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Abstract— Tendon-driven robots, a type of continuum robot,
have the potential to reduce the invasiveness of surgery by
enabling access to difficult-to-reach anatomical targets. In the
future, the automation of surgical tasks for these robots may
help reduce surgeon strain in the face of a rapidly growing
population. However, directly encoding surgical tasks and their
associated context for these robots is infeasible. In this work we
take steps toward a system that is able to learn to successfully
perform context-dependent surgical tasks by learning directly
from a set of expert demonstrations. We present three models
trained on the demonstrations conditioned on a vector encoding
the context of the demonstration. We then use these models to
plan and execute motions for the tendon-driven robot similar to
the demonstrations for novel context not seen in the training set.
We demonstrate the efficacy of our method on three surgery-
inspired tasks.

I. INTRODUCTION

Continuum robots, capable of taking curvilinear shapes,
are a promising paradigm in minimally invasive surgery [1].
These robots are generally small in form and can curve
around anatomical structures in the body enabling expressive
motion and the ability to work in complex anatomy where
surgical sites would be difficult to access with traditional
straight instruments [1], [2]. Tendon-driven continuum robots
are generally constructed of a long flexible backbone with
tendons routed down their length through disks affixed to the
backbone. These tendons are then robotically actuated at the
robot’s base to change the shape of the backbone [3]–[5].
Typically these tendons are routed straight down the back-
bone, producing constant curvature segments when pulled,
however more complex tendon routing enables more complex
shapes and expressive motion from the robot [6], [7]. With
such non-linear tendon routing, the complex actuation of
these robots makes automating their motion difficult.

Automating surgical-tasks is particularly challenging, even
for more traditional robot types, due to the complex nature of
encoding the tasks and their constraints into the automation
system [8]. Further, the way in which the task should be
executed varies based on the context, e.g., features of the
patient’s specific anatomy. In this work, we take significant
steps toward addressing these challenges by presenting a
method that learns to perform tasks, dependent on context,
from a set of human-performed expert demonstrations. We
collect expert demonstrations of task execution using a tele-
operated complex-routed tendon-driven robot, in scenarios
where context variables differ. Our method then learns how
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Fig. 1. Our method learns to perform tasks for a tendon-driven continuum
robot from human demonstrations. Using a haptic input device, a human
controls the robot to perform a task, such as moving the tip along a
rectangular space curve (green). This is done multiple times with different
contexts. In our approach, we use these demonstrations to train a trajectory
network which enables the robot to perform the task for a novel context,
such as in a new location or with differing scale (pink).

the task execution varied with respect to the context from
these demonstrations and is then capable of performing
the task in environments where the context differs from
the scenarios seen during training, e.g., when task relevant
features are in new locations, task-relevant geometry has
changed, etc.

To do so, we leverage aspects of Learning from Demon-
stration (LfD) [9], [10] and contextual learning [11], [12].
This enables our method to learn to perform tasks from sur-
geon demonstrations without explicitly encoding the desired
robot motion or encoding how it should change based on the
context. We collect a small set of expert demonstrations using
a teleoperation system, in which a haptic device is used to
control a tendon-driven robot in simulated medical scenarios
as the task is completed by the expert user, where context
is varied between demonstrations. These demonstrations are
then used to train a learned model that takes as input
context variables and outputs a work-space trajectory, i.e.,
an ordered sequence of tip motions for the robot to perform,
which is then executed on the robot via iterative inverse
kinematic control. We learn, evaluate, and compare three
different models within our framework: (i) a linear approach,
(ii) a non-linear kernel-based approach, and (iii) a feed-
forward neural network. Our approach, once trained on the
expert demonstrations, is capable of producing trajectories
that successfully perform the demonstrated task in novel
situations (contexts) not seen during training (see Fig. 1).

