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In one-way electric vehicle (EV) carsharing systems, a practical issue that needs to be ad-
dressed is the imbalance of EVs with respect to the spatial time-dependent user reserva-
tions at different carsharing stations. In practice, appropriate EV rebalancing operations can
satisfy user reservations with limited resources and effectively save system investments.
This paper proposes an integrated framework that can determine the optimal allocation
plan of EVs and staff on the strategic level while considering the operational EV reloca-
tion and staff relocation decisions, in order to minimize the total cost, including the EV
and staff investment, EV rebalancing and staff relocation costs. In this framework, the dis-
patching routes of EVs and staff are represented by two sets of space-time paths in the
planning time horizon by using a space-time network representation, and the considered
problem is then formulated into a mixed-integer linear programming model (MILP). This
model explicitly considers (1) the satisfaction of time-dependent user reservations through
dynamically rebalancing EVs and relocating staff to keep the service quality of carsharing
system, and (2) the EV battery capacity with limited traveling distance and the charging
process of EVs at parking stations. A Lagrangian relaxation-based solution approach is de-
veloped to decompose the primal problem into several sets of computationally efficient
subproblems. In order to generate good-quality solutions, we also propose a three-phase
implementing algorithm based on dynamic programming according to the values of La-
grangian multipliers. An illustrative numerical example and a real-world case study (based
on the operation data of Seattle, WA) are conducted to verify the applicability of the for-
mulated model and effectiveness of the proposed approach.
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1. Introduction

The expansion of residents and private vehicles in large cities, such as Beijing, Tokyo and San Francisco, has imposed
great pressures on the urban transportation systems. For example, in Beijing, the number of vehicles has increased by about
154 thousand (or 2.8 percent) from 2014 to 2015, and over 65% of these new vehicles are private cars. The number of annual
average daily trips (AADT) in downtown area grows to over 28 million and the trips on private vehicles take over 31%. This
may well explain the greatly worsened traffic and environmental conditions of Beijing in recent years. To overcome this
urgent problem of big cities, one of the promising approaches is the application of carsharing systems, in which a group of
people collectively own or use a number of spatially distributed vehicles. There has been abundant evidence that carsharing
systems can effectively release the pressure to other public transportation modes, save urban parking space, and reduce air
pollution e.g., Jian et al. (2016); Li et al. (2016) and Boyaci et al. (2017).

In general, the current carsharing systems are classified into three patterns according to their different rental modes,
which are round-trip, free-floating and one-way carsharing systems, respectively (Becker et al., 2017). For round-trip systems,
the origin and destination of each user are restricted to the same parking station. In other words, the users are required to
return vehicles to their original stations. Due to this operational constraint, round trip systems are inflexible to many users
(e.g., those with one-way trips or relatively long activity durations). In contrast, free-floating systems allow the users to drop
the vehicles at any parking port in a predetermined area, which improves user convenience yet causes relatively high fleet
management cost (e.g., the costs of collecting and returning the vehicles to relevant facilities)(Firnkorn, 2012; Weikl and
Bogenberger, 2015). As a compromise, in one-way carsharing systems, each user can return a vehicle to a different station
other than the pickup station, which has better flexibility than round-trip systems yet does not incur as high cost as free-
floating systems. In other words, one-way carsharing systems strike a good balance between operation costs and flexibility.
Many carsharing organizations such as Zipcar and Car2Go tend to increase the proportion of one-way service pattern in
recent years'%(Jorge et al., 2015).

An outstanding challenge to one-way carsharing operations is the imbalance of available vehicles at different stations
caused by the gravitational effect (Weikl and Bogenberger, 2015) among different areas and the tide phenomena of daily
trips (Waserhole et al., 2013), which often lead to vehicle shortage in some stations yet too high vehicle inventories in others.
This challenge apparently reduces the service quality of carsharing systems such that some users have to wait for available
vehicles. Further, it causes waste of vehicle resources long sitting in particular stations without being used. In practice,
an effective strategy to overcome this problem is to properly allocate the vehicles to parking stations at the beginning of
operation cycle and timely rebalance the vehicles by a crew of drivers (namely fleet managing staff) (Kek et al., 2009; Smith
et al.,, 2013; Nourinejad et al., 2015). Such staff-based vehicle operations, if not properly managed, may have imbalanced
distribution of staff among the parking stations, or even disruptions of carsharing network operations. Hence, it is important
to carefully determine the allocations of EVs and staff to parking stations while considering the vehicle rebalancing and
staff relocation operations in one-way carsharing systems. In recent years, to further enhance the environmental and social
benefits of carsharing systems, electric vehicles (EV) are gradually favored by most carsharing organizations, because EV
sharing services are not only efficient but also sustainable (Li et al., 2016; Xu et al., 2017).

Nevertheless, the current studies that simultaneously consider the EVs and staff allocations, EV rebalancing and staff
relocation through a systematic view are very few, which is partially due to the following two reasons. (1) On one hand,
applying EVs actually brings new challenges to rebalancing of shared vehicles in one-way carsharing systems. Restricted
by the limited battery capacity and the existing charging technology, most EVs need a considerable charging time after a
limited travel distance or time. Therefore, in EV one-way carsharing systems, the rebalancing of EVs is actually a complicated
problem that not only involves the space-time distribution of EVs but also is constrained by the limited battery capacity,
which makes it extremely difficult to obtain a global-optimum or near-optimum solution. (2) On the other hand, the EV
rebalancing design in one-way carsharing system is essentially a very complicated problem due to the complex coupling
relationships among user activities, staff members and EVs. For bicycle sharing systems, the rebalancing of bikes is usually
handled by dispatching a fleet of capacitated trucks to maintain the number of bicycles in each station (Dell’Amico et al.,
2014; Forma et al., 2015; Zhang et al., 2016). Correspondingly, the relocation problem in EV carsharing systems faces a
different kind of challenge since it is practically not suitable to use trucks for the relocation of multiple vehicles due to the
complexity and inefficiency of EV loading/unloading process (Bruglieri et al., 2014). Hence, each vehicle rebalancing task in
one-way carsharing system is generally achieved by one staff member, which means that we need to precisely capture the
spatial-time user activities and then dynamically dispatch the staff members to balance the distribution of EVs (Boyaci et al.,
2017). To achieve a global optimum for one-way carsharing systems, more coupling constraints among user activities, EVs
and staff members should be rigorously considered, which however enhances the computational intensity for the problem
of interest.

To address these above issues, this study first adopts a space-time network to represent the EV rebalancing and staff
relocation operations in a one-way carsharing system, and then proposes an integrated framework to determine the optimal
numbers of EVs and staff members allocated to each parking station at the beginning of the operation cycle while con-

1 https://www.bostonglobe.com/business/2014/05/01/zipcar- test-one-way- car-sharing/5WKDIKVEwtK4B2m2CF6NhK/story.html.
2 https://transportation.arlingtonva.us/carsharing/car2go/.
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sidering the operational EV rebalancing and staff relocation decisions. The objective is to minimize the system cost while
satisfying all the user reservations to enhance the service quality of carsharing company. Specifically, we formulate the prob-
lem into a mixed-integer linear programming (MILP) model that aims to minimize the total investment costs and operation
costs of EVs and staff for serving the dynamic origin-destination (OD) reservations. In particular, the developed model is
able to capture the practical EV battery capacity limitation and battery recharging process at parking stations. To solve the
model more efficiently, we propose a variety of approaches (e.g., Lagrangian relaxation with embedded dynamic program-
ming, branch and bound, and greedy algorithm) that can obtain a near-optimal solution in a shorter computational time
compared with state-of-the-art MILP commercial solvers such as CPLEX and Gurobi.

1.1. Literature review

With the increasing concerns on urban congestion and carbon emission problems in recent years, carsharing systems
have become an active research area e.g., Barth and Shaheen (2002); Barth et al. (2004); Nair and Miller-Hooks (2011);
Furuhata et al. (2013); Boyaci et al. (2015); Schmdller et al. (2015); Hu and Liu (2016); Jian et al. (2016); Li et al. (2016) and
Becker et al. (2017). In general, studies in this area can be divided into two levels, i.e., the strategic level and the operational
level.

At the strategic level, relevant studies mainly focus on the long-time planning strategies, e.g., the number, capacities,
and locations of vehicle parking stations, and the fleet and staff sizes (Correia and Antunes, 2012; Fanti et al., 2014; Hu
and Liu, 2016; Li et al., 2016; Xu et al., 2018). For example, Correia and Antunes (2012) developed three mixed integer
programming (MIP) models to determine the optimal number, locations and capacities of parking stations with respect to
the maximum profits of a one-way carsharing company. Li et al. (2016) proposed a Continuum Approximation (CA) model
for the design of one-way carsharing systems in a metropolitan area, which determines the optimal EV station locations and
the corresponding fleet sizes to minimize the total cost. Based on the random arrival rates of user reservations that follow
a homogeneous Poisson process, Hu and Liu (2016) presented a joint design of station capacities and fleet size for one-way
carsharing systems to maximize the system revenue from the perspective of the carsharing operator.

At the operational level, studies concentrate on daily management and operation of vehicles and staff in carsharing
networks. In particular, since users are allowed to drop off vehicles at arbitrary parking stations in one-way carsharing sys-
tems, the vehicles shall be rebalanced dynamically in order to satisfy the user reservations. The research by Barth and Sha-
heen (2002) has indicated that, one-way trips in a one-way carsharing system are very likely to cause imbalance of vehicle
numbers among different stations. In other words, some carsharing stations may face the vehicle shortage issue while others
may be overfilled at the same time. Therefore, a lot of recent studies begin to stress this practical issue for vehicle rebal-
ancing and staff relocation in one-way carsharing systems e.g., Kek et al. (2009); Febbraro et al. (2012); Boyaci et al. (2015);
Nourinejad et al. (2015); Weikl and Bogenberger (2015) and Boyaci et al. (2017). For instance, Febbraro et al. (2012) devel-
oped a user-based approach to generate the optimal rebalancing strategy by using a discrete event model. This methodology
aims to minimize the absolute difference between the number of available vehicles and user reservations in a specified
time period. For increasing the profitability of a one-way carsharing company, Jorge et al. (2014) developed two models, i.e.,
a mathematical model to optimize the vehicle rebalancing operations and a simulation model to study different real-time
rebalancing policies. The results indicated that, with appropriate vehicle rebalancing operations, the profits of a carsharing
company can be evidently improved. Nevertheless, a practical issue for vehicle rebalancing is that, each vehicle rebalanc-
ing task must be achieved by at least one staff member. Thus, vehicle rebalancing operations actually require a systemic
and rigorous operational plan that considers both the vehicle rebalancing and staff relocation simultaneously. More recently,
some studies have addressed this practical significant yet theoretically challenging problem through the integration of ve-
hicle rebalancing and staff relocation. Kek et al. (2009) proposed a three-phase optimization-trend-simulation approach, in
which the first phase is to generate a set of near-optimal vehicle rebalancing strategies, the second phase is to convert
the optimized result into a series of practical operating parameters (e.g., staff activities, rebalancing technique, rebalancing
thresholds), and the last phase evaluates the effectiveness of the operating parameters by simulation. In order to jointly
optimize the vehicle rebalancing and staff relocation strategies, Nourinejad et al. (2015) developed an integrated mathemat-
ical model, in which the rebalancing trajectories of vehicles and staff were formulated as two sets of decision variables and
the aim is to minimize the total cost of a carsharing company. Due to the complexity of the formulated model, a heuristic
algorithm was developed to find a feasible solution within an acceptable solution time.

Since EVs are becoming much more indispensable in the future development of green and intelligent transportation
systems, it is practically desirable to consider EV rebalancing problem in carsharing systems. Different from conventional
vehicles, the challenging issue that distinguishes this problem with traditional vehicle rebalancing problem is the limitation
of EV battery capacity and considerable battery charging time. Weikl and Bogenberger (2015) focused on the EV rebalancing
problem in a free-floating carsharing system, where a practice-ready relocation model for free-floating carsharing systems
with conventional and electric vehicles was introduced to maximize the total profits of carsharing company. To solve this
model more efficiently with low computational time, the solution was obtained through a two-level-procedure algorithm,
in which the upper level aims to generate the optimal inter zone relocation outlet, and the lower level controls the de-
tailed vehicle serving and recharging processes based on a series of heuristic rules. Finally, three sets of experiments for
free-floating systems in Munich are performed to demonstrate its effectiveness. In one-way EV carsharing systems, Boyaci
et al. (2017) recently developed an integrated multi-objective mixed integer linear programming model and a discrete event
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simulation framework for the optimal design of EV rebalancing and staff relocation with users’ reservations. In particular, a
concept of safety gap was proposed to improve the robustness of the operation strategies under stochastic user delay and
traffic congestion condition. Due to the complexity of the model, a clustering procedure based optimization framework was
designed to simultaneously determine the station clustering, EV rebalancing and staff relocation strategies. The obtained so-
lution was then given as input to an event-based simulator for testing its feasibility in terms of EV recharging requirements.
A good solution that balances the efficiency and accuracy can be finally generated by iteratively repeating this process and
adding new EV recharging constraints. Then, a lot of computational experiments based on the real-world data of Nice, France
were implemented, which illustrate the effectiveness of the proposed approach and also derive several meaningful insights
with respect to the operational strategies in one-way carsharing systems.

