interval
[t∗k−1, t∗k] and round it to an integer as the vehicle
formation for dispatch k. For shuttle systems investi-
gated in Chen, Li, and Zhou (2020), the discretized
results from this approach are not distant from the
continuous values because discrete vehicle forma-
tions are used in solving the unit-time problems.
However, in this study, discrete vehicle formations
îs(t), ∀s ∈ S are approximated by a continuous func-
tion is(t), ∀s ∈ S, whose original step function (i.e.,
îs(t)) cannot be well estimated by the weighted aver-
age method. Thus, here, we propose a greedy heuris-
tic to discretize i∗s(t), ∀s ∈ S to improve the discretiza-
tion accuracy. Note that, as long as the dispatch
times are determined, the vehicle formation of each
station can be determined independently. Thus, the
following analysis can be applied to all s ∈ S, but we
omit this index for convenience of notation. Proposi-
tions 4 and 5 indicate that, for each dispatch k at
station s, the optimal vehicle formation should be se-
lected between the conditional lower bound vehicle
formation iks and upper bound vehicle formation īks.
For k ∈K∗\{K∗}, if (ãks − iksc)w(t∗k − t∗k−1) > fīks − fiks , indi-
cating that the increase in the passenger waiting
cost by using the conditional lower bound vehicle
formation cannot be offset by the decrease in the op-
erational cost, we select the upper bound vehicle for-
mation, that is, i∗ks � īks. Otherwise, the conditional
lower bound vehicle formation is used, that is,
i∗ks � iks. For the last dispatch K, the upper bound
should always be used, that is, i∗Ks � īKs, because Con-
straints (7) are violated otherwise.

These discretization methods can be formally stated
as the pseudocode in Algorithm 1.

Algorithm 1 (Discretization)
Input: h∗(t), i∗s(t), ∀s ∈ S, t ∈ [0,T],h
Output: t∗k, i

∗
ks, ∀k ∈K, ∀s ∈ S

1: K← 0
2: t∗K ← T
3:K← {K}
4:while t∗K ≥ h do
5: K← K+ 1
6: K←K ∪ {K}
7: t∗k ← argsupt∈[0,t∗K−1) h∗(t) � t∗K−1 − t

{ }
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8: end while

9: i∗Ks ←
⌈ ∫ t∗K

t∗K−1
ãs(t)dt
c

⌉
, ∀s ∈ S

10: for k inK \ K{ } do
11: for s in S do

12: ãks ←
∫ t∗k
t∗k−1

ãs(t)dt, iks ← 	ãksc 
, īks ← �ãksc �
13: if (ãks − iksc)w(t∗k − t∗k−1) > ( f īks − fiks) then
14: i∗ks ← īks
15: else
16: i∗ks ← iks
17: end if
18: end for
19: end for
20: Reverse (i∗ks, t∗k) � (i∗K−k,s, t∗K−k), ∀k ∈K :� {0, 1, ⋯ ,K}

5. Numerical Experiments
This section assesses the proposed CA model with
two sets of numerical experiments. The first set of ex-
periments is built on a hypothetical transit corridor in
Mandl’s (1980) network to evaluate the computational
performance of the proposed CA model, verify the
theoretical properties, and analyze the system perfor-
mance with varying input parameters. The second set
of experiments applies the CA model to design future
MAV service with realistic travel demand data collect-
ed from the Batong line in the Beijing Subway system.
The purpose of these experiments is to investigate the
applicability of the CA model to solve real-world
problems and to further reveal some interesting man-
agerial insights. All experiments are run on a DELL
Studio PC with 3.60 GHz of Intel Core 17-7700 CPU
and 16 GB RAM in a Windows environment. All the
algorithms are implemented in Visual C++ 2015.

5.1. Case Study 1: A Hypothetical Transit
Corridor in Mandl’s (1980) Network

5.1.1. Experimental Settings. We first explain how we
set up the numerical experiments based on a hypo-
thetical transit corridor in Mandl’s (1980) network. As
shown in Figure 5, Mandl’s (1980) network includes a
group of cities in Switzerland, consisting of 15 nodes
and 21 bidirectional links. Without loss of generality,
we select 11 nodes (the nodes with shaded circles) to
construct a unidirectional transportation corridor
starting at node 1 and terminating at node 5 (with the
direction of each link indicated by the arrows). Be-
cause we do not have access to the historic spatiotem-
poral travel demand data for this network, we use the
transit OD demand matrix during the peak hour in
Arbex and da Cunha (2015) to simulate multiple time-
dependent OD matrices as follows.

i. For an OD pair, we compute the arrival demand
rate per minute based on the peak-hour demand in Ar-
bex and da Cunha (2015) and use it as an input to

simulate the passenger arrival process as a Poisson pro-
cess. The simulation process determines the arrival
time of each passenger, based on which we construct
the time-dependent OD matrices for this OD pair dur-
ing the peak hour.

ii. To estimate the travel demand for other periods
within the day, we multiply the OD demand matrix in
Arbex and da Cunha (2015) by the ratio of the time-of-
day factor of the target period to that of the peak hour.
Then, we repeat the first step to construct the time-
dependent ODmatrices for this target period.

