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1. Introduction

Let M be a closed spin manifold. Suppose M carries a positive scalar curvature 
metric. The space of all positive scalar curvature metrics on M carries a non-trivial 
topology, and is in particular usually highly non-connected. Similarly as in non-existence 
results for positive scalar curvature metrics, this non-triviality can be detected through 
the index theory of the spinor Dirac operator. This goes back to the secondary index 
of Hitchin [14]. Index theoretic methods around positive scalar curvature were later 
enriched by Rosenberg to take the K-theory of the C∗-algebra of the fundamental group 
into account [20].

A conceptual picture of the interplay between positive scalar curvature and the K-
theory of group C∗-algebras was established by way of mapping the positive scalar 
curvature bordism sequence of Stolz to the analytic surgery sequence, see Piazza and 
Schick [19] and Xie and Yu [27], and compare Proposition 2.2 below. This involves two 
types of secondary index invariants — the relative higher index which lies in the K-
theory of the group C∗-algebra and distinguishes connected components in the space 
of positive scalar curvature metrics, and the higher rho-invariant that lies in the an-
alytic structure group and distinguishes bordism classes of positive scalar curvature 
metrics. It is a folklore that the image of the higher relative index contains the image 
of the Baum–Connes assembly map for torsion-free groups, see for instance [21]. Re-
cently, Ebert and Randal-Williams obtained such results concerning higher homotopy 
groups of the space of positive scalar curvature metrics of manifolds with torsion-free 
fundamental groups [10]. However, no complete results for general groups with torsion 
have been established so far. In particular, since the Baum–Connes conjecture predicts 
that non-trivial higher rho-invariants only exist for groups with torsion, there have been 
only scarce methods for obtaining positive scalar curvature metrics which can be distin-
guished up to bordism. Nonetheless, we refer to the work of Botvinnik and Gilkey [8]
(which deals with finite groups using numerical relative eta-invariants), and Piazza and 
Schick [18] (using the Cheeger-Gromov L2 rho-invariant) for some nice positive results 
in this direction.

Following Stolz [23], Weinberger and Yu introduced an abelian group structure, de-
noted by P (M), on the set of concordance classes of positive scalar curvature metrics 
on M [25]. The group P (M) is closely related to the R-group in the exact sequence of 
Stolz and measures some aspects of the size of the space of positive scalar curvature 
metrics on M . Weinberger and Yu then used the finite part of K-theory of the maximal 
group C∗-algebra C∗

max(π1(M)) to give a lower bound of the rank of P (M).1 It follows 
from considerations with the analytic surgery sequence that the elements in P (M) com-

1 Note that the statements in [25] concerning positive scalar curvature in the dimensions 4k+1 are not com-
pletely correct if torsion of even order is involved. This is because of an error in a technical proposition [25, 
Proposition 4.4]. For more details and a remedy of this issue, we refer to Theorem 3.2 and Remark 3.3 in 
the present article.
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ing from the finite part not only yield different concordance classes but also different 
positive scalar curvature bordism classes (compare also [26]).

More recently, under the assumption that π1(M) satisfies the (rational) strong 
Novikov conjecture, Bárcenas and Zeidler [3] obtained a sharper lower bound of P (M)
by incorporating group homology classes of degree up to 2. In this paper, under the 
same assumption that π1(M) satisfies the (rational) strong Novikov conjecture, we shall 
prove an even sharper lower bound of the rank of P (M) by studying the image of the 
relative higher index map from P (M) to the K-theory of the reduced group C∗-algebra 
C∗

r (π1(M)). Moreover, this new lower bound incorporates all homology classes up to the 
dimension of M . Therefore rationally the entire image of the Baum–Connes assembly 
map lies in the image of the relative higher index (if we allow the dimension of M to 
vary). This extends to full generality what previously has only been known for torsion-
free groups. At the same time, we obtain lower bounds for the size of the image of the 
higher rho-invariant, and thereby establish a rich source of examples of positive scalar 
curvature metrics which can be distinguished up to bordism.

The methods in this paper work equally well for the maximal group C∗-algebra. The 
maximal version will also give similar applications as the ones stated in the paper. For 
simplicity, we will only work with the reduced version throughout the paper.

In the following, we will use the universal space for proper actions, denoted by EΓ, the 
universal space for free actions, denoted by EΓ, and the classifying space BΓ = EΓ/Γ.

