Advances in Mathematics 390 (2021) 107897

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com /locate/aim

MATHEMATICS

On the range of the relative higher index and the )

Check for

higher rho-invariant for positive scalar curvature

Zhizhang Xie®, Guoliang Yu?®, Rudolf Zeidler >

& Texas AEM University, United States of America
P Mathematical Institute, University of Miinster, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 12 December 2019
Received in revised form 25 March
2021

Accepted 27 June 2021

Available online 29 July 2021
Communicated by Dan Voiculescu

Keywords:

Positive scalar curvature
Higher index

Relative index

Index difference

Rho invariant

Spin bordism

Let M be a closed spin manifold which supports a positive
scalar curvature metric. The set of concordance classes of
positive scalar curvature metrics on M forms an abelian group
P(M) after fixing a positive scalar curvature metric. The
group P(M) measures the size of the space of positive scalar
curvature metrics on M. Weinberger and Yu gave a lower
bound of the rank of P(M) in terms of the number of torsion
elements of m1(M). In this paper, we give a sharper lower
bound of the rank of P(M) by studying the image of the
relative higher index map from P(M) to the real K-theory of
the group C*-algebra C} (71 (M)). We show that it rationally
contains the image of the Baum—Connes assembly map up to
a certain homological degree depending on the dimension of
M. At the same time we obtain lower bounds for the positive
scalar curvature bordism group by applying the higher rho-
invariant.

© 2021 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: xieQmath.tamu.edu (Z. Xie), guoliangyu@math.tamu.edu (G. Yu),

math@rzeidler.eu (R. Zeidler).

https://doi.org/10.1016/j.aim.2021.107897

0001-8708/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aim.2021.107897
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2021.107897&domain=pdf
mailto:xie@math.tamu.edu
mailto:guoliangyu@math.tamu.edu
mailto:math@rzeidler.eu
https://doi.org/10.1016/j.aim.2021.107897

2 Z. Xie et al. / Advances in Mathematics 390 (2021) 107897
1. Introduction

Let M be a closed spin manifold. Suppose M carries a positive scalar curvature
metric. The space of all positive scalar curvature metrics on M carries a non-trivial
topology, and is in particular usually highly non-connected. Similarly as in non-existence
results for positive scalar curvature metrics, this non-triviality can be detected through
the index theory of the spinor Dirac operator. This goes back to the secondary index
of Hitchin [14]. Index theoretic methods around positive scalar curvature were later
enriched by Rosenberg to take the K-theory of the C*-algebra of the fundamental group
into account [20].

A conceptual picture of the interplay between positive scalar curvature and the K-
theory of group C*-algebras was established by way of mapping the positive scalar
curvature bordism sequence of Stolz to the analytic surgery sequence, see Piazza and
Schick [19] and Xie and Yu [27], and compare Proposition 2.2 below. This involves two
types of secondary index invariants — the relative higher index which lies in the K-
theory of the group C*-algebra and distinguishes connected components in the space
of positive scalar curvature metrics, and the higher rho-invariant that lies in the an-
alytic structure group and distinguishes bordism classes of positive scalar curvature
metrics. It is a folklore that the image of the higher relative index contains the image
of the Baum—Connes assembly map for torsion-free groups, see for instance [21]. Re-
cently, Ebert and Randal-Williams obtained such results concerning higher homotopy
groups of the space of positive scalar curvature metrics of manifolds with torsion-free
fundamental groups [10]. However, no complete results for general groups with torsion
have been established so far. In particular, since the Baum—Connes conjecture predicts
that non-trivial higher rho-invariants only exist for groups with torsion, there have been
only scarce methods for obtaining positive scalar curvature metrics which can be distin-
guished up to bordism. Nonetheless, we refer to the work of Botvinnik and Gilkey [8]
(which deals with finite groups using numerical relative eta-invariants), and Piazza and
Schick [18] (using the Cheeger-Gromov L? rho-invariant) for some nice positive results
in this direction.

Following Stolz [23], Weinberger and Yu introduced an abelian group structure, de-
noted by P(M), on the set of concordance classes of positive scalar curvature metrics
on M [25]. The group P(M) is closely related to the R-group in the exact sequence of
Stolz and measures some aspects of the size of the space of positive scalar curvature
metrics on M. Weinberger and Yu then used the finite part of K-theory of the maximal
group C*-algebra C,,. (m1(M)) to give a lower bound of the rank of P(M).! Tt follows

max
from considerations with the analytic surgery sequence that the elements in P(M) com-

! Note that the statements in [25] concerning positive scalar curvature in the dimensions 4k+1 are not com-
pletely correct if torsion of even order is involved. This is because of an error in a technical proposition [25,
Proposition 4.4]. For more details and a remedy of this issue, we refer to Theorem 3.2 and Remark 3.3 in
the present article.
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ing from the finite part not only yield different concordance classes but also different
positive scalar curvature bordism classes (compare also [26]).

More recently, under the assumption that 7;(M) satisfies the (rational) strong
Novikov conjecture, Bércenas and Zeidler [3] obtained a sharper lower bound of P(M)
by incorporating group homology classes of degree up to 2. In this paper, under the
same assumption that 71 (M) satisfies the (rational) strong Novikov conjecture, we shall
prove an even sharper lower bound of the rank of P(M) by studying the image of the
relative higher index map from P(M) to the K-theory of the reduced group C*-algebra
Cx(m1(M)). Moreover, this new lower bound incorporates all homology classes up to the
dimension of M. Therefore rationally the entire image of the Baum—Connes assembly
map lies in the image of the relative higher index (if we allow the dimension of M to
vary). This extends to full generality what previously has only been known for torsion-
free groups. At the same time, we obtain lower bounds for the size of the image of the
higher rho-invariant, and thereby establish a rich source of examples of positive scalar
curvature metrics which can be distinguished up to bordism.

The methods in this paper work equally well for the maximal group C*-algebra. The
maximal version will also give similar applications as the ones stated in the paper. For
simplicity, we will only work with the reduced version throughout the paper.

In the following, we will use the universal space for proper actions, denoted by EI', the
universal space for free actions, denoted by EI', and the classifying space BI' = ET'/T.

Now suppose M is a closed spin manifold of dimension n > 5 with m;M = I'. Then
Stolz’ R-group Rfffi (BT") (compare Section 2 below) acts freely and transitively on the
set of concordance classes of positive scalar curvature metrics on M, which is denoted by
7o(RT(M)), see [23, Theorem 1.1]. After choosing a base point gg of 7o(R™(M)), there
is a bijection between R*™ (BT') and 7g(R T (M)). In particular, this bijection introduces

n+1

an abelian group structure on 7o(R*(M)). In fact, it is not difficult to see that R3"™ (BT')
is isomorphic to the group P(M) of Weinberger and Yu (see Section 4).