We demonstrate the efficacy of our method on three
surgery-inspired tasks. In the first two, we show the ability to
trace expert-demonstrated curves, via a sequence of points—
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first on the surface of a plane and second on the surface
of spheres—as proxy tasks for learning to cut the surface
of tissue in specific ways with, e.g., electrocautery or laser
ablation. As context we vary the start-location of the desired
curves as well as geometric aspects of the environment, e.g.,
the width/height of the plane and the radii of the spheres. In
both cases, the curve the robot is tracing and the geometric
constraints (i.e., staying on the surface of the sphere or
plane), as encoded by the expert-generated robot motion, are
learned entirely from the demonstrations and the context.
Our third task is inspired by pleuroscopy, a procedure in
which a clinician is operating an endoscope between the
chest wall and a collapsed lung [13]. Our method learns
from demonstrations to navigate inside the pleural space,
segmented from a real patient, and successfully trace a curve
on the surface of the anatomy even when changing the
position and scale of the anatomy with respect to the robot.

We evaluate the performance of our method with the
three learned model approaches, varying parameters such
as the neural network architecture and the number of ex-
pert demonstrations. Notably, the neural network approach
demonstrates performance close to human-level in some
cases with relatively few demonstrations.

In this work, we take significant steps toward the au-
tomation of context-dependent surgical tasks learned from
demonstration, removing the need to directly encode the
tasks and their constraints. This work represents the first use
of contextual learning for producing complex trajectories for
surgical robots and the first instance of LfD in continuum
robots. We show that with a relatively small number of
demonstrations our learning-based method is capable of
inferring the context-dependent task and its constraints solely
from the demonstrations. Once trained, our method is then
able to perform the learned task, adhering to the learned
constraints, in novel context/situations not seen during the
demonstrations.

II. RELATED WORK

Continuum robots have been proposed for a variety of
medical tasks [1]. Tendon-driven robots are one example
of a continuum robot with promising potential medical
applications [3]–[5]. Complex routing of the tendons enable
these robots to take a variety of complex shapes as the
tendons are actuated as well as achieve desired stiffness
properties [6], [7]. In this work, we consider a tendon-driven
robot with straight and helically routed tendons and utilize
a version of the state-of-the-art kinematic model presented
in [6], chosen for its ability to model the robot’s shape given
complex tendon routings.

Learning from Demonstration (LfD) is a branch of ma-
chine learning in which autonomous task execution is learned
from task-specific human demonstrations [9], [10]. LfD has
shown impressive performance on non-medical robots and
tasks including manipulation [14], [15], autonomous driv-
ing [16], [17], and bipedal robot locomotion [18]. Compared
to traditional planning and control methods, LfD directly

learns to successfully perform tasks from human demonstra-
tions without the need to explicitly encode task specifics or
constraints. Thus LfD is a particularly promising paradigm
for tasks that are difficult to encode.

In the medical domain, LfD has been applied in a variety
of ways. For instance, van den Berg et al. present an appren-
ticeship learning approach to solve a two-handed knot tying
task [19]. Murali et al. propose a learning-by-observation
approach for autonomous multilateral medical tasks [20].
Kim et al. propose to leverage LfD to achieve automation
of tool-navigation tasks in retinal surgery [21]. LfD has also
been applied to provide therapy for patients [22] and to assist
children with cerebral impairments [23]. However, LfD has
not yet been applied to the automation of surgical tasks for
continuum robots, which is the subject of this work.

Machine learning methods have been applied to solving
other problems for continuum robots. For instance, data-
driven approaches have been applied to learn the inverse
kinematics of tendon-drive robots [24], [25]. Data-driven
methods have also been applied to concentric tube robots,
used in learning the forward and inverse kinematics [26],
[27], the complete shape [28], and in estimating tip-contact
forces [29]. Further, Iyengar et al. [30] leverage deep re-
inforcement learning to control concentric tube robots, a
method distinct from LfD.