We assume that the constructed corridor is served
by MAVs that can dock and undock at any station
along the corridor. To make sure all passengers can be
served at the end of the operational horizon with a
minimum dispatch headway of h � 3 minutes, we set
I :� [1, 2, 3] and c � 50 passengers/pod. Further, be-
cause no empirical data regarding the operational cost
of MAVs are available, we simply adopt the calibrated
function from Chen, Li, and Zhou (2020), that is,
fi � CF +CV(i)α � 1:912+ 29:50i, ∀i ∈ I . Besides this,
the unit-time waiting cost per passenger is set as
w � $0.8/minute.

5.1.2. Computation Performance of the CA Model.
This section examines the computation performance
of the proposed CA model. To investigate how the
computation performance varies with the instance
size, we design 36 instances with different numbers of
origin stations (i.e., 2–10) and lengths of the operation-
al horizon (i.e., 0.5, 1, 1.5, and 2 hours). The proposed
CA approach is compared with a discrete model

Figure 5. (Color online)Mandl’s Network and the Investigat-
ed Corridor System
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solved by an existing commercial solver, Gurobi
(Chen and Li 2021). In the CA model, we compute the
objective values in two ways. The first approach,
called CA-I, obtains the objective value directly from
the continuous analytical solutions. The second ap-
proach, CA-D, feeds the discretized solutions into the
objective function of the discrete model to compute
the objective value. To quantitatively measure the dif-
ference between the solution from the CA model
(denoted as VCA) and that from the discrete model
(denoted as VGU), we compute the relative gap be-
tween their objective values as VCA−VGU

VGU
× 100. We also

record the computation time of each solution method
to compare their computation speed. Note that we set
the solution time limit of Gurobi as one hour; that is, if
Gurobi cannot solve the model to optimality within
an hour, the program is terminated. The relative gaps
and computation time of all instances are summarized
in Table 1, in which C, Cf, and Cw represent the total
system cost, operational cost, and total passenger
waiting cost, respectively. In the first column in Table
1, we denote an instance as “IN–number of origin
stations–length of the operational horizon.” For exam-
ple, IN-2-0.5 represents an instance with two origin
stations and an operational horizon of 0.5 hour. Also,
note that there are two values in the eighth column in
Table 1 with the ones outside the brackets represent-
ing the time for Gurobi to construct and solve the
model and those inside the brackets representing the
solution time only. Finally, when Gurobi cannot solve
the model to optimality, either a feasible solution is re-
turned, indicated by a solution time of 3,600 seconds,
or not even a feasible solution can be obtained, indi-
cated by a slash in the eighth column in Table 1.

We see from Table 1 that the relative gaps in the to-
tal system cost from CA-I can be positive or negative,
indicating that CA-I can either overestimate or under-
estimate the optimal objective value. This is because
CA-I produces the results directly from the continu-
ous analytical solutions, which can be either feasible
or infeasible to the investigated problem. Despite the
signs of the relative gaps in total system costs from
CA-I, their absolute values are all under 4%, and only
two of them are above 3%. These results indicate that
the CA-I estimates the total cost of transit corridors
with good accuracy even without discretization. As
for the two cost components, the estimation errors are
a bit higher in some instances (e.g., instances with two
origin stations), but most of them are still under 4%.
For those with a relatively large relative gap in one
component, the other cost component usually has a
relatively small gap, and thus, the two cost compo-
nents offset each other so that the estimated total sys-
tem cost is still accurate. For example, in instance IN-
2-0.5 (the instance with two origin stations and an op-
erational horizon of 0.5 hour), the relative error in the

operational cost is 9.17%, but this deviation is bal-
anced with a small relative error in the waiting cost of
−1.44%, resulting in a relative error in the total cost of
only 3.53%. For CA-D, all relative gaps are positive ex-
cept the one from IN-2-2 because the discretization
method ensures that all solutions are feasible. Surpris-
ingly, in instance IN-2-2 (the instance with two sta-
tions and an operational horizon of two hours), CA-D
produces an objective value lower than that from
Gurobi (note that neither is an optimal solution), indi-
cating that sometimes CA-D produces near-optimal
solutions with higher accuracy than Gurobi does. Fur-
ther, the relative gaps in the total cost are all below
5%, and most of them are under 2%, indicating the
CA-D can produce near-optimal solutions to the in-
vestigated problem with high accuracy. The relative
gaps in the two cost components show a similar trend
as those from CA-I. Overall, these results verify the
near-optimality of the CA model. Also, we observe
that the relative gap (i.e., the accuracy of the CA mod-
el) generally decreases as the instance size increases,
meaning the CA model is appropriate for large-scale
problem instances in the real world.

Regarding the computation speed, we can see that
Gurobi cannot solve most of the instances to optimali-
ty and could not even provide a feasible solution in
many instances given the solution time limit of an
hour. Further, it took Gurobi hours to construct the
model before solving it (e.g., slightly over an hour in
IN-3-1.5). However, the CA models could tackle all in-
stances with astonishing efficiency, that is, within 10
ms. Besides, we can also see that the computation
time of Gurobi increases dramatically as the instance
size increases although that of the CA models are rela-
tively stable. This is because the investigated problem
is NP-hard (as its special case, the classic timetabling
problem, is proven NP-hard; Caprara, Fischetti, and
Toth 2002) and the discrete model involves a large
number of decision variables and constraints as the
problem size grows. Whereas the CA model only
needs to solve a finite number of unit-time problems,
and thus, has only linear time complexity. These re-
sults show that the CA models are also attractive from
the perspective of computational efficiency.