1.2. Focus of this study

As stated above, a variety of models and approaches with respect to vehicle rebalancing issues have been proposed
for improving the operational efficiency in carsharing systems. Nevertheless, to the best of our knowledge, only a small
number of recent developments have tried to integrate the vehicle and staff allocation designs for EV one-way carshar-
ing systems with the consideration of vehicle and staff dispatching plans. In the methodological aspects, there is fewer
study that proposes an exact mathematical model or attempts to solve the true optimal solution for this strategic opti-
mization design problem. The existing approaches solving EV rebalancing and staff relocation problem usually simplify or
neglect a part of practical factors, such as dynamic spatiotemporal reservations, limited EV battery capacity and noticeable
EV charging time, and most of these formulations are solved by heuristic algorithms or computer simulation. For exam-
ple, Nourinejad et al. (2015) proposed a discrete-event continuous time model that formulated the joint vehicle rebalancing
and staff relocation problem into two integrated multi-traveling salesman formulations. Note that this model considers the
conventional vehicle rebalancing problem with unlimited vehicle traveling distance, and heuristic algorithms incorporated
with commercial optimization solvers were developed to circumvent the computational burden from dynamic spatiotempo-
ral reservations. Boyaci et al. (2015) considered a one-way EV sharing system that takes into account the EV relocation and
recharging requirements. To decrease the complexity of the proposed model, the charging period of the EV is simplified as
a fixed period of time dwelling in the station after completing a user reservation. More recently in Boyaci et al. (2017), a
series of hard constraints, such as station and vehicle capacity limitations are considered in the mathematical formulations.
In order to solve these models efficiently, the EV battery capacity and charging constraints are simplified in the optimiza-
tion procedure. Instead, a simulation module is developed to evaluate the feasibility of the obtained solutions. While these
approaches can return reasonable vehicle rebalancing solutions within an acceptable time, the systematic optimality of the
whole framework is not explicitly discussed, and there lacks theoretically benchmarks to evaluate the performance of these
solutions with respect to the true optimum.

In this study, we address the strategic planning problem in an EV carsharing system to determine the optimal allocation
plan of EVs and staffs to parking stations while considering the operational EV relocation and staff rebalancing decisions
(termed as EVSR in the following content). We formulate this EVSR problem into an exact mathematical model that explic-
itly considers the spatial time-dependent user reservations, limited EV battery capacity and EV charging time. New method-
ologies are introduced to solve the exact optimal solution or a near-optimum solution with an optimality gap assurance.
Specifically, this paper aims to make the following contributions to the literature.

(1) By using a space-time network representation, the EV rebalancing and staff relocation operations are represented
by two sets of space-time paths in the discrete time horizon. This method enables to guarantee that the spatial time-
dependent user reservations can be served through dynamically rebalancing EVs and relocating staff members. Meanwhile,
in order to explicitly depict the EV battery capacity limitation and its recharging processes, we particularly denote a time-
dependent state for each vehicle to model the EV battery volume variation in the space-time network. Then, the EVSR
problem is rigorously formulated into an integer programming model that can be transformed into an equivalent mixed-
integer linear programming (MILP) model. Specifically, the aim of the formulated model is to minimize the total investment
(i.e., EV purchasing and staff hiring) cost and operation (i.e., EV rebalancing and staff relocating) cost while serving the user
reservations as many as possible. Since EVSR problem is properly formulated as a MILP model, it can be solved to the exact
optimum with commercial solvers for small or medium instances.

(2) To improve the computational efficiency for solving large-scale instances, we especially propose a variety of ap-
proaches combing Lagrangian relaxation with embedded dynamic programming, branch-and-bound and greedy algorithm
in order to solve the developed model to near-optimality in an acceptable time. In specific, we dualize two sets of hard
constraints in the primal model, which couple the EV and staff space-time paths to the objective function through introduc-
ing different Lagrangian multipliers. The relaxed model is then decomposed into a series of resource constrained shortest
path (RCSP) problems, traditional shortest path (SP) problems and semi-assignment (SA) problems. To improve the solution
quality, we further propose a three-phase implementing algorithm based on dynamic programming that adjusts the solu-
tion of the relaxed model into a feasible solution according to the value of Lagrangian multipliers. The proposed algorithm
is shown capable of solving large-scale EVSR instances into the exact optimum or a near optimal solution with an explicit
small optimality gap.

The reminder of this paper is organized as follows. In Section 2, we present the detailed description for the EVSR prob-
lem. Section 3 formulates the EVSR problem into a mixed-integer programming model to generate the optimal EV and
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Fig. 1. Illustration for the operation process of one-way carsharing system.

staff allocation plan while considering the EV rebalancing and staff relocation operations in the considered time horizon.
Then, we propose the Lagrangian-relaxation based algorithmic framework for solving the developed model in Section 4.
In Section 5, we conduct a series of numerical examples to test the performance of the proposed model and customized
solution approach. Finally, conclusions and further studies are presented in Section 6.

2. Problem statement

In the following discussion, we first introduce the EVSR problem in Section 2.1. Then, we present an integrated EVSR
framework by using a space-time network representation in Section 2.2.

2.1. EVSR problem in one-way carsharing systems

Consider a one-way carsharing system that operates the services using EVs among a number of predetermined stations
located in an urban area. At the beginning of the operation cycle (e.g., each single day), each parking station is initially
allocated with a certain number of EVs and staff members, leading to the EV investment cost and staff hiring cost. Dur-
ing the operational phase, users are allowed to visit any parking station according to their reservations to pick up an EV
and drop it to another one. Due to the heterogenous space-time distribution of user reservations, the staff members are
required to dynamically dispatch the EVs to parking stations with higher demands to prevent the imbalance of EVs among
the parking stations, which is called the EV relocation and staff rebalancing operations or dispatching strategies of EVs and
staff. Although these EV relocation and staff rebalancing operations require additional costs for the travelling of EVs and
staff members, the investment cost can be noticeably compressed with appropriate EV and staff dispatching strategies to
serve the user reservations. In this sense, the EVSR problem in our study aims to answer the following question: how many
EVs and staff members are required in a one-way carsharing system and how to allocate these EVs and staff members to each
station such that the user reservations can be satisfied with minimum cost by considering the operational EV relocation and staff
rebalancing decisions in parallel.

An illustrative example is shown by Fig. 1, which presents a one-way carsharing system consisting of three EV stations
and four user reservations. Here, we consider five time intervals and four reservations where the users plan to pick up the
vehicles at time tq, t;, t3 and ts, respectively. If there is no rebalancing operation for these EVs (shown as Fig. 1(a)), it is
obvious that at least 4 EVs are required to fulfil these four user reservations. At time ts, three of the EVs will be parked
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at parking station 2, which actually causes the imbalance and low utilization of EVs. Alternatively, if we hire only one staff
member with appropriate EV relocation strategies (as show in Fig. 1(b)), all these four user reservations can still be covered
by initially allocating two EVs and one staff member at parking station 1,3 and 2, respectively. The staff member first drives
the EV from parking station 2 to 1 at time t,, then travels back to parking station 2, and finally rebalances the EV from
parking station 2 to 3. This is evidently a much more flexible and economical strategy compared with purchasing four EVs
to fulfil these four user reservations.

Therefore, the EVSR problem studied in this paper aims to design the optimal allocation plan of EVs and staff members to
uncapacitated parking stations with consideration of optimized EV rebalancing and staff relocation operations to guarantee
that (1) the spatial time-dependent user reservations are satisfied; (2) each EV rebalancing task must be operated by one
staff member; (3) each EV has a limited battery capacity and must be recharged after a certain traveling distance; (4) the
total cost, including the EV and staff investment costs, EV rebalancing cost and staff relocation cost, is to be minimized.

2.2. Space-time network representation

The space-time network, which aims to integrate physical transportation networks with the time-dependent tra-
jectories of objects (such as vehicles or travelers) to particularly capture their spatial and temporal characteristics, is
widely utilized in transportation network modeling literature (see Kliewer et al. (2006); Steinzen et al. (2010); Yang and
Zhou (2014); Li et al. (2015); Tong et al. (2015); Mahmoudi and Zhou (2016); Zhang et al. (2016), Boland et al. (2017) and
Zhang et al. (2017)). For instance, to overcome the bicycle repositioning problems, Zhang et al. (2016) proposed a multi-
commodity time-space network flow model, which is transformed into an equivalent MILP model and solved by a heuristic
algorithm. Based on a state-space-time network, Mahmoudi and Zhou (2016) effectively solved the vehicle routing prob-
lem with pickup and delivery time windows. More recently, by using the time-expanded space-time networks, Boland
et al. (2017) developed an efficient dynamic discretization discovery algorithm for the continuous-time service network de-
sign problem, which demonstrates that an optimization problem defined on a partial time-expanded network can be solved
to the optimality without ever generating the complete time-expanded network.

Consider a directed, connected traffic network (N, A), where N is a finite set of nodes that represent the parking stations
of EVs, and E is a finite set of traffic links between any two stations. Since the EVSR problem essentially determines the
positions of the studied EVs and staff all the time, the formulation of space-time network is actually appropriate for de-
picting the space-time trajectories of the EVs and staff. To extend the network into a space-time network, the considered
time horizon is primarily discretized into a set of timestamps, denoted by T = {tg,tg+ 6, --- ,tg + M8} with the same time
interval § between each two adjacent timestamps. Here, note that § is assumed to be properly set such that all the trips
(including user trips, EV relocation trips and staff rebalancing trips) start and end at times as integer multipliers of 4.

The example shown in Fig. 2 demonstrates the space-time network formulation of an EV rebalancing and staff relocation
process. We can see that a physical carsharing system with three parking stations is shown on the left side. On the right
side, a space-time network, which involves 9 timestamps, denoted by tg, tg + 6, - -- , tg + 83, is constructed. Each node in the
space-time network represents the state of corresponding parking station at the current timestamp. Particularly, we adopt
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three kinds of traveling arcs in the constructed space-time network, which are denoted by the red dashed line, the black
solid line and the blue dot line, to represent the space-time trajectories of the staff, EVs and users, respectively. Specifically,
these three kinds of space-time arcs in this figure are listed in detail as follows:

(1) User traveling arc. User 1 picks up a vehicle from parking station s, at time ty + 8 and drops it to parking station s3
after traveling two time intervals. Similarly, user 2 picks up a vehicle from parking station s, at time ty+ 68 and drops it
to parking station s; two time intervals later.

(2) EV traveling arc. Here, the EV traveling arcs involve waiting arcs (e.g., (S3,tg.S2.to +6)) and activity arcs that are
driven by either users (e.g., (3, ty + &, S3, tg + 36)) or staff members (e.g., (s3, tg + 36, 52, tg + 53)).

(3) Staff traveling arc. Similarly, the staff traveling arcs also involve waiting arcs and activity arcs. Particularly, besides
the EV rebalancing trips (e.g., space-time arc (s3, tg + 36, s2, tg + 58)), the staff are sometimes dispatched from one station
to another without an EV (e.g., space-time arc (s,, to + 64, s3, tg + 85)), where additional expenses will occur to compensate
the staff traveling cost, i.e., the staff relocation cost.

3. Model formulation

In this section, we first state the basic assumptions that enable a compact model formulation while capturing the essence
of EVSR operations. Then we introduce the parameters, notations and decision variables. Finally, a mix-integer linear pro-
gramming (MILP) model is rigorously formulated for the EVSR problem.