Now suppose M is a closed spin manifold of dimension n ≥ 5 with π1M = Γ. Then 
Stolz’ R-group Rspin

n+1(BΓ) (compare Section 2 below) acts freely and transitively on the 
set of concordance classes of positive scalar curvature metrics on M , which is denoted by 
π̃0(R+(M)), see [23, Theorem 1.1]. After choosing a base point g0 of π̃0(R+(M)), there 
is a bijection between Rspin

n+1(BΓ) and π̃0(R+(M)). In particular, this bijection introduces 
an abelian group structure on π̃0(R+(M)). In fact, it is not difficult to see that Rspin

n+1(BΓ)
is isomorphic to the group P (M) of Weinberger and Yu (see Section 4).

The relative higher index map

α : Rspin
n+1(BΓ) = P (M) → KOn+1(C∗

r (Γ))

takes a positive scalar curvature metric g to the relative higher index IndΓ(g, g0), that is, 
the higher index of the Dirac operator on the cylinder M ×R, where M ×R is equipped 
with a Riemannian metric gt + dt2 such that gt = g0 for t ≤ 0 and gt = g for t ≥ 1. It 
follows from the relative higher index theorem that α is a group homomorphism. A lower 
bound for the rank of the image of α will also serve as a lower bound of the rank of P (M).

The higher rho-invariant is a homomorphism

ρ : Posspin
n (BΓ) → SΓ

n(EΓ)

from the positive scalar curvature bordism group (which appears in Stolz’ sequence) to 
the analytic structure group (which appears in the analytic surgery sequence). Using 
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the comparison diagram between Stolz’ sequence and the analytic surgery sequence (see 
Proposition 2.2), one can deduce lower bounds for the image of ρ from lower bounds for 
the image of α.

In order to estimate the size of the image of the relative higher index map α, 
we introduce a new bordism group RΩspin,Γ

n+1 (E+, E−) for each pair of proper Γ-
spaces E− ⊆ E+. Roughly speaking, it is a hybrid of the Stolz’ group Rspin,Γ

n+1 (E−)
and the equivariant spin bordism group Ωspin,Γ

n+1 (E+). It admits a natural higher 
index map IndΓ : RΩspin,Γ

n (E+, E−) → KOn(C∗
r Γ), which factors through the rel-

ative higher index map α : Rspin,Γ
n+1 (E−) → KOn+1(C∗

r (Γ)), see Corollary 2.8 be-
low. In particular, it follows that the image of α contains the image of the map 
IndΓ : RΩspin,Γ

n+1 (EΓ, EΓ) → KOn+1(C∗
r (Γ)). As a consequence, we are reduced to studying 

the image of IndΓ : RΩspin,Γ
n+1 (EΓ, EΓ) → KOn+1(C∗

r (Γ)). One main theorem of the paper 
is to give a lower estimate of the image of this map. To this end, we use the equivariant 
delocalized Pontryagin character to identify the K-homology group KOΓ

p (EΓ) ⊗ C with 
the following expression in terms of ordinary group homology,

⊕
k∈Z

Hp+4k(Γ; F0Γ) ⊕ Hp−2+4k(Γ; F1Γ),

where F0Γ and F1Γ denotes the symmetric and anti-symmetric part, respectively, of the 
vector space generated by finite order elements of Γ; see Section 3.1 for details on this 
construction.

Theorem 1.1. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Then the image of the map

IndΓ : RΩspin,Γ
4k+p (EΓ, EΓ) ⊗ C → KOp(C∗

r Γ) ⊗ C

contains

μ

(⊕
l<k

H4l+p(Γ; F0Γ) ⊕ H4l−2+p(Γ; F1Γ)
)

Here μ : KOΓ
p (EΓ) → KOp(C∗

r Γ) denotes the real version of the assembly map that 
features in the Baum–Connes conjecture [5]. Note that the complex version of the con-
jecture implies the real version [6]. After inverting 2 (in particular, rationally), injectivity 
and surjectivity of the complex Baum–Connes assembly map is separately equivalent to 
the corresponding statement for the real Baum–Connes assembly map [22]. One key in-
gredient for the proof of the theorem above is the realization of (rational) KO-homology 
classes by spin Γ-manifolds with appropriate control over their dimensions.

As an application, our new lower bound for the rank of Rspin
n+1(BΓ) = P (M) follows 

immediately from the theorem above.
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Corollary 1.2. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Suppose that the Baum–Connes assembly 
map μ : KOΓ

∗ (EΓ) → KO∗(C∗
r Γ) is rationally injective. Then the rank of Rspin

4k+p(BΓ) is 
at least the dimension of ⊕

l<k

⊕
q∈{0,1}

H4l−2q+p(Γ; FqΓ).