The relative higher index map
a: R (BT) = P(M) = KOy 41 (CF(T))

takes a positive scalar curvature metric g to the relative higher index Indr(g, go), that is,

the higher index of the Dirac operator on the cylinder M x R, where M x R is equipped

with a Riemannian metric g, + dt* such that g; = go for t < 0 and g, = ¢ for t > 1. It

follows from the relative higher index theorem that « is a group homomorphism. A lower

bound for the rank of the image of o will also serve as a lower bound of the rank of P(M).
The higher rho-invariant is a homomorphism

p: Pos?”™(BI) — SL(ET)

from the positive scalar curvature bordism group (which appears in Stolz’ sequence) to
the analytic structure group (which appears in the analytic surgery sequence). Using
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the comparison diagram between Stolz’ sequence and the analytic surgery sequence (see
Proposition 2.2), one can deduce lower bounds for the image of p from lower bounds for
the image of a.

In order to estimate the size of the image of the relative higher index map «,
we introduce a new bordism group RQZT}’F(EJF,E,) for each pair of proper I-
spaces E_ C E,. Roughly speaking, it is a hybrid of the Stolz’ group Rfffi’r(E_)
and the equivariant spin bordism group Q;‘fiF(EQ It admits a natural higher
index map Indr: RQP®I(E, E_ ) — KO,(C!T), which factors through the rel-
ative higher index map «: Rfff{’F(E,) — KO,41(Ci(T)), see Corollary 2.8 be-
low. In particular, it follows that the image of a contains the image of the map
Indr: RQZPE’F(EF, El') — KO,4+1(C{(T")). As a consequence, we are reduced to studying
the image of Indr: RQfﬁ?’F(EF, El') — KO,,+1(C#(T")). One main theorem of the paper
is to give a lower estimate of the image of this map. To this end, we use the equivariant
delocalized Pontryagin character to identify the K-homology group KOZIZ (EI') ® C with

the following expression in terms of ordinary group homology,

@ Hp+4k (F7 FOF) ©® Hp—2+4k (Fa FlF)a
keZ

where FOT" and F'T denotes the symmetric and anti-symmetric part, respectively, of the
vector space generated by finite order elements of I'; see Section 3.1 for details on this
construction.

Theorem 1.1. Let p € {0,1,2,3} and k > 1. Then the image of the map

Indr: R (ED,ET) @ C — KO, (C;T) @ C

contains

H (@ Happ (0 FOT) @ Hay— o4 (T FlF))

I<k

Here p: KO;E (ET') — KO,(C;T') denotes the real version of the assembly map that
features in the Baum—Connes conjecture [5]. Note that the complex version of the con-
jecture implies the real version [6]. After inverting 2 (in particular, rationally), injectivity
and surjectivity of the complex Baum—Connes assembly map is separately equivalent to
the corresponding statement for the real Baum—Connes assembly map [22]. One key in-
gredient for the proof of the theorem above is the realization of (rational) KO-homology
classes by spin I'-manifolds with appropriate control over their dimensions.

As an application, our new lower bound for the rank of Rfﬁg(BF) = P(M) follows
immediately from the theorem above.
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Corollary 1.2. Let p € {0,1,2,3} and k > 1. Suppose that the Baum—Connes assembly
map p: KOL(ET) — KO, (C*T) is rationally injective. Then the rank of Rty (BT) is
at least the dimension of

D P Hiogsp(T;FT).

<k ge{0,1}

In particular, if dim M =4k 4+ p — 1 > 5, then the same lower bound applies to P(M).

In the presence of upper bounds on the rational homological dimension and surjectivity
of the Baum—Connes assembly map, our method yields surjectivity of the relative index
map:

Corollary 1.3. Let n > 4 and the rational homological dimension of I' be at most n — 3.
Suppose that the Baum—Connes assembly map for T' is rationally surjective. Then the
relative index map «: REP™(BT) — KO,,(C;T') is rationally surjective.

Similar conclusions apply to the positive scalar curvature bordism group:

Corollary 1.4. Let p € {0,1,2,3} and k > 1. Suppose that the Baum—Connes assembly
map p: KOL(ED) — KO, (CIT) is rationally injective. Then the rank of Posypy, 1 (BD)
1s at least the dimension of

P B Huzqp(T;FID).

<k qe{0,1}

Corollary 1.5. Let n > 4 and the rational homological dimension of I be at most n — 3.
Suppose that the Baum—Connes assembly map for I is a rational isomorphism. Then the
higher rho-invariant p: Pos;”"} (BT') — SL_, (ET") is rationally surjective.

Note that even for finite groups and groups of rational homological dimension at most
2, our results above are stronger than what can be obtained from Botvinnik and Gilkey [8]
and Bércenas and Zeidler [3] because our estimates begin in dimension 4, whereas these
previous results only apply to dimension 6 and above.

The principal reason why assumptions on homological dimension are necessary in
order to obtain full surjectivity results is that KO-theory is 8-periodic, whereas the
various bordism groups which appear in Stolz’ sequence are not. However, this can be
remedied by force by introducing Bott periodicity formally. Indeed, let Bt denote the
Bott manifold, that is, an 8-dimensional simply connected spin manifold with A-hat
genus A(Bt) = 1. Then let

x Bt

R3P™(BT) [Bt '] i= colim (R3P™ (BI) <2 R{PA(BL) 225 - ). (1.1)

By Bott periodicity the relative index map induces the stabilized map
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a[Bt™']: RP™(BT) [Bt '] — KO, (CiI). (1.2)
Similarly, there is a Bott-stabilized version of the higher rho-invariant

p[Bt™!]: Pos™™" (BT)[Bt™'] — S,,_1 (ET). (1.3)
Our main results imply:

Corollary 1.6. Suppose that the Baum—Connes assembly map for I is rationally surjec-
tive. Then the stabilized relative index map (1.2) is rationally surjective. If the Baum—
Connes assembly map for T is a rational isomorphism, then the stabilized rho-invariant
(1.3) is also rationally surjective.

However, note that while this stabilization procedure conceptually suggests itself and
is necessary to get a statement as in Corollary 1.6 via our methods, it is not clear that it
is required in principle. Indeed, unlike in the case of the primary index, there is no known
obstruction that would preclude the relative higher index of two positive scalar curvature
metrics from being a K-theory class associated to a K-homology class of a homological
degree higher than the underlying manifold. Neither are there any examples of this kind.
Moreover, in case the Baum—Connes conjecture fails, there is also no a priori reason
why the relative index needs to be in the image of the assembly map. This means that,
while our present results rationally exhaust what is possible through known geometric
constructions together with the Baum—Connes conjecture, it remains a tantalizing open
question whether the space of secondary index invariants associated to positive scalar
curvature contains any more exotic elements.