Next, we investigate how the computational perfor-
mance of the CA model varies when the relationship
between the passenger waiting cost and operational
cost changes. To this end, we change the value of unit-
time waiting cost per passenger w in IN-2-0.5 and
IN-4-0.5 and solve the model with Gurobi, CA-I, and
CA-D again. These two instances are selected because
they produce the largest and smallest relative gaps by
CA-D among all instances whose discrete models can
be solved to optimality in the preceding experiments.
Note that the operational cost fi can be changed for
experiments as well, but here, we simply select w for
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illustrative purposes. The results from these experi-
ments are summarized in Table 2. As we can see from
Table 2, the relative gaps of the two cost components
Cf and Cw are more evident (e.g., 20.41% from CA-D
in IN-4-0.5), but the gap of the total system cost C still
remains relatively small (less than 4% from CA-I and
less than 6% from CA-D, respectively). The average of
the absolute values of the relative gaps from CA-I
and CA-D are 2.24% and 2.67%, respectively, which
are much smaller than the relevant deviation of
w (62.5%). These results indicate that the proposed
CA approaches still produce near-optimal solutions
with high accuracy even when the parameter varia-
tion is drastic. This finding is consistent with those
from several previous studies using the CA model
(e.g., Li et al. 2016). Further, we also observe from Ta-
ble 2 that the computation time of Gurobi changes

substantially as w changes because the number of no-
des that Gurobi has to explore is case sensitive (i.e.,
dependent on values of the input parameters). In con-
trast, the number of unit-time problems that the CA
approaches has to solve is fixed for one particular in-
stance regardless of the parameter variation. Thus, the
solution time of the CA model does not change with
the parameter variation, verifying the robustness of
the computation speed of the CA model.

5.1.3. Results Verification. This section reports some
numerical results to further verify the validity of the
CA model as well as the theoretical properties. We
first present the optimal operational plans from Guro-
bi and near-optimal operational plans from CA-D of
four selected instances in Figure 6. Next, the number
of passengers left at the stations after each dispatch in

Table 1. Computational Performance of the CA Model Under the Default Parameter Setting

Relative gap, %/Objective value ($103)

CA-I CA-D Computation time, s

Instance C C f Cw C Cf Cw Gurobi CA-I CA-D

IN-2-0.5 3.53 9.17 −1.44 4.12 5.67 2.76 71.77 (45.60) 0.001 0.001
IN-3-0.5 3.12 0.14 6.44 3.26 3.57 2.90 584.45 (526.63) 0.001 0.001
IN-4-0.5 2.15 2.73 1.53 1.69 4.84 −1.64 280.21 (177.21) 0.001 0.001
IN-5-0.5 1.39 0.82 2.09 1.83 5.39 −2.55 298.02 (123.18) 0.001 0.001
IN-6-0.5 1.21 0.02 2.56 1.73 4.23 −1.08 417.18 (163.45) 0.001 0.001
IN-7-0.5 0.58 −0.32 1.74 1.15 2.98 −1.21 1,772.18 (1,433.07) 0.001 0.002
IN-8-0.5 0.52 −1.00 2.65 1.24 2.67 −0.75 2,858.44 (2,432.32) 0.001 0.002
IN-9-0.5 0.23 −2.03 3.63 1.19 1.47 0.76 4,136.26 (3,600) 0.001 0.002
IN-10-0.5 0.02 −2.90 4.61 1.69 0.00 4.36 4,259.64 (3,600) 0.002 0.002
IN-2-1 2.68 8.16 −2.14 3.14 2.87 3.38 3,955.82 (3,600) 0.001 0.001
IN-3-1 1.85 −1.18 5.22 2.26 1.80 2.76 4,394.16 (3,600) 0.001 0.002
IN-4-1 2.26 2.98 1.49 1.99 4.96 −1.14 5,025.16 (3,600) 0.001 0.002
IN-5-1 0.31 −0.76 1.62 0.67 2.71 −1.85 5,833.16 (3,600) 0.001 0.002
IN-6-1 −0.52 −0.37 −0.68 0.29 2.85 −2.50 6,976.23 (3,600) 0.001 0.003
IN-7-1 17.51 9.68 7.84 17.75 10.03 7.72 / 0.001 0.003
IN-8-1 18.83 10.71 8.12 19.15 10.03 7.93 / 0.001 0.003
IN-9-1 19.82 11.55 8.27 20.52 11.22 8.56 / 0.001 0.003
IN-10-1 20.46 12.06 8.40 21.21 11.97 8.62 / 0.001 0.004
IN-2-1.5 2.53 7.63 −1.91 2.04 2.18 1.92 5,301.36 (3,600) 0.001 0.002
IN-3-1.5 0.47 1.65 −0.74 0.16 2.92 −2.66 7,307.53 (3,600) 0.002 0.002
IN-4-1.5 0.75 1.32 0.14 0.02 1.38 −1.42 10,161.30 (3,600) 0.002 0.004
IN-5-1.5 15.79 8.66 7.13 15.74 8.75 6.99 / 0.002 0.004
IN-6-1.5 21.00 11.05 9.95 20.99 11.14 9.85 / 0.002 0.004
IN-7-1.5 23.33 12.99 10.34 23.50 13.18 10.32 / 0.002 0.006
IN-8-1.5 25.11 14.45 10.66 25.36 17.74 10.63 / 0.002 0.006
IN-9-1.5 26.41 15.58 10.82 27.09 15.86 11.23 / 0.002 0.007
IN-10-1.5 27.35 16.38 10.96 28.10 16.80 11.30 / 0.001 0.009
IN-2-2 2.50 13.57 −6.24 −0.20 4.66 −4.03 8,941.71 (3,600) 0.002 0.002
IN-3-2 1.80 2.40 1.17 1.94 0.67 3.27 15,525.20 (3,600) 0.002 0.003
IN-4-2 15.79 8.19 7.60 15.54 8.03 7.50 / 0.002 0.005
IN-5-2 19.76 10.87 8.88 19.70 10.97 8.73 / 0.002 0.005
IN-6-2 26.23 13.92 12.31 26.14 13.88 12.26 / 0.001 0.006
IN-7-2 29.17 16.37 12.80 29.43 16.52 12.90 / 0.002 0.008
IN-8-2 31.40 18.24 13.16 31.79 18.40 13.39 / 0.002 0.009
IN-9-2 33.03 19.69 13.34 34.01 19.83 14.17 / 0.002 0.009
IN-10-2 34.28 20.75 13.53 34.96 21.09 13.87 / 0.004 0.010

