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A B S T R A C T

Due to the interdependency between multiple infrastructure systems, the performance of a fa-
cility may depend on the resources or supplies received from other facilities. However, cross-
system interdependence has seldom been studied in the location design context, probably due to
the lack of a concise model describing interdependence across heterogeneous systems. This paper
proposes a new heterogeneous flow scheme to describe cross-system interdependence. This
scheme has two features distinguished from existing models in describing an interdependent
facility location problem. First, it is a simple linear model upon which a compact facility location
model can be built. Secondly, it relaxes the need to maintain flow conservation between different
systems and is suitable in describing heterogeneous systems that take in and output different
resources or services. Built on this scheme, this paper proposes a reliable location design model
for a nexus of interdependent infrastructure systems. This model aims to locate the optimal fa-
cility locations in multiple heterogeneous systems to balance the tradeoff between the facility
investment and the expected nexus operation performance. Different from other reliable facility
location models, this expected performance captures interdependence among heterogeneous
systems due to the resource input-output relationships. The consideration of continuous partial
capacity losses complements the reliable location literature that mainly focuses on binary dis-
ruptions. Two numerical examples are conducted for investigating features and applications of
the proposed model. The results indicate that with a standard off-the-shelf integer programming
solver, the proposed model is able to solve optimal facility location design for problem instances
of realistic scales to the near-optimum solutions with optimality gap assurance. Sensitivity
analyses of key parameters indicate that improving facility capacity and reducing inter-
dependency between systems can mitigate impacts of facility capacity losses and reduce the
overall system cost.

1. Introduction

Facility location design aims to select the optimal facility locations to minimize the total cost of an infrastructure system, in-
cluding the system’s one-time construction investment and its long-term operational cost. Traditional facility location models assume
that the infrastructure system, once built, will remain functioning all the time. This assumption however ignores possible
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infrastructure disruptions that have been observed in many real-world infrastructure systems. Infrastructure disruptions may cause
sharp increase of operational costs, massive drop of system service quality, and deep deterioration of customer satisfaction. In
particular, infrastructure disruptions may be widespread and cause severe consequences during anthropogenic or natural disastrous
events, such as the 2002 west-coast port lockout (D’Amico, 2002), the 2003 massive power outage (Schewe, 2004) and 2012 Hur-
ricane Sandy (HSRTF, 2013).

Worse, impacts of infrastructure disruptions may be further exacerbated by interdependency between different infrastructure
systems. Such cross-system interdependency is prevailing in modern cities and recently became an emerging interdisciplinary re-
search topic. Operating a facility in one system often needs supplies from other systems. Therefore, supplies are circulated across
multiple systems and such supply circulations form complicated connections that make these systems highly interdependent. Due to
the heterogeneity of the supplies produced by different systems, their circulations may not follow the flow conservation law. Usually,
at certain facilities along a circulation, the upstream supplies are only used as an auxiliary resource to sustain their production
capacity, and the generated resources will thus have surplus along this circulation. To take a circulation formed by a power plant and
a fuel refinery as an example, the amount of fuel production at the refinery supported by one unit electricity from the plant, if fully
transported back to this plant, will generate electricity far more than the original one unit. Therefore, it is not suitable to use
traditional conserved flows to model interdependency among heterogeneous systems.

In such an interdependent nexus, once some facilities are disrupted in one system, it will have to cut supply to its downstream
facilities in other systems and thus may compromise or disrupt the operations of these downstream facilities. These operational
damages may be further propagated along the supply chain to jeopardize other further downstream facilities in more systems and
even spill back to the originally disrupted facilities. This essentially forms negative circulations of operational damages and spreads
facility disruptions across all these systems. This phenomenon is referred to as cascading failures in the literature (e.g., Buldyrev et al.,
2010). One illustrative example is shown in Fig. 1, where an infrastructure nexus consists of three systems — power plants in an
electricity grid, fuel refineries, and vehicle stations. For simplicity, this study assumes that a vehicle station has both charging/
discharging facilities and fuel facilities, and the vehicles considered in this study are hybrid electric vehicles (HEV) that can be
powered by either electricity or fuel. We see that the three types of facilities in this nexus need to support one another in addition to
supplying external consumer demand. For example, the power plants provide electricity to vehicle stations and refineries to support
their daily operations. Meanwhile, the power plants may need fuels from refineries to generate electricity. Further, the electricity
generated by HEVs can be shared with power plants through the V2G (vehicle-to-grid) technology. Note that if one system, let's say
the power system, loses some generators due to random disruptions, then it will cut down the electricity supply to refineries and
HEVs. As a result, some refineries may not be able to sustain their full production capacity, and the charging demands of HEVs may
not be fully met. Next, power plants will receive less fuel and less discharged electricity from HEVs, and thus will have to shut down
more generators. Such cascading disruptions are circulated in this way to cause even further damages.

The impacts of cascading disruptions are actually much affected by the location decisions of the constructed facilities. First, if
each system builds a large number of facilities with sufficient capacity redundancy, when some facilities are disrupted, the propa-
gated impacts can be absorbed by redundant capacities in the downstream systems, and the downstream facilities may also use the
extra redundancy to raise their supplies to the system with original disruptions so as to increase the production of the first system to
compensate its capacity due to initial disruptions. Secondly, if facilities are located closer to each other, then activation of redundant
supplies after disruptions will incur less associated operational costs (e.g., fuel transportation cost and electricity transmission cost).
Therefore, it would be beneficial to consider the impacts of cascading disruptions as early as the location design phase such that the
planned infrastructure nexus will be reliable against cross-system cascading disruptions.

Despite abundant developments separately in reliable facility location design (Snyder, 2006) and cascading disruption modeling
(Ouyang, 2014), only limited efforts were made to integrating the impacts of interdependent heterogeneous systems into location
design (see the Literature Review section). While these efforts have explored novel ways of addressing facility protection and cor-
related disruptions, modeling of facility disruptions that may occur in interdependent heterogeneous systems has not been in-
vestigated in the location design phase. The major challenge to integrating these two classes of fruitful research outcomes is probably
due to the lack of a concise model describing interdependence across heterogeneous systems. In order to take advantage of mature
developments of mathematical programming, most successful location models are built upon simple system operation mechanisms
that can be well described by explicit linear formulations. However, most available cascading disruption models are based on
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Vehicle stations
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Fig. 1. An example of the interconnected system with three different components.
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complicated network settings and dynamic disruption propagation mechanisms that can only be examined with iterative numerical
simulations but not compact linear formulations. This imposes a significant barrier in addressing cross-system cascading disruptions
in location planning.

To overcome this challenge and bridge this methodology gap, this paper proposes a new heterogeneous flow scheme to describe
cross-system interdependence. This scheme has two features distinguished from existing models in describing facility inter-
dependency. First, it is a simple linear model upon which a compact facility location model can be built. Secondly, it relaxes the need
to maintain flow conservation between different systems and is suitable in describing heterogeneous systems that take in and output
different resources or services. Built on this scheme, this paper proposes a reliable location design model for a nexus of inter-
dependent infrastructure systems. This model aims to locate the optimal facility locations in multiple heterogeneous systems to
balance the tradeoff between the facility investment and the expected nexus operation performance. Different from other reliable
facility location models, this expected performance captures possible cascading impacts as an emergency cost among multiple sys-
tems induced by probabilistic facility capacity loses. The emergency cost is derived from getting emergency resources supplied by the
emergency source to avoid cascading failures. The consideration of continuous partial capacity losses complements the reliable
location literature that mainly focuses on binary disruptions. As an exploratory study, this proposed model proposes a general
distribution for the capacity loss of each facility and then only investigates uniform and triangular distributions that are two typical
distributions. It also assumes the service relationships for facility-to-facility supply and facility-to-customer supply will remain un-
changed once facilities are built, regardless of facility disruptions. Therefore this study does not intend to investigate service re-
assignments in response to actual disruption scenarios as some other reliable facility location problems (Snyder and Daskin, 2005).
Two case studies are conducted for investigating features and applications of the proposed model. The results indicate that with a
standard off-the-shelf integer programming solver, the proposed model is able to solve optimal facility location design for problem
instances of realistic scales to the near-optimum solutions with optimality gap assurance. Sensitivity analyses of key parameters
indicate that improving facility capacity and reducing interdependency between systems can mitigate impacts of facility capacity
losses and reduce the overall system cost.

The remainder of this paper is organized as follow. Section 2 reviews the relevant literature and highlights research gaps. Section
3 formulates the reliable facility location problem as a mixed integer programming problem. Section 4 conducts two case studies to
test the model performance and draw managerial insights. Section 5 concludes this work and briefly discusses future research
directions.

