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1  |  INTRODUC TION

Humans are unparalleled in their ability to leverage relational struc-
tures in the construction of abstract concepts. Establishing com-
monalities between various component pieces of knowledge and 
forming analogical mappings over these structural alignments has 
grounded human innovation and discovery since antiquity (Hallyn, 
2000). For example, Aristotle recruited letters of the alphabet to 
describe the properties and compositionality of atoms (Metaphysics, 
985b4) by noting how atoms, like letters, have distinct properties 
and can be combined to form new structures. Roughly 2,000 years 
later, Kepler appealed to an analogy of light traveling from the sun 
in his proposal of a heliocentric model of the solar system (Gentner 

et al., 1997). In each case, relational structures within a familiar do-
main (like the alphabet) are mapped onto another, less familiar do-
main (like atomic structure), to guide reasoning and discovery.

Analogical reasoning may not be limited to flashes of brilliance 
among geniuses — instead, it may be a primary mechanism under-
lying children's more quotidian (but no less astonishing) conceptual 
development (Carey, 2009; Gentner, 2010; Xu 2019). According to 
this idea, for young children as for Aristotle and Kepler, the con-
struction of concepts from analogical mappings depends on learning 
about relational structures within different domains, and noticing 
how structures in one domain are similar to structures in another. 
For Aristotle and Kepler, this Structure Mapping (Gentner, 2010) 
process recruited extant relational structures; for children, however, 
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Abstract
Although most U. S. children can accurately count sets by 4 years of age, many fail to 
understand the structural analogy between counting and number — that adding 1 to a 
set corresponds to counting up 1 word in the count list. While children are theorized 
to establish this Structure Mapping coincident with learning how counting is used to 
generate sets, they initially have an item-based understanding of this relationship, and 
can infer that, e.g, adding 1 to “five” is “six”, while failing to infer that, e.g., adding 1 to 
“twenty-five” is “twenty-six” despite being able to recite these numbers when count-
ing aloud. The item-specific nature of children's successes in reasoning about the re-
lationship between changes in cardinality and the count list raises the possibility that 
such a Structure Mapping emerges later in development, and that this ability does not 
initially depend on learning to count. We test this hypothesis in two experiments and 
find evidence that children can perform item-based addition operations before they 
become competent counters. Even after children learn to count, we find that their 
ability to perform addition operations remains item-based and restricted to very small 
numbers, rather than drawing on generalized knowledge of how the count list repre-
sents number. We discuss how these early item-based associations between number 
words and sets might play a role in constructing a generalized Structure Mapping 
between counting and quantity.
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these structures may be fragile or not yet acquired. This raises the 
question of how this process of discovering Structure Mappings 
begins in development. How do children transition from learning 
isolated facts about a domain of knowledge, to making abstract gen-
eralizations via analogy to another domain?

Children's symbolic number acquisition provides a fertile case 
study for exploring the origin of Structure Mapping in conceptual 
development. Although children can recite a partial count list by 
around age 2 (Fuson, 1988), it takes them many years to discover 
how the structure of counting relates to number, and how count-
ing up in the count list relates to adding items to a set - a type of 
analogical mapping. Multiple aspects of children's behavior provide 
evidence of this incomplete understanding. For instance, many 
2-year-olds fail to use counting to generate sets, and seem to regard 
the count list as a meaningless routine (similar to the ABCs) rather 
than a powerful relational structure (Fuson, 1988). In addition, chil-
dren's early comprehension of number words is item-based; that is, 
they learn the meaning of each number word separately, and serially 
in development. Thus, by around 2.5 years of age, many U. S. chil-
dren can generate sets of one without counting but provide random 
amounts when asked to generate a set of two. Some months later, 
children become “two-knowers,” accurately generating sets of one 
and two, but not three; and then become “three-knowers” in the 
same way (Wynn, 1990, Wynn 1992b).

At each “knower level” children do not use the count routine to 
generate either known or unknown numbers, and thus appear to 
lack a mapping between number and the structure of the count list. 
At around 4 years, however, these “subset-knowers” discover that 
counting can be used to generate any number. According to some 
accounts (e.g., see Carey, 2009 and Gentner, 2010), at this point chil-
dren have acquired the “Cardinal Principle” (CP), meaning that they 
understand that the last word said while counting a set represents 
its cardinality (Gelman & Gallistel, 1978).

How do children make this breakthrough? According to one in-
fluential account, children acquire the CP by establishing a Structure 
Mapping between the ordinal structure of the count list and the 
ordered set of cardinalities the count list represents (Carey, 2004; 
Gentner, 2010; Sarnecka & Carey, 2008; for a review, see Marchand 
& Barner, 2018). Specifically, children notice that the +1 positional 
differences between the numerals one, two, three, etc. is mirrored by 
+1 differences in cardinality, which leads them to hypothesize that 
this relationship holds for other numbers. This discovery and induc-
tion are proposed to allow children to count and construct sets of 
any size, by simply adding objects to a set as they count up the count 
list to a target number. According to Sarnecka and Carey (2008), 
this shift in children's understanding of the count list as a relational 
structure amounts to discovery of the successor function, a founda-
tion of arithmetic described in formal systems like the Peano axioms 
(Peano, 1889), which states that for every number n, its successor is 
n + 1. If a Structure Mapping of this kind underlies children's acqui-
sition of the CP, then children should only understand the successor 
relation between counting and cardinality once they have acquired 
the CP.

To test this hypothesis, Sarnecka and Carey (2008) designed a 
paradigm known as the “Unit Task.” In this task, children see some 
number of items added to a container while an experimenter says, 
“Look! There are N items in the box!” The experimenter then adds 
1 item to the box and asks, “Are there N + 1 or N + 2 items now?”, 
e.g. are there 4 or 5 items. To provide the correct response, children 
must know that adding one item to an established cardinality cor-
responds to a + 1 increase in the count list (i.e., implicit successor 
knowledge), as shown in Figure 1a.