Note. Bold fonts represent objective value.
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the optimal solutions from Gurobi to four selected in-
stances are plotted in Figure 7. Finally, the lower
bound, upper bound, and optimal vehicle formations
(obtained from Gurobi) of two selected instances are
presented in Figure 8.

From Figure 6, we see that the optimal vehicle for-
mations vary dramatically across time and space in
all four instances, verifying that it is necessary to ad-
just the vehicle capacity across all stations over time
in UMT systems. Also, the near-optimal dispatch
times from the CA model and the optimal ones from
the discrete model are exactly the same. Note that
minor variations may be observed in larger instan-
ces, but comparisons cannot be provided here be-
cause Gurobi can only solve certain small instances
to optimality given the limited computational resour-
ces. The vehicle formations from both approaches are
the same for the majority of dispatches across all sta-
tions (over 75%) with some minor local variations in
the instances shown in Figure 6, (b)–(d). For the in-
stance shown in Figure 6(a), the discrepancy between
the vehicle formations obtained from Gurobi and
CA-D is more evident with only 16 out of the 40 dis-
patches being the same. However, the relative gap
between these two solutions is only 5.28%, which still
satisfies the requirements of most engineering appli-
cations. The excellent performance of the CA model
partially lies in the EOQ structure of the investigated

problem, whose objective value remains relatively
stable when the variations in the solutions remain
within a certain range (Daganzo 2005). Based on
these observations, we conclude that, though dis-
crepancies can be witnessed for certain dispatches
between solutions from the CA model and those
from the discrete model, the objective values do not
deviate substantially. Thus, the CA model can pro-
duce near-optimal solutions very close to those from
the discrete model across a wide range of input pa-
rameter values. These results further demonstrate
the solution accuracy of the CA model.

As can be seen from Figure 7, the passenger queue
drops to zero at at least one station after each dispatch
in the four instances except the fifth dispatch in IN-4-
0.5 with w � 0.3. For this exception, the vehicle
dispatch headway equals the minimum dispatch head-
way (i.e., three minutes). These results verify Proposi-
tion 1. Also, we can see that the number of passengers
left at the stations after a dispatch reaches zero in most
cases in the optimal solutions to the selected instances.
For a few cases in which the passenger queue is not
cleared, the number of passengers left behind is still
less than the capacity of a single vehicle (i.e., 50). We
also observe that the larger the value of w, the smaller
the passenger queue and the lower the possibility that
the passenger queue is not zero after a dispatch. These
results verify Propositions 2 and 3. Further, Figure 8

