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A Conflict-Based Search Framework for
Multi-Objective Multi-Agent Path Finding

Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract—Conventional multi-agent path planners typically
compute an ensemble of paths while optimizing a single objective,
such as path length. However, many applications may require
multiple objectives, say fuel consumption and completion time,
to be simultaneously optimized during planning and these criteria
may not be readily compared and sometimes lie in competition
with each other. The goal of the problem is thus to find a Pareto-
optimal set of solutions instead of a single optimal solution.
Naively applying existing multi-objective search algorithms, such
as multi-objective A* (MOA*), to multi-agent path finding may
prove to be inefficient as the dimensionality of the search
space grows exponentially with the number of agents. This
article presents an approach named Multi-Objective Conflict-
Based Search (MO-CBS) that attempts to address this so-called
curse of dimensionality by leveraging prior Conflict-Based Search
(CBS), a well-known algorithm for single-objective multi-agent
path finding, and principles of dominance from multi-objective
optimization literature. We also develop several variants of MO-
CBS to improve its performance. We prove that MO-CBS and its
variants can compute the entire Pareto-optimal set. Numerical
results show that MO-CBS outperforms MOM*, a recently
developed state-of-the-art multi-objective multi-agent planner.

Note to Practitioners—The motivation of this article originates
from the need to optimize multiple path criteria when planning
conflict-free paths for multiple mobile robots in applications such
as warehouse logistics, surveillance, construction site routing,
and hazardous material transportation. Existing methods for
multi-agent planning typically consider optimizing a single path
criteria. This article develops a novel multi-objective multi-agent
planner as well as its variants that are guaranteed to find all
Pareto-optimal solutions for the problem. We also provide an
illustrative example of the algorithm to plan paths for multiple
agents that transport materials in a construction site while
optimizing both path length and risk. In this example, computing
and visualizing a set of Pareto-optimal solutions makes it intuitive
for the practitioner to understand the underlying trade-off
between conflicting objectives and to choose the most preferred
solution for execution based on their domain knowledge.

Index Terms—Multi-Agent Path Finding, Path Planning,
Multi-Objective Optimization.

I. INTRODUCTION

MULTI-Agent Path Finding (MAPF) computes a set of
collision-free paths for multiple agents connecting their
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Fig. 1: A conceptual visualization of Multi-Objective Conflict-
Based Search. It leverages Conflict-Based Search (CBS) to
resolve conflicts between agents (the lower half of the figure)
and compares candidate solutions using the dominance prin-
ciple (the upper half of the figure) from the Multi-Objective
Optimization literature in order to find all conflict-free Pareto-
optimal solutions.

respective start and goal locations while optimizing a scalar
measure of paths. Variants of MAPF have been widely studied
in the robotics community over the last few years [33]. In this
article, we investigate a natural generalization of the MAPF to
include multiple objectives for multiple agents and hence the
name Multi-Objective Multi-Agent Path Finding (MOMAPF).
In MOMAPF, agents have to trade-off multiple objectives
such as completion time, travel risk and other domain-specific
measures. MOMAPF is a generalization of MAPF, and is
therefore NP-Hard [41].

In the presence of multiple conflicting objectives, in gen-
eral, no (single) solution can simultaneously optimize all the
objectives. Therefore, the goal of MOMAPF is to find the set
of all Pareto-optimal solutions rather than a single optimal
solution as in MAPF. A solution is Pareto-optimal if there
exists no other solution that will yield an improvement in
one objective without causing a deterioration in at least one
of the other objectives. Finding this set of solutions while
ensuring collision-free paths for agents in each solution is
quite challenging: even though there are many single-agent
multi-objective search algorithms [17], [34], [36] that can
compute all Pareto-optimal solutions, a naive application of
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such algorithms to the MOMAPF problem may prove to be
inefficient as the size of search space grows exponentially
with respect to the number of agents [9], [41]. Among the
algorithms that optimally solve the single-objective MAPF
problems, Conflict-Based Search (CBS) [30] has received
significant attention due to its computational efficiency on
average. This method has also been extended to solve several
other variants of MAPF as noted in [2], [15]. However, how to
leverage CBS to solve MOMAPF remains an under-explored
question. This article aims to address this gap. By building on
multi-objective dominance techniques [3], [17], we develop a
new algorithm named Multi-Objective Conflict-Based Search
(MO-CBS) (Fig.1) that is able to compute the entire Pareto-
optimal set of collision-free paths with respect to multiple
objectives.

MO-CBS takes a similar strategy as CBS to resolve conflicts
along paths of agents while extending CBS to handle multiple
objectives. MO-CBS begins by computing individual Pareto-
optimal paths for each agent ignoring agent-agent conflicts
and letting agents follow those paths. When a conflict between
agents is found along their paths, MO-CBS splits the conflict
by adding constraints to the individual search space of each
agent (involved in the conflict) and invokes a single-agent
multi-objective planner to compute new individual Pareto-
optimal paths subject to those added constraints. In addition,
MO-CBS uses dominance rules to select candidate solutions
for conflict-checking and compares them until all the candi-
dates are either pruned or identified as Pareto-optimal.

MO-CBS is a search framework in a sense that different
(single-agent) planners can be used for the low-level search.
This work investigates using both BOA* [36], a state-of-the-
art single-agent bi-objective planner, and NAMOA*-dr [20], a
single-agent planner for multiple objectives, within the MO-
CBS framework. Additionally, we also develop a variant of
MO-CBS that takes a different expansion strategy on its high-
level search to improve memory usage. Compared with an
existing approach MOM* [25] that is guaranteed to find all
Pareto-optimal solutions for MOMAPF, the numerical results
show that the proposed MO-CBS and its variants outperform
MOM* in terms of success rates under bounded time in
various maps. Our C++ implementation is available online.1

Preliminary versions of this research have previously ap-
peared in [23]. This article contains a new proof of complete-
ness and optimality of the proposed approach which applies
to all the variants of MO-CBS. We also conduct a new,
comprehensive set of experiments to compare MO-CBS with
MOM*, and to analyze the performance of MO-CBS variants.
For the rest of this article, we review related work in Sec. II
and formulate the problem in Sec. III. We first revisit CBS
in Sec. IV and then present the basic version of MO-CBS in
Sec. V. Variants of MO-CBS are then presented in Sec. VI.
We analyze the properties of MO-CBS in Sec. VII and show
numerical results in Sec. VIII. Finally, conclusion and future
work are presented in Sec. IX.

1https://github.com/wonderren/public cppmomapf

II. RELATED WORK

A. Multi-Objective Path Planning

Multi-objective (single-agent) path planning (MOPP) prob-
lems aim to find a set of Pareto-optimal paths for the agent be-
tween its start location and destination with respect to multiple
objectives. MOPP arises in applications such as construction
site routing [31], hazardous material transportation [5], and
others [19], [40]. One common approach to solve a MOPP is
to weight the multiple objectives and transform it to a single-
objective problem [3], [4]. The transformed problem can then
be solved using a corresponding single-objective algorithm.
This approach has two main drawbacks: First, the choice of
the weights for the objectives must be known a-priori and
requires in-depth domain knowledge which may not always be
possible; Second, it may also require one to repeatedly solve
the transformed single-objective problem for different sets of
weights in order to capture the Pareto-optimal set which is
quite challenging [18].