3.1. Model assumptions

Assumption 1. We assume that the user reservations in our study are treated as dynamic and deterministic activities that
are given before the operation phase (e.g., three hours or one day), indicating that the users will not cancel or delay their
reservations. In this sense, the dynamic user reservations are essentially captured by the spatial time-dependent OD data in
one typical day. Similar assumption is also adopted in Correia and Antunes (2012) and Jorge et al. (2015).

Assumption 2. Our study assumes that the one-way carsharing system is strategically well designed according to the gen-
eral demand distribution and long-time demand variation properties, which means that the station locations are known in
advance and station capacities are sufficient to serve all these user reservations. In other words, the proposed EVSR formu-
lation is based on undersaturated conditions in terms of user demand for the one-way carsharing system. In addition, the
parking piles equipped in each parking station are also assumed sufficient and EVs can be recharged as soon as they dwell
in the parking station.

Assumption 3. In order to simplify the problem without generality, we assume that all the EVs are in the same working
condition. Specifically, all the EVs are homogeneous vehicles that share the same battery capacity and battery consuming
rate. Additionally, all parking stations are equipped with identical battery chargers that yield the same charging rate to the
parked EVs.

3.2. Parameters and notations

For the convenience of the readers, we first introduce the mathematical notations as follows.

A Set of space-time arcs in the space-time network
F={1,2,- -, Fnax} Set of staff members in the carsharing system
H={1.2,---,Hmax} Set of EVs in the carsharing system

| Set of parking stations in the carsharing system

L Set of direct links between parking stations.

T Set of timestamps in the considered planning time horizon
\Y Set of space-time vertexes in the space-time network
f Index of staff members, feF

h Index of EVs, he H

ij Index of EV parking stations, i, jel

t s Index of different timestamps, t, se€ T

(€))] Index of direct links between parking stations, (i, j)eL
(i, t), (j, s) Index of space-time vertexes, (i, t), (j, s)eV

(i, t, j, s) Index of space-time arcs, (i, t, j, S)€A

Hmax Maximum number of EVs

Fmax Maximum number of staff members

cg. Staff relocation cost on link (i, j)

ct Amortized cost of an EV

c! EV traveling cost on link (i, j)

ij
o4 Hiring cost of a staff member
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Nigjs Number of the user trips on space-time arc (i, t, j, S)
Eqy EV battery capacity

E* EV battery charging rate

E- EV battery consuming rate

We first need to determine the initial numbers of EVs and staff allocated to each parking station at the beginning of oper-
ation cycle, and then generate the EV relocation and staff rebalancing strategies at each timestamp. Therefore, the following
decision variables are defined to specify this problem.

H; Initial number of EVs allocated at station i (nonnegative integer variable)

F; Initial number of staff members allocated at station i (nonnegative integer variable)

Xi’t‘ s Space-time arc selection indicator, =1 if vehicle h travels on space-time arc (i, ¢, j, s);
=0, otherwise;

Zift is Space-time arc selection indicator, =1 if staff member f travels on space-time arc
(i, t, j, s); =0, otherwise;

Ut’1 EV state indicator, =1 if vehicle h dwells at station i at timestamp ¢t;
=0, otherwise;

Et"’ Battery volume of vehicle h at timestamp t (nonnegative variable).

Here, it is clear that both the waiting arcs and activity arcs of EVs can be denoted by the set of variables
{Xi’gjs}(th,j_s)eAthH, explicitly given by {Xi];jg}i=j\/(i,t,j.s)eA.heH and {Xi};js}i;ej\/(i,r.j,s)eA,heHs respectively. Similarly, the waiting

arcs and activity arcs of staff can also be denoted by the set of variables {Zl.ht js}<i,t, is)eA heH:
3.3. Mathematical model

3.3.1. Systematic constraints

In this part, a series of constraints will be developed to satisfy the systematic requirements of the carsharing company
and users. In particular, to represent the traveling trajectories of EVs and staff in the space-time network, we denote two sets
of space-time flow constraints that enable to generate the feasible space-time paths of EVs and staff, respectively. Then, we
also develop several sets of coupling constraints to guarantee that all user reservations are fulfilled, the EVs are rebalanced
by enough staff members, and battery volumes of EVs are adequate on the corresponding space-time travelling arcs. In
detail, the involved constraints are formally formulated as follows.

(1) Fleet and staff size constraints

In the strategic design of one-way carsharing systems, the primarily task is to determine the numbers of EVs and staff
that are allocated to each station at the beginning of the operating cycle, which is termed as allocation plan. The following
constraints first set the upper bound for the total number of EVs and staff members, i.e.,

ZHI' < Hiax, (1)

iel

Z F; < Enax, (2)
iel
where H; and F; are decision variables that denote the initial numbers of EVs and staff members allocated to each parking
station i at initial time tp. Hmax and Fpax are parameters that respectively denote the maximum numbers of EVs and
staff, which can be set as relatively large numbers in the optimization process. For example, we can set Hnax =4 in the
illustrative example in Section 2.1. Then, by optimizing the EVSR model, the number of required EVs and staff members can
be finally determined by considering EV rebalancing and staff relocation operations to save the total cost. In other words,
the number of required EVs and staff members given by Hen = > H; and Fp =) ;o F  are actually no more than the
maximum numbers of EVs and staff, i.e., Hmax > Hen and Fnax > Fen . As can be seen from Fig. 3, the maximum numbers
of EVs and staff are both set as 5, while only two staff members and two vehicles are actually needed for accomplishing
the user trips. Hence, the total investment cost of EVs and staff can be evidently reduced if we can properly design the
allocation plan and relocation strategies of EVs and staff members in a one-way carsharing system.
(2) EV space-time flow constraints
In essence, the EV rebalancing problem is to construct a space-time path for each EV, such that the balance of EV num-
bers among parking stations can be maintained associated with the spatial time-dependent user reservations. Here, we
consider the space-time network flow balance constraints of EVs, which ensure to generate a feasible space-time path for
each EV heH in the space-time network (see Yang and Zhou (2014) and Mahmoudi and Zhou (2016)), i.e.,

h =1 G0 =(ot0) |
Z Xitjs - Z stit -1, (1) :.(ID, tp), VheH, (i,t) eV, (3)
(j.s)eV:(it,js)eA (j.s)eV:(j.s.it)eA =0, otherwise.

in which (ig, tg) and (ip, tp) are defined as the dummy origin and dummy destination, respectively. Moreover, we assume
that the distances and travel times between dummy origin (or destination) node and the physical nodes are 0.
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Fig. 3. lllustration for allocation and dispatching strategies of EVs and staff.

Remark 3.1. In particular, we note that, the above constraints essentially define two different scenarios for the EV allocation
plan in a one-way carsharing system. The EVs that are not allocated to any parking stations will travel from the dummy
origin to dummy destination directly through the virtual arc that connects them, while the others are allocated to their
corresponding parking station i at the initial time ty. An illustration is shown in Fig. 3, in which we see that, only two EVs
are dispatched to station 2 and 3 from the dummy origin, while the others are actually not needed in this case and they
will travel from dummy origin to dummy destination directly.

Moreover, we let the following constraints denote the relationships between the number of allocated EVs and their
dispatching routes at the dummy origin:

h .
> X, =Hi Viel (4)
heH
in which X" determines if vehicle h is allocated to station i at initial time tg.

igtoit
(3) User reservation fulfilment constraints

In a one-way carsharing system, the satisfaction of user reservations is critical for the service quality of the carsharing
company, which requires that there are always enough EVs in the parking stations for the user reservations. To represent the
dynamic passenger demands, we use Nj;; to denote the number of users who reserve to pick up EVs from parking station
i at time t, and drop them to parking station j at time s (see Fig. 3). The following constraints are formulated to cover the
user reservations on each time-dependent travel arc (i, t, j, s) €A, i.e.,

> Xitjs = Nujs,  Y(i.t.j.s) €A ()
heH

Constraints (5) indicate that, if a total number of Nj;s users reserve to travel through space-time arc (i, t, j, s), the number

of EVs traveling through this arc Y, 4 Xl.’t‘jS shall be higher than that. As shown in Fig. 3, the user traveling arcs (e.g., two
reservations on arc (2,ty +66,1,ty+85) ) are all covered by the corresponding EV traveling paths. In this sense, all the
user reservations can be fully satisfied by this set of constraints. In particular, it is clear that there may be some other
EVs traveling on this arc (the number is represented as ZheHXi’;js — Njtjs ), which are actually the rebalancing trips of EVs
operated by staff and will be stressed in the following constraints.

(4) Staff space-time flow constraints

Meanwhile, we note that each EV rebalancing task should be carried out by the corresponding staff member, who will
drive the EV to the preferred parking station. The following constrains are defined to represent that each EV rebalancing

operation must be carried out by at least one staff member:
> Zh = > Xl —Nejs. Vit ].s) €A (6)
feF heH

where A; = {(i, t, j,s) e A\{(ig. to. i, to), (i, tp,ip, tp), (i,t,i,t + 8)}|i € I} represents the set of space-time arcs where the EV
needs to be driven by staff or user. The left side of constraints (6) denotes the number of traveling staff on this arc, and the
right side, as we have mentioned above, represents the number of rebalanced EVs on space-time arc (i, t, j, s).
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In addition, we also need to consider the space-time trajectories of staff, which are also subject to the space-time balance
constraints. Similar to the space-time flow balance constraints of EVs, we employ the space-time flow balance constraints
of the staff as follows.

. . =1, (l:,f)= (l:o,to) '
Yo Zyo— Y Zigy=-1. (.0 =(ntp), YfeF (it)eV. (7)
(jus)eV:(it.j.s)eA (jus)eV:(jis.i.t)eA =0, otherwise.

Similarly, the relationship between the number of allocated staff members and their dispatching routes at the dummy origin
is represented by the following constraints:
Zl . =F, Viel (8)

iotoito —
feF

Remark 3.2. In particular, constraints (6) also indicate that, there are still some staff that would have to travel through arc
(i, t, j, s) without EVs and the number of these traveling trips is represented as feFZi{js - ZheHXi’ng + Nitjs - Inherently,
this will cause an extra cost for the staff traveling (i.e., the relocation cost), which we will consider in the objective function
in the following content, and we will also analyze this point in the experimental section. Besides, since we focus on the
overall optimal design of EVSR problem in the one-way carsharing systems, the microscopic traffic condition, such as the
trip modes and variable trip times of staff relocation among stations, are not explicitly analyzed, and we consider that the

operations of EV rebalancing and staff relocation consume the same number of time intervals.

(5) EV battery capacity constraints

Finally, we consider the EV battery capacity constraints. Due to the current battery technology, the EVs need to dwell
in a parking station for a duration of charging time after a certain travel distance. For simplicity, this study has assumed
that all the EVs are fully charged at the initial time ty with battery capacity Eq. Here, we particularly define two sets of
intermediate variables {U/"};cy ter and {Ef}yeq rer to denote the real-time operation state and battery volume of an EV,
respectively. Initially, the relationship between binary variables {U[h} and {Xi’;js} is represented as

U= Xii. YheH t t'eT t'=t+8. 9)
iel
Constraints (9) indicate that, U" = 1 if vehicle h is parked in a station starting from time ¢; and U" =0 otherwise.
Then, we consider the real-time battery volume variations of EVs in the space-time network. Let E™ and E- denote
the charging rate and consuming rate of EVs, respectively. Specifically, when vehicle h is traveling between two stations,
we obtain that Urhq =0, and its current battery volume Ef at time t is given by Eth :Efﬁl —E~ . On the other hand,

if vehicle h is dwelling at a parking station, we have U[‘i1 =1, and its current battery volume Eth at time t is given by
E{‘ = min{E[L] +E*,Ep}, which indicates that the battery volume of EVs at time t cannot exceed the battery capacity Ey. In
summary, we derive the relationship between variables {E!} and {U]'} as

El = min{E" ; —E~ + (E* +E7)U/' ;,E}, VheH, teT\{t}. (10)

Besides, we also need to guarantee that all the EVs are fully charged at the initial time t; and the battery volume of each
EV is always nonnegative during the remaining time, i.e.,

El =E, VheH, t=t, (11)
and
El' >0, VheH, teT\{t} (12)
Note that the above nonlinear constraints (10) can be further reformulated into equivalent linear constraints as
El <Ey, VheH,teT\{t} (13)
and
El <E' | —E -+ (E*+E)U',, VheHteT\{t} (14)

Since the EVRS model aims at minimizing the total operation cost, the EVs always prefer to choose a traveling rout that
maintains higher charging level and serve more user reservations. That is, variables {E{‘}th,teT\{to} will always take the

minimum value of Ey and Ef_l —E-+(ET+ E*)Uth_] . Therefore, inequations (13) and (14) are able to equivalently represent
constraints (10).