Contextual learning has been applied to a variety of
robotics tasks in other domains. For instance, Kumar et
al. [12] formulate a multi-finger grasping task as a contextual
policy search problem. Kober et al. [11] propose to generalize
elementary movements by changing the meta-parameters of
primitives in a context learning framework.

In this work, we build upon existing LfD and contextual
learning methods from other robotics domains. This enables
our method to learn context-dependent surgical tasks for
tendon-driven robots.

III. PROBLEM DEFINITION

We consider a tendon-driven robot with N tendons that
travel down the length of the robot with arbitrary routing.
Each tendon can be pulled at the robot’s base changing
the tendon’s tension and affecting the shape of the robot
according to its routing, with the tension of tendon i defined
as τi ∈ [0, τmax

i ], a maximum tension value. The robot
can also be inserted and retracted, with its insertion length
defined as ℓ ∈ [0, ℓmax], the maximum insertion length of
the robot. The robot is also capable of being rotated at its
base, with its rotation defined as β ∈ [−π, π).

A configuration for the robot then is defined as the vector
q = [(τi : i = 1, . . . , N), ℓ, β] with configuration space
Q = RN+1

+ × S1. A configuration can then be mapped to
the robot’s shape, including its tip pose, using the forward
kinematics (FK) function, and tip pose mapped to a config-
uration via inverse kinematics (IK).

We next define a workspace trajectory consisting of M
3D waypoints for the robot’s tip as an ordered sequence
T = ⟨p1, p2, . . . , pM ⟩, p ∈ R3. Leveraging IK, we can then
define a corresponding trajectory in configuration space as



C = ⟨q1,q2, ...,qt, ...,qM ⟩ of M waypoint configurations,
assuming the trajectory is executed via linear interpolation
in configuration space between the waypoint configurations.

We formulate our problem as a context learning problem.
Specifically, we consider the execution of tasks that can
be defined as a desired motion of the robot’s tip with
respect to a context variable κ, where generally κ is a
vector of relevant scalar context values, e.g., the location
of task-relevant objects and/or values identifying geometric
properties of the robot’s environment. For this work, we
consider κ as input given by the user.

We define a demonstration as a trajectory of reachable
3D robot tip positions paired with an instantiation of the
context variable, for which the trajectory was gathered via
human demonstration with known context. The problem is
then given a set of demonstrations as input as well as a
new context, not before seen during the demonstrations, to
output a configuration-space trajectory that performs the task,
consistent with the demonstrations, under the new context.

IV. APPROACH

We first collect demonstrations from a human that solve a
specific task under varying contexts. This produces a set of
trajectory-context pairs, {(Ti,κi)}i=1,...,D for a given task,
and from which we can learn to generalize to new context.

We compare three models for learning from the demon-
strations to solve the context-dependent task learning prob-
lem. In the first, we leverage a linear ridge regression model
to define a linear mapping between the context variables
and a workspace trajectory, with weights learned from the
demonstrations. In the second, we replace the linear mapping
with a non-linear mapping–utilizing a radial basis function
kernel model. The third model we present is a neural network
to map the context vector to a workspace trajectory. For all
three models, once trained, we take the workspace trajectory
predicted for the test-time context and use iterative inverse
kinematics to produce a configuration-space trajectory that
completes the task with the tendon-driven robot.

A. Human Demonstration Collection

In order to learn to autonomously execute the task, we
collect a set of human demonstrations in the form of a
sequence of robot tip positions. Via a teleoperation setup, we
provide a simulation environment in which a human moves
the desired tip of the robot using a haptic input device, and
the robot shape is interactively updated using IK (see Fig. 1).

For each demonstration we vary the environment, corre-
sponding to a change in the context variable κ, and ask
the user to demonstrate the task. To do so, the human
moves the tip of the simulated tendon-driven robot through
the virtual environment. We enable this by mapping the
haptic-device tip position into the virtual environment and
solving for a configuration that places the tip of the tendon-
driven robot as close as possible to that position via IK.
We specifically leverage the FK model presented in [6] to
enable damped least squares iterative inverse kinematics [31].
The user then records a sequence of robot tip positions that

perform the desired task. This produces one demonstration
that pairs the environment, encoded via the context variable,
to the trajectory. We collect D such demonstrations each with
different context variables κi.