2. Literature review

Facility location design problems have been studied for many years. In the early twentieth century, Weber (1929) initiated a
pioneering study about facility locations. Afterwards, many classic facility location design models are developed for solving different
facility location problems. In the late twentieth century, Daskin (1995) conducted a comprehensive review on different classic facility
location models and introduced a number of key algorithms to solve these models. Later years, a number of studies extended the
classic models to various aspects, e.g., transportation network (Melkote and Daskin, 2001), inventory-location and joint inventory-
location (Daskin et al., 2002; Shen et al., 2003), transportation-inventory network (Shu et al., 2005), sensor placement (Berry et al.,
2006), and remanufacturing network (Lu and Bostel, 2007). In the past decade, probably due to frequent anthropogenic or natural
disasters, researchers have paid increasing attention to impacts of possible facility disruptions, so do those in the location design
research community. Snyder and Daskin (2005) pointed out that the facility location scheme obtained by the traditional models is
likely to be suboptimal even with infrequent disruptions. Cui et al. (2010) proposed both continuous and discrete models to study the
reliable uncapacitated UFL problem (RUFL) with site-dependent failure probabilities. Further, researchers have proposed a number of
reliable facility location models to address issues including imperfect information (Berman et al., 2009; Yun et al., 2015), joint
inventory-location (Chen et al., 2011), emergency service network (An et al., 2013, 2015a), sensor deployment (Li and Ouyang, 2011,
2012), hub-and-spoke design (An et al., 2015b), market competitions (Wang and Ouyang, 2013; Wang et al., 2015), traffic congestion
(Ouyang et al., 2015).

Most location design studies share a common feature that the location decision aims to strike the optimal balance between one
time facility investment and long-term operational costs. Location decisions are usually captured by binary variables, which raise
most location problems to be NP-hard. To alleviate the computational burden and maintain an elegant model structure, the op-
erational are often described in a compact form, e.g., a linear programming formulation oftentimes. Such a model structure is helpful
in solution efficiency and revealing managerial insights. It is remarkable that facility operations with independent disruptions
(Snyder and Daskin, 2005; Cui et al., 2010), which involves an exponentially number of disruption scenarios, have been successfully
formulated into such compact forms involving only a small polynomial number of variables and constraints.

In many real-world observations, especially in severe disasters, disruptions are actually not independent. Rather, they are cor-
related and may even propagate across chains of facilities to cause cascading failures. Modelling cascading disruptions across
multiple systems becomes an emerging research topic in recent years. To just name a few, Buldyrev et al. (2010) studied the cata-
strophic cascade of failures in interdependent networks. Morris and Barthelemy (2012) studied the key features of interdependent
systems. Radicchi (2015) introduced a set of heuristic equation to study the percolation in real interdependent networks. See Ouyang
(2014) for a comprehensive review on this topic. These studies adopted numerical simulation and complex network theory to develop
innovative models describing disruption propagation dynamics and asymptotical system failure patterns. However, piggybacking
location analysis on these models would create overwhelming computational burdens and enormous challenges to model structure
analysis. The authors only noticed some limited effort (Zio et al., 2012) in protecting facilities under cascading disruption risks in a
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single network system.
While a compact form describing general cascading disruptions suitable for location design is yet to be discovered, several

plausible efforts have been made in relevant pursuits in the location design context. Li and Ouyang (2010) proposed a continuum
approximation approach for large scale reliable facility location problems with several specific correlated probability disruption
functions. Liberatore et al. (2012) studied a location protection problem where one facility’s disruption may cause capacity losses of
other facilities. Li et al. (2013) proposed a support station structure to explicitly represent correlated disruptions to enable compact
formulations and efficient solution algorithms for this complex problem. Xie et al. (2015) extended this framework by considering
more general correlation patterns and drilling into more theoretical insights. Lu et al. (2015) proposed a distributional robust reliable
uncapacitated fixed-charge location (DR-RUFL) model in order to obtain the optimal expected total cost under the worse-case dis-
ruption profile. Despite these efforts, so far as our knowledge, general cascading disruptions propagating across three or more layers
of facilities among different systems with different resources have not be addressed in the location analysis literature.

It would also worth noting that while most reliable facility location studies consider binary disruptions, partial loss of facility
capacity, which may happen more frequently than complete disruptions, receives relatively less attention in the location design
context. Hatefi et al. (2015) proposed a fuzzy possibilistic programing model for designing a reliable forward-reverse logistics net-
work with partial and complete facility capacity disruptions. Mohammadi et al. (2016) designed a reliable logistics network based on
a hub location problem with two different types of disruptions. Both studies assumed that the facility capacity loss happens at a few
discrete levels whereas this study considers the full spectrum of continuous facility capacity loss from 0 to the full capacity.

To address these research gaps, this paper propose a new reliable location model that considers interdependent heterogeneous
flows in the nexus of multiple different systems. The emergency source is introduced to avoid cascading failures. Further, we in-
vestigate a continuous spectrum of probabilistic facility capacity losses to fit broader facility operational states.

3. Model formulation

3.1. Facility investment

For readers’ convenience, the key notation of this study is listed in Table 1.
The studied infrastructure nexus is comprised of a set of systems, denoted by L. Each system l L consists of a set of candidate

facility locations, denoted by Il. For the notation convenience, let I denote the set of all candidate locations, i.e., =I Il L l, and let li
denote the type of facility at location i i I, . Constructing a facility at a candidate location i I costs a fixed investment of fi.
Define variables =Y y: { }i i I to denote the facility location decisions: =y 1i denotes a facility that is constructed at location i and =y 0i
otherwise. This yields the total construction cost as follows:

=C f y:C

i I
i i

(1)

3.2. Heterogeneous flow scheme

The facility operations in different systems are interdependent based on the following heterogeneous flow scheme. A facility i Il,
once built, can produce an type-l outbound resource flow no greater than its capacity ci, which can feed into facilities in the other
systems to support their productions. Different from the traditional network flows that require flow conservation, i.e., the total
inbound flow to a facility (or node) is always identical to the total outbound flow from the same facility, the study proposes a
heterogeneous flow scheme that does not necessarily preserve conservation of flows through a facility. We assume that the resource
flows can be converted from one system to another according to the following heterogeneous conversion rules as illustrated in Fig. 2.

Table 1
Notation list.

Parameter Description

aij Conversion factor from facility i to j
ci Capacity of facility i
dij Distance from location i to j
fi Fixed cost of facility i
I Set of all candidate facility locations
L, l L Set of systems, indexed by l
qi Disruption probability of facility i
U , u U Set of customers, indexed by u
l Unit transportation cost for system l
i Unit emergency cost for facility i
µul Demand of customer u for system l
Decision Variable Description
xij Resource flow assignment decisions: xij denotes the amount of flow sent from facility i to facility or customer j
yi Facility location decisions: =y 1i denotes a facility is constructed at location i and =y 0i otherwise
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When the flow is sent from a facility in system l to one facility in system l, the output flow from the type l facility shall be
proportional to the input flow sent from the type l facility. Let conversion factor al l denote the units of type l output flow produced
with one unit of type l input flow. Therefore, as illustrated in Fig. 2(a),m units of type l flow can be converted to a ml l units of type l
flow through a type l facility. Further, the output flows from different input flows through the same facility are additive. As illustrated
in Fig. 2(b),m units of type l flow and n units of type l″ flow shall yield +a m a nl l l l units of type n in total through a type l facility. If

=a 0l l , it means that the type l facility has no connection with the type l facility. To make the problem general, we also allow
transshipment between the same type facilities. Since this transshipment neither loses nor creates resources, we set =a l L1,ll .

These interdependent systems collectively serve a number of distributed customers, denoted byU . Besides supporting each other’s
production, an installed facility can directly supply its respective output resources to a customer. Each customer u U consumes at
minimum µul units of type l. Transportation cost is generated by shipping resource flows between facilities and customers. We assume
that l denotes the cost when transport one unit of type l per unit distance and dij denotes the distance from location i to location j.
Define variables =X x: { }ij i I j I U, to denote the resource flow assignment decisions; i.e., xij denotes the amount of flow sent from
facility i to facility or customer j. Once the resource flows are assigned, the total output flow that facility i needs to provide is
obviously formulated by xj I U ij, which shall be always no greater than facility capacity ci. With this, we can formulate the total
transportation cost as follows:

=C d x:T

l L
l

i I j I U
ij ij

l (2)

It is worth mentioning that not all relationships of mutual dependency can exist or are feasible in real world. For example, in a
very simple infrastructure nexus with two types of resources A and B, consider the case that =a 0.5AB , =a 0.2BA as shown in Fig. 3. If
100 units of A is fed to this nexus (through node A), it will reduce to 50 units after passing node B and further reduces to 10 units after
circulating back to A. We see that after each circulation, the resources dwindle, and thus this nexus can only consume resources rather
than producing them. Actually, to balance to the flow, external flow needs to constantly feed into this nexus. Therefore, this nexus
cannot support any customer demand and thus shall not exist in a valid nexus design.