Sarnecka and Carey found that CP-knowers outperform subset-
knowers on this task, in line with the idea that CP acquisition reflects 
a Structure Mapping between counting and number. However, in this 
and subsequent work, children's pattern of response is more com-
plex than one would predict if this Structure Mapping were in place. 
For example, CP-knowers’ advantage is limited to very small sets: 
Some young CP-knowers appear to know that adding +1 to a set of 
four results in five, but lack a general understanding that, for any set 
N, adding +1 corresponds to counting up one word in the count list 
(i.e., N + 1). What's more, some CP-knowers fail even for the smallest 
numbers: Although chance on the Unit Task is 50%, the CP-knowers 
in Sarnecka and Carey (2008) had only 67% accuracy for sets of 4 
and 5. Similarly, other studies have found that many CP-knowers fail 
the Unit Task for these same numbers, despite being able to reli-
ably produce them in their count list (Davidson et al., 2012; Spaepen 
et al., 2018). Lastly, CP-knowers who do succeed with numbers like 
4 and 5 fail for even modestly larger numbers (such as 13), despite 
being able to count much higher (Davidson et al., 2012). Children 
exhibit item-specific performance for several years after CP acquisi-
tion, and do not demonstrate generalized successor knowledge until 
they have become exceptionally strong counters at around 6 years 
of age (Cheung et al., 2017; Schneider et al., 2020).

One conclusion that could be drawn from CP-knowers’ item-
specific Unit Task successes is that CP acquisition does not mark 

Research Highlights

●	 Children's ability to numerically label the output of addi-
tion operations with +1 typically viewed as evidence of 
a Structure Mapping between counting and cardinality.

●	 We show that children can perform additional op-
erations for familiar numbers before learning to count, 
meaning that this ability is not dependent on Structure 
Mapping.

●	 Even competent counters fail to show generalized un-
derstanding of how changes in cardinality are related to 
the structure of the count list.

●	 Our results instead suggest that children's ability to com-
pute addition operations initially reflects an Associative 
Mapping made directly between set representations 
and number words.



    |  3 of 13SCHNEIDER et al.

the point at which children establish a Structure Mapping between 
counting and cardinality. Instead, this limited ability to label the re-
sult of addition events for relatively small numbers could be based 
on a system of associative mappings between number words and 
sets, which are learned in a piece-meal fashion, separately for each 
number word (Sullivan & Barner, 2014). For example, after experi-
ence observing sets of four being labeled with “four” and sets of 
five labeled with “five,” upon being told that four objects are in a 
container, the child might form a visual representation of four items 
which is then updated when another item is added. Using an item-
based associative mapping between this representation of five items 
and the word "five," the child could then report that there are five 
objects without appealing at any point to the count list's struc-
ture (Figure 1b). Given previous reports that associative mappings 
emerge sometime after children become CP-knowers, beginning 
with smaller numbers and slowly increasing up to around 6 (Sullivan 
& Barner, 2014), this model might explain the limited advantage that 
CP-knowers initially have over subset-knowers.

This Associative Mapping account makes several key predictions. 
First, children's ability to succeed in the Unit Task should be linked to 
their knowledge of particular number words, rather than to knowledge 
of the CP. As a result, all children — even subset-knowers — should be 
above chance in the Unit Task for known number words. The majority 
of prior work using the Unit Task has not been able to test for this 
possibility, however, since it has focused primarily on “large” numbers 
(such as 4, 5, and 6) which are unknown to subset-knowers.

The Associative Mapping account also makes a second predic-
tion: Because children are proposed to succeed in the Unit Task by 
mapping number labels directly to set representations — rather than 
reasoning about successor relations between number words in the 
count list — we should find only a weak relationship between Unit 
Task performance and count list knowledge. While CP-knowers 

eventually use knowledge of the count list's structure to acquire a 
generalized form of the successor function (Schneider et al., 2020), 
this alternative proposes that CP-knowers’ item-specific knowledge 
may initially be independent of the count list. Likewise, we should 
find no association between knowledge of count list successor re-
lations and Unit Task success in subset-knowers, as they do not yet 
understand the relation between the count list and cardinality.

Several pieces of evidence support the hypothesis that CP-
knowers’ ability to reason about Unit Task addition operations be-
gins to take form much earlier in numerical development. Young 
children can perform the basic set operations necessary to succeed 
on the Unit Task even before they acquire the meanings of number 
words. At 5 months, infants can track the addition of 1 item to an 
occluded set of 1, (Wynn, 1992a), and by 10 months can track the 
addition of 1 graham cracker to a bucket to discriminate between 
sets of 2 and 3 (Feigenson et al., 2002; for a review of this literature, 
see Cantrell & Smith, 2013). Similarly, children between the ages of 
2.5 and 4 years can solve nonverbal addition problems with sets of 
1–3 (Huttenlocher et al., 1994). Finally, Hughes (1981) found that 
children as young as 3 years (who were likely subset-knowers) suc-
ceeded on a task similar to the Unit Task for small numbers (1–3). 
Together, these results suggest that even subset-knowers can not 
only perform the set operations required in the Unit Task, but can 
also map these set representations to number words.

These studies lend credibility to the Associative Mapping hy-
pothesis. On this hypothesis, performance on the Unit Task may not 
have any special relationship to the CP transition: The ability of CP-
knowers to succeed in the Unit Task may begin to take form when 
children are subset-knowers, and may simply be restricted to smaller 
numbers that are more familiar to younger children. However, cur-
rently, there is little direct evidence regarding this point. Some exist-
ing data, however, suggests this as a possibility: Although Sarnecka 

F I G U R E  1 Representation of (a) 
Structure Mapping and (b) Associative 
Mapping mechanisms in the Unit Task. 
In (a), the result of Unit Task addition 
operations are labeled by reasoning 
about an isomorphism between these 
set operations and successor relations 
between number words in the count list. 
In (b), Unit Task addition operations are 
labeled by mapping known number labels 
directly onto set representations
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and Carey (2008) focused their analyses on performance for the 
numbers 4 and 5, data from pretest trials show that subset-knowers 
above chance for sets of 1 and 2, numbers within their known range.

Previous studies also leave open how children at different devel-
opmental stages might differ in the ways they compute addition op-
erations - e.g., via Structure Mapping or Associative Mapping. Young 
CP-knowers may initially rely on Associative Mappings when per-
forming the Unit Task, and only older, more experienced CP-knowers 
may recruit a full-fledged Structure Mapping between counting and 
cardinality. Becoming a CP-knower may be a necessary, but not 
sufficient, step in the construction of a Structure Mapping. On this 
view, subset-knowers may also acquire Associative Mappings early 
in development, which continue to develop after the CP transition.