For the three models for learning, we choose to map the
context to the demonstrations’ tip positions, rather than the
configurations themselves. We do so in order to reduce the
complexity of the learning problem and to not require the
methods to learn the tendon-driven robot’s complex kine-
matics. However, the tip positions in the collected demon-
strations come from a simulated robot and its kinematics in
order to ensure that the demonstrations contain only feasible
robot tip positions.

B. Learning to Map Context to a Trajectory

We present three models that learn from the demon-
strations and output a tip-space trajectory given a specific
environmental context.

Linear Ridge Regression: For our first model, we utilize
a linear ridge regression method [32]. We define a linear
mapping between a context vector, κ, and an associated
predicted tip-space trajectory T ′ via: T ′ = κW , where κ is
the context variable and W is a weight matrix to be learned.
The dimension of W is k × 3M , where k is the size of κ
and M is the number of waypoints in the trajectory.

In order to learn from the demonstrations, we optimize for
the weights W by solving:

argmin
W

D∑︂
i=1

||κiW − Ti||22 + α||W ||22, (1)

where Ti is the ith demonstration trajectory, κi is the asso-
ciated context, and D is the total number of demonstrations
for the task.

Kernel Ridge Regression: We next present a model that
replaces the linear mapping with a non-linear mapping via
radial basis function (RBF) kernels [33]–[35]. Similar to the
linear method, this method maps the context vector to a tip-
space trajectory T ′, however we leverage a non-linear feature
transform on top of the raw context variable, T ′ = ϕ(κ)W .
Here again κ is the context variable and W is a weight
matrix to be learned.

We define the feature transform function, ϕ(κ) as the
vector of kernel evaluations on the context variable ϕ(κ) =
[k(κ, x′

1), . . . , k(κ, x
′
Dk

)], where x′
j is the jth kernel center

and Dk is the total number of kernels. We use the radial
basis function kernel for all features

k(κ, x′) = exp(−γ||κ− x′||2). (2)

with the Dk kernel centers spaced throughout the context
space. We learn the weights W by solving the kernelized
form of the ridge regression loss:

argmin
W

D∑︂
i=1

||ϕ(κi)W − Ti||22 + α||W ||22, (3)

where Ti is the ith demonstration trajectory, κi is the asso-
ciated context, and D is the total number of demonstrations.
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Fig. 2. Visualization of the eight task. (a) The green trajectory represents
a training trajectory gathered via demonstration and the pink trajectory
represents a curve generated by the trajectory network approach given new
context. (b) the robot configurations tracing the curve.

Neural Trajectory Network: Finally, we present a
neural-network model to map the context to the tip-space tra-
jectory. Specifically, we utilize a feed forward neural network
with a rectified linear unit (ReLU) activation function that
takes the context as input and outputs the tip-space trajectory
as a vector of size 3M via T ′ = f(κ, θ), where f is the
neural network with learned parameters θ.

We train the network on the demonstrations to optimize θ
via a Mean Squared Error (MSE) loss function:

argmin
θ

1

3M ·D

D∑︂
i=1

||f(κi, θ)− Ti||22, (4)

where f(κi, θ) is the ith output from the trajectory network
(with input κi), Ti is the ith demonstration trajectory and D
is the number of demonstrations each with M waypoints.

C. Task-Space Trajectory to Execution on the Robot

Each of the three models outputs a task-space trajectory
for a given context, however we must execute this trajectory
on the robot. To do so we leverage the IK function to produce
the trajectory in configuration space, C, that closely follows
the workspace trajectory T ′.