The following analysis will rigorously investigate this issue.

Definition 1. We call flows x{ 0}ij i I j I U, a feasible flow solution if x c y i I,
j I U

ij i i , x a x i I,
j I U

ij
j I

l l jij i and

x µ l L j U, ,
i I

ij jl
l

.

Definition 2. We call flows x{ 0}ij i I j I U, a flow pattern if x a x i I,
j I U

ij
j I

l l jij i . Note that a flow pattern may not be a feasible

flow solution since it does not need to satisfy the customer demands. If all these inequalities become equalities, we call it a critical flow pattern.
For the simplicity of the following presentation, we may omit zero flows in a flow pattern.

Definition 3. We call an ordered vector =P i i i i[ , , , , ]K K0 1 1 such that i I k K, { }k K and i UK with = K: {0, 1, , }K a service
chain. The service chain allows the flow a customer receives traceable. If P satisfies >= +a a k K1, {0, }i i k

k
i i0

1
k k k0 1 K , we say P is

sustainable with respect to facility ik . Otherwise, if = +a a k K1, {0, }i i k
k

i i0
1

k k k0 1 K , we say P is unsustainable with respect to facility
ik . Here, for the simplicity of the formulations, we slightly abuse the notation to use aij to denote al li j.

Definition 4. For a service chain =P i i i i[ , , , , ]K K0 1 1 , we call a critical flow pattern
> >+x k K x for k K{ 0, { }, 0, some {0, }}i i i ik k k1 0K K a sustainable circulation associated with P .

Proposition 1. For a given facility design I I , an optimal flow solution that minimizes the transportation cost can be decomposed into a set

)b(wolftupnielgniS)a(  Multiple input flows 

Fig. 2. Heterogeneous flow scheme.

A B

Fig. 3. Illustration of an unfeasible nexus.
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of sustainable circulations.

Proof.We propose a decomposition algorithm (Decomp) that decomposes an optimal solution = xx: { }ij i I j I U, to a set of sustainable
circulations in a finite steps.

Decomp-0. Initialize residual flows = =x xx: { : }ij ij i I j I U, and circulation set =X .
Decomp-1. Select any i I0 with positive residual outflows to customers. Select the largest residual outflow from i0 to a cus-

tomer, say i U1 , denoted by xi i0 1 (a tie can be arbitrarily broken in this algorithm). Initialize =P i i: [ , ]0 1 .
Decomp-2. Denote all nodes that have positive outflows to i0 by +Ii0 . Select

+j Ii0 with the largest x aji ji0 0.
Decomp-3. If j P, update =+i i k,k k1 K , =i j0 and go to Step Decomp-2. Otherwise if =j i i P,k k , then due to op-

timality, we know P is sustainable with respect to k . If this does not hold, we can must be able to identify a critical flow pattern
<x x x x k k x x j I k k{ (0, ], (0, ], 0 , (0, ], for some , }i i i i i i i i ji jik k k k k k k k0 0 1 1 K K . Then based on Lemma 1 (see

the Appendix I), subtracting this critical flow pattern from x yields a feasible flow solution yet with less transportation cost due to
reduced flow amounts. This however contradicts that solution x is optimal.

Since P is sustainable with respect to k , then we can select the maximal sustainable circulation in the following way. First solve

=
<

=
<

= =

+

+

+

+ +

x x
x

a a
x

a a a
min , min , min

( 1)
i i i i

k k

i i

i i k
k

i i k k K

i i

i i k
k

i i k k
k

i i0
1

0
1 1k k

k k

k k k

k k

k k k k k

0 0
1

0 1

1

0 1 1
K K

Then reclusively solve

=x a xi i i i i ik k0 1 0 0

= <+x a x k k,i i i i i ik k k k k k1 1 1 K

=+x a x xi i i i i i i ik k k k k k k1 1 1 0

= < <+x a x k k K,i i i i i ik k k k k k1 1 1 K

Denote this sustainable circulation by x .
Decomp-4. Add x toX . Update =x x x i I j I U, ,ij ij ij . If x contains at least one positive flow going to a customer, go

to Step Decomp-1. Otherwise, all customers can be served with circulations inX , now x shall not have any positive flow; otherwise,
there will be flows just circulating among facilities without reaching to a customer, which contradicts the optimality condition. Then
return X as the sustainable circulation decomposition of x . This completes the proof.

In order to explain the proposition 1 clearly, we construct a simple example. This nexus includes two types of systems, indexed by
A and B. The conversion factors are set as =a 4AB and =a 0.5BA . System A has a built facility denoted by A1. System B contains two
built facilities denoted by B1 and B2, respectively. The demands of two customers C1 and C2 are satisfied by this nexus. The optimal

A1

B2

B1

C2

C1

y

Fig. 4. Optimal solution to a simple nexus.
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solution is shown in Fig. 4. The numbers in directed lines denote the flow assignments between locations. According to the de-
composition algorithm, we can decompose the optimal solution into a set of sustainable circulations.

Before the first step, we initialize residual flows = =x xx: { : }ij ij i I j I U, and circulation set =X .
In the first step, we select facility A1 as i0. Because the residual outflow from i0 to customer C2 is the largest, we select customer

C2 as i1. Initialize =P: [A1,C2].
In the second step, we select facility B1 that provides the largest residual outflow to facility A1. Because facility B1 is not in P , we

add it to the front of P and repeat this step. Then, we select facility A1 that provides the largest residual outflow to facility B1.
Because facility A1 is in P , we stop this step and obtain =P [B1,A1,C2], which is sustainable with respect to A1.

In the third step, we calculate the outflows by the previous formulations for all facilities in P and obtain this sustainable cir-
culation x , which is shown as purple lines in Fig. 5.

In the fourth step, we add x toX . Update =x x x . Because x contains positive flows going to customers, we repeat these steps
and obtain the other sets of sustainable circulations that are shown in Fig. 5 with different colored lines. Each line denotes a
sustainable circulation. At last, no positive flows go to customers in x and the decomposition algorithm is finished.

According to the proposition 1, only sustainable facility circulations are deemed as feasible in a practical nexus. In a non-trivial
nexus design, if one facility is not in any sustainable circulation, this facility actually cannot bring in any resource surplus to the
system and thus shall not be used. Further, if the nexus does not include a sustainable circulation, this nexus cannot maintain
sustainable resource flows to satisfy customer demands. Therefore, a non-trivial nexus design with interdependent systems has a
feasible solution (the locations and the flows) only if there exists at least one sustainable circulation for each facility type.

3.3. Probabilistic capacity loss

However, even if a facility has sufficient capacity, it may not always produce the total assigned output flow due to possible facility
disruptions. A facility, once built, may be disrupted from time-to-time due to uncertain external hazards. This study considers partial
capacity losses that happen frequently in real world (Hatefi et al., 2015; Mohammadi et al., 2016). We assume that each facility i has
a random capacity loss ri that follows a probability density function p r( )i over the full range c[0, ]i at first. When =r 0i , facility i is
completely functioning, the probability is equal to q(1 )i where qi is the probability that facility i is not completely functional.
Otherwise, the probability density function p r( )i is a general function f r( )i across r c(0, ]i i . Therefore, the corresponding probability
density function is:

=
<

=
< >

p r
f r r c

q r r
r r c

( )
( ), 0

(1 ) ( ), 0
0, 0 or

i

i i i

i i i

i i i (3)

where r( )i is the Dirac delta function (Hassani, 2008). We assume that the output flow is assigned to facility i before any disruption
happens. When disruption ri is realized, facility i can only output a flow no greater than residual capacity c ri i. If this residual

A1

B2

B1

C2

C1

y

Fig. 5. Set of sustainable circulations to the optimal solution.
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capacity is less than the assigned output flow xj I U ij, then the difference +x r cj I U ij i i has to be made up by an expensive
import from a perfectly reliable emergency source. Let i denote the cost rate for facility i to import one unit resource from the
emergency source. This indicates that the emergency cost associated with this facility is +( )x r ci j I U ij i i , which only happens
when output flow xj I U ij exceeds residual capacity c ri i.