Table 2. Computational Performance of the CA Model Under Varying Values of w

Relative gap, %

CA-I CA-D Computation time, s

w C C f Cw C Cf Cw Gurobi CA-I CA-D

IN-2-0.5
0.3 0.76 −0.06 2.21 3.17 0.42 7.90 140.514 (113.660) 0.001 0.001
0.4 1.79 −5.83 13.53 2.20 0.00 5.60 122.065 (113.660) 0.001 0.001
0.5 2.76 −5.44 13.63 1.85 0.00 4.30 150.467 (122.950) 0.001 0.001
0.6 3.42 −3.20 11.20 2.07 −2.83 7.82 68.530 (41.040) 0.001 0.001
0.7 3.71 3.51 3.92 2.74 −5.67 11.20 104.203 (76.820) 0.001 0.001
0.8 3.53 9.17 −1.44 4.12 5.67 2.76 74.810 (47.440) 0.001 0.001
0.9 3.28 8.76 −1.25 4.16 5.51 3.05 68.802 (41.380) 0.001 0.001
1.0 2.99 9.87 −2.13 4.10 5.51 3.05 62.022 (34.630) 0.001 0.001
1.1 2.70 10.05 −2.26 4.04 5.51 3.05 64.035 (35.380) 0.001 0.001
1.2 2.45 10.10 −2.29 3.99 5.51 3.05 60.682 (32.600) 0.001 0.001
1.3 2.22 10.10 −2.29 3.73 5.51 2.71 51.786 (23.500) 0.001 0.001
IN-4-0.5
0.3 2.19 4.48 −3.07 5.29 −1.31 20.41 976.485 (866.610) 0.001 0.001
0.4 2.16 3.12 0.36 5.04 −1.27 16.90 450.632 (339.020) 0.001 0.001
0.5 2.07 2.70 1.10 1.23 1.26 1.20 254.632 (147.390) 0.001 0.001
0.6 2.00 0.41 4.18 1.23 −1.23 4.62 248.309 (147.390) 0.001 0.001
0.7 2.10 1.73 2.54 2.19 0.00 4.77 297.036 (189.820) 0.001 0.001
0.8 2.15 2.73 1.53 1.69 4.84 −1.64 287.487 (179.400) 0.001 0.001
0.9 2.01 4.91 −1.50 1.50 4.79 −2.38 182.355 (74.790) 0.001 0.001
1.0 1.72 9.47 −4.85 1.27 6.05 −2.79 218.819 (110.750) 0.001 0.001
1.1 1.34 10.92 −6.04 1.06 6.05 −2.79 170.782 (62.430) 0.001 0.001
1.2 1.01 7.31 −3.72 0.91 2.34 −0.16 192.991 (78.910) 0.001 0.001
1.3 0.80 7.40 −3.78 1.14 3.50 −0.50 164.861 (55.860) 0.001 0.001
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Figure 6. Optimal Solutions from the Discrete Model (Left) and Near-Optimal Solutions from CA-D (Right) of Four Selected
Instances
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shows that the optimal vehicle formations are always
selected between the conditional lower and upper
bounds across all stations in the selected instances,
verifying Propositions 4 and 5.

5.1.4. Sensitivity Analysis. This section evaluates the
effectiveness of station-wise dynamic capacity ad-
justment (SDCA) and investigates how the system
performance varies as key input parameters change.
We select IN-10-2 for the analysis because it has the
largest problem size. In each experiment, we vary
one input parameter and keep the others the same as
those defined in Section 5.1.1 unless stated other-
wise. To demonstrate the effectiveness of SDCA in
transit corridors, we compare the results of the pro-
posed system with a benchmark system in which
only the largest vehicle formation can be dispatched.

Further, following Chen, Li, and Zhou (2019, 2020),
we adopt three metrics to quantitatively evaluate the
system performance, namely, average load percent-
age (ALP), total operational cost (TOC), and total
waiting cost (TWC). ALP is defined as the average of
the ratios of the number of on-board passengers to
the vehicle capacity of each dispatch across all sta-
tions; that is, 1

KS
∑

s∈S
∑

k∈K
eks
iksc
, where eks and iks repre-

sent the number of on-board passengers and vehicle
formation of dispatch k at station s, respectively.
TOC and TWC refer to the first and second terms in
the objective function (4), respectively. Results of the
sensitivity analysis are summarized in Figure 9.

We first investigate the effectiveness of SDCA. As
can be seen from Figure 9, introducing SDCA in
UMT systems can improve the system performance
for all the parameter values considered in this

Figure 7. Number of Passengers Left at Each Station After Each Dispatch in the Optimal Solutions from Gurobi in Four Selected
Instances
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Figure 8. (Color online) Lower Bound, Upper Bound, and Optimal Vehicle Formations from Gurubi of Two Selected Instances

Notes. All dots represent the entire feasible region. Dots along the top and bottom border of the shaded areas represent the upper and lower
bound vehicle formations, respectively, after applying Propositions 4 and 5. Red dots are the optimal vehicle formations from Gurobi.
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Figure 9. (Color online) Sensitivity Analysis of Case Study 1

Notes. Blue lines with triangle dots represent results from the proposed MAV system. Red lines with square dots represent results from the
benchmark system. Dots on the border of the graphs represent values larger than the maximum values.
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section.3 Specifically, by allowing SDCA along the
corridor, we increase the average load percentage
across all dispatches by up to around 40%, indicat-
ing a better resource utilization rate in the system.
Besides this, the total passenger waiting cost and op-
erational cost are both reduced in almost all instan-
ces. In one exception in which the total waiting cost
increases, that is, Figure 9(e) when the minimum dis-
patch headway is six minutes, the decrease in the
other cost component is larger so that the total sys-
tem cost is still decreased. Thus, introducing station-
wise dynamic capacity adjustment into UMTs can
increase the vehicle utilization rate and decrease the
total system cost.