In particular, if dim M = 4k + p − 1 ≥ 5, then the same lower bound applies to P (M).

In the presence of upper bounds on the rational homological dimension and surjectivity 
of the Baum–Connes assembly map, our method yields surjectivity of the relative index 
map:

Corollary 1.3. Let n ≥ 4 and the rational homological dimension of Γ be at most n − 3. 
Suppose that the Baum–Connes assembly map for Γ is rationally surjective. Then the 
relative index map α : Rspin

n (BΓ) → KOn(C∗
r Γ) is rationally surjective.

Similar conclusions apply to the positive scalar curvature bordism group:

Corollary 1.4. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Suppose that the Baum–Connes assembly 
map μ : KOΓ

∗ (EΓ) → KO∗(C∗
r Γ) is rationally injective. Then the rank of Posspin

4k+p−1(BΓ)
is at least the dimension of ⊕

l<k

⊕
q∈{0,1}

H4l−2q+p(Γ; Fq
0Γ).

Corollary 1.5. Let n ≥ 4 and the rational homological dimension of Γ be at most n − 3. 
Suppose that the Baum–Connes assembly map for Γ is a rational isomorphism. Then the 
higher rho-invariant ρ : Posspin

n−1(BΓ) → SΓ
n−1(EΓ) is rationally surjective.

Note that even for finite groups and groups of rational homological dimension at most 
2, our results above are stronger than what can be obtained from Botvinnik and Gilkey [8]
and Bárcenas and Zeidler [3] because our estimates begin in dimension 4, whereas these 
previous results only apply to dimension 6 and above.

The principal reason why assumptions on homological dimension are necessary in 
order to obtain full surjectivity results is that KO-theory is 8-periodic, whereas the 
various bordism groups which appear in Stolz’ sequence are not. However, this can be 
remedied by force by introducing Bott periodicity formally. Indeed, let Bt denote the 
Bott manifold, that is, an 8-dimensional simply connected spin manifold with A-hat 
genus Â(Bt) = 1. Then let

Rspin
n (BΓ)

[
Bt−1]

:= colim
(

Rspin
n (BΓ) ×Bt−−−→ Rspin

n+8(BΓ) ×Bt−−−→ · · ·
)

. (1.1)

By Bott periodicity the relative index map induces the stabilized map
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α[Bt−1] : Rspin
n (BΓ)

[
Bt−1]

→ KOn(C∗
r Γ). (1.2)

Similarly, there is a Bott-stabilized version of the higher rho-invariant

ρ[Bt−1] : Posspin
n−1(BΓ)[Bt−1] → Sn−1(EΓ). (1.3)

Our main results imply:

Corollary 1.6. Suppose that the Baum–Connes assembly map for Γ is rationally surjec-
tive. Then the stabilized relative index map (1.2) is rationally surjective. If the Baum–
Connes assembly map for Γ is a rational isomorphism, then the stabilized rho-invariant 
(1.3) is also rationally surjective.

However, note that while this stabilization procedure conceptually suggests itself and 
is necessary to get a statement as in Corollary 1.6 via our methods, it is not clear that it 
is required in principle. Indeed, unlike in the case of the primary index, there is no known 
obstruction that would preclude the relative higher index of two positive scalar curvature 
metrics from being a K-theory class associated to a K-homology class of a homological 
degree higher than the underlying manifold. Neither are there any examples of this kind. 
Moreover, in case the Baum–Connes conjecture fails, there is also no a priori reason 
why the relative index needs to be in the image of the assembly map. This means that, 
while our present results rationally exhaust what is possible through known geometric 
constructions together with the Baum–Connes conjecture, it remains a tantalizing open 
question whether the space of secondary index invariants associated to positive scalar 
curvature contains any more exotic elements.

The paper is organized as follows. In Section 2, we introduce the hybrid bordism 
group of Stolz’ R-group and the spin bordism group, and show that its higher index 
map factors through the relative higher index map. In Section 3, we show how to realize 
(rational) KO-homology classes by spin Γ-manifolds with appropriate control over their 
dimensions, then apply it to study the image of the higher index map on the hybrid 
bordism group introduced in Section 2. We then apply these results to obtain a sharper 
lower bound of the rank of Stolz’ R-group and the positive scalar curvature bordism 
group. In Section 4, we show that the two definitions of the group of concordance classes 
of positive scalar curvature metrics agree.