3.3.2. Objective function
In our study, the objective function of EVSR contains two parts. The first part is the investment cost for purchasing EVs
and hiring staff, i.e.,

Cw=c"Y H+c&) F. (15)

iel iel
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in which X;_{H; and X;_F; are the total numbers of utilized EVs and staff, and ¢” and ¢ denote the unit cost for purchas-
ing an EV and hiring a staff member, respectively. The second part of objective function refers to the operation expenses,
including the EV traveling cost and staff relocation cost. In particular, we also denote cg i for each (i, j) €L to represent the

traveling cost of each EV from station i to station j, and cfj for each (i, j) €L to denote the staff relocation cost from station

i to station j, which is essentially the staff traveling expenses without driving EVs. Then, the operation cost of interest is
formulated as follows.

I yh d h
Cor= D, D X+ D Cij(ZZif[js — > Xitjs + Niejs)- (16)
(i.t.j.s)eA heH (it.js)eA  feF heH
In the above objective function, Y ;g cﬁ in’; s is the EV traveling cost on each space-time arc (i, ¢, j, s) €A, and cfj(z feF Z,.{js -
Y heH X# st Njijs) represents the staff relocation (i.e., staff traveling without EVs) cost on each space-time arc (i, ¢, j, s) € A.

Remark 3.3. It is worth mentioning that, these two objectives, i.e., investment and operation costs in (15) and (16) are
inter-dependent in the optimization of EVSR. For instance, the growth of fleet size surely increases the investment cost for
purchasing more EVs, but it shall decrease the operation cost since fewer rebalancing tasks are needed to satisfy the user
reservations. In contrast, decreasing the fleet size will correspondingly increase the operation cost, resulting more frequent
rebalancing tasks for the staff. Therefore, the objective of EVSR is essentially to achieve a good trade-off between the in-
vestment cost and the operation cost. In the numerical experiments in Section 5, we further develop specific case studies to
quantitatively analyze the relationship between these two objectives.

3.3.3. Mathematical model
According to the above descriptions, the optimization model for EVSR can be formulated as a mixed-integer linear pro-
gramming (MILP) model, given as follows:

min Y H+Y E+Y Y X+ Y C%(Zzij;js—zxj’t]js‘i‘l\[itjs)s (17)

iel iel heH (i.t.j.s)eA (i.t.j.s)eA feF heH

(1) =(9). (11) - (14)

ot Xt Z,fjfs €{0,1}), VY(t,js)eA heH, feF, (18)
E[‘eN, VheH, teT, (19)
H;, EeN, Viel (20)

Remark 3.4. Note that the proposed EVSR model actually provides a typical framework for the strategic planning problems
in one-way carsharing systems. By slightly adjusting the objective function or certain constraints, it can be easily generalized
into different versions according to the specific requirement of carsharing company. For example, if the urban area has very
limited EV parking capacity, we can add the following set of constraints into the original model to handle the cases with
station capacity, i.e.,

> ) X <G, V(it)eV o

heH (j,s)eV:(it,j,s)eA

where C; is the capacity of each station iel. Even though, we still note that adding this set of constraints would also
make the model even harder to be solved (See the numerical experiments in Appendix A). As we assume that the one-way
chasharing is well designed that the station capacities are sufficient to serve the user reservations, we will address to solve
the uncapacitated EVSR problem in the following content. On the other hand, we can also transform the original service-
driven model that aims to serve all the reservations into a pure profit-driven model that maximizes the total system profits
by relaxing the user fulfilling constraints and adding the part of system revenue to the objective function. In practice, the
operator can choose either of these models with respect to different requirements of carsharing company.

4. Lagrangian relaxation-based solution approach

The formulated MILP model in Section 3.3.3 is essentially a variation of the vehicle routing problem (VRP), which is
apparently NP-hard problem (see Min (1989); Hosni et al. (2014); Toth and Vigo (2014) and Mahmoudi and Zhou (2016)).
Different from traditional VRP, the proposed model contains several sets of additional hard constraints, e.g., constraints (5),
(6), (12)-(14). Therefore, it is significantly more challenging to solve the proposed model. We first try to solve this problem
with commercial solvers including CPLEX and Gurobi, but we find that they have difficulty in solving even medium-scale
instances (see the experiments in Section 5.1 for details) in a reasonable time. To tackle this computational challenge, we
particularly propose a customized solution approach based on the Lagrangian relaxation embedded with dynamic program-
ming (DP) and greedy algorithm, in order to solve the model to optimum (or near-optimum) in a much shorter time.

In the following content, Section 4.1 proposes a Lagrangian relaxation-based decomposition approach to obtain the lower
bound of the optimal value of objective function (17). Specifically, by relaxing the coupling hard constraints (5) and (6), we
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decompose the primal problem into a series of sub-problems that can be regarded as several RCSP problems, SP problems
and SA problems, which can be solved efficiently to the optimum by exact algorithms in the space-time network. However,
the relaxed solution is likely infeasible to the original problem. Hence, a three-phase implementing algorithm is further
developed to adjust the solution of the relaxed model into a feasible solution to the primal problem according to the values
of Lagrangian multipliers. Furthermore, Section 4.3 adopts a subgradient algorithm to iteratively update the upper and lower
bounds to obtain a near-optimal solution.

4.1. Model decomposition

First, we note that, the EV space-time traveling indicators X := {X"

lfjs}(i.f,j,S)EA,hEH do not specify if each vehicle h is
operated by a staff member or a user, which makes it difficult to decompose the primal problem. To this end, we here

. . . . h “ " s . . . . .
introduce new EV space-time arc variables Y := {Y}/ js}(i.t, js)eAhen as a set of “user flag” indicators to determine if assigning

. . . h _ . . . . .
the EVs to corresponding user reservations. Specifically, we define Yy s = 1 if vehicle h is picked up by a user from parking

station i at time t, and dropped to parking station j at time s; and Y. =0 otherwise. Then, constraints (5) are equivalently

itjs
substituted by the following constraints:
X = Vit V@it j.s) A, heH, (22)
ZYi?js = Nyjs, V(. t,j,s) €A, (23)
heH
Yi €{0,1}, Y(i.t,js) €A, heH. (24)

Constraints (22) indicate the relationship between variables X and Y. Constraints (23) ensure that all user reservations are
fulfilled. Constraints (24) enforce the binary constraints. It is clear that the reformulated model is actually equivalently to
the origin model. Note that another feasible way to represent the vehicle to passenger assignment is to define the demand
on each space-time arc, which requires the “variable-splitting” technique for solution symmetry breaking. We can refer to
Fisher et al. (1997); Kohl et al. (1999); Tong et al. (2017) and Niu et al. (2018) for more details.

Then, we see from the primal problem that constraints (6) and (22) are hard coupling constraints. In particular, Con-
straints (6) connect EV rebalancing and staff relocation process, while constraints (22) postulate relationships between trav-
eling arcs of EVs and users. Thus, we relax these two sets of constraints and add them to objective function (17) by intro-
ducing two sets of Lagrangian multipliers A :={A; zo}ms)GA and u := {,u,f'tjs > O} (itjs)cAhen» TeSPectively. In this way, the
primal problem can be relaxed into the following formulations:

AQ. ) = min Y Hi+ Y R Y Y (e~ R — i) Xis

iel iel  (it.js)eAheH
+ Y D (- )‘itjs)ziftjs ) > uiYits Y (e = Aiejs)Nigjs (25)
(i.f.j.s)eA feF (it.j.s)cA heH (i.£j5)eA

subject to constraints (1)-(4), (7)-(9), (11)-(14), (18)-(20), (23) and (24).
Note that since the coupling constraints (6) and (22) are relaxed, variables X, Z and Y are separated from each other in
the relaxed problem, which can be finally decomposed into three sets of sub-problems as follows.

Remark 4.1. Note that direct relaxation of constraints (5) will lead to an excessive looseness of primary problem and poor
performance of LR relaxation algorithm since the variables X and Z are not linked to each specific user activity. In con-
trast, we first introduce the user flag variables Y to explicitly indicate the assignment of user activities to each EV. This
kind of treatment can provide a good connection between the LR multipliers and feasible solutions after the relaxation of
new constraints (22), and thus captures the gap variation between the upper and lower bound during the Lagrangian mul-
tiplier updating process. Essentially, by employing “variable-splitting” technique, the primal problem is essentially divided
into three sub-problems that respectively determine the EV routing, staff dispatching and EV-user assignment plans, and
multipliers A and g serve as the mediator among these three sub-problems.

Subproblem 1: Resource constrained shortest path problems
The first set of subproblems includes |H| subproblems, each of which can be seen as a RCSP problem with one vehicle
heH, as follows:

Th(h ) i=min ¢ Xp i+ D (G — o+ Miejs = Migi)Xitje (26)
iel (i.t,j.s)eA
subject to (1), (3), (9), (11)-(14), (18)-(20).
We can see that objective function (26) is composed of two parts. The first part is the amortized cost that is fixed for
each given vehicle heH. The second part is the generalized traveling cost related to the routing paths of the EVs in the
constructed space-time network. Thus the optimization of this part can be seen as a time-dependent least-cost routing
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path problem that can be solved to the optimum by some exact solution approaches (e.g., label correcting (Yang and Zhou,
2014; 2017) and DP (Mahmoudi and Zhou, 2016)). We define n[‘”.s = cgj - c?j + Aitjs — /ngs to denote the generalized cost of
vehicle h when traveling through space-time arc (i, t, j, s) €A.

Furthermore, to capture the EV battery charging and consumption dynamics, we extend the space-time network by
adding the charge-status dimension of battery levels as typically done in the studies where resource-space-time network
is utilized (Erdogan and Miller-Hooks, 2012; Schneider et al., 2014; Lu et al., 2016; Mahmoudi and Zhou, 2016). We initially
discretize the battery volume as a set of battery level indexes R = {0, 0, 20, ---,Ey} (indexed by r), where o denotes the
battery volume between each two adjacent battery level. Note that the value of o shall be properly given based on the
value of Ey, E*, and E~ . Then we introduce the parameter L?tr to denote the traveling cost state of h at space-time vertex
(i, t) with the battery level of r. Specifically, we assume that the initial battery levels of all the EVs share the same value of
Eg. We here define the travel time between stations i and j as T;. Then the arrival time s of each space-time arc (i, ¢, j, s)e A
can be derived by given the departure time t and T; as s =t 4 T;; . The parameter AE;; is adopted to denote the variation of
battery level when EVs traveling between parking station i and j. Specifically, we have AE; = E™, Viel to denote the charg-
ing quantity when EVs dwell in parking station i for each time interval, while AE;; =T;;E~ to represent the consumption
quantity when EVs travel between parking stations i and j (Vi, jel, i#j). Eventually, an optimal solution approach based
on DP for the RCSP problems is developed, which is described in Algorithm 1, and the time complexity of solving all [H|

Algorithm 1 An optimal solution approach for solving sub-problem I',(A, f).

Step 1. Initialize:
(a) Lf‘tr =M, V(i,t)eV, reR, heH to denote the traveling cost state of vehicle h at space-time vertex (i,t) with
battery level of r, where M is a very large positive value;
(b) PN =0, PT! =0, and PRl =0, V(i.t) eV, reR, heH to record the previous station, time and battery level of
space-time vertex (i, t) with battery level of r in the least-cost routing path of vehicle h, respectively;
(c) Set P, =@, VheH to record the space-time arcs within the least-cost routing path of vehicle h;
Step 2. Do for each vehicle h € H;
Step 21 Set L} . =0;
Step 2.2 Do for each space-time arc (i, t, j, s) € A;Do for each battery level r:
If r + AE;; > 0, then make the following judgments:
(a) If r+ AE;j > Eg, then 1’ = Ep; and 1’ = r + AE;; otherwise;

(b) If LI+ nih[js < L?Sr,, update the traveling cost state as Ll}sr’ =0+ nlhtjs, and update the previous station, time and
h

battery level of space-time arc (j,s) with battery level r’ as PN;.’Sr, =1, PT].’;r, =t and Pstr

I _ mingyh o
Step 2.3 Select L, s = min{Ll, o Yict rers

Step 2.4 If L" +c% < 0, track back from space-time vertex (i*, ty + MJ&) with battery level of r* to dummy origin

i* (tg+M8)r*
and PR!

vertex (ip, tp) using the values of PNgr, PTi’t’r, it and record all the relative space-time arcs in set Py;

Step 3. Return set P;,, Vh € H, then the relaxed solution of X can be obtained as:

g _ {1 if (.t j.5) € Py,

, =T

= Vh e H;
s~ 10 otherwise,

Step 4. Return the optimal solution {)A(i’;js}heﬂ‘(,;tj_s)eA of relaxed model and the objective function value 'y, (A, ).

sub-problems (26) is at most O([H|(]I|2 + 1)|T||R]).