Additionally, MOPP and its variants have been solved
directly via graph search techniques [17], [24], [27], [34],
[36] and evolutionary algorithms [38] where a Pareto-optimal
set of solutions is computed exactly or approximately. These
graph-based approaches provide guarantees about finding all
Pareto-optimal solutions but can run slow for hard cases, where
the number of Pareto-optimal solutions is large. MO-CBS
developed in this work belongs to this category of search
techniques that directly computes a Pareto-optimal set with
quality guarantees.

B. Multi-Agent Path Finding

Various methods have been developed to compute
an optimal solution for MAPF problems including A*-
based approaches [6], [32], subdimensional expansion [37],
compilation-based solver [35], integer programming-based
methods [11] and Conflict-Based Search (CBS) [30]. In ad-
dition, different variants of MAPF have also been consid-
ered, such as agents moving with different speeds [1], [21],
visiting multiple target locations along the path [22], [26],
pickup-and-delivery tasks [13], [14], satisfying kinodynamic
constraints [2]. However, all these methods optimize a single
objective.

For MOMAPF, heuristic approaches and evolutionary al-
gorithms [16], [28], [38], [39] have been leveraged to solve
variants of MOMAPF. For example in [38], agents are not
allowed to wait in place and collisions between the agent’s
paths are modeled in one of the objectives and not as a
constraint. Recently, in our prior work, by leveraging M* [37],
we developed Multi-Objective M* (MOM*) [25] to solve
the MOMAPF with solution quality guarantees. Similarly to
M*, MOM* begins by planning for each agent independently
and couples agents for planning by searching in their joint
configuration space only when two agents are in conflict with
each other. In addition, MOM* also leverages the dominance
principle from the multi-objective optimization literature to
compare two partial solutions in order to find all Pareto-
optimal solutions. In this work, we compare the proposed MO-
CBS with MOM* in various maps, and the result shows that
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MO-CBS achieves higher success rates within a runtime limit
than MOM* in several maps.

III. PROBLEM FORMULATION

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V,E), where the vertex set V represents all possible
locations of agents and the edge set E ⊆ V × V denotes the
set of all the possible actions that can move an agent between
a pair of vertices in V . An edge between two vertices u, v ∈ V
is denoted as (u, v) ∈ E and the cost of an edge e ∈ E is
a M -dimensional positive vector: cost(e) ∈ (0,∞)M with M
being a positive integer and each component in cost(e) being
a finite number.

In this work, we use a superscript i, j ∈ I over a variable to
represent the specific agent that the variable belongs to (e.g.
vi ∈ V means a vertex with respect to agent i). Let πi(vi1, v

i
`)

be a path that connects vertices vi1 and vi` via a sequence of
vertices (vi1, v

i
2, . . . , v

i
`) in the graph G. Let gi(πi(vi1, v

i
`)) de-

note the M -dimensional cost vector associated with the path,
which is the sum of the cost vectors of all the edges present
in the path, i.e., gi(πi(vi1, v

i
`)) = Σj=1,2,...,`−1cost(vij , v

i
j+1).

All agents share a global clock and all the agents start their
paths at time t = 0. Each action, either wait or move, for
any agent requires one unit of time. Any two agents i, j ∈ I
are said to be in conflict if one of the following two cases
happens. The first case is a “vertex conflict” where two agents
occupy the same location at the same time. The second case is
an “edge conflict” where two agents move through the same
edge from opposite directions between times t and t + 1 for
some t.

Let vio, v
i
f ∈ V respectively denote the initial location

and the destination of agent i. Without loss of generality, to
simplify the notations, we also refer to a path πi(vio, v

i
f ) for

agent i between its initial and final locations as simply πi. Let
π = (π1, π2, . . . , πN ) represent a joint path for all the agents,
which is also called a solution. The cost vector of this solution
is defined as the vector sum of the individual path costs over
all the agents, i.e., g(π) = Σig

i(πi).
To compare any two solutions, we compare the cost vectors

corresponding to them. Given two vectors a and b, a is said
to dominate b if every component in a is no larger than the
corresponding component in b and there exists at least one
component in a that is strictly less than the corresponding
component in b. Formally, it is defined as:

Definition 1 (Dominance [17]): Given two vectors a and b
of length M , a dominates b, notationally a � b, if and only
if a(m) ≤ b(m), ∀m ∈ {1, 2, . . . ,M} and a(m) < b(m),
∃m ∈ {1, 2, . . . ,M}.2
Any two solutions are non-dominated with respect to each
other if the corresponding cost vectors do not dominate each
other. A solution π is non-dominated with respect to a set of
solutions Π, if π is not dominated by any π′ ∈ Π. Among
all conflict-free (i.e. feasible) solutions, the set of all non-
dominated solutions is called the Pareto-optimal set. In this

2The definition is also referred to as “Pareto Dominance” in the literature
(e.g. [4]). To simplify presentation, we call it “dominance” in this work.

work, we aim to find all cost-unique Pareto-optimal solutions,
i.e. any maximal subset of the Pareto-optimal set, where any
two solutions in this subset do not have the same cost vector.

IV. A BRIEF REVIEW OF CONFLICT-BASED SEARCH

A. Conflicts and Constraints

Let (i, j, vi, vj , t) denote a conflict between agent i, j ∈ I ,
with vi, vj ∈ V representing the vertex of agent i, j at time
t. In addition, to represent a vertex conflict, vi is required to
be the same as vj and they both represent the location where
vertex conflict happens. To represent an edge conflict, vi, vj

denote the adjacent vertices that agent i, j swap at time t and
t+1. Given a pair of individual paths πi, πj of agent i, j ∈ I ,
to detect a conflict, let Ψ(πi, πj) represent a conflict checking
function that returns either an empty set if there is no conflict,
or the first conflict detected along πi, πj .

A conflict (i, j, vi, vj , t) can be avoided by adding a cor-
responding constraint to the path of either agent i or agent
j. Specifically, let ωi = (i, uia, u

i
b, t), u

i
a, u

i
b ∈ V denote

a constraint belonging to agent i, which is generated from
conflict (i, j, vi, vj , t) with uia = vi, uib = vj and the following
specifications:
• If uia = uib, ωi forbids agent i from entering uia at time t

and is named as a vertex constraint as it corresponds to
a vertex conflict.

• If uia 6= uib, ωi forbids agent i from moving from uia to
uib between time t and t + 1 and is named as an edge
constraint as it corresponds to an edge conflict.

Given a set of constraints Ω, let Ωi ⊆ Ω represent the subset
of all constraints in Ω that belong to agent i, and clearly Ω =⋃

i∈I Ωi. Additionally, a path πi is said to be consistent with
respect to Ω if πi satisfies every constraint in Ωi. A joint
path π is consistent with respect to Ω if every individual path
πi ∈ π is consistent.

B. Two Level Search

CBS is a two level search algorithm. The low-level search
in CBS is a single-agent path planner that plans an optimal
(i.e. minimum cost) and consistent path for an agent i with
respect to the set of constraints in Ωi. If there is no consistent
path for agent i given Ωi, the low-level search reports failure.

For the high-level search, CBS constructs a search tree T
with each tree node P containing:
• π = (π1, π2, . . . , πN ), a joint path that connects the start

and destination vertices of agents respectively,
• g, a scalar cost value associated with π and
• a set of constraints Ω.