Another possibility is that all CP-knowers have acquired a 
Structure Mapping between counting and number. Though past 
studies have generally reasoned that this would predict success 
at larger numbers, it remains possible that other factors limit CP-
knowers’ deployment of Structure Mapping - e.g., such as still-
developing count list fluency (Chu et al., 2020; Schneider et al., 
2020; Siegler & Robinson, 1982), or the working memory challenge 
of tracking changes to sets while simultaneously reasoning about 
successor relations between still freshly-learned words. Compatible 
with this discontinuity hypothesis, Spaepen and colleagues (2018) 
provide evidence that CP-knowers’ — but not subset-knowers’ — 
Unit Task performance improves after count list training.

In the current work, we had two goals. First, our primary ques-
tion was whether Unit Task performance was related to familiarity 
with specific number words, rather than CP knowledge. To inves-
tigate this, we tested when both subset-knowers and CP-knowers 
could label addition events in the Unit Task for a range of small num-
bers and asked whether their performance on specific numbers was 
related to their knower level (i.e., their set of known number words) 
— such that even subset-knowers succeed for known numbers. 
Second, we sought to test the possible mechanisms underlying item-
specific Unit Task performance, and whether subset-knowers and 
young CP-knowers both deploy Associative Mapping, or whether 
the transition to the CP stage also marks a transition to Structure 
Mapping. To do so, in Experiment 1, we explored the relationship 
between knowledge of number words, Unit Task performance, and 
general count list knowledge. In Experiment 2, we further tested the 
role of count list knowledge to investigate the mechanisms through 
which children may begin to establish this item-based ability.

2  |  E XPERIMENT 1

2.1  |  Method

The methods and analyses of this study were pre-registered prior 
to data collection. The pre-registration can be found at https://osf.
io/deqzk/​?view_only=e4962​2708a​21443​8bb09​5f18b​daa8224. All 
methodological and analytical choices were as pre-registered, un-
less stated otherwise in-text.

2.1.1  |  Participants

We pre-registered a minimum n of 68 participants, with n  =  44 
subset-knowers and n = 24 CP-knowers, post-exclusions. This was 
pre-registered on the basis of a power analysis using pilot data, indi-
cating that a sample of 44 could detect an effect size of d = 0.5 with 
90% power. Because children completed Give-N at the study's end, 
we did not pre-register a specific number of N-knowers.

We recruited 89 typically-developing, English-speaking children 
between 2 and 4 years of age from preschools and museums in San 
Diego, California, USA and Comox Valley, British Columbia, Canada. 
Thirteen children were tested but excluded from analyses due to: 
failure to complete all trials of the Unit Task and Give-N (n  =  8); 
lack of any number knowledge as determined by Give-N (i.e., non-
knowers; n  =  2); outside the age range (n  =  2); or failure to com-
prehend tasks (n = 1). After these exclusions, our analyzable sample 
included 76 participants (Table 1).

2.2  |  Stimuli, design, and procedure

Children were tested individually in a quiet spot within the class-
room or museum. Participants received the tasks in a fixed order 
(Unit Task, Give-N, and Highest Count).

2.2.1  |  Unit task

We used a modified version of the Unit Task (Sarnecka & Carey, 
2008) to assess children's item-based knowledge. The experi-
menter presented children with an opaque container and some 

TA B L E  1 Demographic information by knower-level for Study 1 for subset- and CP-knowers (bottom). Demographic information for N-knowers 
is reported on the right

n Mage (SDage) n Mage (SDage)

Subset-knowers 52 (n female = 25; n male = 27) 3.38 (0.39) 1-knowers 18 3.12 (0.42)

2-knowers 18 3.56 (0.24)

3-knowers 14 3.43 (0.35)

4-knowers 2 3.74 (0.19)

CP-knowers 24 (n female = 13; n male = 11) 3.6 (0.30)

https://osf.io/deqzk/?view_only=e49622708a214438bb095f18bdaa8224
https://osf.io/deqzk/?view_only=e49622708a214438bb095f18bdaa8224
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plastic fish, saying, “This is my fishbowl and these are my fish.” 
The experimenter then placed between one and five fish in the 
container and said, “Look! N fish are swimming in the fishbowl.” 
The experimenter covered the container if children attempted to 
count. The experimenter then replaced the lid and asked, “How 
many fish are in the fishbowl?” Children were given two oppor-
tunities to respond; if they failed both, the experimenter told 
them how many fish were in the container. The experimenter then 
added one fish and asked “Are there N  +  1 or N  +  2 fish now?” 
Order of alternatives was counterbalanced across trials. If chil-
dren failed to pick an alternative, the experimenter provided them 
again. Participants received a training trial with feedback in which 
one fish was added to an empty container, and then 10 test trials 
without feedback. The queried numbers (1, 2, 3, 4, and 5) were 
presented in a pseudo-randomized order.

The correct response for a given N was N  + 1. “I don't know” 
responses (n = 2/755) were coded as incorrect. If children did not 
respond, or provided a non-numeric response (other than “I don't 
know), the trial was excluded from analysis. Trials were classified as 
involving numbers either within or outside children's N-knower level 
(i.e., for a 2-knower, trials with a starting state of 1 and 2 items were 
classified as “within” the child's known number range, while 3, 4, and 
5 were “outside” their range).

2.2.2  |  Give-N

We used a titrated version of Give-N (Wynn, 1990) to assess chil-
dren's N-knower level. The experimenter provided children with 10 
identical plastic objects (e.g., strawberries), and a plate. After fa-
miliarizing the child with the game the experimenter asked them to 
put N items on the plate. When the child finished, the experimenter 
asked, “Is that N? Can you count to make sure?” If the child recog-
nized an error, they were permitted to fix it. If the child succeeded in 
giving N, on the subsequent trial the experimenter asked for N + 1, 
up to the number six. If the child failed to generate a set of N the 
experimenter asked next for N - 1. This pattern of titration continued 
until the child's knower level was identified.