With these definitions, the expected emergency/penalty cost for can be expressed as:

= + =
+

C x r c p r dr q x F r dr: ( ) ( )P

i I
c x

c
i

j I U
ij i i i i

i I
i i

j I U
ij c x

c
i i

i
j I U

ij

i

i
j I U

ij

i

(4)

where the operator =+[·] : max{·,0}, =F r f r dr( ): ( )i
r

i i0
i .

The function (4) is a general function and can be converted into several forms according to different probability density functions
f r( )i . Function f r( )i can be assumed to follow various distributions, such as the uniform distribution, triangular distribution and
normal distribution, as illustrated in Fig. 6. We can imagine that the complexity of function (4) is determined by the distribution that
f r( )i follows.

The first example is that f r( )i follows an adapted uniform distribution shown as

=f r
q
c

( )i i

i (5)

It is arguably the simplest distribution of this paper’s concern. It is easy to obtain the expected emergency cost function. With this,
the expected emergency cost can be rewritten as:

=C
q
c

x
2

P

i I

i i

i j I U
ij

2

(6)

The second example is that f r( )i follows a triangular distribution, the general form is shown as

=
< <
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i i
i

i i i
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It is a piecewise function and more complex than the uniform distribution. The parameter d not only determines the shape of
function (7), but also dictates the complexity of function (4). In order to reduce the complexity of function (4), we assume =d 0 to
convert the piecewise function into a special adapted triangular distribution shown as

=f r
q c r

c
( )

2 ( )
i

i i i

i
2 (8)

The function (8) is a decreasing function that reflects a common phenomenon in facility operations; i.e., small capacity losses are
often of high probabilities and large capacity losses of low probabilities. Therefore, we can get the emergency cost with an adapted

Fig. 6. Probabilistic continuous capacity loss.
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triangular distribution shown as

=C
q

c
x
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i i

i j I U
ij2

3

(9)

Another example is that f r( )i follows the normal distribution shown as

=f r r µ( ) 1
2

exp ( )
2i

i
2

2 (10)

It is more complex than the triangular distribution. According to functions (6) and (9), we derive that the emergency cost is in the

form of x
j I U

ij

4

, which is hard to express in the commercial mathematics planning solver. Therefore, we will not elaboration on

the model with the normal distribution in this study. Instead, we just focus on functions (6) and (9) in the next section to discuss
features and applications of our proposed model.

3.4. Model formulation

The optimization problem is to determine where to site facilities among the candidate locations in all systems and how to assign
flows between these facilities to minimize the total cost, including construction cost CC(Eq. (1)), transportation cost CT(Eq. (2)), and
expected emergency cost CP(Eq. (4)). Thus, the targeted location design problem can be described as a non-linear integer pro-
gramming model as:
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Subject to
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x a x i I,
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j I

l l jij i
(13)

x c y i I,
j I U

ij i i
(14)

y i I{0, 1},i (15)

x i I j I U0, ,ij (16)

Constraints (12) require the end customer demands are met for resources from all types of systems. Constraints (13) are key
constraints in modeling interdependency between different types of facilities. They indicate that facility i should obtain enough input
from other facilities to generate enough output for other facilities and end customers. Constraints (14) mean that the combined
transported output away from facility i for other facilities and end customers should be less than the expected capacity of facility i.
Constraints (15) and (16) are binary and non-negative constraints for the decision variables, respectively.

In the proposed model, we can fix the values of the decision variables to test whether an instance has a feasible solution. As we
known, if the feasible solution exists, the largest total output must be more than the total demand in the worst case. Therefore, we
set all the candidate facilities built and no facility disrupted, namely =y i I1,i and =q i I0,i . With this setting, the proposed
model converts into a simple facility location model. If it yields a feasible solution by solving this simple model, we know that this
instance has a feasible solution. Also, as Lemma 2 (see the Appendix I) states, if the instance has a feasible solution, after all facilities
are built, we shall be able to find at least one sustainable circulation connected to each demand. This test process will screen out
infeasible instances for the following numerical analysis.

4. Numerical examples

This section composes a number of numerical examples to test the computational performance, illustrate the model applications
and draw managerial insights. This proposed model is a mixed-integer quadratic programming problem and can be solved by
commercial programming solvers. A state-of-the-art mixed-integer programming solver, Gurobi (http://www.gurobi.com/), is
adopted to solve these numerical examples. This solver can not only provides a solution but also indicates the optimality gap for this
solution. If the optimality gap is 0, then this solution is the optimal solution. Otherwise, as long as this gap is small, this solution is
deemed as a near optimum solution that yields an overall performance close to the true optimum. Because Gurobi cannot solve a
cubical programming problem, we use the SCIP solver (http://scip.zib.de/) to solve the examples with facility disruptions followed
the triangular distribution. Section 4.1 investigates a hypothetical numerical example with relatively simple settings to test how
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parameters impacts cost components and facility distribution. Section 4.2 applies the proposed model to a case study based on real
world data from the cities in the Louisiana State, US. This case study shows how the model can be applied to relevant facility location
design problems in real world. All problem instances are solved on a PC with 3.6 GHz CPU and 16 GB RAM.

4.1. Hypothetical example

This example constructs a nexus with three types of systems, indexed by A, B and C, respectively. Systems A, B and C have I0.5 | |,
I0.25 | | and I0.25 | |candidate facility locations, respectively. The default value of candidate location size I| | is set to 100, while we may

vary I| | to construct problem instances of different sizes. These candidate facility locations are randomly distributed in a
×[0, 100] [0, 100] area. The candidate facility locations are shown in Fig. 7 for the default instance. In this figure, the hollow shapes

denote the candidate facilities. The red triangles denote the candidate facilities in system A, the green circles denote those in system
B, and the blue squares denote those in system C. The fixed facility costs in systems A, B and C are set uniformly distributed between
2000 and 4000, between 8000 and 10000, and between 12,000 and 15000, respectively. The default facility capacities in systems A,
B and C are set uniformly distributed between 800 and 1000, between 8000 and 10000, and between 3000 and 5000, respectively. All
facility disruption probabilities qi are set to 0.1. The unit emergency costs for resources A, B and C are set to 3, 4 and 5, respectively.
The unit transportation costs for resources A, B and C are set to 0.2, 0.3 and 0.4, respectively. The default conversion factor values are
shown in Table 2. A number of U| | customers are randomly distributed in this ×[0, 100] [0, 100] space. Customer size U| | is set to 50 in
the default instance and these customers are shown as the black stars in Fig. 7. The customer demands in systems A, B and C are set
randomly between 50 and 150, between 400 and 500, and between 200 and 300, respectively. These parameter values are set as the
benchmark values for the parts of sensitivity analysis. In order to vary the default parameter values (conversion factor and facility
capacity), a conversion factor scalar a is introduced to multiply the default conversion factors between facilities and a capacity scalar

Fig. 7. All customers and candidate facility locations in the planning area.

Table 2
Conversion factors between different systems.

To

From A B C

A 1 0.9 0
B 10 1 6
C 5 0 1
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c to multiply the default facility capacity in different systems. We set =a 1 and =c 1 in the default instance.
To discuss the performance of different capacity loss distribution (uniform and triangular), we conduct two simple instances with
=I| | 60 and =U| | 20. The other parameters are set as the default values. Table 3 shows the results of comparison between the

uniform and triangular distributions. We see that the cost components of the two distributions are very close. The relative difference
is approximately 0.2%. However, the solution time of the triangular distribution instance is much longer than that of the uniform
distribution instance. The gap of the triangular distribution instance is also greater than that of the uniform distribution instance.
Therefore, for simplification, we will only investigate the uniform distribution in the following analysis.

In order to verify Proposition 1, we use the results of instances with the uniform distribution in Table 3. Through the proposed
decomposition algorithm, we obtain the set of sustainable circulations shown in Table 4. It confirms that an optimal nexus flow
design must be composed of sustainable circulations. Ideally, no residual flow exists among the facilities when the decomposition
algorithm is finished. But due to the computational accuracy in the process of decomposition algorithm, we find a slight numerical
error that residual flows with small values (less than 1) between facilities may exist. These results verify the proposition 1 although it
has slight numerical errors. On the other hand, the decomposition algorithm also can be used to improve the current solutions by
removing the residual flows in the end of decomposition algorithm.

Table 5 shows the computational performance of our proposed model in different instances. We set a solution time limit of 1000 s.
We test 9 instances with I| | to 200 and U| | up to 120. Note that some instances have “INF” gaps, which means these instances do not
have feasible solutions due to over stringent parameter settings. Some instances may not have a feasible solution when the customer
number U| | is too large in relation to I| |; i.e., there are not enough facilities to satisfy customer demand. In this table, we can see that
all instances can be solved by Gurobi in a short solution time, and all feasible instances have small optimality gaps (less than 2%).
Note that further increase of the solution time limit will further reduce the optimality gap. Overall, these tests indicate that the
computational performance of our proposed model when solved by Gurobi is satisfactory for problem instances of realistic sizes.