2. The equivariant positive scalar curvature sequence

In this section, we review the equivariant version of the positive scalar curvature 
sequence of Stolz and introduce a new relative group that interpolates between the 
equivariant spin bordism group and the non-equivariant version of Stolz’ R-group. This 
group is the main new conceptual tool developed in the present paper and will be used 
in the proof of our main results in Section 3.
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Definition 2.1 (Compare [27, Section 5]). Let Γ be a discrete group and E a proper Γ-
space. Then we have an equivariant version of Stolz’ positive scalar curvature sequence

· · · → Rspin,Γ
n+1 (E) ∂−→ Posspin,Γ

n (E) q−→ Ωspin,Γ
n (E) j−→ Rspin,Γ

n (E) → · · · , (2.1)

which is defined in the same way as the standard sequence of Stolz [23] except for replac-
ing compact spin manifolds with proper Γ-cocompact spin manifolds, and continuous 
maps by Γ-equivariant continuous maps, everywhere.

More precisely, Ωspin,Γ
n (E) consists of Γ-equivariant spin bordism classes of pairs 

(M, φ), where M is a proper cocompact spin Γ-manifold without boundary and φ : M →
E an equivariant continuous map. The group Posspin,Γ

n (E) consists of equivariant spin 
bordism classes of triples (M, φ, g), where (M, φ) is as before and g ∈ R+(M)Γ is a 
Γ-invariant metric of uniformly positive scalar curvature. Here bordisms are required to 
be endowed with Γ-invariant metrics of uniformly positive scalar curvature which are 
collared near the boundaries. Finally, Rspin,Γ

n+1 (E) consists of suitable equivariant bordism 
classes of triples (W, φ, g), where W is a proper cocompact spin Γ-manifold with bound-
ary, φ : W → E an equivariant continuous map, and g ∈ R+(∂W )Γ a Γ-invariant metric 
of uniformly positive scalar curvature at the boundary. The maps ∂, q and j are the 
evident forgetful maps.

Proposition 2.2 ([27, Theorem B], see also [19,28,29]). There is a map of exact sequences 
mapping the equivariant positive scalar curvature sequence to analysis:

Ωspin,Γ
n (E) Rspin,Γ

n (E) Posspin,Γ
n−1 (E) Ωspin,Γ

n−1 (E) Rspin,Γ
n−1 (E)

KOΓ
n(E) KOn(C∗

r Γ) SΓ
n−1(E) KOΓ

n−1(E) KOn−1(C∗
r Γ)

β

∂

α ρ β α

μ ∂ μ

(2.2)

Here the bottom horizontal sequence is the real version of the analytic surgery se-
quence of Higson and Roe [11–13], where SΓ

∗ (E) denotes the analytic structure group.
The relevant case in the study of positive scalar curvature on closed manifolds with 

fundamental group Γ is E = EΓ. Therefore we are interested in studying the size of the 
image of α and ρ for E = EΓ. However, the Baum–Connes conjecture predicts that in 
order to understand KO∗(C∗

r Γ), we need to consider E = EΓ instead. Thus our goal 
is to develop a method for lifting data from KOΓ

∗ (EΓ) to Rspin,Γ
∗ (EΓ). To that end, we 

construct a new relative bordism group RΩspin,Γ
n (EΓ, EΓ) à la Stolz which comes with a 

natural map to both Rspin,Γ
∗ (EΓ) and Ωspin,Γ

n (EΓ). Then our strategy in the next section 
is to use the equivariant Chern character to show that data from KOΓ

∗ (EΓ) can be lifted 
to RΩspin,Γ

n (EΓ, EΓ).
Roughly speaking, RΩspin,Γ

n (EΓ, EΓ) consists of proper Γ-spin manifolds which are 
partitioned by a codimension 1 hypersurface together with a positive scalar curvature 
metric on one half and such that the group action is free on the other half. The following 
definition makes this precise.
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Definition 2.3. Let Γ be a discrete group and E− ⊆ E+ be a pair of proper Γ-spaces. We 
define a group RΩspin,Γ

n (E+, E−) of bordism classes as follows:

• Its elements are represented by tuples of the form (W−, W+, σ∓, g), where W∓ are 
complete spin n-manifolds endowed with a cocompact Γ-action and ∂W+ = ∂W− =:
M . Moreover, σ∓ : W∓ → E∓ are continuous Γ-equivariant maps which agree on M , 
and g ∈ R+(W+) is a Γ-invariant metric of positive scalar curvature (collared near 
∂W+).