The paper is organized as follows. In Section 2, we introduce the hybrid bordism
group of Stolz’ R-group and the spin bordism group, and show that its higher index
map factors through the relative higher index map. In Section 3, we show how to realize
(rational) KO-homology classes by spin I'-manifolds with appropriate control over their
dimensions, then apply it to study the image of the higher index map on the hybrid
bordism group introduced in Section 2. We then apply these results to obtain a sharper
lower bound of the rank of Stolz’ R-group and the positive scalar curvature bordism
group. In Section 4, we show that the two definitions of the group of concordance classes
of positive scalar curvature metrics agree.

2. The equivariant positive scalar curvature sequence

In this section, we review the equivariant version of the positive scalar curvature
sequence of Stolz and introduce a new relative group that interpolates between the
equivariant spin bordism group and the non-equivariant version of Stolz” R-group. This
group is the main new conceptual tool developed in the present paper and will be used
in the proof of our main results in Section 3.
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Definition 2.1 (Compare [27, Section 5]). Let T be a discrete group and F a proper I'-
space. Then we have an equivariant version of Stolz’ positive scalar curvature sequence

S RPET(E) & posin T (B) L e T (B) L RPVT(E) -, (2.1)
which is defined in the same way as the standard sequence of Stolz [23] except for replac-
ing compact spin manifolds with proper I'-cocompact spin manifolds, and continuous
maps by I'-equivariant continuous maps, everywhere.

More precisely, QPII(E) consists of -equivariant spin bordism classes of pairs
(M, @), where M is a proper cocompact spin I'-manifold without boundary and ¢: M —
E an equivariant continuous map. The group Posipi“’F(E) consists of equivariant spin
bordism classes of triples (M, ¢,g), where (M, ¢) is as before and g € RT(M)' is a
T-invariant metric of uniformly positive scalar curvature. Here bordisms are required to
be endowed with I'-invariant metrics of uniformly positive scalar curvature which are
collared near the boundaries. Finally, RZT?’F(E) consists of suitable equivariant bordism
classes of triples (W, ¢, g), where W is a proper cocompact spin I'-manifold with bound-
ary, ¢: W — E an equivariant continuous map, and g € R+ (8W)F a I'-invariant metric
of uniformly positive scalar curvature at the boundary. The maps 0, ¢ and j are the
evident forgetful maps.

Proposition 2.2 (/27, Theorem BJ, see also [19,28,29]). There is a map of exact sequences
mapping the equivariant positive scalar curvature sequence to analysis:

QP (E) — R (E) 2 PosPT (B) — QT (B) — R (E)

n—1

lﬁ loz lp lﬁ Ja (22)
KON (E) % KO, (C:T) -2+ SU_ (E) — KOL_,(E) %4 KO,_1(C:T)

Here the bottom horizontal sequence is the real version of the analytic surgery se-
quence of Higson and Roe [11-13], where SL(E) denotes the analytic structure group.

The relevant case in the study of positive scalar curvature on closed manifolds with
fundamental group I' is F = EI'. Therefore we are interested in studying the size of the
image of o and p for E = EI'. However, the Baum—Connes conjecture predicts that in
order to understand KO, (C!T'), we need to consider E = EI" instead. Thus our goal
is to develop a method for lifting data from KO (ET) to R*™"(EI"). To that end, we
construct a new relative bordism group RQSP™I(EL, EI') a la Stolz which comes with a
natural map to both RS™!(El) and QP (ET"). Then our strategy in the next section
is to use the equivariant Chern character to show that data from KOL (ET) can be lifted
to RQSPILT(ET, ET).

Roughly speaking, RQsP™T(ET, ET) consists of proper I'-spin manifolds which are
partitioned by a codimension 1 hypersurface together with a positive scalar curvature
metric on one half and such that the group action is free on the other half. The following
definition makes this precise.
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Definition 2.3. Let I" be a discrete group and EF_ C F, be a pair of proper I'-spaces. We
define a group RQSP™I(E, | E_) of bordism classes as follows:

o Its elements are represented by tuples of the form (W_, W, o¢,¢), where W are
complete spin n-manifolds endowed with a cocompact I'-action and OW, = 0W_ =:
M. Moreover, o4 : Wx — E+ are continuous I'-equivariant maps which agree on M,
and g € RT(W,) is a T-invariant metric of positive scalar curvature (collared near
OW,).

e The tuples (W_,W,, 0%, g) and (WL, W, 0%, g') are bordant if the following holds:
— There exists spin bordisms V¢ between W= and W; which restrict to the same

bordism between M = 0W, = 0W_ and M’ = OW/ = OW'. More precisely, V+
is a spin manifold with corners and its boundary decomposes as OV+ = W= Uy
N Upyp W/i’
— There exist maps S: V& — Ex which restrict to o5 Ll 0% and agree on N.

where N is a spin bordism between M and M’

— There exists a metric h € R* (V) which is collared near the boundary and restricts
togUg on Wy LW,

Definition 2.4. We define the following forgetful maps:

RQinin’F(E—HE—) L> R?zpin’r(E—)v (W—a W+’03F7.g) — (W—,U—,g|6W+)
RQinin’F(EJr’ E*) = Q;pinI(EJr)v (W,, W+, O—:Fvg) = (W, Unm WJrva U J+)

Remark 2.5 (Induction). Let E_ C E be a pair of G-spaces. Let ¢: G — I" be a group
homomorphism such that ker(t) acts freely on E. Then there is an induction map

ind,: ROP™C (B, F_) — RPN xy By T oxy E)

taking a cycle represented by (W_, W, , o+, g) to the cycle represented by (I'x, W_, ' x,
W+, idp XypOF, r Xap g).

Proposition 2.6. Let E_ C E be a pair of proper I'-spaces. Then we have a commutative
diagram:

ROSPT (B, E-) —— RP™I(E-)

! I

Qpmt(Ey) ——— RPH(EL)

Proof. Let z € ROQP™I(E, E_). Then x is represented by a tuple (W_, W, 0+, g) as
in Definition 2.3. Let W := W_ Uy W, denote the proper I'-spin manifold obtained
by gluing together W_ with W, along M := 0W_ = 9W,. This manifold admits a
map ¢ := (too_)Uoy: W — E, where ¢:: E_ — E, denotes the inclusion map.
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w_ W,

W=W_uw,

Fig. 1. The bordism W x [0, 1].

Then i(w(z)) € R$P™T(E,) is represented by the tuple (W, o, ), where () stands for the
“empty metric” (W does not have a boundary). On the other hand, the element ¢..(r(z))
is represented by (W_,c00_,g|nm).