V. EXPERIMENTAL RESULTS

We demonstrate our method and evaluate its efficacy
with three surgery-inspired tasks. In the first, our method
learns to trace a self-intersecting “eight” shaped curve on
the surface of a plane, where the widths and heights of the
desired curves vary. In the second, our method learns to
trace a curve on the surface of two adjacent spheres with
differing and varying radii, moving from the surface of one
to the surface of the other. These two tasks are inspired by
the application of electrocautery or thermal ablation on the
surface of curved or flat anatomy. In the third, we place
the robot in a simulated pleuroscopy scenario [36], [37]
in a pleural volume segmented from a real patient. In this
environment our method learns to trace a specific curve on
the surface of the pleural anatomy, where the anatomy’s
position and size relative to the robot varies.

A. Learning to Trace a Curve on a Plane

In this task we evaluate the ability of our method to learn
to trace a closed, “eight” curve on a plane (see Fig. 2),
inspired by the application of energy-based ablation.

We consider a robot of length 0.2m with a 0.01m radius.
The robot is routed with three straight tendons, distributed

evenly around the backbone, and two helical tendons op-
positely wrapped. Both helically routed tendons make 0.64
revolutions from the base to the tip, routed in opposite
directions. Here we disable the robot’s insertion/retraction
and rotation degrees of freedom and leverage tendon tension
only to control the robot.

For this task, we define the context as the starting point of
the curve on the plane, defined as pref ∈ R3, as well as the
width w and height h parameters of the desired curve, such
that κ = [pref , w, h, 1] as shown in Fig. 2. We augment the
context with the scalar 1 as we find it enables the learning
of scalar bias for the models.

To collect demonstrations with varying context, we sample
uniformly at random 50 context variables with pref sampled
from an 0.08m by 0.04m planar rectangle in the robot’s
workspace, w from the range (0.01m, 0.04m), and h from
(0.01m, 0.04m). For each sampled context variable, we col-
lect a demonstration via the haptic device where a human
moves the tip of the robot in the desired motion starting at
pref , with the scale of the curve defined by w and h.

As the goal is to learn to trace the curve consistently
with respect to the context variable, in order to evaluate
performance we must first define a reference curve based
on the demonstrations. The ideal curve varies as the context
varies, making it difficult to evaluate accuracy, however in
this specific task we can express the curve as a function of
the context variable via scaling. Specifically, since we utilize
width and height as aspects of the context variable, we can
scale each demonstration to a single reference scale using w
and h. Given a specific trajectory T = ⟨p1, p2, . . . , pM ⟩, we
compute a corresponding trajectory in the reference context
Tr = ⟨p′1, p′2, . . . , p′M ⟩ via p′i = pref + (pi − pref)/([w ·
40, 1, h · 40]). This enables us to scale the demonstrations
based on their specific context into a single reference context.
However, as the demonstrations were performed by a human,
even in the reference context these curves deviate from each
other to some extent. We produce a single reference curve
from these demonstrations by averaging the displacement of
each waypoint on the curves in the reference context. This
reference curve, along with a quantification of the variance in
the demonstrations with respect to this curve will be used to
compare and validate the output of our method—we wish for
the method to exhibit similar variance to the demonstrations.

To evaluate our method’s performance for each learning
approach, we compare the robot’s tip curve generated by
the three versions of our method with this reference curve.
To do so, we utilize discrete Fréchet distance [38], a com-
mon metric for measuring the similarity between two 3-D
space curves. The goal then is for the method to produce
robot motions that move the robot’s tip, with respect to
the context variable, in a way as similar to the reference
curve as possible, ideally producing Fréchet distance values
that are comparable to the distances between the individual
demonstrations and the reference curve.