The root node Po of T has an empty set of constraints Ωo = ∅
and the corresponding joint path πo is constructed by the low-
level search for every agent respectively with Ωi

o = ∅.
To “expand” a high-level search node Pk = (πk, gk,Ωk),

where subscript k identifies a specific node, conflict checking
Ψ(πi

k, π
j
k) is computed for any pair of individual paths in πk

with i, j ∈ I, i 6= j. If there is no conflict detected, a solution
is found and the algorithm terminates. Otherwise, for the first
detected conflict (i, j, vi, vj , t), CBS conducts the following
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Algorithm 1 Pseudocode for MO-CBS, MO-CBS-t

1: Initialization()
2: C ← ∅
3: while OPEN not empty do
4: Pk = (πk, ~gk,Ωk)← OPEN.pop()
5: // Pk = (πk, ~gk,Ωk)← OPEN.pop-tree-by-tree()
6: if Filter(Pk) then continue . End of iteration
7: if no conflict detected in πk then
8: Update(Pk)
9: add ~gk to C

10: continue . End of iteration
11: Ω← split detected conflict
12: for all ωi ∈ Ω do
13: Ωl = Ωk ∪ {ωi}
14: Πi

∗ ← LowLevelSearch(i, Ωl)
15: for all πi

∗ ∈ Πi
∗ do

16: πl ← πk
17: Replace πi

l (in πl) with πi
∗

18: ~gl ← compute path cost πl
19: Pl = (πl, ~gl,Ωl)
20: if not Filter(Pl) then
21: add Pl to OPEN
22: return C

procedures to resolve it. First, CBS splits the detected conflict
to generate two constraints ωi = (i, uia = vi, uib = vj , t) and
ωj = (j, uja = vj , ujb = vi, t). Second, CBS generates two cor-
responding nodes Pli = (πli , gli ,Ωli), Plj = (πlj , glj ,Ωlj ),
where Ωli = Ωk ∪ {wi} and Ωlj = Ωk ∪ {wj}. Finally, CBS
lets πli ← πk (and πlj ← πk) and then updates the individual
path πi in πli (and πj in πlj ) by calling the low-level search
for agent i (and j) with the set of constraints Ωli (and Ωlj

respectively). If the low-level search fails to find a consistent
path for i (or j), node Pli (or Plj ) is discarded.

After conflict resolving, CBS inserts generated nodes into
OPEN, which is a priority queue containing all candidate high-
level nodes. CBS solves a (single-objective) MAPF problem
to optimality by iteratively selecting candidate node from
OPEN with the smallest g cost, detect conflicts, and then
either claims success (if not conflict detected) or resolves the
detected conflict which generates new candidate nodes.

Intuitively, from the perspective of the search tree T con-
structed by CBS, OPEN contains all leaf nodes in T . In each
iteration of the high-level search, a leaf node Pk is selected
and checked for conflict. CBS either claims success if paths
in Pk are conflict-free or generates new leaf nodes.

V. MULTI-OBJECTIVE CONFLICT-BASED SEARCH

The proposed Multi-Objective Conflict-Based Search (MO-
CBS) is described in Alg. 1 and visualized in Fig. 2. MO-CBS
generalizes CBS and has the following key features to handle
multiple objectives.

A. Initialization

In MO-CBS, to initialize OPEN (line 1 in Alg. 1), a single-
agent multi-objective planner (such as NAMOA*-dr [20]) is

used for each agent i ∈ I separately to compute all cost-unique
Pareto-optimal paths, Πi

o, for agent i. A set of joint paths Πo

is generated by taking the combination of Πi
o, ∀i ∈ I , i.e.

Πo = {πo|πo = (π1
o , π

2
o , . . . , π

N
o ), πi

o ∈ Πi
o, ∀i ∈ I}. Clearly,

the size of Πo is |Πo| = |Π1
o|×|Π2

o|×· · ·×|ΠN
o |. For each πo ∈

Πo, a corresponding high-level node containing (i) πo, (ii) the
cost vector associated with πo and (iii) an empty constraint
set, is generated and added into OPEN. Intuitively, while the
original CBS initializes a single root node and a single search
tree T , MO-CBS initializes a number of R = |Πo| root nodes
and a “search forest” Tr, r ∈ {1, 2, . . . , R} where each tree
Tr corresponds to a root node.3

In this work, let C∗ denote the Pareto-optimal front of the
given problem instance: the set of cost vectors corresponding
to the Pareto-optimal set. Let C denote a set of cost vectors,
where each cost vector corresponds to a conflict-free joint path
(i.e. solution) that is found during the search. C is initialized
to be an empty set (line 2).

B. Finding a Solution

For every search iteration in MO-CBS (lines 3-21), a
high-level node Pk with non-dominated cost vectors among
all nodes in OPEN is popped.4 The popped node Pk =
(πk, ~gk,Ωk) is first checked for dominance in procedure Filter
(line 6), where ~gk is compared with each cost vector in C.
If there exists a vector ~g ∈ C such that ~g ≤ ~gk (i.e. every
component in ~g is no larger than the corresponding component
in ~gk),5 then node Pk cannot lead to a cost-unique Pareto-
optimal solution and is thus discarded (i.e. filtered), and the
current search iteration ends. With the Filter procedure, each
vector in set C is guaranteed to be unique.

If πk is conflict-free (lines 7-10), a solution node (i.e. a
high-level node containing a solution) is identified, and the
cost vector ~gk is first used to update C in procedure Update
and then added to C. The purpose of Update is to ensure that
an existing cost vector in C is removed if it is dominated
by ~gk. Specifically, Update(Pk) uses the cost vector ~gk in
Pk to compare with all existing solution cost vectors (that
have already been found during the search) in C, and if
~gk � ~g,~g ∈ C, then ~g is removed from C. (Note that ~gk
cannot be equal to ~g, since ~gk would have been discarded
in Filter otherwise.) This Update procedure is necessary due
to the fact that a search forest Tr, r ∈ {1, 2, . . . , R} (rather
than a single search tree) is constructed by MO-CBS. When
a solution is found, it is not guaranteed to be Pareto-optimal.
When a new solution πk (in high-level node Pk) is found,
Update(Pk) removes existing solution cost vectors in C with
dominated cost vectors. As a result, when the algorithm
terminates, C is guaranteed to be the same as the Pareto-
optimal front C∗. Additionally, for each ~g ∈ C, there exists

3The idea of using a CBS-like search forest to solve multi-agent path
planning problems have also been investigated in [8], [10].

4In practice, the lexicographic order of cost vectors is often used to
prioritize nodes in OPEN [20], [27], [36] and it can guarantee that every
popped node has a non-dominated cost vector among all nodes in OPEN.
This work follows this common practice. Other types of prioritization for the
candidates in OPEN can also be used within the MO-CBS framework.

5Note that ~g ≤ ~gk is equivalent to (i) ~g is not dominated by ~gk and (ii) ~g
is also not equal to ~gk .
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Fig. 2: An illustration of the search process of MO-CBS. MO-CBS initializes multiple root nodes. MO-CBS iteratively selects
a candidate high-level node with a non-dominated cost vector from OPEN, splits the detected conflict to generate constraints,
conducts low-level search subject to those constraints, and generates new high-level nodes.

a corresponding solution π that is found during the search.
Thus, when Alg. 1 terminates with C = C∗, all cost-unique
Pareto-optimal solution are found.

For readers that are familiar with CBS: while CBS termi-
nates when the first solution is identified, MO-CBS continues
to search when a solution is identified and terminates only
when OPEN is empty in order to identify all cost-unique
Pareto-optimal solutions.