Children were classified as N-knowers (e.g., 3-knower) if they 
correctly provided N (e.g., three strawberries) on at least two out of 
the three trials that N was requested and, when the child provided 
N, two-thirds of the time it was in response to a request for N. To be 
classified as a CP-knower, children needed to correctly generate a 
set of six at least two out of three times when requested. Because 
we could not ensure our sample would have an even distribution 
of N-knowers, our confirmatory analyses collapse over all non-CP-
knowers as “subset-knowers.”

2.2.3  |  Highest count

We used the Highest Count task as a measure of counting expe-
rience beyond the CP stage, as well as to test whether, even in 

the subset stages, count list proficiency might enhance knowledge 
of successor relations between the number words involved in the 
Unit Task. For young children, this measure can reflect differences 
in number language exposure (LeFevre et al., 2002), and has been 
used to assess count list proficiency (Cheung et al., 2017; Chu 
et al., 2020; Davidson et al., 2012; Schneider et al., 2020). The 
experimenter prompted the child by saying, “I want you to count 
as high as you can! Can you start counting with one?” The child's 
Highest Count was the largest number counted to before an error 
(allowing for one error), or the point at which the child could not 
continue. If a child stopped counting, the experimenter prompted 
them once by saying “Do you know what comes next/after N?” If a 
child could not continue, the task was ended. Otherwise, the child 
was able to continue counting.

2.3  |  Results

Our primary question was whether children's Unit Task perfor-
mance was related to their familiarity with specific number words, 
rather than knowledge of the CP. If so, we would predict that (a) 
CP-knowers would perform better on the Unit Task than subset-
knowers (potentially because they are familiar with a larger num-
ber of specific number words), but crucially that (b) subset-knowers 
would perform above chance at trials involving known numbers.

First, consistent with previous work, a generalized linear mixed 
effects model (GLMM1) predicting Unit Task success from CP-
knower status and age with a random intercept of participant indi-
cated a significant effect of CP knowledge (χ2

(1) = 8.29, p =0.004), 
with CP-knowers demonstrating greater Unit Task accuracy 
(M  =0.70) in comparison to subset-knowers (β  =  0.52, p  =0.004; 
M =0.58), as shown in Figure 2. Age was not a significant predictor 
in this model (β = 0.09, p =0.29). Post hoc tests revealed that despite 
overall higher accuracy, CP-knowers were at chance for sets of 5 
(t(23) = −0.72, p =0.48). While some previous studies report higher 
performance for CP-knowers on these small numbers, they tested 
older children than our current sample; in line with our findings, pre-
vious work finds that younger CP-knowers are often at chance for 
small numbers (Cheung et al., 2017; Davidson et al., 2012; Spaepen 
et al., 2018).

We next turned to subset-knowers, exploring whether (despite 
lower performance in comparison to CP-knowers) they could label 
Unit Task addition events for known numbers. To test this, we built 
a null GLMM2 with data from subset-knowers predicting Unit Task 
accuracy. This model indicated that subset-knowers were signifi-
cantly above chance overall (Wald Z  =  3.38, p  =0.0007). A sec-
ond model revealed that this effect was even stronger for trials 
in which the starting number was within subset-knowers’ known 
range (Wald Z = 5.19, p <0.0001), with higher accuracy for known 
items (M  =  0.70) in comparison to unknown items (M  =  0.50). A 
follow-up analysis indicated that subset-knowers’ performance 
for known numbers did not differ from CP-knowers’ (β  = −0.06, 
p =0.79).
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Our classification of trials as within or beyond a child's knower 
level in the above analyses considered only the base addend and 
not the final sum (which allowed the inclusion of one-knowers). As 
a result, the results of some +1 computations exceeded a child's N-
knower level. We thus conducted post hoc tests to explore whether 
subset-knowers’ performance was greater on trials where the final 
result remained within their N-knower level. A third model indicated 
that this was indeed the case: Performance improved when the final 
sum, not just the starting set, was within children's knower level 

(Wald Z = 6.24, p < 0.0001; M = 0.85) Thus, although subset-knowers 
were less accurate on the Unit Task than CP-knowers overall, they 
were above-chance when the majority of numbers queried were 
plausibly within their known number range. Importantly, subset-
knowers’ performance indicates that item-based Unit Task success 
is not dependent on acquisition of the CP.

If such item-specific ability is not dependent on CP acquisition, 
then when does it emerge, and what is its relation to number word 
acquisition? As predicted by Associative Mapping, subset-knowers’ 
Unit Task success is strongly related to their number word knowl-
edge. We further explored this pattern in follow-up analyses testing 
N-knowers’ mean performance for individual items against chance 
(mu  =  0.5). These analyses provide further evidence that subset-
knowers’ Unit Task performance tracked with their N-knower level 
(Figure 3). One-knowers were at chance for all items, as predicted, 
since all trials (even 1 + 1) returned a result outside of their known 
number range (all ps > 0.50). Two-knowers were above chance only 
for sets of 1 (t(17) = 6.65, p <0.0001), and 3-knowers were above 
chance both for sets of 1 (t(13) = 8.83, p <0.0001) and 2 (t(13) = 3.80, 
p  =0.002). Four-knowers were not included in these analyses due 
to their small n. While these analyses are underpowered, they nev-
ertheless support the indication of our confirmatory analyses that 
subset-knowers’ Unit Task success is closely tied to their knowledge 
of specific number words, and that item-based learning begins al-
most as soon as children start to acquire the meanings of number 
words.

We next investigated whether, even in the subset-knower 
stage, this item-specific knowledge could be explained by Structure 
Mapping. We did this by exploring the relationship between the Unit 
Task and Highest Count. Our logic in this analysis was that if children 
succeed on the Unit Task through a Structure Mapping between 
count list successor relations and set operations, then children with 
increased knowledge of these successor relations (as indicated by 

F I G U R E  2 Mean Unit Task performance for each starting set 
size, grouped by CP-knower status. Error bars represent 95% 
confidence intervals, computed by nonparametric bootstrap. 
Dashed line indicates chance performance (50%)

F I G U R E  3 Mean Unit Task performance for all task items by N-knower level. Four-knowers are grouped together with 3-knowers due to 
small n (2). Error bars indicate 95% confidence intervals, computed by nonparametric bootstrap. Dashed line indicates chance performance 
(50%)
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greater Highest Counts) should demonstrate greater Unit Task ac-
curacy. We used Likelihood Ratio Tests to determine whether the 
addition of a Highest Count term explained additional variance in a 
GLMM predicting Unit Task from age for CP and subset-knowers.3 
This analysis indicated that Highest Count was not predictive of Unit 
Task performance for subset-knowers (χ2

(1) = 0.41, p = 0.52) or CP-
knowers (χ2

(1) = 1.60, p =0.21). This provides preliminary evidence 
that changes in count list knowledge do not alone explain changes in 
Unit Task performance during this developmental window.