We first leverage this task to set the hyperparameters
of the three learning approaches. Under varying hyperpa-
rameters we train each model on 50 demonstrations. We



then randomly sample 50 new context variables (from the
same planar rectangle and the same w, h ranges from
which we sampled the demonstrations) and evaluate our
method’s performance in the scenarios defined by the new
context. For the linear ridge regression model, we choose
from α ∈ {0.01, 0.1, 1, 10}. We use the linear ridge regres-
sion implementation in scikit-learn [39] and find via grid
search the best performance when α = 0.01. For the RBF
kernel model, we choose from α ∈ {0.01, 0.1, 1, 10} and
γ ∈ {0.01, 0.1, 1, 10}. For this model we utilize the scikit-
learn [39] implementation of kernel ridge regression and find
via grid search the best performance when γ = 10 and
α = 0.01. The scikit-learn implementation utilizes Dk = D
kernel centers, i.e., the number of demonstrations, and each
kernel center is set to one of the demonstrations’ context
variables, i.e., x′

i = κi. For the trajectory network model,
we investigate the effect of varying the neural network
architecture, i.e., the number of hidden layers and the width
of the hidden layers, on the method’s performance. We
evaluate a range of architectures, as shown in Table I, and
find that a network with 2 hidden layers of 128 neurons
each performs the best. These parameters are used for all
subsequent experiments.

We evaluate the performance of our method utilizing
the three model classes as the number of demonstrations
increases in Fig. 3. We train the three models on a subset of
50 demonstrations. For each trained model, for each number
of demonstrations, we randomly sample 50 context variables
from the same ranges as sampled for the demonstrations and
evaluate the performance of the approach via the discrete
Fréchet distance compared to the reference trajectory. As can
be seen in Fig. 3, all models generally improve with more
training data, with the non-linear approaches outperforming
the linear approach, and comparable performance between
the RBF approach and the trajectory network. Notably, the
performance of our method using the trajectory network
when trained on 50 demonstrations produces values with
variance comparable to the variance exhibited by the human
demonstrations themselves.

B. Learning to Trace a Curve on the Surface of Spheres

Similarly inspired by energy-based ablation, but on the
surface of curved anatomy, in this task our method learns
to trace a specific curve on the surface of two adjacent,
vertically stacked spheres with differing radii (see Fig. 4).

For this task we utilize the same robot described in Sec. V-
A. We define the context as the start point of the curve, again
denoted pref , and the radii of the two spheres, r1 and r2, such
that κ = [pref , r1, r2, 1].

As the specifics of this task make it more difficult to
generate a reference curve as in the previous task, here we
evaluate the method’s performance against specific human
demonstrations. We generate 20 training demonstrations and
10 demonstrations to be used for testing. For each we
randomly sample pref from a 0.04m by 0.04m plane in
the robot’s workspace, and separately sample the two radii
from the range (0.01m, 0.03m). For each of the 30 randomly

Fig. 3. Efficacy of our method using various learning approaches versus
number of demonstrations. Bars are the mean with error bars showing
standard deviation.

(a) (b) (c)

Fig. 4. Visualization of the double sphere task. (a) The curve (green) traced
by a human teleoperating the robot–one of the training demonstrations. (b-
c) Two views of the robot tracing a curve (pink) generated by our method
using the trajectory network approach under new context.

generated contexts we task a human to trace a curve on the
sphere surfaces via teleoperating the robot, with the spheres
visible in the user interface (see Fig. 4). We then train the
three learning approaches on the 20 training demonstrations.

For each of the 10 test cases, we then task the learned
models with generating target curves to be traced via IK
and compare the traced curves with the human generated
one. Fig. 4 shows the task, an example of a training
demonstration, and an example of the curve traced by the
method utilizing the trajectory network approach. We show
the quantitative results for the three approaches on the 10
test cases in Fig. 5. Here we see that our method utilizing
the kernel-based model outperforms the one using the linear
approach, while the method utilizing the trajectory network
model outperforms both.