C. Conflict Resolution

When a node Pk = (πk, ~gk,Ωk) is popped from OPEN, if
πk contains a conflict, just as in CBS, the detected conflict is
split into two constraints and a new set of constraints Ωl is
generated correspondingly. Given an agent i and a constraint
set Ωl, the low-level search (which is explained next) is
invoked to compute individual Pareto-optimal paths that are
consistent with respect to Ωl for agent i.

Given Ωl and an agent i, while in CBS, only one indi-
vidual optimal path for agent i (that is consistent with Ωl)
is computed, in MO-CBS, there can be multiple consistent
Pareto-optimal individual paths for agent i. To find all of them,
the low-level search employs a single-agent multi-objective
planner (Sec. VI-B) to search a time-augmented graph Gt =
(V t, Et) = G×{0, 1, . . . , T}, where each vertex in v ∈ V t is
defined as v = (u, t), u ∈ V, t ∈ {0, 1, . . . , T} and T is a pre-
defined time horizon (a large positive integer). Edges within
Gt is represented as Et = V t × V t where (u1, t1), (u2, t2)
is connected in Gt if (u1, u2) ∈ E and t2 = t1 + 1. Wait
in place is also allowed in Gt (i.e. (u, t1), (u, t1 + 1), u ∈ V
is connected in Gt). In addition, all vertices and edges in Gt

that correspond to vertex constraints and edge constraints in
Ωi

l ⊆ Ωl are removed from the time augmented graph Gt.
The low-level search guarantees to return a set of consistent

Pareto-optimal individual paths Πi
∗ for agent i subject to the

given constraint set. For each path πi
∗ ∈ Πi

∗ computed by the
low-level search, a corresponding joint path πl is generated by

first making a copy of πk and then update the individual path
πi
l in πl with πi

∗ (lines 16-17). If the cost vector of πl is neither
dominated by nor equal to the cost vector of any solution cost
vector in C (line 20), a new node Pl = (πl, ~gl,Ωl) is generated
and inserted into OPEN.

D. Relationship to CBS
With only one objective (i.e. M = 1), MO-CBS is equiv-

alent to CBS in the following sense. Dominance between
vectors becomes the “less than” comparison between scalars
and the candidate with the minimum g cost in OPEN is
popped in each iteration. When the first solution with the
minimum cost g∗ is found, all other nodes in OPEN must
have a cost value no less than g∗, and are thus discarded by
the Filter procedure, which makes OPEN empty and leads to
the termination of MO-CBS. Additionally, the low-level search
returns an individual optimal path for an agent when invoked.
Only one root node is generated at the initialization step and
there is one corresponding search tree built during the search.

VI. VARIANTS OF MO-CBS
A. Tree-By-Tree Expansion for the High-Level Search

In MO-CBS, a node with a non-dominated cost vector is
selected from OPEN and expanded (conflict checking and
splitting). This expansion strategy has two drawbacks. First, all
root nodes need to be generated so that a non-dominated one
can be selected. Considering an example with ten agents and
each agent has ten individual Pareto-optimal paths, MO-CBS
needs to generate 1010 root nodes, which is computationally
prohibitive. The second drawback is that nodes are selected
in a “breadth-first” manner in a sense that the selected nodes
can belong to different trees. As the number of agents (or
objectives) increases, this expansion strategy may lead to a
large number of expansions before finding the first solution.

Here we propose a new expansion strategy to bypass these
limitations. Let candidates in OPEN be sorted by the tree
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Tr they belong to, and let OPENr denote the open list that
contains only candidate nodes in tree Tr, r ∈ {1, 2, . . . , R}.
Clearly, OPEN=

⋃
r∈1,2,...,ROPENr. Instead of selecting a

non-dominated node in OPEN as MO-CBS does, here, only
nodes in OPEN1 are considered for selection at first. The se-
lected node is then expanded in the same manner as MO-CBS
does. As any newly generated nodes belong to T1, these nodes
must be inserted into OPEN1. Only when OPEN1 depletes,
the algorithm then selects candidates from OPEN2 (and then
OPEN3, and so on) for expansion. The algorithm terminates
when OPENR is depleted. We denote MO-CBS with such
a “tree-by-tree” (abbreviated as “-t”) node selection strategy
as MO-CBS-t. MO-CBS-t enables on-demand generation of
roots and performs a “depth-first” like search by exhaustively
examining one tree after another. This allows MO-CBS-t to
start the search without initializing all the roots (which is
verified in Sec. VIII-C).

B. Different Low-Level Planners

MO-CBS is a search framework in a sense that different
low-level planners can be used within the framework, as long
as the low-level planner can find all individual Pareto-optimal
paths in a time-augmented graph Gt as described in Sec. V-C.

Among the existing single-agent multi-objective search
algorithms, NAMOA* [17] is a popular A*-like multi-
objective planner. NAMOA*-dr [20] is an improved version
of NAMOA* with the so-called “dimensionality reduction” (-
dr) technique. Both NAMOA* and NAMOA*-dr can handle
an arbitrary number of objectives. Recently, NAMOA*-dr is
further expedited by BOA* [36] when there are only two
objectives. We refer the reader to the BOA* paper [36] for
a detailed discussion about the technical difference between
those algorithms.

All these algorithms can be applied to search the afore-
mentioned time-augmented graph Gt and be used as the low-
level planner of MO-CBS. We use notation BOA*-st and
NAMOA*-dr-st (-st stands for space-time) to indicate that the
planner is applied to the time-augmented graph. In this work,
to handle an arbitrary number of objectives, we use NAMOA*-
dr-st as the low-level planner of MO-CBS and denote the
corresponding algorithm MO-CBS-n. When there are only two
objectives, we use BOA*-st as the low-level planner of MO-
CBS and denote the corresponding algorithm MO-CBS-b. If
the aforementioned tree-by-tree expansion strategy is used, we
add “-t” to denote the corresponding variant (e.g. MO-CBS-tb,
MO-CBS-tn).

VII. ANALYSIS

A. Pareto-optimality

Let Π∗ denote the set of all Pareto-optimal (solution) joint
paths for a given MOMAPF problem instance. Note that for
two solutions π, π′ ∈ Π∗, it’s possible that their cost vectors
~g(π), ~g(π′) are the same. At any time of the search, define
Π∗|C := {π : π ∈ Π∗, ~g(π) /∈ C}. Intuitively, Π∗|C is the
subset of Π∗ whose cost vectors have not yet been included
in C during the search. Additionally, “expanding” a high-level

node means checking for conflicts and splitting the detected
conflict as aforementioned in Sec. V.

Definition 2 (CV set): Given a high-level node P =
(π,~g,Ω), let CV (P ) be the set of all joint paths that are (i)
consistent with Ω, and (ii) conflict-free (i.e. valid).

Correspondingly, if π′ ∈ CV (P ), we say P permits π′.
Intuitively, each joint path in CV (P ) is a (conflict-free)
solution joint path that satisfies all constraints in Ω.

Definition 3: For each π∗ ∈ Π∗|C, let P(π∗) denote a high-
level search node (π,~g,Ω) such that (i) P(π∗) permits π∗ and
(ii) for each agent i ∈ I , ~g(πi) ≤ ~g(πi

∗).
Correspondingly, if a node Pk satisfies Def. 3 for some

π∗ ∈ Π∗|C, we say Pk is a P-node of π∗.

Corollary 1: For a π∗ ∈ Π∗|C and a corresponding P-node
of π∗, which is denoted as (π,~g,Ω), we have ~g(π) ≤ ~g(π∗).