Subproblem 2: Shortest path problems

Similarly, subproblem 2 contains |F| sub-problems, each of which can be seen as a SP problem associated with one staff
member feF:

. : f d f
My@A) = min o Zziotoitg + Z (cij = Aitjs) Zigjs0 (27)
iel (i.t.j.s)eA

subject to constraints (2), (7), (18) and (20).

Note that object function (27) has a similar structure as (26) by mapping the vehicle amortized cost ¢* and generalized
vehicle traveling cost ni’}js to the staff hiring cost ¢ and generalized staff traveling cost &; ;s = c;’j — Aitjs,»  respectively.
Differently, we note that since the generalized staff traveling cost &y is constant for different staff members, all the staff
will share the same least-cost routing path as an optimal solution to problem (27). Besides, since battery charging related
constrains are not concerned for staff traveling paths, sub-problem (27) is essentially a set of SP problems that is much less
complicated. Therefore, we also adopt a DP-based algorithm, which is described in Algorithm 2 that takes a time complexity
of no more than O((|I]2 + 1|T|) .

Subproblem 3: Semi-assignment problem
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Algorithm 2 An optimal solution approach for solving sub-problem TI{A).

Step 1. Initialize:
(@) Ly =M, V(i,t) €V as the staff traveling cost state at space-time vertex (i, t) and set L; ;, = 0 specially;
(b) PNy =0 and PT; =0, V(i,t) € V to record the previous station and time of space-time vertex (i, t) in the common
least-cost routing path of staff, respectively;
(c) Set P = @ to record the space-time arcs in the common least-cost routing path of staff;

Step 2. Do for each space-time arc (i, t, j,s) € A;
Step 2.1 If L + &;js < Ljs, update the traveling cost state as Lj; = Ly + &;j;, and the previous parking station and time
of space-time vertex (j,s) as PNj; =i and PTj; =t;

Step 3. Select Li*(to+M§) = min{L,-(t0+M5)}i€l;

Step 4. If Li- ¢, 1ms) +¢¥ < 0, track back from space-time vertex (i*, tp + M) to dummy origin vertex (ip, tp) using the values
of PN;; and PTy, and record all the relative space-time arcs in set P;

Step 5. Return set P, then the relaxed solution of Z can be obtained as:

5 {1 if (i,t, ], s) eP,

L V(,t,j,s) €A, feF
itjs 0 otherwise, CLE D) f

Step 5. Return the relaxed solution {Ziftjs}fgpy(,-ytyj_s)d\ and the objective function value IT;(}).

The subproblem 3 only includes one sub-problem with respect to variables Y, given as follows

O pn) = min DD Yo+ D0 (= Aigjs)Niggs, (28)

(i,t,j.s)eA heH (i.t,j.s)eA

subject to constraints (23) and (24).

The structure of subproblem 3 is very simple that the exact optimal solution can be easily obtained as follows. For
each space-time arc (i, t, j, s)€ Ay, where A, = {(i.t, j.s) € A|Nyjs # 0}, we define the set H*;js = {h),h® ... h®Nis)} to
denote the first Ny vehicles sorted by the values of their corresponding Lagrangian multipliers, i.e., Mf[(]ks)
1<k<Nyj, kez* and " e H\H*j. In other words, we first sort the set of Lagrangian multipliers uiﬂtj for all the heH
from the smallest to the largest. Then, we pick the smallest N;;; multipliers and let the corresponding Yl.?js equal to 1.
Repeat the process above for all the space-time arcs (i, t, j, s) € Ay, and the optimal solution to sub-problem 3 (denoted by

Y= {S?i?js}(itjs)EA,heﬂ ) can be represented as:

h/
< Migjsr where

? it V(it,j,s) A VheH. (29)

on _ |1 ifheH;
itis = 10  otherwise,

Proposition 1. Equation (29) yields the optimal solution to model (28).
Proof. See Appendix B. O

Note that subproblem 3 essentially optimizes the assignment plan between EVs and user reservations based on the
values of Lagrangian multipliers . That is, the vehicles with smaller p will be dispatched to satisfy the reservations. And
the corresponding algorithm, which only takes a time complexity of O(|Aq||H|In(JH|)) (see Li (2013)), is very efficient and
also employed in Fisher et al. (1997) for solving semi-assignment problem.

After solving the sub-problems (26)-(28) with relaxed solution of X, Y and Z, the optimal objective value to relaxed
problem (25) for a set of given A and g can be obtained by:

AR ) = YTy )+ Y TR + D, ), (30)
heH feF

which also serves as the lower bound to the optimal value of the primal problem according to the duality property of
Lagrangian relaxation (see Geoffrion (1974)).

4.2. Dynamic programming based implementing algorithms

If the relaxed solutions (denoted by X := {X[!; }ncn i1 js)en and Z:= {Zi{js}feﬁ(i,t,j_s)e,\ ) obtained by solving sub-problems

i
1 and 2 are found to be feasible to the primal problem, then they are also the optimal solutions to the primal prob-
lem. Otherwise, we need to develop some heuristics to modify the relaxed solution into a feasible one (denoted by
X:= {Xi’;js}heﬂ_(i“,s)e,\ and Z := {Zif[js}fEF,(ws)EA ), which is a typical method adopted by many previous studies e.g., see
Li and Ouyang (2012); Hosni et al. (2014); Diabat et al. (2015); Fu and Diabat (2015); An and Ouyang (2016); Bai et al. (2016);
Liu and Zhou (2016) and Yang and Zhou (2017).
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Even though the values of Y are subject to constraints (23), i.e., the user demand fulfilling constraints, the optimal
solution of the relaxed problem may be still infeasible since space-time flow balance constraints (3) are not taken into con-
sideration. An illustrative example is shown in Fig. 4 (a), where we consider that four reserved trips (shown as blue dashed
arrows) are assigned to one vehicle h; based on the value of {S?i’g}s} (i.e., the optimal solution to the relaxed model). Nev-
ertheless, it can be clearly seen that only part of these four reservations can be accomplished by vehicle h; according to
the space-time flow balance constraints. In this case, the four reservations have to be reassign to at least two EVs. To over-
come this problem, a three-phase implementing algorithm, which involves screening procedure, EV reassigning procedure
and staff dispatching procedure, is particularly developed to reassign the user reservations to EVs and then generate the
corresponding staff dispatching paths to perform the relocation tasks.

Phase 1: Screening procedure

First, we screen the task schedule of h; and remove the reservations that cannot be practically satisfied, which is termed
as screening procedure. A dynamic programming based greedy (DPG) algorithm is adopted here to adjust the previous rout-
ing plan to cover as many reserved trips as possible with the least traveling cost (shown as black solid arrows in Fig. 4 (a)).
In specific, we generate the generalized traveling cost for h; by setting the space-time arcs of these four reserved trips with
negative cost —M and others with positive cost cfj for any (i, j)eL, where M is a very large positive value. In this con-
structed network, the shortest path of vehicle h; by DPG algorithm can obviously cover as many reserved trips as possible
with the least traveling cost.

Phase 2: EV reassigning procedure

Then, we reassign the remaining reservations that are removed from the schedule of h; to other EVs. Particularly, for
the remaining reserved trips (1,tg+6,2,ty +36) and (1,ty+56,2,t9 +75), we dispatch a spare EV h,, which satisfies
2 (itjs)eA f/llgjzs =0, to cover as many trips as possible with the least traveling cost, and similarly, the routing plan of h, is
also generated by the DPG algorithm (shown as black dashed arrows in Fig. 4 (b)). In this way, this process will be repeated
for all the other spare EVs until all the user trips are fully covered. In detail, the consolidated process of screening and EV
reassigning procedures are presented in Algorithm 3, which returns a feasible solution of EV dispatching strategy. The time
complexity of this algorithm is no more than O(|H|(|I|2 + 1)|T||R]) .

Phase 3: Staff dispatching procedure

Based on the feasible solution X obtained from Algorithm 3, we further perform the staff dispatching procedure in order
to generate the feasible staff relocation plan obtained from Z . In specific, we first calculate the number of EV rebalancing
trips that should be accomplished by staff on each space-time arc (denoted by g, V(i ¢, j, s)€A) as follows:

b = {zheuxi’:ﬁ —Nigs  ifi# v (i.0) # (i0.to) v (i.) # (ip. tp),
0 otherwise.

If ;5 > 0, we set the corresponding staff traveling cost as yl{js = —M ; otherwise, we set yl{ 5= cg. . Then, the DPG algo-
rithm above is called repeatedly to make routing schedules, each of which covers as many rebalancing trips as possible with
the least traveling cost. The process will be terminated until all the EV rebalancing trips are fully covered by the involved
staff. As shown in Fig. 4 (c), with the given X, there are two rebalancing trips that need to be covered, which are denoted
by space-time arcs (2,ty +26,3,ty +36) and (2,ty +36,1,tp +538), respectively. Using the process above, we know that,
two staff members, i.e., f; and f,, are involved to accomplish the rebalancing tasks and the routing plan is shown as red
solid and red dashed arrows, respectively. In particular, the staff dispatching procedure is presented as Algorithm 4 that
takes a time complexity of no more than O(|F|(|I|2 + 1)|T]) .

Eventually, the feasible objective value is obtained by plugging the value of X and Z into primal objective function (17),
which serves as the upper bound of the EVSR model.

4.3. Updating Lagrangian multipliers

If the upper bound obtained in Section 4.2 is happened to be equal to the lower bound (30), we can return the corre-
sponding feasible solution, which is guaranteed to be the optimal solution according to the duality theory (Fisher, 1981).
Otherwise, we need to iteratively update the values of multipliers A and g to obtain a tighter gap between the current re-
laxed and feasible solution, which will potentially improve the feasible solution. Therefore, we adopt a standard subgradient
algorithm to execute the iteration process. The subgradient algorithm is a widely used approach for updating Lagrangian
multipliers (see Li (2013); An et al. (2015); Ouyang et al. (2015); Cui et al. (2016); Yin et al. (2017)), and we briefly describe
its main procedure for the completeness of this paper.

In this study, we first give a set of initial Lagrangian multipliers {(ijs)*=} ejsea and {(14f ¥} (itjs)cancn With values
of 0, in which k represents the number of iterations. By using the subgradient algorithm, Lagrangian multipliers (A,-tjs)" and
(,u,?tjs)" are updated to (Ay;)**1 and (,uif'tjs)k+1 by

(Miejs) = max{0, (Aiejs)* + fk(Z(Xi’st)k - Z(Z{js K~ Nigjo)} (31)
heH feF
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Algorithm 3 Screening and EV reassigning procedure for constructing feasible paths of EVs by DP.