Next, we analyze the effects of each input parame-
ter on the effectiveness of SDCA. Figure 9, (a)–(c),
shows that, as the maximum vehicle formation I in-
creases, both the ALP gap (i.e., the vertical distance
between the ALP curves) and the TOC gap (i.e., the
vertical distance between the TOC curves) increase,
and the TWC gap (i.e., the vertical distance between
the TWC curves) first experiences a plummet and
then a steady growth. These observations suggest that
the improvement brought by SDCA is the least when
I � 4 and gets better as I deviates from this value.
When I is less than 4, the passenger waiting cost in the
benchmark system is extremely high because the opti-
mization model forces vehicles to be dispatched with
longer headways. In the proposed MAV system, how-
ever, passengers are served with shorter vehicles and
smaller headways, thus substantially reducing the
passenger waiting cost. Once I reaches four, the near-
optimal design of the proposed system remains the
same, but the total system cost in the benchmark
system keeps increasing, thus strengthening the effec-
tiveness of the proposed SDCA operation. Because the
total system cost in the proposed system reaches the
minimum and remains the same after I reaches four,
we set I � 5 in the following analysis to allow a larger
feasible region as well as a better performance.

Figure 9, (d)–(f), reveals that the effectiveness of
SDCA is less evident as the minimum dispatch head-
way h increases. Although the ALP gap remains rel-
atively stable, both the TWC and TOC gaps (i.e., the
vertical distance between the TOC curves) narrow
down as h increases. The reason is that the number
of passengers waiting for boarding at all stations for
each dispatch increases with the minimum time dif-
ference between every two consecutive dispatches,
therefore raising the probability of using longer ve-
hicles in the proposed MAV system. As a result, the
capability to flexibly adjust vehicle capacity based
on the passenger demand level is limited as h in-
creases, thus weakening the effectiveness of SDCA.
Thus, reducing the minimum dispatch headway in
transportation corridors, if possible, can improve the

effectiveness of SDCA. This result is consistent with
the finding in Chen, Li, and Zhou (2019).

Figure 9, (g)–(i), implies that the increase in the
unit-time passenger waiting cost w amplifies the ef-
fectiveness of the SDCA as indicated by the increas-
ing ALP and TOC gaps. As w increases, the opera-
tional cost and the passenger waiting cost gradually
increase in both the benchmark and MAV systems
because vehicles are dispatched more frequently to
serve passengers with higher unit-time waiting cost.
The total waiting cost in both systems seems to in-
crease at the same pace as indicated by the relatively
stable TWC gap in Figure 9(h). Yet the increase in the
operational cost is almost negligible in the MAV sys-
tem because shorter vehicles can be used to keep the
operational cost small even though vehicles are dis-
patched more frequently.

The variations in the parameter representing the
fixed energy cost regardless of vehicle capacity, CF, do
not impose a substantial impact on the effectiveness
of SDCA as shown in Figure 9, (i)–(l). This parameter
increases the operational cost of each vehicle forma-
tion equally, and thus, the solutions are barely
changed by the parameter variations. However, de-
spite a slight decrease in the ALP gap, the SDCA saves
more costs as the other two parameters increase. The
increase in the parameter representing the variable en-
ergy cost dependent on the vehicle capacity, that
is, CV, results in a steady growth in the TWC gap
while the TOC gap stays relatively stable (Figure 9, (n)
and (o)), indicating a larger gap between the total sys-
tem costs. Further, Figure 9, (q)–(r), shows that the
cost saving is very limited when the unitless parame-
ter in the operational cost function, α, is less than 0.4
(both the TWC and TOC gap are almost zero). This is
because, when the value of α is small, the operational
costs of different vehicle formations are almost the
same. Thus, there is no substantial difference to dis-
patch long and short vehicles. As α increases, SDCA
starts to bring observable savings in the operational
cost because, in this case, it is more favorable to dis-
patch short vehicles when passenger demand is low.
Moreover, when α reaches around 0.7, the passenger
waiting cost is reduced as well, resulting in a more
substantial saving in the total system cost. Thus, it is
crucial to analyze the extent of the economics of scale
in the operational cost in UMT systems before intro-
ducing the SDCA paradigm because, otherwise, sys-
tem improvement may not be achieved.

5.2. Case Study 2: Future MAV Service on the
Batong Line, Beijing Subway

In this section, we apply the CA model to design fu-
ture MAV service for the Batong line in the Beijing
Subway system. As shown in Figure 10, the Batong
line is a bidirectional line with 13 stations. Following
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Chen, Li, and Zhou (2020), we simply select the di-
rection from station 13 to 1 for the experiments in
this case study. Because a large portion of passen-
gers originating from these stations are destinated to
stations on other subway lines in the network, we
treat all other stations in the network as a virtual
destination station in the corridor. Further, oversatu-
rated traffic is not the focus of this study, so we con-
sider an operational horizon starting from 11:00 a.m.
and terminating at 23:00 p.m., during which only un-
saturated traffic is present. With this, we count the
passenger demand between each OD pair per mi-
nute using smartcard data and obtain the passenger
arrival demand passing through each station during
each minute over the investigated operational hori-
zon, as shown in Figure 11. In this case study, we
envision a future scenario in which the operator in-
troduces the MAV technology in the system so that
vehicles can change their capacity flexibly at any sta-
tion along the corridor to serve the passengers. Fol-
lowing the existing operational plan of the Batong
line, we set I :� [1, 2, 3, 4, 5, 6], c � 226 pax (i.e., pas-
senger)/carriage, and h � 3 mins. Besides this, w is
set as $0.10/minute based on the average monthly
salary per capita in Beijing in 2017, and the

operational cost function is adapted from the one in
Chen, Li, and Zhou (2020), resulting in CF � 0:39,
CV � 0:45, and α � 0:5. In each experiment, we vary
only one parameter, and the others remain the same
as the default values to investigate the sensitivity. To
evaluate the effectiveness of SDCA, we compare the
MAV system with a benchmark system in which
only one vehicle formation can be dispatched.