Lemma 1: During the search iterations, for any π∗ ∈ Π∗|C,
if P(π∗) exists and is popped from OPEN for expansion,
P(π∗) will not be filtered in the procedure Filter.

Proof 1: We prove this Lemma by contradiction. By Def. 3,
node P(π∗) has a cost vector ~g ≤ ~g(π∗). If P(π∗) is removed
by the procedure Filter, there must exist a feasible solution π′

with cost vector ~g(π′) ∈ C such that ~g(π′) ≤ ~g. Hence, we
have ~g(π′) ≤ ~g(π∗). This implies ~g(π′) = ~g(π∗) because
π and π∗ are feasible solutions, and π∗ is Pareto-optimal.
However, ~g(π′) = ~g(π∗) is not possible because if ~g(π′) ∈ C,
then by definition, π∗ /∈ Π∗|C. Hence proved. �

Lemma 2: Let a π∗ ∈ Π∗|C be such that there exists a
P-node of π∗ (denoted as Pk = (πk, ~gk,Ωk)) in OPEN, and
let πk have conflicts. Then, if Pk is popped from OPEN and
expanded (lines 11-21), there still exists a P-node of π∗ after
expansion in OPEN.

Proof 2: If πk has a conflict between agent i, j ∈ I (line 11),
during the expansion, MO-CBS splits the conflict, generates
two constraints ωi, ωj and invokes the low-level planner (line
14) to find individual cost-unique Pareto-optimal paths subject
to the new set of constraints Ωk

⋃
{ωi} or Ωk

⋃
{ωj}, which

results in two sets {Pli}, {Plj} of new high-level nodes (line
19). Since π∗ must satisfy at least one of the constraints ωi, ωj ,
at least one set of nodes {Pli}, {Plj} must permit π∗.

Without losing generality, let {Pli} be a set of nodes that
permits π∗, and let Πi

l denote a set of all individual cost-
unique Pareto-optimal path for agent i that is computed by
the low-level planner after adding constraint ωi. Note that
there is a one-one correspondence between nodes in {Pli}
and individual paths in Πi

l (lines 16-19). So, there exists at
least one individual path πi

l ∈ Πi
l such that ~g(πi

l) ≤ ~g(πi
∗)

because otherwise πi
∗ is non-dominated by any solution in

Πi
l . It means πi

∗ is a cost-unique Pareto-optimal path that
satisfies all constraints in Ωk

⋃
{ωi} and the low-level planner

does not find it, which is impossible. Let (πl, ~gl,Ωl) ∈ {Pli}
denote the generated high-level node corresponding to πi

l , then
~g(πj

l ) = ~g(πj
k) ≤ ~g(πj

∗), ∀j ∈ I, j 6= i (by lines 16-17 in MO-
CBS, and note that Pk is a P-node of π∗). So, there exists a
node in {Pli} that is a P-node of π∗.

Finally, by Lemma 1, P-node of π∗ cannot be filtered (line
20), and is thus added to OPEN. �
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Lemma 3: During any iteration of the algorithm, if Π∗|C is
non-empty, then for each π∗ ∈ Π∗|C, there exists at least one
P(π∗) in OPEN.

Proof 3: We show this Lemma by mathematical induction.
Base case: During the initialization step of MO-CBS, all

individual Pareto-optimal paths of each agent are computed
and all possible combinations are enumerated to generate
initial joint paths and root nodes. Each root node has an
empty constraint set and permits all π∗ ∈ Π∗. Thus, right
after initialization (i.e. after line 1), this Lemma holds.

Assumption: Assume the Lemma holds at the start of the
k-th iteration of the while loop of MO-CBS.

Induction: During the k-th iteration of the while loop, let
Pk = (πk, ~gk,Ωk) denote a node that is popped from OPEN
(line 4). For any π∗ ∈ Π∗|C, if Pk is not a P-node of π∗, then
by assumption, there must exist another node P ′k in OPEN,
which is a P-node of π∗. Since P ′k is not popped from OPEN
during the k-th iteration, P ′k is still in OPEN and the Lemma
holds. Hence, we only need to consider the case where the
popped node is a P-node of π∗. By Lemma 1, Pk is not
removed during the filtering step (line 6) of the algorithm.
Now, πk must either be conflict-free or have conflicts:
• If πk is conflict-free (line 7), since ~g(πk) ≤ ~g(π∗), πk

must also be Pareto-optimal and ~g(πk) = ~g(π∗). Since
~g(πk) is added to C (line 9), by definition, π∗ does not
belong to Π∗|C any more.

• If πk has a conflict, as shown in Lemma 2, there is still
a P-node in OPEN after the expansion of Pk.

Therefore, at the end of the k-th iteration of MO-CBS, the
Lemma holds. Hence, proved. �

Theorem 1 (Pareto-optimality): For a given problem in-
stance, MO-CBS finds the entire Pareto-optimal front C∗, if it
exists.

Proof 4: During the search of MO-CBS, by Lemma 3, for
each π∗ ∈ Π∗, either π∗ is permitted by some high-level node
P(π∗) in OPEN, or ~g(π∗) ∈ C. Therefore, until a Pareto-
optimal solution with a cost vector equal to ~g(π∗) is added to
C, some high-level node P(π∗) will exist in OPEN. MO-CBS
terminates only when OPEN depletes, which means all nodes
in OPEN are either filtered or expanded. Therefore, MO-CBS
will find the entire Pareto-optimal front. �

B. Completeness

A MOMAPF problem instance is feasible if there exists at
least one feasible (i.e. conflict-free) joint path for all agents.
A MOMAPF problem instance is infeasible otherwise. An
algorithm is complete if:
• (Statement-1) The algorithm returns a solution in finite

time, if the given problem instance is feasible.
• (Statement-2) The algorithm reports failure in finite time,

if the given problem instance is infeasible.
We first consider (Statement-1).

Lemma 4: MO-CBS terminates in finite time, if the given
MOMAPF problem instance is feasible.

Proof 5: C∗ contains a finite set of Pareto-optimal cost
vectors. MO-CBS never expands a high-level node P with

a cost vector ~g ≥ ~g∗, ∃~g∗ ∈ C∗, (i.e. every component in
~g is no less than the corresponding component in ~g∗), since
such a node P is removed by the Filter procedure. Graph G
is finite (i.e. has finite number of vertices and edges). Each
edge6 in the graph has cost(e) ∈ (0,∞)M . Hence, there are
only a finite number of joint paths π connecting the starts
and destinations of all agents such that ~g(π) � ~g∗, ∃~g∗ ∈ C∗.
In each search iteration, MO-CBS either identifies a feasible
solution (a conflict-free joint path), or detects a conflict and
generates new constraints which prevents at least one joint
path from being generated (lines 12-19) in subsequent search
iterations. Hence, MO-CBS terminates in finite time. �

Theorem 2 (Completeness): MO-CBS finds a solution in
finite time, if the given MOMAPF problem instance is feasible.

Proof 6: By Lemma 4, MO-CBS terminates in finite time.
By Theorem 1, MO-CBS finds a solution at termination. �

We now discuss (Statement-2). If the given MOMAPF prob-
lem instance is infeasible, then MO-CBS may not terminate.
To overcome this issue, similar to [30], we can run some
feasibility checking before running MO-CBS. Specifically,
given a MOMAPF instance, a corresponding MAPF instance
is generated by assigning each edge in graph G a (scalar) unit
cost value. Then the generated MAPF instance is verified in
polynomial time with the method in [42] to check whether
this MAPF instance is feasible. It’s obvious that the given
MOMAPF instance is feasible if and only if the generated
MAPF instance is feasible.