Step 1. Initialize:
(a)L{;r =M, V(i,t)eV, reR, heH as the traveling cost state of vehicle h at space-time vertex (i,t) with battery
level of r;
(b) Set PN =0, PT! =0, and PRl =0, V(i.t) eV, reR, heH to record the previous station, time and battery level
of space-time vertex (i,t) with battery level of r in the least-cost routing path of vehicle h, respectively;
(c) Set P, =@, VheH to record the space-time arcs within the least-cost routing path of vehicle h;

(d) Set H = {h| D (it js)eA ?l.’gjs > 0} € H, and then generate the generalized vehicle traveling cost for each EV h € H on
each space-time arc (i, t, j,s) (denoted by pi’}js) as:

itjs

-M ifYh =1, —
h :{, ) YheH, (i.t,],s) €A;
C:. otherwise;

(e) Define task counting variable ki ;s for V(i ¢, j,s) € A to record the number of user trips that are not fulfilled on
space-time arc (i,t, j,s);
Step 2. (Screening procedure) Do for each vehicle h € H:
Step 2.1. Call Step 2.1-2.4 of Algorithm 1 (map nﬁjs to ,ol.’;js) and return Py;
Step 2.2. Do for each space-time arc (i, t, j,s) € A\Py:
If f%s =1, update ks = kijs + 1;
Step 3. (Reassignment procedure) If k;;;; = 0,V(i, ¢, j, s) € A, then turn to Step 4; otherwise, do for another vehicle h e H\H;

Step 3.1. Generate the generalized vehicle traveling cost of vehicle h on each space-time arc (i, t, j, s) (denoted by Gi’; js) as:

oh

-M if ks > 0, .
itjs = {Cl o v, J.s) e A

i otherwise;
Step 3.2. Call Step 2.1-2.4 of Algorithm 1 (map nlf}js to Qi’t’js
Step 3.3. Do for each space-time arc (i, t, j, s) € Py:

If kitjs > 0, update kitjs = kitjs — ];
Step 3.4. Update H = HU {h} and repeat Step 3;

Step 4. Obtain the feasible solution X as:

o |1 ifatis e,
s~ 10 otherwise,

) and return Pp;

V(i t, js)eA heH;

Step 5. Return the feasible solution X.

and
(M?tjs)k“ = max({0, (M?{js)k + tk((?i?js)k - (Xi}gjs)k)}v (32)

in which Xk, ¥% and Z¥ are the optimal solutions of relaxed models in the kth iteration, and t, is the step size that is

computed in each iteration by

Tk(UBK — LBK(A, p))

~ A~ 2 A~ ~ 2
it js)eA ((Zheﬂ (XEDK = X pep 2% = Niejs)™ + Lpen (VK = KIO¥) )

where UB¥ and LB¥(A, ) are the best upper bound and lower bound up to iteration k, and t¥ is the step parameter in the
subgradient algorithm. In our study, we note that, if the lower bound does not improve in K. iterations (set as 10 in our
experiments), then we update this parameter as t¥t! « t%/6, where 6 represents the contraction ratio that is greater than
1

te =

(33)

Based on the introduction of Lagrangian relaxation scheme, developed DPG algorithm and the Lagrangian multiplier
updating methods, we summarize the general procedure of Lagrangian relaxation based (LR) algorithm process in Algorithm
5.

5. Numerical examples

In Section 5.1, we first derive a set of relatively small-scale numerical experiments to verify the effectiveness of the
proposed model and algorithms. In particular, we compare the performance of our solution approach with two commonly
used commercial solvers: CPLEX and Gurobi. Then, based on the real-world case of Seattle one-way carsharing system, we
illustrate and analyze the EVSR strategies that are obtained by our developed solution approach in Section 5.2, where we also
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Algorithm 4 Staff dispatching procedure for constructing feasible paths of staff members by DP.
Step 1. Initialize:
(a) L{; =M, V(i,t) eV, feF as the traveling cost state of staff member f at space-time vertex (i,t);
(b) PN,.ft =0 and PTltf =0, V(i,t) eV, feFtorecord the previous station and time of each space-time vertex (i, t) in
the routing path of staff member f, respectively;
(c) Sets Pr =@, Vf eF to record the space-time arcs within the least-cost routing path of staff member f;
(d) Set F=F to record the staff that are not sent out;
(e)

{mewﬁ—wms if i jv (i,t) # (io, to) v (i.t) # (ip, tp),

. —
s 0 otherwise,

to record the number of rebalancing trips for staff on each space-time arc; B
Step 2. If [y j; =0, V(i.t,j,s) €A, then turn to Step 3; Otherwise, Do for one f ¢ F:

Step 2.1. Generate the generalized vehicle traveling cost on each space-time arc (denoted by yi[fjs) as:

! {_M Thos >0y jis) e

Viejs = c?j otherwise,

Step 2.2. Set L} = 0;

Step 2.3. Do for each space-time arc (i, t, j,s) € A:

if L{; + yitfjs < LJf,S, then update the traveling cost state as Ljf.s = L£ + yitfjs and update the previous station and time of
space-time vertex (j,s) as PN]fs =1iand PTJJ; =t;

f — minftS o
Step 2.4. Select Li*(t0+M5) = mm{Li(tﬁMa)},d,

Step 2.5. Track back from space-time vertex (i*,to+ M§) to dummy origin vertex (ip,tp) using the values of PNift and
PT,tf and record all the relative space-time arcs in set Pg;
Step 2.6. Do for each (i,t, j,s) € Py:
If liyjs > 0, then update lyjs as lipjs = lirjs — 1;
Step 2.7. Update F = F\{f} and repeat Step 2;

Step 3. Obtain the feasible solution Z as:

5 {1 if (i,t, j,5) € Py,

Joo= V(. t,js) €A, F;
itjs 0 otherwise, (tjs)eh fe

Step 7. Return the feasible solution Z.

draw some managerial insights into optimal strategies of EVSR. Eventually, a series of sensitive analyses are conducted in
Section 5.3 to explore how the key parameters affect the optimal allocation and operation design of the one-way carsharing
system.

5.1. Illustrative cases

Here, we first consider a set of illustrative numerical examples, through which we compare the Lagrangian relaxation-
based solution approach (termed as LR in the following content) with two widely used commercial solvers, i.e., CPLEX (12.3
Academic Version) and Gurobi (7.0.1 Academic Version). The option parameters of these two solvers are set to default values.
In addition, all the experiments are conducted on a personal computer with 3.4 GHz CPU and 8 GB RAM.

5.1.1. Parameter settings

In this numerical experiment, we consider a set of instances with different numbers of parking stations, time horizons,
user trips, EVs and staff. To better illustrate the parameter settings of each instance, we use an instance index, i.e., P-T-U-
V-F, in which these letters respectively denote the total numbers of parking stations, timestamps, user trips, EVs and staff
members in the formulated space-time network. Each time interval in the space-time network is set as 10 minutes. Note
that the user trips are randomly distributed in the space-time network. For example, Fig. 5 illustrates the parameter settings
of instance 5-10-10-10-5, which involves 5 parking stations, 10 timestamps (i.e., 90 min), 10 reserved trips, 10 EVs and 5 staff
members in this experiments. The link travel time and distance between two stations are also given on each dashed arrow
line. Distance d;; between two stations i, jel is generated randomly in interval [5,15], and the link travel time is populated
das TU = [d,j/5-|

In addition, all the parking stations are assumed to be uniformly equipped with level 2 chargers that offer a battery
charging rate E* =1 kW-h per unit time (i.e.,, 10 min). Since this study assumes that all the considered EVs are in the
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Fig. 5. An illustration of instance 5-10-10-10-5.

same working condition, we unify all the EVs as Smart For two electric drive (or Smart ED) with the battery capacity Ey=9
kW -h and the battery consuming rate E~ =0.5 kW -h per unit time.> The amortized cost (i.e., the EV investment cost that
is divided in each day) for each EV c?=$130/day. The traveling cost of EVs is composed of the estimated electric charging
cost ($0.05/km) and estimated depreciation cost ($0.1/km). Then we have cgj =0.15d;;. The daily salary of each staff member

is set as @=%$150, and the staff relocation cost is set as $0.5/km, i.e., c;jj =0.5d;;.

5.1.2. Performance analysis of our proposed approach

To test the performance of our proposed approach, we test a total of 12 instances at different scales with CPLEX, Gurobi
and LR. In particular, we repeat each instance for 10 times with random generated user demand and link travel time (see
Section 5.1.1 for details). In these experiments, the parameter settings of LR algorithm are set as follows. Parameter t* is
initially set to 2.0, and then decreases according to the lower bound updating tendency (see Algorithm 5). The algorithm

terminal parameters are set as € =0.1, T =10"3 and K = 1000, respectively.

We present the minimum, maximum and average solution times and optimality gaps for each instance by CPLEX, Gurobi
and LR. Since the maximum computational time limit is set as 3000 seconds, we terminate these solution approaches and
report the returned optimality gap. For the LR algorithm, the optimality gap is calculated by (UB — LB)/UB x 100%, where
UB and LB respectively denote the best lower bound and upper bound encountered up to the current iteration (Cui et al.,
2016). If these is no feasible solution in 3000 seconds, we report the gap as “NA”.Note that for the cases in the same scale,
the difference of user demand distribution actually will not much affect the performance of the solvers. Therefore, the “NA”
means that no feasible solution can be obtained from any case in this instance. In addition, we also present the average
lengths of user trips (termed as Dysr) and average distances between any two stations (termed as Dyy0,) for each instance.

We can see from Table 1 that all these solution approaches (i.e., LR, CPLEX and Gurobi) take longer solution times with
the increase of instance scale. Nevertheless, the solution performances of CPLEX and Gurobi degenerate much faster than
the LR algorithm. For the relatively small-scale instances, e.g., instances 5-10-10-10-5 and 10-10-10-10-5, all the solution
approaches can yield a near optimal solution with an optimality gap of <0.1% in a short solution time, and the LR algorithm
even takes a little longer solution time than these two commercial solvers. When the instance scale increases, we see the

3 https://en.wikipedia.org/wiki/Smart_electric_drive.
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Algorithm 5 LR algorithm for EVSR problem in one-way carsharing systems.

Step 1. Initialize:
() {(Ritjs)*="} (it jsyen = 0 and {(Mﬁjs)kzo}(itjs)ef\,heﬂ =0;
(b) =0 ¢ (0, 2];
(c) UB¥=0 = 4o0;

Step 2. Calculate the optimal solution LBX(A, i) of the relaxed model by using Algorithms 1-2, and then obtain the relaxed
solutions X, Y* and Zk

Step 3. Calculate the feasible solutions by using Algorithms 3-4, and then update LB¥ to the relative feasible objective if
LB is greater than it;

Step 4. Calculate the step size t, by Equation (30);

Step 5. Update the Lagrangian multipliers by Equations (28) and (29);

Step 6. Go to Step 7 if satisfying one of the following conditions; otherwise, set k < k+ 1 and go to Step 2;

(a) optimality gap %

< €, where € is a pre-specified error tolerance;
(b) T* is smaller than a minimum value T;
(c) k exceeds a maximum iteration number K;
Step 7. Terminate this algorithm and return the current best feasible solution as the near-optimum solution.

Table 1
Performance comparison of different solution approaches.
Instance Dyser(km)  Dggrion(km) ~ Value  Solution time (sec) Gap (%)
LR CPLEX Gurobi LR CPLEX  Gurobi
5-10-10-10-5 10.05 9.95 Min 9.47 5.02 4.58 <01 <01 <01
Ave 10.16 6.44 5.79 <01 <01 <01
Max 12.05 7.27 6.13 <01 <01 <01
5-30-30-30-15 10.03 9.95 Min 125.30 >3000 298792 244 8.03 8.03
Ave 12791 >3000 >3000 3.73 8.59 811
Max 131.17 >3000 >3000 4.08 9.24 8.80
5-60-60-60-30 9.65 9.95 Min 677.35 > 3000 >3000 2.83 NA NA
Ave 690.07 >3000 >3000 4.01 NA NA
Max 721.02 >3000 >3000 4.96 NA NA
10-10-10-10-5 11.80 9.92 Min 20.90 18.32 20.18 <01 <01 <01
Ave 21.87 19.03 20.89 <01 <01 <01
Max 23.06 20.94 21.75 <01 <01 <01
10-30-30-30-15 10.30 9.92 Min 375.98 > 3000 >3000 391 10.72 10.32

Ave 395.52 >3000 >3000 444 11.03 10.80
Max 420.66 >3000 >3000 5.28 11.81 11.22

10-60-60-60-30 10.52 9.92 Min 963.67 >3000 >3000 4.63 NA NA
Ave 989.27 >3000 >3000 532 NA NA
Max 1004.53 >3000 >3000 738 NA NA
20-10-10-10-5 9.40 10.05 Min 63.07 224.67 397.01 <01 <01 <01
Ave 68.39 228.52 401.24 <01 <01 <01
Max 7729 230.86 405.70 <0.1 <01 <01
20-30-30-30-15 10.08 10.05 Min 1040.01 >3000 >3000 455 NA NA
Ave 1058.84 >3000 >3000 512 NA NA
Max 1073.11 > 3000 >3000 6.09 NA NA
20-60-60-60-30  10.09 10.05 Min 2341.85 >3000 >3000 6.62 NA NA
Ave 2369.57 >3000 >3000 791 NA NA
Max 2384.43 >3000 >3000 9.88 NA NA
30-10-10-10-5 10.20 9.95 Min 145.03 628.92 462.21 <0.1 <01 <01

Ave 151.88 630.77 466.09 <01 <01 <01
Max 155.54 635.10 469.73 <01 <01 <01

30-30-30-30-15 10.16 9.95 Min 1127.24 >3000 > 3000 724 NA NA
Ave 1149.68 >3000 >3000 9.89 NA NA
Max 1173.03 >3000 >3000 11.79 NA NA
30-60-60-60-30  9.96 9.95 Min > 3000 >3000 > 3000 8.08 NA NA
Ave >3000 >3000 >3000 1032 NA NA
Max >3000 >3000 >3000 1204 NA NA

noticeable advantage of the LR algorithm because it can still solve the instances to high-quality solutions (with optimality
gap no more than 8%) within a reasonable solution time, whereas the performance of CPLEX and Gurobi become extremely
unreliable. For the medium scale instances, such as instances 5-30-30-30-15 and 10-30-30-30-15, these two solvers both
yield over 8% gap in a solution time of more than 3000s. For the large scale instances, e.g., instances 30-30-30-30-15 and
30-60-60-60-30, the solvers cannot even obtain a feasible solution. Therefore, it is reasonable to draw the conclusion that
the performance of our proposed LR algorithm is significantly better than the commercial solvers in solving EVSR models.
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Fig. 6. Tendencies of UB and LB for different scales.