C. Learning to Trace the Surface of Anatomy

Next we demonstrate a proof of concept of our method’s
ability to learn to trace the surface of patient anatomy in a
simulated pleuroscopy task (see Fig. 6). We use a simulation
environment generated from a CT scan of a real patient
undergoing this procedure, segmenting the boundaries of the
air in the patient’s pleural space using 3D Slicer [40]. We
then simulate the tendon-driven robot operating inside the
air volume in the patient’s chest, between the chest wall and
the collapsed lung.



TABLE I
AVERAGE FRÉCHET DISTANCE TO THE REFERENCE TRAJECTORY FOR THE EIGHT TASK, UNDER VARYING ARCHITECTURES (MEAN ± STD IN METERS).

Hidden layer architecture: number of hidden layers × width of hidden layers

2×16 2×32 2×64 2×128 3×32 3×64 3×128
0.0306 ± 0.0183 0.0288 ± 0.0211 0.0120 ± 0.0092 0.0098 ± 0.0065 0.0134 ± 0.0068 0.0112 ± 0.00614 0.0137 ± 0.0069

Fig. 5. A comparison of the different learning approaches on the double
sphere task and the anatomical task.

(a) (b)

(c)

Fig. 6. Anatomical environment scenario and task. (a) The anatomical
environment was segmented from a pleural effusion CT scan via 3D
Slicer [40]. (b,c) Two different viewpoints of the trajectory network tracing
the learned curve on the interior surface of the anatomical environment. The
arrows show the start direction.

In this task, we consider a slightly different tendon robot
design, which is 0.20m in length and 0.0025m in radius. We
consider only one linearly routed tendon, with two oppositely
routed helical tendons, 1.59 revolutions from base to tip. We
enable insertion/retraction as well as rotation for this task.

We define the context here as the anatomy’s position
relative to the robot’s base, encoded via pref , which is also
the start point for the curve; as well as the scale of the
anatomy relative to the robot’s size, denoted as s, such that
κ = [pref , s, 1]. This choice of context is meant to simulate
variation in the anatomy and in the robot’s insertion pose
into the pleural space.

We collect 20 training demonstrations and 10 test demon-
strations wherein a human moves the robot in the pleural
space to trace a diamond-shaped curve, first in one direction
and then the reverse, on the interior surface of the anatomy
(see Fig. 6). For each of the demonstrations the context is
randomly sampled as s ∼ U(0.5, 1.5), a multiplicative factor
applied to the scale of the patient’s segmented anatomy, and
pref being perturbed from a nominal point with the pertur-
bation sampled via ∼ U(−0.01m, 0.01m). We then train the
learning approaches on the 20 training demonstrations.

We then use each of our models to generate target curves
given the context provided for the 10 test demonstrations.
We compare the curve traced from the learned model with
the human traced curves for those demonstrations. The com-
parison results are shown in Fig. 5. Here we see that again
the RBF kernel approach outperforms the linear approach,
while the trajectory network approach outperforms both. An
example curve traced by the trajectory network approach is
shown in pink in Fig. 6b and c.

VI. DISCUSSION

In this work we take significant steps toward the au-
tomation of context-aware tendon-driven robot surgical tasks
learned from human demonstrations. We do so via a method
leveraging learned models trained on demonstrations of the
tasks where the context of the task was varied during the
demonstrations. The method is then able to perform the task
successfully in situations unseen during training, e.g., when
task relevant features are in a different location or given a
different scale. Our method performs best when utilizing a
neural network-based model to generate target trajectories
on two of the three surgery-inspired tasks, with the kernel-
based model performing comparably in one of the tasks. We
also note that the trajectory network approach exhibits near-
human-level performance in many cases.

In this work, we provide the method with the context
variables as input. However it is our intention, and a natural
next step, to instead learn the context variables directly from
the observed environment, e.g., learned from an endoscopic
camera view or medical imaging. We also intend to apply this
concept to other continuum robots, such as concentric tube
robots. Along those lines, we intend to move further toward
clinically applicable settings and tasks and utilize physical
robots beyond simulation.
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