Remark. The definition of completeness in this work is the
same as the one in [30]. The proofs are applicable to the basic
version of MO-CBS as well as its variants. Specifically, the
variant MO-CBS-t differs from MO-CBS in a sense that it
re-orders the expansions during the search, and both theorems
still hold. For MO-CBS variants that use different low-level
planners, since those low-level planners are all guaranteed to
find all individual cost-unique Pareto-optimal paths, Lemma 2
is still correct. Consequently, both theorems still hold.

VIII. NUMERICAL RESULTS

A. Test Settings, Implementation and Baseline

We implement all four variants MO-CBS-n, MO-CBS-tn,
MO-CBS-b, MO-CBS-tb in C++. We test on a Ubuntu 20.04
laptop with an Intel Core i7-11800H 2.40GHz CPU and 16
GB RAM without multi-threading or compiler optimization.
For comparison, we implement the recent MOM* [25] in
C++ as a baseline, which can also guarantee finding all cost-
unique Pareto-optimal solutions as MO-CBS does. Another
method to compute all cost-unique Pareto-optimal solutions is
applying a single-agent multi-objective planner to search the
joint graph of all agents. This method has been shown to be
computationally inefficient, as the size of the joint graph grows
exponentially with respect to the number of agents [25], which
is thus omitted in this article.

In our implementation, for each agent, the heuristic vector
is computed by running M exhaustive backwards Dijkstra

6Note that wait in place actions are represented as self-loops in the graph,
which are also included in the edge set E.
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search from that agent’s destination: the m-th Dijkstra search
(m = 1, 2, . . . ,M ) uses edge cost values cm(e), ∀e ∈ E (i.e.
the m-th component of the cost vector ~c(e) of all edges).
In our implementation, for the high-level search, all nodes
in OPEN are prioritized in the lexicographic order based on
their ~g-vectors and the minimum one is popped from OPEN
in each search iteration. This implementation guarantees that
every popped high-level node has a non-dominated cost vector
among all nodes in OPEN.

We select (grid) maps of different types from a MAPF data
set [33]. For each map, an un-directed graph G is generated
by making each grid four-connected. To assign cost vectors
to edges in G, we follow the convention in [20] by assigning
each edge an M -dimensional cost vector with each component
being an integer randomly sampled from [1, Cmax], where
Cmax takes different values in the following sections. We use
the start-goal pairs from the “random” category in the data
set [33], and for each map, there are 25 instances. We set a
runtime limit of 300 seconds for each instance.

B. MO-CBS Low-Level Search

We begin by investigating different low-level planners
within the framework of MO-CBS. We fix M = 2 and
compare MO-CBS-b and MO-CBS-n. These two planners
expand nodes in the same order for the high-level search, and
the only difference between them is the low-level search.

1) Different Cmax: First, we set M = 2, N = 4 (fixed)
and vary Cmax in an empty 16 × 16 map. Let t̄ denote the
average runtime (in micro-seconds) of the low-level planner
per call during the MO-CBS search. As shown in Table I (a),
the low-level planner of MO-CBS-b (i.e. BOA*-st) runs up
to twice as fast as the low-level planner of MO-CBS-n (i.e.
NAMOA*-dr-st), which can be observed by comparing 15.2ms
against 32.8ms in the Cmax = 8 row. The advantage of BOA*-
st over NAMOA*-dr-st is more obvious as Cmax increases.
We discuss the reason for this in the ensuing paragraphs. We
also show the corresponding number of expansions (#Exp) of
the low-level planners in Table I (b). Note that #Exp is not
an accurate indicator to compare the computational efforts of
BOA*-st and NAMOA*-dr-st, since the computational effort
of each expansion in BOA*-st is in general cheaper than
NAMOA*-dr-st due to the improved dominance checks. More
details can be found in [36].

2) Different Maps: We then show how the size of the map
affects the low-level planner. Table II (a) shows the minimum,
median and maximum t̄ over all instances. As the map size
increases, both planners need more runtime per call in general.
In the map den312d of size 65x81, NAMOA*-dr-st takes up
to around 3 seconds per call while BOA*-st needs around 2
seconds. Considering that MO-CBS needs to iteratively invoke
the low-level planner, a speed-up in the low-level planner can
help with the overall MO-CBS search, which is verified in
the resulting success rates of MO-CBS-b and MO-CBS-n in
the test with the den312d map: out of the 25 instances, MO-
CBS-b succeeds 20 instances while MO-CBS-n succeeds 18
instances.

(a) min. / median / max. low-Level RT (unit: ms)
Cmax MO-CBS-b MO-CBS-n
2 1.9 / 2.9 / 6.2 2.0 / 3.8 / 7.9
5 2.1 / 5.0 / 17.7 2.2 / 6.6 / 26.4
8 2.1 / 6.3 / 15.2 2.2 / 8.2 / 32.8

(b) min. / median / max. low-Level #Exp.
Cmax MO-CBS-b MO-CBS-n
2 11.0 / 43.1 / 157 9.8 / 41.7 / 154
5 12.3 / 112 / 533 10.5 / 107 / 534
8 13.8 / 158 / 460 12.0 / 151 / 718

TABLE I: Runtime (RT) data of the low-level planner of MO-
CBS-b (i.e. BOA*) and MO-CBS-n (i.e. NAMOA*-dr) with
M = 2, N = 4 (fixed) and varying Cmax in the empty 16×16
map. Let t̄ denote the average runtime (in microseconds) of the
low-level planner per call during the MO-CBS search. Table
(a) shows the minimum, median and maximum of t̄ over all
instances. Table (b) shows the same statistics of the number of
expansions (#Exp.) of the low-level planner per call. BOA*-st
runs up to twice as fast as NAMOA*-dr-st, and the advantage
of BOA*-st is more obvious as Cmax increases.

(a) min. / median / max. low-Level RT (unit: ms)
Map MO-CBS-b MO-CBS-n
empty 16x16 1.9 / 2.9 / 6.2 2.0 / 3.8 / 7.9
random 32x32 4.4 / 9.8 / 57.7 4.6 / 11.5 / 78.1
den312d 65x81 22.9 / 142.3 / 2267.4 24.7 / 188.7 / 3062.2

(b) min. / median / max. low-Level #Exp.
Map MO-CBS-b MO-CBS-n
empty 16x16 11.0 / 43.1 / 157 9.8 / 41.7 / 154
random 32x32 10.3 / 197 / 2098 9.0 / 195 / 2195
den312d 65x81 281 / 3925 / 68476 278 / 3916 / 64232

TABLE II: Similarly to Table I, this table reports the runtime
(RT) data of the low-level planners when M = 2, N =
4, Cmax = 2 (fixed) in maps of different types and sizes. Table
(a) and (b) show the statistics of t̄ and of #Exp. respectively
over all instances. BOA*-st runs faster than NAMOA*-dr-st in
all the maps. In the last den312d map, MO-CBS-n solves 18
instances while MO-CBS-b solves 20 (i.e. two more) instances
because of the faster low-level planner BOA*-st.