Moreover, we see that the minimum, maximum and average values of solution times and gaps are relatively stable by these
three solution approaches in each instance, which can demonstrate that our approach is not sensitive with the random
distribution of user reservation and link trip time.

In addition, Fig. 6 shows the convergence tendency of the best upper bound and lower bound for one experiment in
instances 5-10-10-10-5, 10-30-30-30-15, 5-10-10-10-5 and 30-60-60-60-30. We can see clearly that these two bounds get
closer rapidly at first, then the convergence tendency slows down, and finally the algorithm is terminated with best feasi-
ble solution returned if any of the termination conditions are reached. We need to note that, the upper and lower bound
iteration trends also indicate that the quality of the solution may not be much effected as we properly reduce the number
of iterations. This property will help to save the solution time for the cases that require a faster solution speed without as
high solution quality.

5.1.3. Objective values of EVSR with different numbers of user reservations

Here, we particularly address a specific case with 5 parking stations, 30 time intervals, 40 EVs and 20 staff members (see
Fig. 5) to test how the operation costs vary with different numbers of user reservations. In order to evaluate the objective
components of each instance, we use C, C", ¢¥, Ct and CP to denote the total cost, EV amortized cost, staff hiring cost, EV
traveling cost and staff relocation cost, respectively. The number of user trips in the first instance is set as 20, and we add
20 more trips to each instance afterwards. The other model parameters and the LR algorithm parameters are all set the
same as Section 5.1.1 and Section 5.1.2. We also repeat each instance for 10 times with different random generated user
demand samples and we present the average values of these indicators in Table 2.

Table 2 presents the objectives of 10 instances from 20 reservations to 200 reservations, where the objectives in each
instance are taken as average values by 10 times of repeated experiments. It is obvious that all the objective values grad-
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Table 2
Objective values for investment and operation costs of EVs and staff.

Instance index cH c ct P C Gap (%)

5-30-20-40-20 1183.0 270.0 35.6 121 1500.7  0.85

5-30-40-40-20 1716.0 540.0 76.1 395 2371.6 5.98

5-30-60-40-20 2197.0 645.0 118.9 56.0 3016.9 8.83

5-30-80-40-20 2665.0  780.0 160.1 774 36825  10.20
5-30-100-40-20  3042.0  930.0 2038 923 4268.1 12.67
5-30-120-40-20  3320.0 1080.0 2458 1071 4752.9 13.75
5-30-140-40-20 33540 1140.0 2784 1308 49032  17.05
5-30-160-40-20  3562.0 12300 3116 1449 52485  22.08
5-30-180-40-20  3653.0  1350.0  343.5 129.7  5476.2 27.07
5-30-200-40-20  3744.0 1350.0 369.7 1305 55942  31.55

ually increase with more user reservations, which is actually consistent with our practical experience that more EVs and
staff members are required to meet the increased user activities. An interesting phenomenon is that the total cost is only
increased from 1500 to 5594 as the number of user reservations is added from 20 to 200. The nonlinear relationships be-
tween user demands and cost components can indicate that the properly designed EVSR strategies can dramatically save the
investment and operation costs of carsharing companies through the relocation of EVs and rebalancing of staff members.
With respect to the computational efficiency, we find that the LR algorithm can generate a good-quality solution and the
returned gap is less than 25% when the amount of user reservations is lower than 180. For more reservations (i.e., instances
5-30-180-40-20 and 5-30-200-40-20), the performance of LR algorithm gradually becomes a little worse and the obtained
solution has about 30% gap, which is essentially due to the relaxation of user flag variables in the LR algorithm that make it
difficult to assign more users to their corresponding EVs. Moreover, we also find that when the number of user reservations
is increased to 230, there is no feasible solution that can be obtained, which means that 230 user reservations are oversat-
urated conditions to the carsharing system with 5 stations, 30 timestamps, 40 EVs and 20 staff members, which is actually
out of scope of this paper.

Besides, to show more detailed properties of EVSR by the LR algorithm, we further define four more performance indica-
tors, i.e., the EV utility rate (denoted by ), staff utility rate (denoted by p), number of used EVs and number of rebalancing
tasks of each staff member. Similarly to the definition by Boyaci et al. (2017), the EV and staff utilities are here represented
as the ratios of average traveling time of each EV and staff member with respect to the duration of an operation cycle,
explicitly given as

Total traveling time of EVs Total traveling time of staff members
w= and p = .

IT| x > ieq Hi IT| x > i Fi

It is clear that larger i and p could correspondingly indicate the better utilization of EV and staff investments, and poten-
tially raise the profits of carsharing company. Note that X;_;H; and X, _,F; in these two equations represent the numbers
of EVs and staff members that are engaged during the operation cycle, which are less than (or equal to) the maximum
numbers.

The variations of these indicators with respect to the growth of user demands (corresponding to the instances in Table 2)
are shown in Fig. 7. We can see from the results that the variations of these four indicators present the similar trends, and
they generally increase with more user reservations. In particular, the utility of EVs and staffs can be as high as 80% when
there are more than 180 user reservations, which possibly reveals the fact that, with large scales of EVs and staff in a one-
way carsharing system, the flexibility of EV rebalancing and staff relocation operations would be greatly improved, and the
growth number of user reservations can be better covered with the well planned EVSR strategies. In addition, it can be
observed from Fig. 7(b) and Fig. 7(d) that, the fluctuation of staff utility and number of rebalancing tasks per staff member
for each instance is much more evident with respect to the random distributed user reservations. This demonstrates that
the operational strategies of staff members are more sensitive to the distribution of user activities and should be paid more
attention in making EVSR plans. Besides, to show more details about the solutions, we specially select a case in instance
5-30-200-40-20 as an illustrative example to present the user reservations, the space-time trajectories of EVs and staff
members in the space-time network, which is shown as Fig. C.12 in Appendix C.

5.2. Real-world case study

Conducted by some carsharing companies (e.g., ZipCar), one-way carsharing systems have been put into trial operations
in many large cities (such as Seattle, Boston and Denver in the United States; Beijing, Shanghai in China; Toronto in Canada).
In the following case studies, we particularly use the one-way carsharing system of Seattle, WA, to test our proposed EVSR
model and solution approach.

As shown in Fig. 8, we first aggregate the parking spots into 26 equivalent parking stations in Seattle area, which are
marked as green icon. The travel distance d; and travel time T; are generated by the distance and daily average travel
time through the shortest path between two parking stations i and j, and the average distance between any two stations is
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Fig. 7. Variations of some performance indicators with respect to the growth of user demand.

Table 3
Performance comparison of LR and LR-BB in solving real-word cases.

Instance N Duser(km)  Max #  Station index  Solution time (sec) Gap (%)

LR LR-BB LR LR-BB
1 122 7.96 5 17,26 3392.28 345716 16.60 14.82
2 134 7.77 5 15 3517.99 3382.04 2731 2247
3 141 8.55 6 17,21 3845.03 380253 30.28  25.06
4 126 8.63 4 219 3596.20  3627.84 20.89  16.00
5 148 8.04 6 17,15 401356  4101.79 33.71 29.93

8.06km. In each weekday, we set the operation cycle to be 12 hours (i.e., 7:00 am-7:00pm) and each time interval covers 10
minutes. That is, the constructed space-time network consists of 72 time intervals in total. Additionally, we set the maximum
numbers of EVs and staff as Hypax =130 and Fnax =60, respectively. To track the practical tide phenomenon in morning and
evening peak hours, we randomly generate 5 groups of dynamic user reservations for the following experiments. Each group
of data has high demands in peak hours and relatively low demands in off-peak hours, as shown in Fig. 9. Furthermore, to
analysis the impact of gravitational effect on the whole system, we assume stations 15,17, 21 and 26 as the “core stations”
that act as the origin or destination stations of most user tips during the peak hours. The other parameter settings are the
same as those in Section 5.1. Besides, to further improve the performance of our LR-based solution approach in solving these
large-scale real-word cases, we also integrate the LR algorithm into a branch and bound framework (LR-BB), which is similar
to the treatment by Cui et al. (2016) and Yang and Zhou (2014). The general procedure of LR-BB can be seen in Appendix D.

Table 3 presents the total number of user reservations, average travel distance of users and the performances of LR and
LR-BB for these five instances. Besides, to demonstrate the sensitivity of the results to the capacity limit, we also present
the maximum number of EVs that dwell at a station in the same time unit (termed as Max #), as well the indexes of
the corresponding stations (termed as Station index) for LR and LR-BB. We can see that the Max # is no more than 6 in
these instances, which is actually not beyond the capacity of the parking station in most carsharing systems (e.g., the TOGO
station in Beijing). The solution time of both LR and LR-BB is about 1 h, and the optimality gap varies from 10% to 34%. In
particular, the returned gap is much larger when the number of user reservations is higher, which is consistent with the
previous observation that the Lagrangian relaxation approach is relatively sensitive with the amount of user reservations.
In addition, it is obvious that LR-BB is a little better than LR with respect to the returned optimality gap while consuming
nearly the same computational time, which illustrates the effectiveness of LR-BB. Hence, we implement the LR-BB algorithm
for the following real-world experiments.
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Furthermore, we particularly present the EVSR allocation plans (see Fig. 10a) and dispatching strategies (see Fig. 10b-10
d) for instance 1 in Table 3 using our proposed LR-BB algorithm. More specifically, Fig. 10a demonstrates the numbers of
allocated EVs and staff members to each station at the initial time, which are respectively represented by blue and orange
cylinders, and the height of each cylinder is proportional to the number of EVs or staff members. Fig. 10b-10 d illustrate the
EV rebalancing and staff relocation strategies for morning peak hours (7:00am - 9:30am), off-peak hours (9:30am - 4:00pm)
and evening peak hours (4:00 pm-7:00 pm), respectively. In these figures, the numbers marked on the arrows represent the
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Fig. 10. Optimal allocation plans and operation strategies of EVs and staff in the case study of Seattle.

corresponding numbers of trips. The black solid, blue dash and orange dash arrows refer to the user reserved trips, the EV
rebalancing trips and the staff relocation trips, respectively.

We see from Fig. 10a that, most of the staff are initially allocated to parking stations in downtown areas while most
of the EVs are allocated to the suburban parking stations. This distinct characteristic of EV and staff allocation layout is
possibility caused by the typical tide phenomenon that more users travel from suburban areas to downtown areas during
morning peak hours. Fig. 10b illustrates the following two phenomena. (1) Since more EVs are driven to downtown districts
by users, there is an opposite tendency that most rebalanced EVs are from the downtown parking stations (e.g., stations 15
and 17) towards suburban parking stations (e.g., stations 20, 21 and 26). This is essentially caused by the continuous higher
demands of EVs in suburban areas during this time period. (2) Meanwhile, the staff relocation tasks are carried out in a
similar way to the traveling directions of users. This is actually due to that, after finishing the EV rebalancing operations to
the suburban areas, these staff then return back to the downtown area for the next “rebalancing-relocation cycle”.

In Fig. 10c, we see that there are much less user trips occurring in this time period (i.e., time 9:30 am to 4:00 pm), and
accordingly, fewer EV rebalancing operations are observed in comparison with Fig. 10b. The reason is that, the OD demand
during off-peak hours is relatively low and evenly distributed among stations, and in this sense, the balance of EV numbers
among these stations could be easily kept with less frequent relocations. In addition, we can see an interesting phenomenon
that the staff gradually move toward the north part of this city (e.g., station 13, 15, 16, 17) during this time period, which
possibly indicates that they are preparing for rebalancing EVs in the evening peak hours.