2.4  |  Discussion

In Experiment 1, we investigated the emergence of item-specific 
Unit Task success in CP- and subset-knowers. Previous work has 
argued that CP acquisition reflects a mapping between the struc-
ture of counting and cardinality and that unlike subset-knowers, 
CP-knowers understand that adding items to a set corresponds to 
counting up in the count list, and vice versa. CP-knowers’ greater 
accuracy on the Unit Task (a task which measures implicit knowl-
edge of this cardinality-count list mapping) in comparison to subset-
knowers’ has been offered in support of this hypothesis.

In Experiment 1, we found several pieces of evidence against 
this account. First, we found that children succeed on the Unit Task 
well before they have acquired the CP: Subset-knowers performed 
above chance for numbers within their knower level. This suggests 
that the ability to label the result of addition operations is learned 
through a continuous process, which begins when children first start 
to learn the meanings of number words, rather than only after CP ac-
quisition. Second, while CP-knowers outperformed subset-knowers, 
this advantage was limited and did not extend to the largest number 
tested (i.e., 5), suggesting that their advantage was one of degree, 
rather than qualitative in nature. Finally, unlike work in older children 
which shows a strong relationship between count list familiarity and 
generalized successor knowledge (Cheung et al., 2017; Schneider 
et al., 2020), we did not find that counting proficiency was related 
to either subset- or CP-knowers’ item-based Unit Task success. 
Together, these results suggest that previously reported differences 
between subset and CP-knowers on the Unit Task are likely attrib-
utable to familiarity with the specific numbers queried, rather than 
qualitative differences in underlying mechanisms.

One key limitation remains in Experiment 1: The Highest Count 
Task, while a good proxy for general exposure to counting, may not be 
the best way to test children's knowledge of count list successor rela-
tions. Thus, by extension, this measure may not be sensitive to whether 
children use a Structure Mapping made between these relations and 
Unit Task set operations. First, much of the variability in the Highest 
Count measure in our study occurred well beyond the small number 
range, making it a poor test of differences in familiarity with smaller 
numbers. Second, the ability to count does not necessarily require a 
recognition that counting is a structured, relational system. Initially, 
children recite numbers as an unbroken chain, only later recognizing 
that numbers are separate entities, but still relying on a memorized 

and unstructured list for several years (Chu et al., 2020; Fuson, 1988; 
Schneider et al., 2020). Given this, subset-knowers and CP-knowers 
who count to similar numbers may nevertheless represent the count 
list differently, and deploy it differently during the Unit Task.

For these reasons, in Experiment 2 we measured children's 
ability to reason about successor relations between numbers in 
the count list using the Next Number task, which asks children to 
count up from arbitrary numbers (e.g., “four, what comes next?”). 
On the Structure Mapping hypothesis, performance on the Unit 
Task involves mappings relations between number words to relations 
between sets. By this account, children who see a set labeled as 
“four” and watch one item added are hypothesized to reason that 
adding 1 item to the set motivates counting up one word in the 
count list, from “four” to “five.” Therefore, any child who deploys 
this mechanism should be able to easily identify the successor of 
implicated numbers - e.g., that the number after “four” in the count 
list is “five” - and thus succeed at the Next Number task. Given this 
logic, we reasoned that if children use Structure Mapping during 
the Unit Task, then either their Next Number performance should 
exceed Unit Task performance, or performance on the two tasks 
should not differ in terms of accuracy. Although we might expect 
lower Next Number performance in comparison to the Unit Task 
due to response format (free response vs. two-alternative forced-
choice), we address this issue by exploring whether performance on 
these tasks differs as a function of CP-knower status, which would 
suggest a difference in numerical knowledge, rather than response 
format. Previous work finds a strong correlation between these two 
tasks among older CP-knowers, and this correlation remains when 
both tasks use an open-ended response format (Schneider, Sullivan, 
Guo, & Barner, 2021).

In contrast, the ability to reason about count list successor re-
lations is not required by Associative Mapping: By this account, 
children update set representations, and then map these updated 
representations directly to associated number words. If children use 
Associative Mapping via direct associations without appeal to count 
list knowledge in the Unit Task, we would expect a weak or absent 
relationship between the Next Number and Unit Task. Additionally, 
this account would predict that it is possible for children to succeed 
on the Unit Task prior to Next Number; for example, children may 
be able to label the result of adding one item to a set of one in the 
Unit Task despite being unable to say what comes after “two” in the 
count list.

3  |  E XPERIMENT 2

3.1  |  Method

The methods and analyses of this study were pre-registered prior to 
any data collection. The pre-registration can be found at https://osf.
io/deqzk/​?view_only=e4962​2708a​21443​8bb09​5f18b​daa8224. All 
methodological and analytical choices were as pre-registered, un-
less stated otherwise in-text.

https://osf.io/deqzk/?view_only=e49622708a214438bb095f18bdaa8224
https://osf.io/deqzk/?view_only=e49622708a214438bb095f18bdaa8224
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3.1.1  |  Participants

We pre-registered a minimum n of 68 participants, with n = 44 subset-
knowers, post-exclusions, and n = 24 CP-knowers, post-exclusions. 
We again attempted to recruit children from all knower levels.

We recruited 107 typically developing English-speaking children 
between the ages of 2 and 4  years of age from local preschools, 
museums, and the surrounding community in San Diego, California, 
USA. Of these, 28 children were tested but excluded from analyses 
as pre-registered due to: failure to complete the minimum number of 
trials in Give-N and the Unit Task (n = 16); lack of any number knowl-
edge (i.e., 0-knowers, n  =  4); outside of age range (n  =  4); experi-
menter error (n = 2); and non-English primary language (n = 1). After 
these exclusions, our final analyzable sample included 73 children (n 
female = 41), shown in Table 2.