Fig. 8 shows the optimal facility locations and the flows between facilities and customers with different conversion factor scales
and different capacity scales. In these figures, the solid shapes denote the constructed facilities and the line color indicates the line’s
start point. According to the conversion factors, there are two sustainable facility circulations in the hypothetical example: A-B-C-A
and A-B-A. In the left figures (Fig. 8(a), (c) and (e)), we can see that these two circulations exist simultaneously in the intermediate
flows. Note that interestingly, each facility in system B serves as a hub for a cluster of intermediate flows and facilities, while these
clusters are often linked up by the facilities in system A. Comparing Fig. 8(a) with Fig. 8(c), we can see that a larger conversion factor
scalar reduces the number of clusters. It means that the conversion factor influences the connection degree between facilities: high

Table 3
Performance comparison for different disruption patterns.

Uniform distribution Triangular distribution

Constructions cost 122,472 119,762
Transportation cost 145538.06 149117.30
Emergency cost 3553.47 1968.60
Total cost 271563.53 270847.90
Facility number 23 22
Solution time (s) 26 s 6289 s
Gap (%) 0.0037% 1.68%

Table 4
Set of sustainable circulations in a simple instance.

(P,k’) ([1,38,54,3,6],54) ([54,7,38,29,17],38) ([6,44,6],44) ([29,38,54,16],38)
([44,6,6],6) ([54,7,38,29,10],38) ([19,44,1],44) ([13,38,54,2],38)
([4,45,10,20],45) ([54,1,38,29,19],38) ([6,44,19],44) ([1,38,54,1],54)
([4,45,10,5],45) ([58,30,37,8],37) ([19,44,19],44) ([29,38,54,13],38)
([30,37,58,11,7],58) ([58,2,37,12],37) ([4,45,9],45) ([13,38,54,11],38)
([54,1,38,13,11],38) ([6,44,16,37,15],44) ([27,45,5],45) ([1,38,54,17],54)
([54,1,38,13,16],38) ([58,11,37,4],37) ([21,45,20],45) ([29,38,54,17],38)
([6,44,16,19],44) ([19,44,16,37,18],44) ([10,45,10],45) ([13,38,54,17],38)
([6,44,19,1],44) ([58,2,37,7],37) ([4,45,14],45) ([30,37,58,18],58)
([58,30,37,20,18],37) ([58,11,37,18],37) ([21,45,14],45) ([11,37,58,12],58)
([58,30,37,20,15],37) ([58,30,37,19],37) ([27,45,14],45) ([30,37,58,15],58)
([58,30,37,20,4],37) ([58,11,37,19],37) ([27,45,46,20],45) ([11,37,58,19],58)
([58,2,37,20,8],37) ([54,1,38,16],38) ([27,45,46,5],45) ([30,37,58,8],58)
([58,30,37,20,12],37) ([54,7,38,13],38) ([27,45,46,14],45) ([11,37,58,7],58)
([58,2,37,20,19],37) ([54,3,38,3],38) ([27,45,46,10],45) ([30,37,58,7],37)
([4,45,21,14],45) ([13,38,11],38) ([10,45,46,9],45) ([30,37,58,4],37)
([4,45,27,9],45) ([54,7,38,17],38) ([27,45,46,4],45) ([30,37,58,8],37)
([54,1,38,29,2],38) ([54,3,38,2],38) ([10,45,46,4],45)
([54,1,38,29,13],38) ([54,1,38,2],38) ([29,38,54,6],38)
([54,1,38,29,3],38) ([54,1,38,17],38) ([1,38,54,3],54)
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conversion factor values mean low interdependency. Comparing Fig. 8(a) with Fig. 8(e), we can see that enlarging the capacity scalar
also reduces the number of clusters. As we know, a large facility capacity means that a facility can output more resources. Therefore,
a facility can obtain sufficient resources from fewer other facilities. Correspondingly, the number of clusters is reduced. In the right
figures (Fig. 8(b), (d) and (f)), we find that a few facilities in system A do not serve any customers. These facilities in system A just
play a connection role between facilities in system B and facilities in system C in order to offset the capacity loss of the other facilities
in system A. Comparing Fig. 8(b) with Fig. 8(d), we can see that the number of connection facilities is reduced with increasing the
conversion factor scalar. Comparing Fig. 8(b) with Fig. 8(f), we also find that the capacity scalar can reduce the number of connection
facilities. Therefore, we can project that the number of connection facilities may approach zero with further increase of facility
capacity or conversion factor.

Now, we conduct a sensitivity analysis to some key parameters, such as the conversion factor, disruption probability and capacity.
First, we analyze the conversion factor which reflects the production efficiency of a facility. Fig. 9 shows how the conversion

factor scalar influences the total cost and the facility number. In this figure, we can see that the total cost and its three component
costs are decreasing significantly at first with the increase of the conversion factor scalar. Then the decreasing trend becomes
flattening out as the conversion factor scalar grows large. The change of the facility number also has the same trend with the increase
of the conversion factor scalar. This trend indicates that improving the conversion factor can reduce the constructed facility number
and the total cost, but the marginal effect decreases as the conversion factor grows. Note that as the conversion factor approaches
infinity, a facility can produce its resource almost without much upstream resource input, and thus the problem reduces to one where
facilities operate independently. The flat tails of Fig. 9 actually correspond to this asymptotic independent case. From these results we
see that the conversion factor plays a key role in improving the nexus performance.

The disruption probability is another key parameter in our model. It reflects the risk with which the facilities must be faced. Let C1,
C2 andC4 denote the total costs for =a 1, 2 and 4, respectively. Fig. 10 shows how the disruption probability influences the total cost
with different conversion factor scales in the nexus. As the disruption probability increases, the total cost C1 is increasing gradually.
Although C2 and C4 are not shown directly in this figure, we can speculate that these costs have the same trend as C1. In this figure, we
see that the difference C C( )1 2 is increasing with the increase of disruption probability. It means that the increase rate of the total cost
when =a 1 is larger than that when =a 2. A large conversion factor makes the nexus have a high resistance to facility disruptions.
Therefore, when the conversion factor scalar is large, the effect of disruption probability on the nexus will drop off and the total cost will
increase slowly. From Fig. 8, we know that large conversion factor scalar indicates low interdependency between facilities. That also
means that a nexus with high interdependency between facilities is weak when it faces on the risk of facility disruptions.

Fig. 11 shows the sensitivity analysis results with respect to capacity scalar c. Again,C1,C2 andC4 denote the total costs for =a 1, 2
and 4, respectively. It is obvious that the total cost decreases sharply with the increase of c at first and the decrease range is small
when the capacity scalar c is large. This trend can be concluded from the third term of objective function (11). This tend indicates the
utility of enlarging capacity is decreasing with the capacity improvement. In this figure, we see that the difference C C( )1 2 is
decreasing with the increase of capacity scalar. It means that the total cost when =a 1 is closed to that when =a 2. Therefore, the
effect of enlarging capacity on the performance of this nexus will weaken when the conversion factor is large. Compared this figure
with Fig. 9, we can see that the decrease degree of total cost in Fig. 9 is larger than that in Fig. 11. Therefore, the conversion factor is
more important than the capacity on improving the nexus performance.

4.2. Case study with real world data

This section illustrates how to apply the proposed model to real-world problems by investigating a case study with real world
data. The three major energy systems in this case study are refineries, power plants and vehicle stations. The fuel produced by
refineries can be used to generate electricity at power stations. The fuel can also be used by HEVs at vehicle stations for transpor-
tation. Power plants generate electricity and will be consumed by refineries for production and by HEVs for transportation. HEVs are
also capable of discharging electricity into power stations if needed. A link from a vehicle station to a power plant is considered as a
simple transshipment link with a conversion factor of 1 since they produce the same type of resource. Note that there are multiple
other systems in real world other than the three considered systems in this case study. In order to model the location problems of this
paper, other systems are considered as already being built and their roles can be equivalently represented as fixed “local demand” in

Table 5
Computational performance in different instances.