From Fig. 10d, we see the generally opposite tendency of the trips of users, EV rebalancing and staff relocation with
respect to that in Fig. 10b. In specific, most users travel from downtown to suburban districts in evening peak hours, which
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is also caused by the tide phenomenon in contrast with morning peak hours. Due to this reason, we can see that most of
the EV rebalancing and staff relocating tasks are also operated oppositely with those in morning peak hours.

Based on the experimental results above, we can summarize the following managerial insights: (1) For the allocation
plans of EVs and staff, more EVs are needed in the suburban parking stations at the initial time, while most of staff should
be allocated to downtown parking stations. This would be an effective and economic strategy to handle the user reservations
with destinations to downtown areas during morning peak hours. (2) For the EVSR strategies during the operation cycle, the
numbers of EV rebalancing and staff relocation tasks are generally proportional to the total number of corresponding user
trips. For instance, fewer EV rebalancing and staff relocation tasks are observed during off-peak hours comparing with those
in peak hours. The implication of this result is that the carsharing manager can potentially make better operation strategies
to save staff hiring cost, e.g., hiring less working staff in off-peak hours according to the specific user reservations.

5.3. Model sensitive analysis with different parameter settings

In this section, we perform a series of numerical experiments to verify how the key parameters affect the optimal EVSR
objectives based on the real-world case (instance 1) in Section 5.2. Indicators C, CH, ¥, Ct, C°, 1 and p in this set of
experiments, which are defined the same as those mentioned in Section 5.1.3, represent the total cost, EV amortized cost,
staff hiring cost, EV traveling cost, staff relocation cost, EV utility rate and staff utility rate, respectively. (See Appendix E for
the definition of indicators) In addition, we set all the benchmark parameter values the same as those in Section 5.2 and
only one specified parameter value varies in each experiment.

In practice, an important issue in EV carsharing systems is the high investment cost of EVs. Thus, we first conduct a set
of experiments with different EV investment costs in order to investigate the influence of EV investment cost on the optimal
EVSR strategies. Fig. 11a and Fig. 11b demonstrate the variations of all the performance indicators with increased amortized
cost of each EV from $110 to $200. We see from them that when ¢? grows from 110 to 140, C*' increases rapidly, which
dominates the increasing trend of C. Meanwhile, all the other indicators are relatively stationary. As c? continues to rise, the
total cost C keeps growing consistently. Nevertheless, C' has a sharp drop when c? reaches 150, and then it keeps growing
as well. At the same time, CY increases from around 1200 to 1700 and then flattens out. The reason is that, as the EV
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investment cost grows, reducing the fleet size and hiring more working staff become a more economical strategy to offset
the growth of total EV amortized cost. Accordingly, Ct, u, C° and p demonstrate the similar tendency in Fig. 11b: ¢t and p
increase a little while CP and p drop a little when ¢ reaches 150. This is because that, with less EVs and more staff, the
existing EVs are rebalanced more frequently in order to meet the user reservations, which actually raises the EV traveling
cost and utilization ratio of EVs. Meanwhile, the utilization ratio of staff and the staff relocation cost are reduced accordingly.
The results essentially imply the intrinsic trade-off relationship between these two indicators, i.e., the investment costs on
purchasing EVs and hiring staff.

On the other hand, a key indicator that evaluates the performance of EVs is the battery capacity, which also has a
significant impact on the optimal EVSR strategies. To this end, we test the variations of the performance indicators with
the magnitudes of battery capacity Eq. The results are shown in Fig. 11c and Fig. 11d. In Fig. 11c we see that when E,
raises from 10 to 30, C¥ generally remains the same value with small fluctuations, while the decrease of C"' dominates the
dropping trend of C. This indicates that, higher battery capacity increases the total travel distance of EVs, which also reduces
the fleet size of EVs, and thus decreases the investment cost C'. We also see in Fig. 11d that all these indicators have evident
increases with the growth of Eg. This is clearly because that: (1) In order to satisfy the user reservations with a decreased
number of EVs, more EV rebalancing tasks are needed, leading to the increase of the rebalancing cost C- and utilization ratio
of EVs 1. Accordingly, more staff members are also required, which dramatically brings down the staff relocation cost CP
and utilization ratio of staff p. (2) Higher battery capacity would also increase the service time of each EV without frequent
recharges, which also enables each staff member to do more rebalancing operations flexibly to offset the decreased number
of EVs. This could also well explain the reason why staff hiring cost CY (i.e., staff size) remains nearly the same in spite of
the decreased number of EVs.

6. Conclusion

In this paper, we studied the integrated EV rebalancing and staff relocation problem in one-way carsharing systems. By
using a space-time network representation, the EVSR problem was formulated into a mixed integer linear programming
(MILP) model that synchronously considers the dynamic user reservations, limited EV battery capacity and EV charging time
at parking stations. The aim is to determine the optimal EV and staff lay out with the consideration of EV rebalancing
and staff relocation plans that satisfy user demands with the least total cost of carsharing companies. Since the model
is essentially formulated as a multi-vehicle routing problem and contains complex coupling constrains, it is actually very
difficult to handle with existing commercial solvers. Hence we particularly developed a customized solution approach based
on Lagrangian relaxation embedded with forward DP and branch-and-bound in order to solve this model more efficiently
and accurately.

A series of numerical studies were conducted based on two cases, i.e., an illustrative case and a real-world case of Seattle
carsharing system. The computational results showed that, for medium-scale instances, the developed LR algorithm can
obtain near-optimum solutions with a small optimality gap in a much shorter computational time than CPLEX and Gurobi
solvers. In particular, for large-scale instances, neither of the two solvers can provide even a feasible solution, while the
developed LR algorithm can still obtain a good solution in an acceptable time. Besides, based on the real-world case study,
we specifically analyzed the optimal EV rebalancing and staff relocation strategies in different time periods during a typical
work day. We also drew some managerial insights on the effects of key parameters to the system performance indicators.
For example, we derive the relationship between EV battery capacity and the service frequency of EVs, which indicates that
higher EV battery capacity can save more EVs investment cost with nearly the same staff size.

This study proposed an open-ended carsharing system operation design framework that can be extended in several di-
rections for the future research. (1) In this study, we assume that each carsharing station can hold and charge as many
EVs as possible. Nevertheless, the facility construction cost, which limits the numbers of parking ports and charging piles in
real-world cases, is actually an important component that shall also be considered in the long-term planning stage. Hence,
an interesting extension of this study is the simultaneous optimization approach that incorporates the parking station de-
sign for carsharing systems. (2) This study assumes that the link travel time between two stations is constant with time and
the battery charging and consuming processes are discrete with respect to only time durations. These assumptions suffice
certain cases where the travel time on each time is relatively predictable. When the actual travel times have random vari-
ations, the deterministic travel time in this framework can be also interpreted as the summation of the mean travel time
and a safety gap that is sufficient to cushion travel time variabilities most of the time. Nonetheless, it will be interesting to
investigate a microscopic approach to integrate the dynamics of link travel time and more detailed battery charging and con-
suming processes to this model framework. (3) Although we consider the user reservations as the typical-day-demand, the
real-world characteristics of user demand is even more complex. In certain cases, some users may cancel the reservations
just before the departure of their trips or put off the vehicle return time due to some unexpected reasons. Thus, another
research direction is to extend our work to the area of robust design of carsharing system. Specially, the EVSR model could
be adjust to a two-stage stochastic programming framework under scenario-based user demand and uncertain environment
for providing a robust EVSR plan. (4) Besides, since battery volume variable is explicitly defined on every timestamp for each
individual vehicle in the mathematical model, which essentially increases the computational intensity for solving large scale
problems, another extension in the future research is to seek for better exact solution algorithms for solving huge problems
more efficiently.
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Table 4

Numerical results of solving EVSR-SC model in real-word cases.
Instance index  Nq C Solution time (sec)  Gap (%)
1 122 4132.6 > 3000 15.17
2 134 3881.2 > 3000 23.80
3 141 4479.0 > 4000 30.21
4 126 3620.2 > 3000 16.83
5 148 4776.6 > 4000 34.69
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Appendix A. Illustrative cases for EVSR model with the station capacity constraints

To further evaluate the performance of the EVSR model adding the station capacity constraints (termed as the EVSR-SC
model), a numerical experiment is executed based on the dataset of the real-word cases. In addition, the capacity of each
station is set as 5. We here solve the EVSR-SC model by following the similar steps of LR-BB. The results are shown in
Table 4.

We can see from Table 4 that the performance of LR-BB when solving EVSR-SC model is nearly the same as that of EVSR
model for instance 1,2 and 4. However, the performance is much worse for instance 3 and 5. It is probably because that,
when solving EVSR model, the max # are 6 in cases 3 and 5 (shown in Table 3), which exceeds the station capacity limits
(i.e., 5 for each station). Therefore, when solving EVSR-SC model, much more constraints may be violated in the relaxed
formulation during the iteration of LR-BB and it is more difficult to reduce the gap between the lower and upper bounds.

Appendix B. Proof of proposition 1

First, we set

C({Yi?jg}) = Z ZMZ]‘SYI‘?]‘S + Z (C?j — Aitjs )Nicjs

(i,t,j,s)eA heH (i,t,j,s)eA

and
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Note that u?t/js —ufj; >0 due to the statement of the value of {Vi’;’js} and {Vi’t’js}. Then we obtain C({Vi’;’js}) > C({Yi’gjs}),

which is contradictive to the premise that {Yi?js} is the optimal solution. This proves that{Yi’ng} = {Yif’js}, ie., {Yii‘js} =
argmin C({Yi’;js}).

Appendix C. Computational results of a case in instance 5-30-200-40-20
We specially select a case in instance 5-30-200-40-20 to show more details about the computational results, such as

the user reservations, the space-time trajectories of EVs and staff members, which are shown in Fig. C.12. We can see from
Fig. C.12 that 28 EVs and 9 staff members are finally put into use to fulfill 200 user reservations. Besides, we also execute
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the experiment without considering the EV rebalancing operations. Specifically, we keep the EV and staff allocation plans,
i.e,, the values of {H;};; and {F;};,. Then the user reservations are reassigned to the EVs based on the greedy algorithm
(similar to the one adopted in Section 4.2), where the staff rebalancing operations are not considered. According to the
experimental result, we find that the utility rates of EVs decrease from 78.57% to 61.19% and 15 users are no longer served.

Appendix D. LR approach with branch-and-bound

The detailed procedure of LR with branch-and-bound approach is described as follows. First, we obtain the initial solu-
tion by running the LR algorithm and then branch on variables Y in a depth-first manner. In specific, we first create a couple
of initial lower and upper bounds by using the standard LR algorithm in Algorithm 5. Then we adopt a greedy heuristic to
determine the branching rules: Define a set Y, = {Y,.?jlel.’gjs =1} to denote the assignment plan of EVs in iteration k. We
choose variable Yii‘js (Yi?js €Y, ) as the next variable to be branched if the value of its corresponding Lagrangian multiplier
[:Llh[js is bigger than the others. In this way, two child nodes are obtained where the relaxed problem is solved with ad-

ditional constraint Yi’;js =0 in one node and Yi’gjs =1 in the other. Simultaneously, the upper bound shall be updated if a

better feasible solution is found. In the bounding rules, we run the LR algorithm for a certain number (i.e., 10) of iterations
at each newly generated child node to determine the lower and upper bounds. If the lower bound is higher than the best
feasible solution so far, then no more branching is needed over this node, i.e., this branch can be safely pruned. Otherwise,
update the upper bound when a better feasible solution is found and pass down the final multipliers to its child nodes as
their initial multipliers. To balance the efficiency and accuracy of the solution algorithm in solving the real-word cases, we
here terminate the branching process when the optimality gap G between the lower and upper bounds is smaller than 5%
or the number of iterations is over 1000. Then output the best solution with optimality gap G.

Appendix E. Definition of performance indicators used in Section 5.3

The performance indicators used in Section 5.3 are defined as:

EV amortized cost: " =c*) " H;, (34)
iel

Staff hiring cost: "= F, (35)
iel

EV traveling cost: ~ Ct= Y Y Xl (36)

(i.t.j.s)eA heH
Staff relocation cost: C°= Y (> Ziftjs = > Xilis + Nicjs), (37)
(i,t,j,s)eA feF heH
Total cost: C=CH4C" 4+ +CP, (38)

where the mathematical notations are the same as those in Section 3.
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