Now we can view W x [0,1] as a bordism between W and W_. To see this, we
interpret one copy of W, inside (W x [0,1]) as a bordism between OW = @ and
OW_ = 0W, = M, and write (W x [0,1]) as the union W U W, Ups W_ (compare
Figure 1). By construction, the positive scalar curvature metric g|p; on OW_ extends to
the I-invariant positive scalar curvature metric g on W.. Moreover, the map (too_)Uo
on W_ UW extends to a map on W x [0, 1] via (p,t) — o(p). Thus we have constructed
a bordism between (W, o, 0) and (W_,t00_,g|p) which witnesses that they represent
the same element of RSPIWY(EL ). This proves i(w(z)) = te(r(x)). O

Remark 2.7. We will apply this construction to F_ = EI' and E; = EI', where we ensure
that EI" is a subspace of EI' by passing to a mapping cylinder if necessary. In this case,
RsPinI(EL) = R5P(BI).

Corollary 2.8. The image of the relative index map a: RSP (BI') — KO, (CiT') contains
the image of the composition

Indr: RQP™T(ED, ET) < 0Pinl(ED) 25 KOT(ET) £ KO, (CIT).

Proof. As a consequence of Proposition 2.6 we obtain the commutative diagram

ROQ:PT(ED, ET) —"— R3P™T(ET) == R;P"(BI)

! I-

QP (ET) —— Ryp™T(ET)

! Fo_

KOL(EI') —*“— KO, (C:T).
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This shows that the composition of maps in the statement of the corollary factors through
the relative index map a: RSP"(BI') — KO, (C:T). O

3. The image of the relative higher index maps

In this section, we prove our main results. We start by reviewing relevant material on
the equivariant delocalized Chern character in Section 3.1. Then we collect statements
for geometrically realizing (equivariant) KO-homology classes in Section 3.2. Finally,
we put these ingredients together to lift equivariant KO-homology classes to the group
ROQP™T(ED, ET) which was defined in Section 2. From this we deduce new quantitative
lower bounds on the rank of Stolz’ groups R$*™(BI') and Pos®P™(BT'). In particular, we
thereby substantially extend earlier results of Botvinnik and Gilkey [8] and Bércenas
and Zeidler [3].

3.1. Chern characters

o

If X is a space, there is the homological Chern character ch: K,(X) ® Q —
Drez Hpr2r(X;Q) for p € {0,1}. Precomposing this with complexification yields the
Pontryagin character ph: KO, (X) ® Q =N DPrez Hprar(X;Q) for p € {0,1,2,3} (using
that real K-homology is rationally 4-periodic). In particular, if I" is a group, we obtain
the Pontryagin character for group homology ph: KOE(EF) ®Q ZKO,BI)®Q N
Dz Hp+ar (5 Q).

Next we turn to the equivariant setting for proper actions. Let FI' be the complex
vector space generated freely by all the finite order elements in I". The action by conjuga-
tion of I' on FT" turns FTI" into a CI'-module. The equivariant delocalized Chern character,
first introduced by Baum and Connes [4], yields an isomorphism

o

chp: K} (ED) ® C — @D Hypor(T;FT),  peZ.
keZ

For technical purposes, we will work with the “handicrafted Chern character” of
Matthey [17, Theorem 1.4]. Moreover, to use it for our applications, we need a real version
of it. We have that FT' = FOT @ FIT, where FII" = {f € FT' | f(v7}) = (=1)f(v)}. Pre-
composing the delocalized equivariant Chern character with the complexification map
KOg(EF) — KJ(ET') yields the equivariant delocalized Pontryagin character (see [3,
Section 2] for more details):

o

ph.: KOy (ET) ® C — (P Hp4s (T FT) © Hyy g4 (T: F'T), p € Z.
keZ
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3.2. Geometric ingredients

Now we state the main ingredients for geometrically realizing KO-homology classes.
The first is a folklore concerning rational homology:

Proposition 3.1. Let X be a space and n > 0. Then H,(X; Q) is generated by Pontryagin
characters of the spin fundamental classes of closed n-dimensional spin manifolds.

Proof. Consider framed bordism, that is, the bordism homology theory of stably paral-
lelizable manifolds. The framed bordism groups of a point are isomorphic to the stable
homotopy groups of spheres by the original Pontryagin—Thom isomorphism. In partic-
ular, the framed bordism homology rationally agrees with ordinary homology. So every
rational homology class can be realized as a rational multiple of a class represented
by a (stably) parallelizable manifold, which is in particular spin. Moreover, if M is a
(stably) parallelizable manifold, then its Pontryagin classes must vanish except in de-
gree 0. Hence the Pontryagin character of its spin fundamental class is the same as its
homological fundamental class. O

The next theorem implies that rationally all information in equivariant KO-homology
coming from the representation theory of finite cyclic groups can be realized by 4- and
6-dimensional equivariant spin manifolds.

Theorem 3.2. Let m > 2, k > 1 and q € {0,1}. The group Kqu/m(*) ® Q is generated
by equivariant indices of compact spin (Z/m)-manifolds of dimension 4k + 2q, where
the action is free outside an invariant submanifold of codimension 4 with trivial normal
bundle.

Remark 3.3. A similar claim was made by Weinberger and Yu in [25, Proposition 4.4]. In
the case ¢ = 0, the statement in [25] essentially agrees with the formulation given here.
However, in the case ¢ = 1 and m an even integer, the original statement of Weinberger
and Yu is not correct. The reason for this is—as we shall discuss in the proof below—
that after inverting the prime 2, the group KOg/ " (%) can be identified with the group
generated by antisymmetric characters on the cyclic group Z/m. For m even, the rank of
this group is actually one less than what is claimed in [25, Proposition 4.4]. This can be
seen most acutely in the case of a cyclic group of order two because Kof/ 2(*) ®Q =0.
Indeed, the example given in the proof of [25, Proposition 4.4] does not work for the
base case m = 2 and so the inductive argument cannot get started for even m. The
arguments given for the other cases (¢ = 0 or m odd) conceivably still work and would
give the correct result but the full details of the equivariant index computation were not
given. To remedy all of this, we provide a new proof here. It is partly inspired by the
construction in [8].
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Proof of Theorem 3.2. In the course of the proof, we will have to relate equivariant real
K-theory to the representation theory of finite groups. In the following, we will give a
brief account of the necessary identifications and computations; for more details we refer
to [9, Chapter 2]. To this end, let H be a finite group and write RO(H), RU(H) and
RSp(H) for the Grothendieck groups of finite dimensional real, complex and quaternionic
representations, respectively. There are complexification maps RO(H) — RU(H) and
RSp(H) — RU(H). In these terms, there are canonical identifications KO (x) = RO(H)
and KO (x) = RU(H)/RSp(H), see for instance [9, Theorem 2.2.12]. After inverting 2
the latter is the same as RU(H)/(1+ ), where 7: RU(H) — RU(H) is the map induced
by complex conjugation. Moreover, after inverting 2 the group RU(H)/(1 + 7) can be
identified with the image of (1 — 7) in RU(H). Similarly, RO(H) can be identified with
the image of (1 + 7). We thus obtain a decomposition

RU(H) H — im(1+ 1) ®im(1 - 7),

where the first summand corresponds to KOg () [3] and the second to KO (x) [3]- Note
that im(1+7) is the subgroup generated by those virtual representations with symmetric
characters and im(1 — 7) is generated by those with antisymmetric characters.