3.2  |  Stimuli, design, and procedure

Stimuli and methods were identical to Experiment 1 with two excep-
tions. First, as mentioned above, we tested children's knowledge of 
count list successor relations with the Next Number task. Second, 
to control for the possibility that children succeeded on the Unit 
Task through subitizing the final set, we inserted fish into the bowl 
through a lid with a small slot (rather than removing the lid; this pre-
vented subitizing by preventing children from viewing all items in 
the set at once). Participants received the tasks in a fixed order (Unit 
Task, Next Number, Give-N, and Highest Count).

3.2.1  |  Next number task

The experimenter introduced the task by saying, “Now we're going 
to play a game where I say a number and you tell me what number 
comes next. Ready?” For every number, the experimenter prompted 
the child by saying, “N, what comes next?” The experimenter always 
began the task with 1 and provided feedback to the child if they 
were uncertain as to how they should respond. This first trial was 
excluded from analysis. The numbers in this task overlapped with 
the Unit Task (1–5), with each number tested twice in a pseudo-
randomized order with no feedback.

3.3  |  Results

We first tested whether we replicated our findings from Experiment 
1. We again found that children's CP knowledge explained unique 
variance beyond age in their Unit Task performance (χ2

(1)  =  4.19, 
p =0.04), with significantly higher accuracy for CP-knowers (β = 0.47, 
p =0.04; M = 0.73) in comparison to subset-knowers (M = 0.57). Once 
again, however, subset-knowers were significantly above chance 
overall on the Unit Task (Wald Z = 2.50, p =0.01), and this effect was 
even stronger when the base addend was within their knower level 
(Wald Z  =  3.80, p  =0.0002). As in Experiment 1, follow-up analy-
ses again showed evidence of item-specific knowledge for both CP 
and subset-knowers (Figure 4); while 1-knowers were at chance 
for all items (all ps  >  0.3), 2-knowers were above chance for sets 
of 1 (t(17) = 3.34, p =0.004). In contrast to Experiment 1, we found 
that 3-knowers were only above chance for sets of 1 (t(7) = 2.65, 
p  =0.03), which may be due to the small number of 3-knowers in 
this sample. We again found that, while CP-knowers were more ac-
curate overall, this advantage was limited to sets of 1–3, with chance 
performance for sets of 4 (t(27) = 0.72, p = 0.50) and 5 (t(27) = 1.22, 
p = 0.23). Finally, we again found no relationship between Unit Task 
performance and Highest Count for subset-knowers (χ2

(1)  =  1.18, 
p =0.28) or CP-knowers (χ2

(1) = 1.21, p =0.27).
To test whether CP and subset-knowers succeed in the Unit Task 

by reasoning about count list successor relations, we explored the 
relationship between performance on the Next Number and Unit 
Tasks. If children recruit knowledge of the count list's ordinal struc-
ture in the Unit Task (e.g., by reasoning that adding one item to a set 
of two should be labeled by “three,” the number label one later in 
the count list), we should find either that children perform better on 
Next Number, or exhibit no difference between the two tasks.

We examined this separately in CP and subset-knowers with a 
GLMM4 predicting a correct response on the Unit Task and Next 
Number and controlling for age. Consistent with an Associative 
Mapping account, for subset knowers this model revealed signifi-
cantly lower accuracy on Next Number in comparison to the Unit 
Task (β = −1.21, p <0.0001; M = 0.30), with no advantage for known 
numbers, unlike in the Unit Task (β = −1.48, p <0.0001; M = 0.32), 
as shown in Figure 5. This difference suggests that subset-knowers’ 
ability to label Unit Task addition events is likely not due to reasoning 
about an isomorphism between count list successor relations and set 

TA B L E  2 Demographic information by knower-level for Study 2 for subset- and CP-knowers (bottom). Demographic information for N-knowers 
is reported on the right

n Mage (SDage) n Mage (SDage)

Subset-knowers 45
(n female = 26; n male = 19)

3.13 (0.50) 1-knowers 14 2.98 (0.49)

2-knowers 18 3.23 (0.45)

3-knowers 8 2.84 (0.47)

4-knowers 4 3.56 (0.36)

5-knowers 1 3.92

CP-knowers 28
(n female = 15; n male = 13)

3.69 (0.31)
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operations. However, consistent with previous findings (Schneider 
et al., 2021), in a separate GLMM we found no difference in accuracy 
between these two tasks for CP-knowers (β = 0.33, p =0.11). While 
CP-knowers’ equivalent performance on these tasks is compatible 
with Structure Mapping, given this group's chance performance for 
sets of 4 and 5, and the small size of this effect (d =0.26) it is possi-
ble that such a mapping is fragile at this point in development and 
may not be deployed by all children. Finally, we also conducted a 
follow-up analysis to test whether children's performance on the 
Next Number task predicted Unit Task success for the same item; 
that is, whether children who could say that “three” came after “two” 
were also more likely to succeed for sets of 2 in the Unit Task. We 
conducted this analysis separately in subset- and CP-knowers, using 
a GLMM to predict Unit Task accuracy from Next Number perfor-
mance for the same item, controlling for age, and with a random 

intercept of participant.5 Compatible with the hypothesis that nei-
ther subset- nor CP-knowers were using count list knowledge to 
succeed on the Unit Task, we did not find that Next Number perfor-
mance explained additional variance beyond age in predicting Unit 
Task success for both subset-knowers (χ2

(1) = 2.57, p =0.11) and CP-
knowers (χ2

(1) = 1.57, p =0.21).