# I| | U| | Solution time (s) Gap (%)

1 60 20 26 0.0037
2 60 50 0.35 INF
3 60 120 1.15 INF
4 100 20 100 0.0077
5 100 50 124 0.0064
6 100 120 2.73 INF
7 200 20 1000 0.3459
8 200 50 1000 0.2859
9 200 120 1000 1.8328

H. Fan et al. Transportation Research Part C 97 (2018) 235–257

246



Fig. 8. Optimal facility locations and flows with different a and c.
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this problem.
In the studied problem, we are given a set of pre-selected candidate locations for refineries, power plants, and potential counties/

cities for vehicle stations, as well as attributes at these locations for various facilities, such as local demand and fixed costs. The model
will decide the most cost-effective location design to minimize the total system cost caused by random facility disruptions.

The region of interest in this case study is Louisiana State. There are 111 pre-selected locations for three types of facilities. 18 of
them are potential refineries, 29 of them are power plants and the remaining are pilot county locations for V2G demonstration
program. Types 1, 2 and 3 indicate power plants, vehicle stations and fuel refineries, respectively. For type 1, the facility attributions
are obtained from the eGRID2012 file1. The total annual net generation is treated as the facility capacity. We select the maximum
capacity facility from each county whose primary fuel is gas, oil or biomass. We assume that the fixed cost of each facility is
proportional to the facility capacity. For type 2, each facility is located in the each parish seat2. The corresponding facility capacity

Fig. 9. Sensitivity analyses of conversion factor scalar.

Fig. 10. Sensitivity analyses of disruption probability.

Fig. 11. Sensitivity analyses of capacity scalar.

1 https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid.
2 https://en.wikipedia.org/wiki/Louisiana_statistical_areas.
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and fixed cost are set proportional to the population of the parish. For types 1 and 2, the unit emergency cost and the unit trans-
portation cost are set as 300 and 0.01, respectively. For type 3, the facility attributions are obtained from the Wikipedia website.3 We
assume that the facility fixed cost is 25,000,000, the unit emergency cost is 237.5 and the unit transportation cost is 1.25. For
customers, the locations are the same as the type 2 facilities in the parish seats. The customer demand for each type resource is set
proportional to the consumption of Louisiana State4 and the population of each parish. All the parameters used in this paper for
facilities and customers are shown in Appendix II. We also assume the following conversion rate in Table 6. The conversion factors
from 1 to 3 and 3 to 1 are calculated according to the relationship between the consumption and generation.5 The conversion factor
from 3 to 2 is also set according to that the 6 kW hours is equal to a gallon of gasoline for HEVs.6

We solve this case study by our proposed model. The solution time is 141 sec and the optimality gap is 0.0092%. It indicates that
the solver Gurobi has a good performance on our proposed model. Fig. 12 shows the population density of Louisiana State and the
optimal facility location scheme. In this figure, we can see that most of optimal facility locations, especially the power plants and
refineries, are concentrated around the area of a high population density, which to some extent reflects large demand. Building
facilities in this area can satisfy these demands with relatively low unit cost. These results indicate that our model can solve the
realistic problems and get a reasonable optimal facility location scheme.

Fig. 13 shows the intermediate flows between the facilities in different systems and the out flows to the customers. In Fig. 13(a),
we can see that the intermediate flows exist in all different types of facilities and they form a number of sustainable facility circu-
lations. In Fig. 13(b), all facilities provide resources to the customers and some customer demands are satisfied by two or more
facilities similar to Fig. 8.

Fig. 14 shows how the facility location scheme changes with different qi and a. And Table 7 shows the estimated cost of the real
world synthetic example with different qi and a values. In this figure, the sizes of markers are proportional the corresponding facility
capacities. The proportional rates are different in different type systems. Comparing Fig. 14(a) with Fig. 14(b) (or Fig. 14(c) with
Fig. 14(b)), we find that more facilities are constructed and a larger number of facilities with lower capacities are installed at a higher
disruption risk. While more facilities mean a higher construction cost, they reduce the transportation cost and increase system
reliability, which yields a good balance of the cost components in the disruption scenario despite the increase of the total cost. We
also see that facilities are built in the area with high population density as explained in Fig. 12. Comparing Fig. 14(a) and Fig. 14(c),
we find that similarly, a larger number of power plants with low capacities are constructed when a is higher. However the total cost is
reduced as a increases. The same phenomenon is also observed when comparing Fig. 14(b) with Fig. 14(d). This indicates that a
higher a (possibly as results from conversion technology innovations) leads to a leaner and more economic nexus with higher
reliability.

Now, we study the effects of fortifying facilities on the facility layout. According to the results of Fig. 14(b), we set
= = =q q q 01 32 99 since they have the largest capacities among the built facilities in each type and are thus deemed as critical

facilities. The other parameters are all identical to those in Fig. 14(b). Fig. 15 compares the facility layouts without and with facility
fortification and Table 8 shows the corresponding estimated costs. We see that after fortifying the facilities with largest capacities,
several facilities with higher capacities are now replaced by facilities with lower capacities, particularly for vehicle stations. This
means that a large amount of demands are satisfied by the fortified facilities and the rest can be satisfied by facilities with lower
capacities instead. Form Table 8, we see that fortifying the critical facilities reduces the construction cost and increases the number of
built facilities. Further, the decrease of emergency cost also indicates improvement of system reliability. The transportation cost
however increases, which may be because that the numbers of power plants and refineries decrease. In general, the total cost reduces
due to facility fortification. Therefore, facility fortification, if feasible and not of too high cost, is a good approach to reduce system
cost and improve system reliability.

Finally, we study the effects of disruption risk magnitudes on the facility layout. Because the area along the Mississippi River may
face on the natural disaster, such as the flood in 2016, we set the disruption probabilities of facilities located in the lower-right-corner
area (less than 30.9oN and more than −91.6°W) as 0.3. The disruption probabilities of other facilities are set as 0.1. The other
parameters are all identical to those in Fig. 14(a). Fig. 16 compares the facility layouts with different disruption probabilities. From
these figures, we can see that facilities are more likely to be built in the area with lower disruption probabilities, particularly for
vehicle stations, to improve the resilience of the nexus. However, a number of facilities still are built in the lower-right-corner area,
e.g. power plants and refineries. That is because building these facilities in this area can obtain more benefits although they may bear
higher disruption risk that will cause the loss. In general, higher disruption risk will let the facilities away from this area. Never-
theless, if the loss derived from disrupted facilities is less than the benefits from built facilities, the facilities will still be built in the
area with higher disruption probabilities.

5. Conclusions

This paper investigates the network location design problem for a nexus of interdependent heterogeneous infrastructure systems.
This model considers probabilistic facility disruptions with a continuous capacity loss. Such disruptions can cause cascading failures

3 https://en.wikipedia.org/wiki/List_of_oil_refineries#Louisiana.
4 http://www.eia.gov/state/data.cfm?sid=LA#ConsumptionExpenditures.
5 http://www.eia.gov/totalenergy/data/annual/index.php#electricity.
6 http://gatewayev.org/how-much-electricity-is-used-refine-a-gallon-of-gasoline.
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due to interdependencies among different systems. We proposed a novel heterogeneous flow scheme that describes interdependencies
between heterogeneous systems producing different resources in a parsimonious form. This allows the development of a compact
integer programming model for solving the optimal facility location design for an infrastructure nexus. Numerical experiments are
conducted to test the proposed model and to draw managerial insights. We find that with this formulation, relevant problem instances
of realistic sizes can be efficiently solved with off-the-shelf solvers. The analysis results show that when the conversion factors are
larger, the nexus includes fewer clusters, indicating less intersystem interdependency. When cross-system interdependency is higher,

Table 6
Conversion factor between three facility types.

To

From 1 2 3

1 1 1 19.11
2 1 1 0
3 4.12 1.85 1

Power plant

Vehicle station

Refinery

Customer

Fig. 12. Facility location scheme of real world example with =q 0.1.

(a) Intermediate flows between facilities (b) Output flows from facilities to customers

Power plant

Vehicle station

Refinery

Customer

Power plant

Vehicle station

Refinery

Customer

Fig. 13. Flows between facilities and customers.
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the nexus becomes more vulnerable to disruptions and more facility investment is needed to offset the system vulnerability. We also
find that the conversion factor is more efficient than the capacity in improving the performance of the nexus. The case study indicates
that our proposed model can be applied to location design for real-world interdependent systems.

This study is a pioneering attempt to incorporate cascading disruptions in reliable location design. It can be extended in a number
of directions. For example, we should consider other interdependency structures different from the studied additive linear hetero-
geneous flow scheme. We can also consider more general disruption patterns that include both parametric and non-parametric
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Customer
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Vehicle station
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Customer
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Fig. 14. Facility location schemes of the real world synthetic example with different qi and a values.