It suffices to prove the proposition for k = 1, that is, produce 4- and 6-dimensional
manifolds. To obtain higher-dimensional examples, we can then simply take products
with copies of the particular Kummer surface V = {[Zy : Z; : Zy : Z3] € CP? |
Z4 + Z{ + Z5 + Z§ = 0} whose index is a generator of KOy4(x), see [15, p. 92].

We start with the case ¢ = 0 and prove the statement by induction on m. Begin with
m = 2. Note that KOOZ/Z(*) ® Q is 2-dimensional. The equivariant index of Z/2 x V,
where the action on V is trivial, corresponds to the left-regular representation of Z /2.
The other generator is obtained as follows. Consider the action of Z/2 by inversion
(21,22, 23,24) — (Z1, 22, 23, 24) on the standard 4-torus T* = {(z1, 20,23,24) € C* |
|z;| = 1}. This action is free outside its 16 fixed points. Using the trivialization of the
tangent bundle via the Lie group structure, one proves that this lifts to an action on
the spinor bundle. The character corresponding to the equivariant index of this manifold
can be computed using the Atiyah—Bott fixed point formula [2, Theorem 8.35]. The signs
that appear in the formula must be the same for each fixed point because the lift of the
action to the spinor bundle was defined using a global trivialization. Hence the character
satisfies x([1]) = —4csc (%) = —4 # 0. Since it is non-trivial at the generator of Z/2,
the representation generates KOOZ/ %(x) ® Q modulo the left-regular representation.

Now let m > 2. The induction hypothesis implies that the subspace Zg C KOOZ/ ") ®
Q generated by those representations that are induced from a proper subgroup is gener-
ated by equivariant indices of 4-dimensional closed spin Z /m-manifolds, where the action

is free outside a finite set of points. To obtain the remaining part of KOOZ/m(*) ® Q, we

construct explicit examples. Set d := m74 if m is odd and d := mT’2 if m is even. For

each k € {1,...,d} that is coprime to m consider the action aj of Z/m on the 4-disk
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D* C C? such that the generator acts by scalar multiplication with et e S c C,
that is, (z1,22) — (e ™ - z1,e m - 23). It is an orientation-preserving isometric action
on the standard disk which, by coprimality, is free outside the fixed point at the ori-
gin. Moreover, the element corresponding to scalar multiplication on C? with e’ m" in
SO(4) has a lift of order m to the double covering Spin(4). To see this, observe that
the map Spin(2) — SO(2) is the double self-covering S — S!. Thus there exists a lift
€ € Spin(2) of """ € SO(2) such that ¢™ = (—1)*. Moreover, recall that Spin(n) can be
identified with a subgroup of the units in the even part of the Clifford algebra Cl,, and
that there are canonical identifications Cl,, ® Cl,,, = Cl,, 4n,, see e.g. [15, Chapter 1].
Then ¢ ® € € Cly ® Cly = Cly represents an element in Spin(4) of order m which lifts the
element in SO(4) represented by multiplication with e’m". Note that in general the lift
to Spin(2) does not have order m and this is why we need to work in dimension four here.
In conclusion, this implies that oy, extends to a spin action of Z/m on D*. In particular,
the lens space obtained as the quotient manifold of the boundary sphere S3/ay, is a spin
manifold with fundamental group Z/m. Since the spin bordism group Q"™ (BZ/m) is a
torsion group, there is an n € N such that |_|!; S?/ay. is spin null-bordant over BZ/m
for each k. Thus there exists a compact spin manifold W}, together with a free spin action
Bi of Z/m such that O(Wy, Br) = 17, (S3, ax). Gluing (W, Bx) along the boundary
to I (D3, ag), we obtain a spin manifold M}, together with a spin Z/m-action which
is free outside the origins of the copies of the disks. We will prove that the equivariant
indices of M}, with ged(k, m) = 1 together with the subspace Z, generate KOOZ/m(*) ®Q
and thereby complete the induction step. Recall that KOOZ/ "(¥) ® Q can be identified
with the group of complex virtual representations whose characters are symmetric. Thus,

by character theory, it suffices to establish the following claim:

Lemma 3.4. The vector space of symmetric functions F°(Z/m) is generated by charac-
ters corresponding to the representations generating Ly and those corresponding to the
equivariant indices of My, where k runs through all elements of {1,...,d} satisfying
ged(k,m) = 1.

Proof of Lemma 3.4. The dimension of F°(Z/m) is equal to d+1 if m is odd and d + 2 if
m is even. It suffices to prove the statement modulo the characters which are supported
on [0],[m/2] € Z/m if m is even, and on [0] € Z/m if m is odd, respectively. This
is because the representations corresponding to such characters lie in Z; anyway. The
remaining characters corresponding to Z, are generated by

xk([1]) := {1 1] = [k, ke{l,...,d},ged(k,m) #1, [l]€Z/m.

0 otherwise,

To deal with the equivariant indices, we use the Atiyah-Bott fixed point formula [2, The-
orem 8.35] again. It implies that the character corresponding to My, where ged(k, m) = 1,
is given by
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wkl

xk([l]) := —= esc? (m) , [lez/m,[l] #0.

The factor n arises because by construction there are n identical fixed points in M.
By symmetry, the values on [1],[2],...,[d] € Z/m determine such a character uniquely
modulo the entries on [0], [m/2] € Z/m (we do not consider the latter if m is odd). Thus,
to prove the lemma, it suffices to establish that the matrix

a1 xa(2) - xa((d)
(1) x2(2) - xa(ld])

A= : :
xa(1) xa(2) .. xa(ld)

is invertible. To that end, first consider k € {1,...,d} with ged(k, m) = 1. Then the k-th
row of the matrix A consists of a permutation of the entries of the first row. Recall that
the first row reads explicitly as follows:

f% (csc2 (%) csc? (%") ... csc? (%)) .

The entry in the k-th row corresponding to csc? (%) occurs in the [-th column, where
l €{1,...,d} is such that kl = £1 mod m. From this we can deduce that the entry
-4 csc? (%) occurs precisely once in each of the columns of A whose column index [
satisfies ged(l,m) = 1. Thus, we can permute the rows of the matrix A in such a way
that the k-th row has —% csc? (Z) on the diagonal position in the case of ged(k,m) = 1
and is equal to the k-th unit vector in the case of ged(k,m) # 1. Denote the matrix
obtained from this row permutation by A.