3.4  |  Discussion

In Experiment 2 we sought to replicate the results of Experiment 
1 and to further explore the mechanisms through which children 
map the results of set operations in the Unit Task to number labels. 
One possibility is that children accomplish this through a Structure 
Mapping between the count list and cardinality; specifically, that 

F I G U R E  4 Mean accuracy on the Unit Task by set size and knower level. Error bars indicate 95% confidence intervals computed by 
nonparametric bootstrap, and dashed lines indicate chance performance (50%)

F I G U R E  5 Mean accuracy on the Unit and Next Number tasks for each number queried, grouped by knower level. Error bars indicate 
95% confidence intervals computed by nonparametric bootstrap
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adding +1 to a set corresponds to counting-up one item in the count 
list. Such a mechanism hinges on knowledge of relations between 
number words in the count list; in particular, the ability to count up 
from a given number to identify the label of its successor. In contrast, 
the Associative Mapping hypothesis holds that children identify the 
labels of sets by observing the sets and set operations involved in 
the Unit Task directly, then mapping known numeral labels onto 
these magnitude representations. Unlike a Structure Mapping ac-
count, this Associative Mapping mechanism can be deployed inde-
pendently of any knowledge of count list successor relations.

We found two main results. First, compatible with Experiment 
1, we again found that subset-knowers succeeded in the Unit Task 
for small sets within their knower level, and consequently that 
item-specific success on this task emerges before CP acquisition. 
Second, we found that subset-knowers’ item-specific Unit Task suc-
cess was unrelated to their performance on Next Number; that is, 
e.g., a three-knower could correctly infer that adding one item to 
a set of two should be labeled by “three,” but was generally unable 
to answer, “What number comes after two?” Together, these results 
suggest that children's ability to infer the label of Unit Task addition 
events does not initially involve count list knowledge in the sense 
implied by Structural Mapping. Instead, their success is initially facili-
tated by associations between specific number words and small sets.

However, our data are also consistent with the idea that CP-
knowers use Structure Mapping to succeed at the Unit Task: although 
CP-knowers’ Next Number performance did not predict Unit Task 
accuracy, we found no difference in mean performance between 
these two tasks, and greater Unit Task accuracy by CP-knowers in 
comparison to subset-knowers. These findings leave open the pos-
sibility that CP-knowers leverage their greater knowledge of count 
list successor relations to infer the labels of Unit Task set operations. 
However, CP-knowers’ chance performance for the largest numbers 
queried in the Unit Task (i.e., 4 and 5) suggests that if CP-knowers 
do deploy such a Structure Mapping, they do not do so uniformly, 
even when they have adequate knowledge of count list successor 
relations for the cardinalities involved. While we found a relationship 
between Next Number and the Unit Task in CP-knowers, however, 
it is possible that subset-knowers may fail Next Number for reasons 
unrelated to number knowledge. Thus, while our results may indi-
cate some support for Structure Mapping in CP-knowers, but not 
subset-knowers, future studies may find evidence of this mechanism 
in subset-knowers with a more sensitive measure.

In sum, we conclude that early in number word learning, chil-
dren's limited Unit Task success is probably not driven by reasoning 
about count list successor relations (i.e., Structure Mapping). Instead, 
children's success appears to be supported by direct associations be-
tween set representations and verbal labels.

4  |  GENER AL DISCUSSION

One of the most powerful tools a learner wields is the ability to use 
relational structures within one domain to discover and generalize 

abstract concepts in another. To accomplish this, the learner must 
first acquire the relevant structures and then recognize the com-
monalities over which they can posit a Structure Mapping (Gentner, 
2010). Also, they must extend this mapping beyond a few isolated 
examples to induce a generalized principle. Here, we explored 
how such Structure Mapping processes emerge in children within 
a paradigmatic case study of relational learning: symbolic number 
acquisition. While children begin reciting the count list early in de-
velopment, it takes them years to become competent counters. To 
do so, they must ultimately learn that counting up 1 word in the 
count list corresponds to adding 1 item to a set, and vice versa — 
a Structure Mapping sometimes described as implicit successor 
function knowledge (Sarnecka & Carey, 2008). By some accounts 
(Carey, 2004; Gentner, 2010), this mapping allows children to transi-
tion from subset-knowers to CP-knowers: In contrast with subset-
knowers, who are limited to labeling a few sets with known number 
words (i.e., Associative Mapping), CP-knowers can construct and 
label an indefinite number of new sets by simply counting up in the 
count list, and adding one item for every additional numeral.

However, recent empirical work has questioned whether CP 
acquisition implicates Structure Mapping by showing that many 
CP-knowers appear to lack a strong, generalized understanding of 
how counting up is related to changes in cardinality. For example, 
although some CP-knowers can label small sets after a Unit Task ad-
dition event (e.g., judging that a set of “four” becomes “five” after 
adding 1 item), many fail this task even for small numbers, and those 
who succeed often struggle with only modestly larger numbers 
(Cheung et al., 2017; Davidson et al., 2012; Spaepen et al., 2018). 
Such evidence challenges the idea that Structure Mapping under-
lies children's transition to becoming CP-knowers, and suggests that 
such knowledge may emerge much later in acquisition - as late as 
6 years of age (Cheung et al., 2017). These studies raise the possi-
bility that young CP-knowers’ limited Unit Task success relies not on 
Structure Mapping, but instead on a simpler process of Associative 
Mapping, which does not involve reasoning about successor rela-
tions in the count list. If CP-knowers use Associative Mapping, then 
previously reported differences between them and subset-knowers 
on measures that ostensibly target the outputs of Structure Mapping 
(such as the Unit Task) may not be qualitative in nature, but instead 
due to the amount of exposure to specific numbers.

In line with this hypothesis, here we find that even subset-
knowers perform well on the Unit Task when tested with small 
numbers within their known range. In two experiments, Unit Task 
success preceded CP acquisition, and was related to familiarity with 
specific number words: subset-knowers performed significantly 
better than chance, and did so specifically for known numbers 
words. In Experiment 2 we found evidence that this item-specific 
Unit Task success is not initially supported by a Structure Mapping 
that exploits knowledge of successor relations in the count list: Next 
Number performance, which measures knowledge of these succes-
sor relations, was unrelated to Unit Task performance in subset-
knowers, and was only weakly related in CP-knowers. Additionally, 
neither subset- nor CP-knowers’ performance on the Next Number 
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task predicted their Unit Task success. However, Unit Task perfor-
mance was related to knowledge of number words, such that, e.g., 
two-knowers could perform operations that one-knowers could 
not, suggesting that both individual differences and cross-linguistic 
differences in the rate of early number word learning could impact 
children's performance on the Unit Task (e.g., lending an advantage 
to children learning languages with rich number marking, such as 
Arabic or Slovenian; Almoammer et al., 2013; Marušič et al., 2016). 
Together, these findings indicate that, rather than labeling a Unit 
Task set operation by recognizing that adding one item to a set re-
quires counting up a corresponding number in the count list, children 
may initially solve this task through directly mapping known number 
words to set representations. These findings are compatible with 
the hypothesis that such item-specific mappings are based on an 
Associative, rather than Structure, Mapping mechanism, and there-
fore, that the creation of such a Structure Mapping may indeed be 
gradual, and not the basis for CP acquisition.