We first plot the optimal design for three selected
instances in Figure 12. We find that the optimal vehi-
cle formations change dramatically across time and
space in all three instances; that is, long vehicles are
dispatched at stations and time periods with intensive
passenger demand, and short vehicles are used for
stations and time periods with relatively low passen-
ger demand. Further, the larger the minimum dis-
patch headway, the higher the possibility of using
long vehicles and, thus, the lower the flexibility to ad-
just vehicle capacity. These results are consistent with
those in the previous hypothetical example.

Next, we present the ALP, TWC, and TOC of all
experiments in Figure 13. We see that introduc-
ing station-wise dynamic capacity adjustment can im-
prove the performance of the Batong line in the Bei-
jing Subway system across all instances with the

Figure 10. (Color online) Batong Line in the Beijing Subway System

Figure 11. Passenger Demand Rate During the Unsaturated Period of the Batong Line in the Beijing Subway System
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average load percentage always being increased, the
total passenger waiting cost being decreased or re-
maining the same, and the total operational cost al-
ways being decreased. The difference between this
and the previous case is that, in addition to a few sce-
narios, the total passenger waiting costs are (almost)
the same with and without SDCA. This is because the
passenger demand in the Batong line is of a different
magnitude compared with that in Mandl’s (1980) net-
work. As a result, the passenger waiting cost is usual-
ly substantially larger than the operational cost (as
can be seen from values of the y-axes of the figures in
the second and third columns in Figure 13), so the op-
timization model inherently adjusts the vehicle dis-
patch plan to maintain the passenger waiting cost at a
relatively small value. This observation also reveals
that the condition in the theoretical propositions may
be satisfied in various UMT systems with similar cost
structure as that in the Beijing Subway system, render-
ing a broad applicability domain of the proposed
model.

As for each input parameter, we see that they influ-
ence the system performance metrics in a similar way
as they influence the system performance in the previ-
ous case study. The exception is that, as the maximum
vehicle formation increases, the effectiveness of SDCA
is strictly increasing (the TWC is almost zero, and the
TOC gap is widening), which can be probably attrib-
uted to the intensive passenger demand in the system.
Also, we observe that, for the existing system, the total
system cost reaches its minimum when I � 4, suggest-
ing that reducing the number of carriages in each train
to four units for the Batong line during the unsaturat-
ed hours can improve system performance. These re-
sults are also consistent with those in Chen, Li, and
Zhou (2019). Finally, the mean computation times for
CA-I and CA-D across all experiments are 0.027 and
1.129 seconds, respectively, which is very efficient for
an instance with 13 stations and 720 time indexes (i.e.,
12 hours with a discretization interval of one minute).
The results verify the applicability of the proposed
CA model in addressing real-world problems that are

Figure 12. Optimal Design for the Batong Line in the Beijing Subway with aMinimumDispatch Headway of Nine (Top Row),
Six (Middle Row), and ThreeMinutes (Bottom Row)
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Figure 13. (Color online) Sensitivity Analysis of Case Study 2

Notes. Blue lines with triangle dots represent results from the proposed MAV system. Red lines with square dots represent results from the
benchmark system. Dots on the border of the graphs represent values larger than the maximum values.
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extremely difficult to solve efficiently with exact
modeling methods.

6. Conclusion
This paper proposes a CA model to solve the joint de-
sign of dispatch headway and vehicle formation for
MAV-based transportation corridors. This model ex-
tends the traditional CA approach that designs dis-
patch policies for transportation systems to consider
many-to-many demand patterns, station-wise vehicle
capacity adjustment, and other factors (e.g., passenger
boarding order, minimum dispatch headway). The
challenges of modeling the investigated problem un-
der the CA framework lie in the spatiotemporal corre-
lation between the dispatch decisions, the complicated
passenger boarding dynamics, and the consideration
of multiple vehicle formations across all stations. To
address these challenges, we investigate the theoreti-
cal properties of the investigated problem. These
properties enable the problem to recover the local im-
pact property and eliminate the vehicle formation
decisions from the problem, based on which a macro-
scopic CA model is proposed to decompose the origi-
nal problem into finite subproblems that can be ana-
lytically solved. With the analytical continuous
solutions from the CA model, a greedy heuristic is de-
signed to search for the discrete near-optimal solu-
tions to the original problem. Numerical experiments
were conducted for a hypothetical transportation cor-
ridor in Mandl’s (1980) network and the Batong line
in the Beijing Subway system to assess the computa-
tion performance of the CA model, verify the theoreti-
cal properties as well as reveal managerial insights for
transit operators. The main findings are

1. The CA model can solve near-optimal solutions
that can satisfy the requirements of most engineering
applications very efficiently (less than 10 ms) com-
pared with the discrete modeling method (which
may not even yield a feasible solution in several
hours). Its performance is robust under various pa-
rameter settings and is more accurate for large-scale
instances. Thus, the proposed CA model is appropri-
ate for solving large-scale operational design problem
instances for transportation corridors in the real
world, whose exact optimal solutions would take
expensive computation resources or is impossible
to solve.