The Gershgorin circle theorem implies that a matrix is invertible if for each row the
sum of the absolute values of the non-diagonal entries is strictly smaller than the absolute
value of the diagonal entry. We will verify this condition for the matrix A.? Therefore
we will see that A and subsequently A are invertible, thereby finishing the proof of the
lemma. By construction of A, the rows of index k with ged(k,m) # 1 are unit vectors
with 1 on the diagonal position. So, the condition holds trivially in this case. In the case
of ged(k,m) = 1, the Gershgorin condition for the k-th row of A is equivalent to the

inequality

écsé (%) < csc? (%) . (3.1)

To prove (3.1), we make use of the elementary formula

2 The idea for this argument goes back to a comment on the MathOverflow question [16].
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This formula first appeared as a step in an elementary solution to the Basel problem,
see [1, p. 56-57] for this, where (3.2) is proved for m odd. Moreover, angle sum identities
imply that csc(x) + cse(n/2 + ) = 4csc(2x) for 0 < & < /2. If we denote the left-hand
side of (3.2) by Sy, then this implies the recurrence relation Ss,, = 4S5, + 1. As a
consequence of this, (3.2) also holds if m is even.

This implies

Ll w1l modd  m?
chc — ) = 2 < —.
m m”—4 6

—  m even

Thus

2
m s

< 2—2 — csc? (—)
s m

< 2 csc? (1) — csc? <1> = csc? (1) ,
m m m
where we used the elementary estimates 72/2 < 6 and 272 < csc?(z) for x € R\ {0}.
This establishes (3.1) as required. O

The lemma completes the induction step and hence the proof of Theorem 3.2 in the

case ¢ = 0.

Continue with the proof in the case ¢ = 1. We again set d := mT_l if m is odd and
d:= "5 2 if m is even. We will use the following lemma.
Lemma 3.5. Suppose that m > 2 and choose k € {1,...,d}. There exists a 2-dimensional

spin Z /m-manifold such that the character x corresponding to its equivariant index sat-
isfies x([£k]) # 0.

Proof of Lemma 3.5. The order of the subgroup generated by [k] is also strictly larger
than 2 because d < . Thus we can assume without loss of generality that [k] generates
Z/m because otherwise we can induce up from the subgroup generated by it.

As a further preparation, we claim that if there exists a surjective homomorphism
p: Z/m' - Z/m and the lemma is proved for m and all generators [k] of Z/m, then
the lemma also holds for m’ and all generators [k'] of Z/m'. This is because any such
Z /m-manifold with corresponding index character x can be turned into a Z/m/-manifold
with index character Y’ = x o ¢ via the homomorphism ¢. Since ¢ is surjective, it maps
each generator of Z/m’ to a generator of Z/m and the claim follows.

Now, since m > 2, there exists a surjective homomorphism Z/m — Z/4 or a surjective
homomorphism Z/m — Z/r, where r is an odd number. Thus by these preparations it
suffices to prove the lemma for the cases m = 4 and m odd.
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Start with m = 4. The action of Z/2 by inversion on the standard 2-torus lifts to an
action of Z /4 on the spinor bundle which is non-trivial on the generator. The Atiyah—Bott
fixed point formula [2, Theorem 8.35] shows that the corresponding character satisfies
x([k]) = 2icsc (5) = 2i # 0 if [k] is a generator of Z /4.

To deal with an arbitrary odd m, we use an analogous construction as in the induction
step in the case ¢ = 0. That is, consider the action o of Z/m on the 2-disk D? ¢ C
such that the generator acts by multiplication with en . It is an orientation-preserving
isometric action which is free outside the fixed point at the origin. Moreover, e’ € SO(2)
has a lift of order m to Spin(2). Note that here we used that m is odd because in
dimension two this fails for even m. Thus this construction yields a spin action on the
2-disk. Furthermore, by the same argument as before, some number n € N of copies
of the boundary circle is equivariantly null-bordant with a free action. Gluing these
null-bordisms with the disk, we obtain a 2-dimensional spin Z/m-manifold M which
is free outside n identical fixed point. Now the Atiyah-Bott fixed point formula [2,
Theorem 8.35] implies that the character x corresponding to the equivariant index of M
for a generator [k] € Z/m satisfies

To see how Lemma 3.5 implies the claim of Theorem 3.2 in the case ¢ = 1, recall that
Kof/ "(¥) ® Q can be identified with complex virtual representations whose characters
are antisymmetric. Since KOf/ 2(>»<) ® Q = 0, we can assume that m > 2. The space of

antisymmetric functions F!(Z/m) has dimension d and is generated by

xkam:{ﬂ U=EH ey, mez/m.
0 otherwise,

Fix k € {1,...,d}. It follows from the already established case ¢ = 0 that there exist 4-
dimensional spin Z /m-manifolds which are free outside a finite set of fixed points whose
corresponding characters admit a linear combination which is equal to

1 [I] = [*k],

(] € Z/m.
0 otherwise,

Pr([l]) :{

Taking products of these with an example given by Lemma 3.5, yields 6-dimensional
spin Z /m-manifolds whose corresponding characters admit a linear combination which
is equal to a multiple of x. Moreover, these products are free outside a submanifold of
codimension 4 with trivial normal bundle because they are products of 4-dimensional
Z /m-manifolds, which are free outside a submanifold of codimension 4, with arbitrary
2-dimensional Z /m-manifolds. Since the functions xj with & running through {1,...,d}

generate F1(Z/m), we deduce by character theory that KOg/ "(¥) ® Q is generated by
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examples of these types. This concludes the proof of the case ¢ = 1 and thus the proof
of Theorem 3.2. 0O

In the proof of our main result, we will need that the manifolds from Theorem 3.2
can be endowed with an invariant metric of positive scalar curvature in a neighborhood
around the submanifold where the action is non-free. This can be achieved by way of
torpedo metrics:

Definition 3.6. Let DY be the d-disk. A torpedo metric is an O(d)-invariant positive
scalar curvature metric gior € R™ (Dd) which is of product structure near the boundary
0D? = S9-1 agrees with the round metric at the boundary, and near the origin 0 € D¢
agrees with the round hemispheric metric on the disk.

Torpedo metrics are a standard tool in the study of the topology of positive scalar cur-
vature. They always exist if d > 3; for a detailed construction see for instance Walsh [24,
Chapter 1]. We use them in the following:

Proposition 3.7. Let H be a finite group acting on a closed manifold M and N C M an H -
invariant submanifold of codimension d > 3. Then an H -invariant tubular neighborhood
of N can be endowed with an H -invariant metric of positive scalar curvature which is
collared near the boundary.