3) Discussion and Summary: Finally, we report the statis-
tics of the number of root nodes (#Root) of MO-CBS over
all instances corresponding to the tests in Table I and II.
Note that #Root is the product of the numbers of Pareto-
optimal individual paths of each agent, and the number of
agents is fixed (N = 4) in this experiment. The geometric
mean of #Root over agents is an indicator of the number of
individual Pareto-optimal paths for each agent. From Table III,
as Cmax increases or the size of the map increases, #Root
grows correspondingly, and it indicates that each agent tends
to have more individual Pareto-optimal paths. Combined with
Table I and II, it shows that, finding more Pareto-optimal paths
burdens a low-level planner in general.

To summarize, first, instances with larger Cmax and larger
maps tend to have more Pareto-optimal individual paths, and
it takes the low-level planner more time and expansions to
find those Pareto-optimal paths in general. Second, BOA*-st
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min. / median / max. #Root
empty 16x16, Cmax = 2 2 / 12 / 108
empty 16x16, Cmax = 5 6 / 150 / 1458
empty 16x16, Cmax = 8 12 / 330 / 2205
random 32x32, Cmax = 2 2 / 30 / 720
den312d 65x81 Cmax = 2 42 / 1920 / 24948

TABLE III: The minimum, median and maximum number of
roots (#Root) of the MO-CBS search with N = 4 (fixed)
and varying Cmax in various maps. As Cmax increases or
the size of the map increases, #Root grows correspondingly,
and it indicates that each agent tends to have more individual
Pareto-optimal paths, which burdens the low-level planner.

clearly outperforms NAMOA*-dr-st in terms of the runtime
(when M = 2). Therefore, for the rest of the experiments
when M = 2, we limit our focus to MO-CBS-b.

C. MO-CBS High-Level Search

1) Success Rates: We then investigate different high-level
search strategies of MO-CBS. We fix M = 2 and compare
MO-CBS-b (without the tree-by-tree expansion) and MO-
CBS-tb (with the tree-by-tree expansion). We test both algo-
rithms in four maps of various sizes with varying N ranging
from 2 to 10 with a step size of 2. As shown in Fig. 3,
MO-CBS-b slightly outperforms MO-CBS-tb in terms of the
success rate in all four maps. An intuitive explanation is that
MO-CBS-b generates all the root nodes at initialization and
inserts them into OPEN for search, which makes the search
process more informed. Different from MO-CBS-b, MO-CBS-
tb generates the root nodes in a tree-by-tree manner during
the search, and greedily search one tree after another, which
makes the search process less informed. To verify the reason,
we conduct the following comparison.

2) Number of Conflicts and Filtered Nodes: First, we show
in Fig. 4 the statistics about the numbers of conflicts (#Con-
flict) resolved by both algorithms (i.e. count the times when
Alg. 1 reaches line 11) over all instances. We can observe
that MO-CBS-b in general needs to resolve less conflicts than
MO-CBS-tb, which indicates the search process of MO-CBS-
b is more efficient than the one of MO-CBS-tb (given that
MO-CBS-b has higher success rates).

Second, we look at the statistics about the number of
filtered nodes of both algorithms. The number of filtered nodes
(#Filter) is defines as the times when the Filter procedure
returns true (line 6 and 20), which means a candidate node is
discarded. In the map random 32x32, as shown in Table. IV,
MO-CBS-b tends to filter fewer nodes than MO-CBS-tb.
Combined with Fig. 4, we can observe that, with similar
success rates, MO-CBS-b resolves less conflicts and filters less
nodes than MO-CBS-b does, which indicates that MO-CBS-b
can search more efficiently than MO-CBS-tb in general.

3) Memory Issue: Although MO-CBS-b can search more
efficiently than MO-CBS-tb in general, MO-CBS-b have to
generate all the root nodes for initialization, which can con-
sume a lot of memory. In the den312d map when N = 6, MO-
CBS-b runs out of the 16GB memory and fails to initialize
for some of the instances, while MO-CBS-tb bypasses this

Fig. 3: Success rates of MOM* (baseline), MO-CBS-b (this
work) and MO-CBS-tb (this work) in four maps of different
sizes. MO-CBS based algorithms outperforms the baseline
in general. The maximum enhancement of the success rate
(around 60%) can be observed at N = 8 in the empty map.
In den312d when N ≥ 6, MO-CBS-b runs out of memory at
initialization for some of the instances and is thus omitted.

min./median/max. #Filter
N MO-CBS-b MO-CBS-tb
2 0 / 2 / 74 0 / 6 / 118
4 0 / 51 / 18052 1 / 111 / 33051
6 3 / 578 / 74390 10 / 1358 / 72175
8 4 / 8881 / 93308 13 / 22050 / 116700
10 0 / 23698 / 122478 1333 / 41222 / 254374

TABLE IV: The minimum, median and maximum of the
number of filtered nodes per instance (#Filter) by MO-CBS-
b and MO-CBS-tb in the random 32x32 map with varying
N . In general, MO-CBS-b filters less number of nodes than
MO-CBS-tb. Combined with Fig. 4, with similar success rates,
MO-CBS-b resolves less conflicts and filters less nodes than
MO-CBS-b does, which indicates that MO-CBS-b can search
more efficiently than MO-CBS-tb in general.

memory issue due to the tree-by-tree expansion strategy. As
shown in Table V, when N ≥ 6, the number of roots grows
up to millions, which makes MO-CBS-b run out of memory
to initialize all the root nodes.

4) Number of Pareto-optimal Solutions: This section re-
ports the statistics of the number of Pareto-optimal solutions
(#Sol) and the number of root nodes (#Root) over all suc-
ceeded instances (i.e. all Pareto-optimal solutions are found)
in the map random 32x32. As shown in Table VI, both
the number of root nodes and the number of Pareto-optimal
solutions grow as N increases.7 The discrepancy between the

7When N = 8, 10, since the success rates are not 100%, there is a bias
towards easy instances that have fewer Pareto-optimal solutions. When N =
2, 4, 6, since the success rates are 100%, there is no such a bias.
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Fig. 4: A comparison of the minimum, median and maximum
number of conflicts resolved per instance by MO-CBS-b and
MO-CBS-tb in various maps. In general, MO-CBS-tb needs
to resolve more conflicts than MO-CBS-b during the search.

(den312d) min./median max. #Root
N 2 4 6 8 10
min. 7 42 504 2,160 11,664
median 36 1,920 39,600 2,566,080 136,080,000
max 216 24,948 2,649,536 558,379,008 17,868,128,256

TABLE V: The statistics of the number of root nodes (#Root)
of all instances in the den312d 65x81 map with varying N . As
N increases, #Root grows too large for MO-CBS-b to initialize
with the 16GB RAM memory, while MO-CBS-tb bypasses this
issue due to the tree-by-tree expansion strategy.

#Root and #Sol indicates that a large number of root nodes
are filtered instead of leading to Pareto-optimal solutions. It
implies a possible future work direction: one can develop new
methods for the initialization step of MO-CBS to improve the
computational efficiency.

min./median/max. #Sol and #Root
N #Sol #Root
2 1 / 5 / 14 1 / 6 / 44
4 2 / 9 / 20 2 / 30 / 720
6 5 / 13 / 24 8 / 249 / 5292
8 6 / 16 / 28 10 / 792 / 51840
10 11 / 16 / 29 140 / 804 / 97200

TABLE VI: The minimum, median and maximum of (i) the
number of Pareto-optimal solutions (#Sol) and (ii) the number
of root nodes (#Root) per instance in MO-CBS-b. The statistics
are computed over all succeeded instances (i.e. all Pareto-
optimal solutions are found).