2. The numerical experiments verify the analytical
theoretical properties. These properties reveal the
optimal number of passengers waiting for boarding
is a relatively small value (bounded by the capacity
of a single modular pod) after each dispatch across
all stations along the corridor. Further, the optimal
vehicle formations should always be either the upper
or conditional lower bound vehicle formation. These

properties shed important managerial insights and
constitute a theoretical foundation for constructing
the CA model as well as the discretization heuristic.
They can also facilitate the design of expedited solu-
tion algorithms to search for the exact optimal solu-
tions to the investigated problem.

3. Introducing SDCA can improve the vehicle utili-
zation rate and decrease the total system cost (i.e., the
sum of passenger waiting and operational costs) for
transportation corridors under a wide range of pa-
rameter settings. Different input parameters affect
the effectiveness of SDCA differently. Specifically,
the effectiveness of SDCA can be amplified by
decreasing the minimum dispatch headway, the
unit-time waiting cost per passenger, the variable op-
erational cost dependent on the vehicle capacity, and
the unitless parameter that reflects the economics
of scale of the operational cost. The maximum num-
ber of modular pods allowed to be docked into one
vehicle shows different influences on the perfor-
mance of different systems. Finally, the parameter
representing the fixed operational cost regardless of
the vehicles’ capacity does not affect the effectiveness
of SDCA substantially.

4. Jointly optimizing the timetabling and vehicle
repositioning in MAV-based transportation corri-
dors results in a hardly tractable problem with exist-
ing commercial solvers. The microscopic details in
MAV repositioning also render the development of
analytical CA model very challenging. Thus, it is
preferable to decompose the timetabling and vehicle
repositioning as two separate problems. Online Ap-
pendix D shows that the timetabling decisions ob-
tained by solving the proposed CA model could be
easily extended to obtain near-optimal repositioning
decisions (with a gap less than 5% in most cases)
very efficiently (within 10 ms). Thus, the proposed
CA model provides a foundation for developing so-
lution approaches for other problems with more
complex system operation constraints.

This study proposes a continuous model to solve
the operational design for MAV-based transportation
corridors enabling station-wise docking and can be
extended in a number of directions. First, this model
can be extended to the case in which oversaturated
traffic may exist with modifications, such as adding a
penalty factor or queue decomposition. Second, On-
line Appendix C shows that the performance of the
CA model is robust under uncertain passenger de-
mands. However, considering the demand uncertain-
ty in the CA model and tackling it with a probabilistic
approach will be an interesting and meaningful re-
search direction. Finally, this study primarily focuses
on the joint design of vehicle dispatch headway and
capacity for a MAV-based corridor system without
considering the rolling stock management (i.e., the
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MAV repositioning activities). Rolling stock manage-
ment is an important planning-level decision problem
that can be considered in future research. Researchers
can follow existing practice to solve the rolling stock
management as a separate problem as we do in On-
line Appendix D, using results from this study as the
inputs. Alternatively, they can consider introducing
decision variables and constraints related to rolling
stock management into the proposed model to search
for further improvements compared with existing
practice. The incorporation of these variables and con-
straints is expected to greatly increase the solution
space of the model, which would render the problem
to another level of difficulty. Future research efforts
could be devoted to design more sophisticated solu-
tion approaches for such an integrated design.

Endnotes
1 This study addresses a deterministic optimization problem in
which the cumulative arrival curves As(t) are assumed a priori
rather than a stochastic or uncertain process. We acknowledge
that this treatment does not consider potential uncertainties in
the passenger demand during real-time operation. Nonetheless,
this simplification remains acceptable for tactical design or plan-
ning that is mainly impacted by the expected demand values and
is relatively robust to the minor stochasticity of actual demand
realizations. In fact, many UMT operators generally design their
timetables with historic or predicted demand counts at the plan-
ning stage. Please refer to Online Appendix C for numerical ex-
periments on the performance of the proposed CA method under
stochastic demands.
2 The rolling stock management (in our case, determination of
the MAV repositioning activities with a fleet size limit) is gener-
ally a separate problem from timetabling in urban mass transpor-
tation system design (Cadarso and Marı́n 2011; Caimi, Kroon,
and Liebchen 2017). With assumption (ii), we can dispatch as
many vehicles as we need at each station, and thus, vehicle repo-
sitioning activities are not necessary to be incorporated into the
model. After solving the investigated problem, the results can be
used as inputs for the rolling stock management planning model
to obtain the optimal fleet size and MAV repositioning activities
within the system. Please refer to Online Appendix D for an ap-
plication of the proposed solution approach to the case in which
vehicle repositioning activities (and, thus, the fleet size limit) are
considered.
3 The difference in some instances (i.e., Figure 9, (q) and (r)) is too
small to be visually observed.
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