Table 7
Estimated cost of the real world synthetic example with different qi and a values.

qi a Construction cost Transportation cost Emergency cost Total cost Facility number (Type 1,2,3)

0.1 1 7.61E8 4.40E8 4.45E8 1.65E9 (16, 4, 6)
0.3 1 8.69E8 4.75E8 1.13E9 2.48E9 (25, 5, 7)
0.1 2 7.53E8 3.78E8 4.13E8 1.54E9 (21, 4, 6)
0.3 2 8.54E8 4.10E8 1.04E9 2.30E9 (28, 21, 6)
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distributions to be calibrated from real world data. In addition to location planning, real time operations and controls of such
interdependent systems against possible disruption risks and their propagation are worth investigation. Further, demand un-
certainties may be incorporated into this framework, e.g., through stochastic programming.
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Fig. 15. Facility layouts of the real world synthetic example without and with fortification facilities.

Table 8
Estimated cost of the real world synthetic example without and with fortification facilities.

Disruption probability Construction cost Transportation cost Emergency cost Total cost Facility number (Type 1,2,3)

=q 0.3i 8.69E8 4.75E8 1.13E9 2.48E9 (25, 5, 7)
= = =q q q 01 32 99 8.41E8 5.08E8 9.16E8 2.26E9 (24, 10, 6)
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Fig. 16. Facility layouts of the real world synthetic example with different disruption risk magnitudes.

H. Fan et al. Transportation Research Part C 97 (2018) 235–257

252



Appendix I

Lemma 1. For a feasible flow solution x{ 0}ij i I j I U, and a critical flow pattern x{ 0}ij i j I, (where flows can only exist between facilities
but not from facilities to customers), if =x x x{ : 0}ij ij ij i I j I U, , then x{ }ij i I j I U, is also a feasible flow solution.

Proof. Because x{ 0}ij i I j I U, is a feasible solution and x{ 0}ij i j I, is a critical flow pattern, we obtain x a x i I,
j I U

ij
j I

l l jij i ,

=x a x i I,
j I

ij
j I

l l jij i and =x{ 0}ij i I j U, . Thus, for each i I , we know

= =

=

=

=

=

x x x x x

x x x

x a x

a x a x

a x x

a x

( )
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j I U
ij

j I U
ij ij

j I U
ij

j I U
ij

j I U
ij
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ij

j U
ij

j I U
ij

j I
l l ji

j I
l l ji

j I
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j I
l l ji ji

j I
l l ji
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j i j i
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These inequalities mean that x a x i I,
j I U

ij
j I

l l jij i . Due to =x{ 0}ij i I j U, , for each i I , we obtain

= = =x x x x x x( )
j U

ij
j U

ij ij
j U

ij
j U

ij
j U

ij. These equalities mean that the outputs x{ }ij i I j U, are unchanged. Therefore,

x{ }ij i I j I U, is also a feasible flow solution if x{ 0}ij i I j I U, . This completes the proof.

Lemma 2. If a service chain =P i i i i[ , , , , ]K K0 1 1 has a sustainable circulation > >+x k x for k K{ 0, , 0 some {0, }}i i i ik k k1 0K K , P
must sustainable with respect to k'.

Proof. Based on the definition of a sustainable circulation, we obtain = + >+x a x x xi i i i i i i i i ik k k k k k k k1 1 1 0 0. Further
= = = = +x a x a a xi i i i i i i i k

k
i i i i0

2
k k k k k k k k k k1 2 1 2 1 0 1 0. This yields >= +a a 1i i k

k
i i0

1
k k k0 1 . This completes the proof.

Appendix II

See Tables 9 and 10.

Table 9
Attributions of candidate facilities.

Lat (N) Lon (W) Type Fixed cost ($) Capacity (MWh, ton) Emergency ($/MWh) Transportation ($/mile/MWh, $/mile/ton)

1 30.4286 92.4131 1 95,710,060 4,785,503 300 0.01
2 30.1875 90.9840 1 11,161,620 558,081 300 0.01
3 30.8606 93.3756 1 7049299.92 352464.996 300 0.01
4 32.5195 93.7601 1 71,059,640 3,552,982 300 0.01
5 30.2210 93.2992 1 60,915,980 3,045,799 300 0.01
6 29.7614 93.6086 1 218,834 10941.7 300 0.01
7 32.1575 93.5562 1 15522300.04 776115.002 300 0.01
8 30.4922 91.1864 1 58981340.18 2949067.009 300 0.01
9 30.8439 92.2611 1 28,696,840 1,434,842 300 0.01
10 29.9006 91.7333 1 25,000 1250 300 0.01
11 30.2743 91.1164 1 31,175,020 1,558,751 300 0.01
12 32.2752 92.7277 1 8653993.2 432699.66 300 0.01
13 29.9472 90.1458 1 83,574,020 4,178,701 300 0.01
14 30.2380 92.0463 1 6,854,160 342,708 300 0.01
15 32.5256 92.6497 1 900306.4 45015.32 300 0.01
16 31.9033 93.1739 1 2970111.86 148505.593 300 0.01
17 30.0081 89.9372 1 46,922,900 2,346,145 300 0.01
18 32.7061 92.0683 1 33,160,500 1,658,025 300 0.01
19 29.8120 90.0084 1 1,732,300 86,615 300 0.01
20 30.6739 91.3556 1 2,151,800 107,590 300 0.01
21 31.3207 92.4613 1 39,480 1974 300 0.01
22 29.9327 89.9782 1 1028384.7 51419.235 300 0.01
23 30.0051 90.4617 1 37744419.32 1887220.966 300 0.01
24 30.0540 90.6693 1 5,268,500 263,425 300 0.01

(continued on next page)
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Table 9 (continued)

Lat (N) Lon (W) Type Fixed cost ($) Capacity (MWh, ton) Emergency ($/MWh) Transportation ($/mile/MWh, $/mile/ton)

25 29.8222 91.5425 1 19,502,900 975,145 300 0.01
26 29.5806 90.7225 1 796,540 39,827 300 0.01
27 30.7811 89.8575 1 8698992.96 434949.648 300 0.01
28 32.6046 93.2944 1 55,500 2775 300 0.01
29 30.4770 91.2110 1 997581.2 49879.06 300 0.01
30 29.64987 90.11207 2 64,704,150 157446.765 300 0.01
31 30.43574 89.92532 2 34,590,750 84170.825 300 0.01
32 30.11269 89.88793 2 33,508,200 81536.62 300 0.01
33 29.92737 90.33719 2 7,914,150 19257.765 300 0.01
34 30.11183 90.48799 2 7,280,550 17716.005 300 0.01
35 29.324 89.47422 2 3,376,800 8216.88 300 0.01
36 29.87979 89.3227 2 2,327,100 5662.61 300 0.01
37 30.80393 90.07468 2 6,712,500 16333.75 300 0.01
38 30.56936 91.09694 2 64,360,950 156611.645 300 0.01
39 30.43401 90.6773 2 17,220,750 41903.825 300 0.01
40 30.20173 90.94385 2 14,600,250 35527.275 300 0.01
41 30.28992 91.40482 2 4,946,100 12035.51 300 0.01
42 30.61022 91.5984 2 3,397,200 8266.52 300 0.01
43 30.47512 91.32764 2 3,369,450 8198.995 300 0.01
44 30.84589 91.02032 2 3,138,300 7636.53 300 0.01
45 30.84231 91.40482 2 2,330,250 5670.275 300 0.01
46 30.80219 90.6773 2 1,613,850 3927.035 300 0.01
47 29.92325 91.09694 2 3,520,800 8567.28 300 0.01
48 30.18951 92.02732 2 36,014,700 87635.77 300 0.01
49 29.93067 91.6077 2 11,115,450 27047.595 300 0.01
50 30.22973 92.38136 2 9,386,550 22840.605 300 0.01
51 29.86014 92.38136 2 8,981,250 21854.375 300 0.01
52 30.23959 91.75388 2 8,075,250 19649.775 300 0.01
53 30.60365 92.06652 2 12,577,200 30604.52 300 0.01
54 29.67851 91.43028 2 7,921,500 19275.65 300 0.01
55 32.61368 93.86553 2 37,967,700 92388.07 300 0.01
56 32.75513 93.66232 2 16,090,500 39153.55 300 0.01
57 32.03106 93.66232 2 3,958,500 9632.35 300 0.01
58 32.76414 93.33889 2 6,195,150 15074.865 300 0.01
59 30.20893 93.33889 2 27,678,600 67351.26 300 0.01
60 29.84344 93.17797 2 1,168,800 2844.08 300 0.01
61 30.26723 92.81783 2 4,712,700 11467.57 300 0.01
62 29.22997 90.75328 2 16,402,200 39912.02 300 0.01
63 29.69523 90.52578 2 14,033,100 34147.21 300 0.01
64 32.42719 92.22367 2 22,388,850 54479.535 300 0.01
65 32.78591 92.38136 2 3,444,600 8381.86 300 0.01
66 32.79622 91.75388 2 4,464,150 10862.765 300 0.01
67 31.14611 92.5396 2 19,530,150 47523.365 300 0.01
68 31.69437 92.5396 2 2,981,850 7255.835 300 0.01
69 30.61945 90.37484 2 16,970,550 41295.005 300 0.01
70 31.132 93.17797 2 7,012,200 17063.02 300 0.01
71 30.76115 93.33889 2 5,269,500 12822.45 300 0.01
72 32.59889 92.69839 2 6,278,550 15277.805 300 0.01
73 32.23998 92.5396 2 2,280,300 5548.73 300 0.01
74 31.68012 93.17797 2 5,807,850 14132.435 300 0.01
75 31.4809 91.63722 2 2,919,000 7102.9 300 0.01
76 32.44016 91.2891 2 1,849,200 4499.72 300 0.01
77 30.97118 92.06652 2 6,399,450 15571.995 300 0.01
78 30.78218 92.38136 2 5,386,650 13107.515 300 0.01
79 30.58875 92.85771 2 3,817,050 9288.155 300 0.01
80 31.48933 93.50035 2 3,590,100 8735.91 300 0.01
81 30.01793 90.79132 2 3,258,150 7928.165 300 0.01
82 32.38873 91.79284 2 3,083,100 7502.21 300 0.01
83 32.07371 91.5984 2 3,068,250 7466.075 300 0.01
84 32.77226 93.01757 2 2,431,500 5916.65 300 0.01
85 31.91961 92.65864 2 2,375,250 5779.775 300 0.01
86 32.41074 93.01757 2 2,275,200 5536.32 300 0.01
87 31.70025 92.22367 2 2,113,950 5143.945 300 0.01
88 32.75458 91.48215 2 1,759,800 4282.18 300 0.01
89 32.06697 92.06652 2 1,592,250 3874.475 300 0.01
90 31.70531 91.90992 2 1,585,050 3856.955 300 0.01
91 32.08429 93.37921 2 1,415,700 3444.87 300 0.01
92 32.75709 91.2506 2 1,304,850 3175.135 300 0.01
93 32.07722 91.2891 2 920,700 2240.37 300 0.01