Proof. Let v — N denote the normal bundle of N in M and start with any H-equivariant
tubular neighborhood embedding v < M. Fix an H-invariant Riemannian metric on IV
and an H-invariant fiberwise Euclidean metric on the normal bundle v and form the
associated unit disk bundle Dv — N. Using the torpedo metric fiberwise (this makes
sense because of O(d)-invariance), we obtain an H-invariant fiberwise Riemannian metric
on Dv — N which is fiberwise collared near the boundary. After choosing an H-invariant
horizontal bundle for Dv — N, we can use these fiberwise metrics to construct an H-
invariant Riemannian metric on Dy, collared near the boundary, which turns the map
Dv — N into a Riemannian submersion. Applying O’Neill’s formulas [7, Chapter 9 D]
after—if necessary—shrinking the fibers, we see that this metric has positive scalar
curvature. O

3.8. Main results

Finally, we prove our main theorem and state its corollaries.

Theorem 3.8. Let p € {0,1,2,3} and k > 1. Then the image of the composition

RO (BN ED) © € 225 QI (Er) © € 255 KO (EN) 0 C

contains
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D Hatsp (T FOT) @ Hyy o4 (15 F'T)
<k

with respect to the equivariant delocalized Pontryagin character.

Proof. By Matthey [17, Theorem 1.3 and Section 7], the complez K-homology group
Kg (ET") ® C is generated by the images of maps of the form

K} EA) @ K (+) ® C —» K} (EI') ® C,
:L‘@yl—)?/J*({E X y)7

where A C T is a subgroup, v € I is an element of some finite order m which commutes
with A, H = (y) 2 Z/m, and ¢: A x H — T is the homomorphism (\,~!) — Ay
As a consequence, using the isomorphism K$®C = (KO ®KO;_,)®C of equivariant
homology theories (see [3, Proposition 2.1]) on both sides and sorting the summands
appropriately, we obtain that KOg (El') @ C is generated by the images of maps of the
form
KO2 ,,(EA) @ KO¥ (x) ® C — KO (EI') ® C,

pP—2q

$®y’—>¢*(x><y),

where ¢ € {0,1} and, as above, A C T' is a subgroup, v € I" is an element of some finite
order m which commutes with A, H = (y) 2 Z/m, 1»: A x H — T is the homomorphism
(A, 7Y = Myl Moreover, it follows from the construction of Matthey’s handicrafted
Chern character [17, Theorem 1.4] that there is a commutative diagram

KOX ,,(EA) @ KO (+) @ € — 2%, KOY(ET) ® C

p—2q
[ [

Drcz Ho2qra0(A; Q) @ Ho(H,FUH) % @),y Hyyap (T; FIT).

To be precise, we again first deduce the complex variant of this from [17, Theorem 1.4]
which, in turn, restrict to the real version via the isomorphism K¢ @ C = (KO &
KO3, ,)®C; see also [3, Proof of Proposition 2.2]. From this diagram we then deduce that
itee KO;},Qq(EA) ®Q with ph(x) € Hy_24141(A; Q) for some [ € Z and y € KOQZq/m(*),
then

ph, (Vu(x X y)) € Hypqai—oq(T; FIT).

Since the (non-equivariant) Pontryagin character for BA and the equivariant Pontryagin
character for H = Z/m are both isomorphisms, this in particular means that the group
Hp441-24(T; FT) is generated by such elements.
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Hence it suffices to show that for all A C T', v € T' as in the previous paragraph
and each ¢ € {0,1}, I < k, the image of 8 o w contains all ¥.(z X y) with ph(z) €
H, 2q141(A; Q) and y € KO ().

By Proposition 3.1, we may assume that there is a closed spin manifold M of dimension
(p—2q+41) and a map o: M — BA with 5.[M]&, = =, where M — M is the A-covering
induced by o. Furthermore, by Theorem 3.2, we can assume that there exists a closed
H = Z/m-manifold N of dimension 4(k —I) + 2¢, which is free outside a submanifold
Ny C N of codimension 4, such that y = p,[N]Z,, where p: N — x.

Let Ny C N be an H-invariant tubular neighborhood of Ny that is endowed with
an H-invariant Riemannian metric of positive scalar curvature g € RT(N,) collared
near the boundary (see Proposition 3.7). Define N_ C N to be the complement of the
interior of Ny. Then N_ is also H-invariant and N is the union of N_ and N,. The
H-action on N_ is free because all non-free points are contained in Ny. Thus there is an
H-equivariant classifying map v_: N_ — EH. Since N, is a disk bundle on which H
acts by orthogonal transformations between the fibers, we can extend the map v_|on_
to an H-equivariant map vy: Ny — Cone(EH) using the fiberwise radius as the cone
coordinate. Here Cone(EH) denotes the cone over EH. Since H is finite, it is a model
for the classifying space EH, and we will use this instead of the one-point space in the
following. Next we choose a A-invariant Riemannian metric g;; on M such that g;; @ g
has uniformly positive scalar curvature (by first finding an arbitrary A-invariant metric
on M and rescaling it if necessary).

Let W4 be the cocompact (4k+p)-dimensional A x H-spin manifold defined as M x N
and let

€= [(W_,W4,6 xve, g5 @ g)] € ROZTV(EA x EH,EA x EH)

If we apply the forgetful map w from Definition 2.4, we obtain

w(€) = o [M]* x v [N € QR (EA x EH),
where v:=v_Uwvy: N=N_UN; — EH = Cone(EH). Thus
(Bow)(€) = . [Mliko x vi[N]flo = = x y e KO} H(EA x EH) ® C. (3.3)
Now consider the induction homomorphism (compare Remark 2.5)

indy: RO (BA x EH,EA x EH) — RO (T %y (BEA x EH,EA x EH)).

Since the T'-action is proper on I' X, (EA x EH) and free on I" x,, (EA x EH), there is
amap f: ' xy (EA x EH,EA x EH) — (ET,ET"). Then we set
= = f.indy(§) € RO (BT, ET)

Finally, (3.3) implies that (8o w)(Z) = .(z X y) € KOE(EF). a
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Corollary 3.9. Let n > 4. If the rational homological dimension of T is at most n — 3,
then the composition

RO (ED ET) & QPnl(ED) — KO (ED)
is rationally surjective.

Corollary 3.10. Let p € {0,1,2,3} and k > 1. Then the image of the relative index map

a®C: RZ%TP(BI‘) ® C = KOui4,(CiT) @ C contains

p ((ph) ™" (244, (T FD)) ) € KO,(CiT) @ €
for each | <k and q € {0,1}.

Corollary 3.11. Let p € {0,1,2,3} and k > 1. Suppose that the Baum—Connes assembly
map p: KOL(ET) — KO, (C*T) is rationally injective. Then the rank of Ry, (BL) is
at least the dimension of

EB @ Hyr—2g4p(T; FT).

I<k qe{0,1}

Corollary 3.12. Let n > 4 and the rational homological dimension of I" be at most n — 3.
Suppose that the real Baum—Connes assembly map for I is rationally surjective. Then
the relative index map a: RSP (BT) — KO,,(CT) is rationally surjective.