Fig. 5: Comparison among MO-CBS-n, MO-CBS-tn, MOM*
with M = 3 (fixed) and varying N in the random 32x32 map.
When M increases from 2 to 3, the problem instances become
more challenging and the success rates decrease for all three
planners.

D. MO-CBS and MOM*, M = 2, 3

1) Two Objectives: We compare MO-CBS-b, MO-CBS-
tb and MOM* with M = 2 in four different maps. When
M = 2, as shown Fig. 3, MO-CBS-b and MO-CBS-tb both
achieves higher success rates than MOM* in general. The
maximum enhancement of the success rate (around 60%) can
be observed at N = 8 in the empty map. In the room map,
MOM* has slightly higher success rates than the MO-CBS
based algorithms. In general, it’s not obvious under what
circumstances MO-CBS is guaranteed to outperform MOM*.
Empirically, there is no leading algorithm that outperforms the
other method in all settings. More discussion can be found in
the following paragraphs.

2) Three Objectives: We also compare MO-CBS-n, MO-
CBS-tn and MOM* with M = 3 in the random map. As
shown in Fig. 5, all three planners achieve similar success
rates, which is lower than the corresponding success rates
when M = 2 in Fig. 3. MO-CBS-n fails to initialize due
to the large number of root nodes for some instances when
N ≥ 6 and is thus omitted. In general, when M increases
from 2 to 3, the problem becomes more challenging and the
success rates decrease for all three planners.

3) Discussion: Since MOM* and MO-CBS are two al-
gorithms that search over different spaces, it’s not obvious
when one planner is guaranteed to outperform the other.
Intuitively speaking, MOM* searches in the joint graph (i.e.
the Cartesian product of individual graphs) with a varying
branching factor that is determined by the “collision set” [25],
the subset of agents that are in conflict. MO-CBS searches in
a different space by detecting and splitting conflicts between
agents and the number of conflicts is the decisive factor of the
computational efficiency of MO-CBS.
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Additionally, in MAPF, all edges are often associated with
the same unit scalar cost [30], [33], while in MOMAPF, all
edges are associated with different cost vectors. This makes
it hard to predict the difficulty of an instance for MOM* or
MO-CBS by only looking at the topology of the map without
investigating the cost structure. From our experimental results,
one possible indicator about the difficulty of an instance for
MO-CBS is the number of root nodes, which reflects the
number of individual Pareto-optimal paths of agents, and takes
both the topology and the cost structure of the map into
consideration.

E. Discussion: MO-CBS and CBS

While (single-objective) CBS can solve up to 21 agents in
an empty 8 × 8 four-connected grid and up to hundred of
agents in large maps [30], MO-CBS can solve obviously fewer
agents for the following reasons. First, the low-level planner of
MO-CBS solves a single-agent multi-objective path planning
problem, which is computationally more expensive than the
single-objective path planning problem solved by the low-level
planner of CBS, especially when there are many individual
Pareto-optimal paths to find (as discussed in Sec. VIII-B).
Second, in CBS, each agent has only one individual optimal
path, and CBS terminates when all the conflicts along those
individual paths are resolved. In MO-CBS, each agent has
multiple individual Pareto-optimal paths, and MO-CBS needs
to resolve all the conflicts for any possible combination of
the individual paths, which is computationally much more
expensive (Fig. 4). In other words, the high-level search of
MO-CBS needs to search over multiple trees rather than
searching a single tree as CBS does (Sec. VIII-C). Third,
for conventional CBS, larger maps often lead to less conflicts
between agents which allows CBS to handle a large number
of agents. For MO-CBS, larger maps can lead to a larger
number of individual Pareto-optimal paths (Table. II), which
then slows down the low-level planner and leads to more
potential conflicts to be resolved by MO-CBS.

F. Construction Site Path Planning

This section demonstrates an application example of MO-
CBS for practitioners. We consider multiple agents transport-
ing materials in a construction site [12], [29], [31]. We focus
on planning collision-free paths for a set of agents from their
starts to goals while optimizing both the sum of individual
arrival times and the sum of individual path risks. We use a
simplified risk model as shown on the left in Fig. 6. We select a
random 32x32 map from [33] and compute the corresponding
risk map as shown in Fig. 6 as follows. The risk score of
each cell equals one plus the number of black cells in the
8 neighbors around it, where the black cells represent some
semi-constructed architecture. The risk here is possibly due to
the falling items from the architecture or the collision with
the architecture. Similar to the previous tests, each agent can
either wait or move to one of the four cardinal adjacent cells.
Each action of the agent incurs a cost vector of length two,
where the first component indicates the action time which is
always one, and the second component is the risk cost of the

Fig. 6: (Left) Risk model. (Right) A risk map where black
cells represent semi-constructed architecture and the darkness
of a grey cell indicates the risk score of that cell. More details
can be found in the text.

arrival cell as aforementioned. If an agent waits in a cell, the
risk cost incurred is the risk score of that cell.

As shown in Fig. 7 (a), the set of Pareto-optimal solutions
trades off between the arrival time and path risk. In solution
(joint path) S1 (Fig. 7 (b)), all agents take shortcuts regardless
of the risks. For example, the blue agent in S1 passes through
many risky cells by following a shortest path. In solution S2

(Fig. 7 (c)), all agents follow the safest paths. For example,
in the lower right corner of S2, the light green agent takes
a detour to avoid the brown agent to make both of them
safe along their respective paths. The solution S3 (Fig. 7 (d))
visualizes a Pareto-optimal solution in the “middle”, where
arrival time and path risk are balanced in some way.

IX. CONCLUSION AND FUTURE WORK

In this article, we develop a new algorithm called Multi-
Objective Conflict-Based Search (MO-CBS) to solve Multi-
Objective Multi-Agent Path Finding (MOMAPF) problems
with optimality guarantees. We also develop several variants
of MO-CBS by using various low-level planners and different
high-level expansion strategies. We analyze the properties of
MO-CBS and show that the method is able to find all cost-
unique Pareto-optimal solutions. Numerical results show that
MO-CBS outperforms the baseline in terms of success rates
under a runtime limit. We also show an application example
for practitioners.

There are several directions for future work. One can
consider improving MO-CBS by expediting its initialization,
conflict splitting and dominance checks. Additionally, instead
of finding an exact set of Pareto-optimal solutions, one can fo-
cus on approximating the Pareto-optimal solutions with faster
computational speed and better scalability, in terms of both
the number of agents and the number of objectives. For exam-
ple, one can consider leveraging evolutionary algorithms [4]
or approximated single-agent multi-objective planners [7] to
expedite the computation. One can also develop other types
of MOMAPF algorithms by leveraging other (single-objective)
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Fig. 7: (a) shows the Pareto-optimal front of the construction site example. (b), (c) and (d) show three Pareto-optimal solution
joint paths corresponding to the red, green and orange solution in (a) respectively. In (b), (c) and (d), the colored dotted paths
show the individual paths that constitute the corresponding joint path, while the black dotted paths show the individual paths
in other Pareto-optimal solutions. For solution S1, all agents take shortcut and go through risky zones while for solution S2, all
agents are being conservative and go through safe zones. The solution S3 balances the two objectives. Finding and visualizing
a Pareto-optimal set of solutions can potentially help the human decision maker to understand the underlying trade-off between
conflicting objectives and thus make more informed decisions.

MAPF methods to handle agents that move with different
speeds [1], [21], [39] or targets that need allocation [10], [26].
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