(continued on next page)
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Table 9 (continued)

Lat (N) Lon (W) Type Fixed cost ($) Capacity (MWh, ton) Emergency ($/MWh) Transportation ($/mile/MWh, $/mile/ton)

94 29.68167 89.97389 3 25,000,000 11120054.57 237.5 1.25
95 30.48361 91.18056 3 25,000,000 22622783.08 237.5 1.25
96 29.93866 89.97007 3 25,000,000 8508867.667 237.5 1.25
97 30.10769 90.90943 3 25,000,000 10,579,809 237.5 1.25
98 32.79733 93.4149 3 25,000,000 586166.4393 237.5 1.25
99 30.06568 90.59366 3 25,000,000 24266030.01 237.5 1.25
100 30.53903 91.75126 3 25,000,000 3601637.108 237.5 1.25
101 30.13463 93.31824 3 25,000,000 3601637.108 237.5 1.25
102 30.24215 93.25071 3 25,000,000 19259754.43 237.5 1.25
103 30.28615 93.14715 3 25,000,000 6753069.577 237.5 1.25
104 30.24099 93.27144 3 25,000,000 11705320.6 237.5 1.25
105 29.93709 89.94281 3 25,000,000 5627557.981 237.5 1.25
106 30.00159 90.40039 3 25,000,000 10714870.4 237.5 1.25
107 30.47666 91.21086 3 25,000,000 3376534.789 237.5 1.25
108 32.58921 93.5151 3 25,000,000 373669.8499 237.5 1.25
109 32.47037 93.78969 3 25,000,000 2566166.439 237.5 1.25
110 29.98636 90.39246 3 25,000,000 9679399.727 237.5 1.25
111 29.94557 90.3288 3 25,000,000 2025920.873 237.5 1.25

Table 10
Attributions of customers.

Lat (N) Lon (W) Type 1 Type 2 Type 3

1 29.64987 90.11207 2,505,381 22964.83 607362.8
2 30.43574 89.92532 1,339,373 12276.97 324695.3
3 30.11269 89.88793 1,297,456 11892.75 314533.7
4 29.92737 90.33719 306440.3 2808.894 74288.28
5 30.11183 90.48799 281,907 2584.016 68340.83
6 29.324 89.47422 130751.6 1198.496 31697.24
7 29.87979 89.3227 90106.62 825.9355 21843.95
8 30.80393 90.07468 259911.8 2382.404 63008.68
9 30.56936 91.09694 2,492,092 22843.02 604141.3
10 30.43401 90.6773 666797.1 6111.997 161647.2
11 30.20173 90.94385 565329.9 5181.928 137049.1
12 30.28992 91.40482 191515.8 1755.472 46427.89
13 30.61022 91.5984 131541.5 1205.736 31888.73
14 30.47512 91.32764 130,467 1195.887 31628.24
15 30.84589 91.02032 121516.7 1113.847 29458.49
16 30.84231 91.40482 90228.59 827.0535 21873.51
17 30.80219 90.6773 62489.18 572.7885 15148.83
18 29.92325 91.09694 136327.4 1249.604 33048.93
19 30.18951 92.02732 1,394,509 12782.36 338061.6
20 29.93067 91.6077 430396.5 3945.101 104338.1
21 30.22973 92.38136 363452.5 3331.479 88109.36
22 29.86014 92.38136 347759.1 3187.63 84304.9
23 30.23959 91.75388 312678.2 2866.072 75800.49
24 30.60365 92.06652 486996.3 4463.906 118059.3
25 29.67851 91.43028 306724.9 2811.503 74357.28
26 32.61368 93.86553 1,470,131 13475.52 356,394
27 32.75513 93.66232 623033.2 5710.848 151037.8
28 32.03106 93.66232 153275.4 1404.953 37157.52
29 32.76414 93.33889 239879.7 2198.786 58152.43
30 30.20893 93.33889 1,071,731 9823.703 259812.6
31 29.84344 93.17797 45256.59 414.8311 10971.25
32 30.26723 92.81783 182478.4 1672.634 44237.02
33 29.22997 90.75328 635102.4 5821.477 153963.6
34 29.69523 90.52578 543369.5 4980.635 131725.4
35 32.42719 92.22367 866908.9 7946.262 210158.9
36 32.78591 92.38136 133376.9 1222.559 32333.66
37 32.79622 91.75388 172854.4 1584.418 41903.94
38 31.14611 92.5396 756218.4 6931.651 183,325
39 31.69437 92.5396 115458.9 1058.32 27989.93
40 30.61945 90.37484 657109.3 6023.196 159298.6
41 31.132 93.17797 271516.3 2488.774 65821.89

(continued on next page)
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Table 10 (continued)

Lat (N) Lon (W) Type 1 Type 2 Type 3

42 30.76115 93.33889 204,038 1870.254 49463.57
43 32.59889 92.69839 243,109 2228.386 58935.29
44 32.23998 92.5396 88294.5 809.3252 21404.65
45 31.68012 93.17797 224883.2 2061.325 54516.94
46 31.4809 91.63722 113025.3 1036.013 27399.97
47 32.44016 91.2891 71602.07 656.319 17358.01
48 30.97118 92.06652 247790.3 2271.296 60070.15
49 30.78218 92.38136 208574.1 1911.833 50563.23
50 30.58875 92.85771 147798.3 1354.749 35829.76
51 31.48933 93.50035 139010.7 1274.2 33699.43
52 30.01793 90.79132 126157.4 1156.384 30583.5
53 32.38873 91.79284 119379.4 1094.255 28940.34
54 32.07371 91.5984 118804.4 1088.985 28800.95
55 32.77226 93.01757 94149.05 862.9892 22823.92
56 31.91961 92.65864 91971.02 843.0249 22295.92
57 32.41074 93.01757 88097.03 807.5151 21356.77
58 31.70025 92.22367 81853.34 750.2842 19843.16
59 32.75458 91.48215 68140.45 624.5891 16518.83
60 32.06697 92.06652 61652.82 565.1222 14946.08
61 31.70531 91.90992 61374.03 562.5667 14878.5
62 32.08429 93.37921 54816.7 502.461 13288.85
63 32.75709 91.2506 50524.53 463.118 12248.32
64 32.07722 91.2891 35650.02 326.7753 8642.397
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