We also obtain consequences for the higher rho-invariant by simply applying the
boundary maps in Stolz’ positive scalar curvature sequence and the analytic surgery
sequence of Higson and Roe, respectively. Thus we need to identify the part in equivariant
group homology that goes to zero under the boundary map. To that end, let F{T" := {f €
Fr' | f(1) = 0}. Then F'T' = C @ FJT" and F'I' = F{I.

Lemma 3.13. If the Baum—Connes assembly map is rationally injective, then 8ou0@;1
maps

@ EB Haj—2g+p (I FGT)

leZ qe{0,1}
injectively into the structure group Sg_l(EF) ® C.

Proof. By construction of F{ (¢ € {0,1}), we have split short exact sequences 0 —
H,(T;C) — H,(T; F'T) — H,(T; FIT) — 0 and 0 — 0 — H,(T; F1T) — H,(T; FAT) — 0.
From this we obtain the following commutative diagram, where the top and bottom rows
are exact:
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— T T

@lez H4l+P (F; C) — @leZ @qg{ml} H4l—2q+p(r§ qu) - @lEZ @qe{ﬂ,l} H4l—2q+;ﬂ (F§ Fgr)

r
ET@F

= |phy KO (ED) ® C | opoph
/ \[}4@@ i
KO,(BI)®C —€ , KO,(C;T)® C eC Sh_1(ED) ® C

A straightforward diagram chase implies that the vertical arrow on the right-hand side
must be injective. O

Corollary 3.14. Let p € {0,1,2,3} and k > 1. Suppose that the Baum—Connes assembly
map p: KOL(ED) — KO, (C*T) is rationally injective. Then the rank of Posyyy 1 (BD)
is at least the dimension of

EB @ Haj—2g4p(Ts FGT).

i<k ge{0,1}

Corollary 3.15. Let n > 4 and the rational homological dimension of T be at most n — 3.
Suppose that the real Baum—Connes assembly map for I is a rational isomorphism. Then
P (BT) — SL_ | (ET) is rationally surjective.

the higher rho-invariant p: Pos,

Proof. Rational injectivity of the Baum—Connes assembly map implies rational surjec-
tivity of 9: KO, (C:T) — SL_, (ET). Thus the result follows from Corollary 3.12. O

Finally, we draw conclusions for the Bott stabilized index maps (see (1.1) and (1.2)
in the introduction):

Corollary 3.16. Suppose that the real Baum—Connes assembly map for I' is rationally
surjective. Then the stabilized relative index map

a[Bt™!]: RSPM(BD)[Bt '] — KO, (CIT)
is rationally surjective.
Proof. Corollary 3.10 implies that the image of every equivariant homology class un-
der the Baum—Connes assembly eventually lies in the image of a ® C: RSP™(BT) —
KO, (C:T) for sufficiently large n. Hence the image of every such class lies in the image
of the stabilized relative index map. Thus surjectivity of the Baum—Connes assembly

map implies that every class in KO, (C:T) lies in the image of a[Bt™']. O

For the Bott stabilized higher rho-invariant we conclude as in Corollary 3.15:
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Corollary 3.17. Suppose that the real Baum—Connes assembly map for T is rationally
bijective. Then the stabilized rho-invariant

p[Bt1]: Pos?™™ (BI')[Bt~!] — SL_, (EI)
is rationally surjective.
4. The two definitions of the group of concordance classes

Let 7o(RT(M)) be the set of concordance classes of positive scalar curvature metrics
on a high-dimensional closed spin manifold M. The group R;ﬂifi (BI') acts freely and
transitively on 7o(R*(M)) [23, Theorem 1.1]. After fixing a base-point go € R (M)
this endows 7o(R ™ (M)) with a group structure. Recently, Weinberger and Yu [25] also
defined a group structure on 7o(R*(M)) depending on a base-point go € Rt (M) and
denoted the resulting group by P(M). We show that these two group structures are the
same.

Proposition 4.1. Let M be a closed spin manifold of dimension n > 5 with mM =
I'. Then the group structure induced by the free and transitive action of Rffiri (BT") on
7o(RT(M)) is the same as in the group P(M) of Weinberger and Yu provided that the
same base-point go € RT (M) is used in the definition of both group structures.

Proof. Start with the definition of the action of RP™}(BI) on 7ig(R*(M)) following
Stolz [23, p. 24]: Let

i To(RT(M)) x (R (M)) — R (BL)

be the map which takes a pair of metrics of positive scalar curvature (g,g’) to the
element i(g,g’) of Rfff} (BT) represented by M x [0,1] endowed with the metric g U ¢’
on (M x [0,1]) = M x {0} UM x {1}. Then the action of RZT;(BF) on 7o(RT(M)) is
implicitly defined by the requirement i(g, g’) - [g] = [¢’] for all g, ¢’ € R (M ). Moreover,

i(g,9') +i(g',g") = i(g,9") for all g,¢', g" € RT(M).

The group P(M) of Weinberger and Yu is defined as follows [25, p. 2789]. Let I =
[0,1]. Consider the connected sum (M x I)f(M x I) which we perform away from the
boundaries. Then apply further surgeries to (M x I)f(M x I) to remove the kernel of the
homomorphism

(M x D§(M x 1)) =0 +T — L.

The resulting manifold is the generalized connected sum (M xI)i(M xI). By construction
its fundamental group is T'. Now let g,¢’ € R (M). The boundary of (M xI)j(M x 1) has
four components, two being M and the other two being —M. We put gy on one of the
components M and each of g, ¢’ on one of the two components —M. Then the surgery
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theorem implies that there is a metric of positive scalar curvature h on (M x I)i(M x 1)

extending go U g U ¢’ with product structure near the boundary. Restricting h to the

remaining boundary component M yields a metric of positive scalar curvature g’ €

R*T(M). Finally, the group structure of Weinberger and Yu is defined by [g] +[¢'] := [¢"].
To prove that the group structures agree, we need to show

i(90,9") = i(g0,9) +i(g0,9")

Indeed, let = € Rfff{(BF) be the element represented by (M x I)j(M x I) endowed with
the metric goUgUg"” Ug’ on its boundary 0((M x (M xI)) = MU-MUMU—-M. On
the one hand, since the metric extends to the metric i of positive scalar curvature on all

of (M x I)i(M x I), the element x vanishes in Rfffi(BF). On the other hand, undoing

the surgeries and the connected sum shows that (M x I)i(M x I) is bordant relative
boundary to M x TUM x I. Hence 0 = = = (g0, g) + i(g”, ¢’) and so i(go, 9) = i(g’, g").
We conclude that l(QOag) + i(QOag/) = i(glag//) + i(g(bgl) = i(Qng/I)‘ u
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