Although CP-knowers generally outperformed subset-knowers 
on the Unit Task and Next Number, these results do not provide 
strong evidence for the use of a Structure Mapping, even in these 
children. First, the ability to reason about relations between num-
bers - as required by the Next Number task - is necessary for a 
Structure Mapping, but not sufficient. Also needed is the actual 
mapping from these relations between numbers to set operations. 
But more important, in both Experiments 1 and 2, CP-knowers’ Unit 
Task advantage was limited to sets of 1–3, with either lower or at-
chance performance for sets of 4 and 5. Thus, many CP-knowers 
in our sample failed both the Unit Task and the Next Number Task 
for numbers beyond the subset-knower stage, despite being able to 
count and generate larger sets in the Give-N task. This suggests that 
classification as CP-knowers on the Give-N task — and in particular 
the ability to give sets of 5 and 6 — could not have been driven by a 
Structure Mapping, and, therefore, such a mapping cannot explain 
the transition to the CP stage.

Importantly, this lower performance for larger sets persisted 
even when CP-knowers had adequate knowledge of relations be-
tween these number words, as indicated by their performance on 
Next Number. Together, these results suggest that while young 
CP-knowers have greater knowledge of count list successor rela-
tions, they do not initially show evidence of a Structure Mapping 
that extends beyond the small number range. CP-knowers may de-
ploy a Structure Mapping for only small numbers, or may not use a 
Structure Mapping at all, despite having preliminary knowledge of 
how small number words are related. One possibility is that this fail-
ure reflects a general inability to use Structure Mappings at this early 
stage of learning, whether for large numbers or for small ones. In this 
scenario, CP-knowers’ performance might depend exclusively on 
Associative Mappings, both for small numbers (1–3) and for slightly 
larger ones, whether via the use of slightly noisier associations to 
the Approximate Number System, or via the use of chunking strat-
egies that extend the range of parallel individuation (Feigenson & 
Halberda, 2004; Moher et al., 2012). Finally, it remains possible that 
CP-knowers attempt to use Structure Mapping for larger numbers 

but fail due to either limited count list knowledge, or to problems 
coordinating count list knowledge and the set operations involved in 
the Unit Task. Future work should explore the mechanisms underly-
ing CP-knowers’ item-based success for larger numbers.

These results provide key data on an outstanding question in 
children's acquisition of successor function knowledge, namely why 
otherwise competent counters demonstrate a fragmented under-
standing of this principle for years. While initially theorized to be 
acquired in conjunction with the CP (Carey, 2004; Sarnecka & Carey, 
2008), recent evidence has established a more extended timeline 
suggesting generalized successor knowledge is not fully acquired 
until around age 6 (Cheung et al., 2017; Schneider et al., 2020). 
Our results suggest that at least one factor limiting early successor 
knowledge is that it is initially not relational in nature. That is, some 
children appear to pass the Unit Task by mapping the results of set 
operations directly to known number labels, only later discovering 
the Structure Mapping between those operations and counting. 
Such a pattern is consistent with the hypothesis that acquisition of 
the CP marks not a conceptual shift in children's understanding of 
counting and cardinality, but rather simply learning another proce-
dure attached to counting (Barner, 2018; Davidson et al., 2012).

One important conclusion of this study is that children begin 
to use item-based Associative Mappings to compute addition op-
erations early in development, raising the question of whether this 
ability plays a role in the construction of a Structure Mapping. One 
surprising, but informative, aspect of our findings is that young chil-
dren succeed at what is arguably the most difficult precursor to a 
Structure Mapping between counting and cardinality. Specifically, 
even subset-knowers represented small sets under occlusion, up-
dated them after addition events, and associated them with labels. 
This ability represents one half of the Structure Mapping; the other 
half is the ability to identify the successors of number words - e.g., 
that “five” comes after “four.” When combined, these two abilities 
allow children to infer the labels of addition operations by counting 
up in the count list.

Given this, our data suggest that even subset-knowers are 
well on their way to acquiring the conceptual component of the 
Structure Mapping, and are missing only knowledge of (1) rela-
tions between numbers, and (2) how these relations correspond 
to set operations. Our data suggest that knowledge of relations 
between numbers, as tested by the Next Number task, begins to 
emerge sometime after children become CP-knowers. Previous 
data suggest that this learning process continues for several years, 
until children acquire a morphosyntactic rule that allows them to 
combine the numbers from 1–9 with the decades from 20–90 to 
productively generate ever larger numbers, and perhaps to sup-
port the inference that, because numbers are generated by a 
rule, they may continue infinitely (Cheung et al., 2017; Chu et al., 
2020; Schneider et al., 2020). Given this timeline for children's 
acquisition of relations between numbers, the ability to link this 
knowledge to set operations must also emerge gradually after CP 
acquisition. This suggests that the procedures children acquire at 
the CP stage may create new conditions for learning, perhaps by 



12 of 13  |     SCHNEIDER et al.

allowing children to repeatedly notice how counting up is related 
to adding objects to sets. On this hypothesis, procedures may pro-
vide a workspace for conceptual discovery.
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ENDNOTE S
	1	 All GLMMs were fit in R using the ‘lme4’ package (Bates, Martin, 

Maechler, Bolker, & Walker, 2015). 

	2	 Null models were constructed with the formula: Correct ~1 + 
(1|Participant). 

	3	 Because CP-knowers had significantly greater Unit Task performance 
than subset-knowers, we conducted these analyses separately for the 
two groups. 

	4	 Model specifications: Correct ~Task (Unit Task/Next Number) + Age + 
(1|Participant). 

	5	 Model specifications: Unit Task correct ~Next Number correct +Age + 
(1|Participant). 
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