• The tuples (W−, W+, σ∓, g) and (W ′
−, W ′

+, σ′
∓, g′) are bordant if the following holds:

– There exists spin bordisms V∓ between W∓ and W ′
∓ which restrict to the same 

bordism between M = ∂W+ = ∂W− and M ′ = ∂W ′
+ = ∂W ′

−. More precisely, V∓
is a spin manifold with corners and its boundary decomposes as ∂V∓ = W∓ ∪M

N ∪M ′ W ′
∓, where N is a spin bordism between M and M ′

– There exist maps S : V∓ → E∓ which restrict to σ∓ 
 σ′
∓ and agree on N .

– There exists a metric h ∈ R+(V+) which is collared near the boundary and restricts 
to g 
 g′ on W+ 
 W ′

+.

Definition 2.4. We define the following forgetful maps:

RΩspin,Γ
n (E+, E−) r−→ Rspin,Γ

n (E−), (W−, W+, σ∓, g) �→ (W−, σ−, g|∂W+)

RΩspin,Γ
n (E+, E−) ω−→ Ωspin,Γ

n (E+), (W−, W+, σ∓, g) �→ (W− ∪M W+, σ− ∪ σ+)

Remark 2.5 (Induction). Let E− ⊆ E+ be a pair of G-spaces. Let ψ : G → Γ be a group 
homomorphism such that ker(ψ) acts freely on E+. Then there is an induction map

indψ : RΩspin,G
n (E+, E−) → RΩspin,Γ

n (Γ ×ψ E+, Γ ×ψ E−)

taking a cycle represented by (W−, W+, σ∓, g) to the cycle represented by (Γ ×ψW−, Γ ×ψ

W+, idΓ ×ψσ∓, Γ ×ψ g).

Proposition 2.6. Let E− ⊆ E+ be a pair of proper Γ-spaces. Then we have a commutative 
diagram:

RΩspin,Γ
n (E+, E−) Rspin,Γ

n (E−)

Ωspin,Γ
n (E+) Rspin,Γ

n (E+)

r

ω ι∗

i

Proof. Let x ∈ RΩspin,Γ
n (E+, E−). Then x is represented by a tuple (W−, W+, σ±, g) as 

in Definition 2.3. Let W := W− ∪M W+ denote the proper Γ-spin manifold obtained 
by gluing together W− with W+ along M := ∂W− = ∂W+. This manifold admits a 
map σ := (ι ◦ σ−) ∪ σ+ : W → E+, where ι : E− ↪→ E+ denotes the inclusion map. 
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W− M W+

W = W− ∪ W+

Fig. 1. The bordism W × [0, 1].

Then i(ω(x)) ∈ Rspin,Γ
n (E+) is represented by the tuple (W, σ, ∅), where ∅ stands for the 

“empty metric” (W does not have a boundary). On the other hand, the element ι∗(r(x))
is represented by (W−, ι ◦ σ−, g|M ).

Now we can view W × [0, 1] as a bordism between W and W−. To see this, we 
interpret one copy of W+ inside ∂(W × [0, 1]) as a bordism between ∂W = ∅ and 
∂W− = ∂W+ = M , and write ∂(W × [0, 1]) as the union W 
 W+ ∪M W− (compare 
Figure 1). By construction, the positive scalar curvature metric g|M on ∂W− extends to 
the Γ-invariant positive scalar curvature metric g on W+. Moreover, the map (ι ◦σ−) 
σ

on W− 
 W extends to a map on W × [0, 1] via (p, t) �→ σ(p). Thus we have constructed 
a bordism between (W, σ, ∅) and (W−, ι ◦ σ−, g|M ) which witnesses that they represent 
the same element of Rspin,Γ

n (E+). This proves i(ω(x)) = ι∗(r(x)). �
Remark 2.7. We will apply this construction to E− = EΓ and E+ = EΓ, where we ensure 
that EΓ is a subspace of EΓ by passing to a mapping cylinder if necessary. In this case, 
Rspin,Γ

n (EΓ) = Rspin
n (BΓ).

Corollary 2.8. The image of the relative index map α : Rspin
n (BΓ) → KOn(C∗

r Γ) contains 
the image of the composition

IndΓ : RΩspin,Γ
n (EΓ, EΓ) ω−→ Ωspin,Γ

n (EΓ) β−→ KOΓ
n(EΓ) μ−→ KOn(C∗

r Γ).

Proof. As a consequence of Proposition 2.6 we obtain the commutative diagram

RΩspin,Γ
n (EΓ, EΓ) Rspin,Γ

n (EΓ) Rspin
n (BΓ)

Ωspin,Γ
n (EΓ) Rspin,Γ

n (EΓ)

KOΓ
n(EΓ) KOn(C∗

r Γ).

r

ω ι∗

α

i

β α

μ
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This shows that the composition of maps in the statement of the corollary factors through 
the relative index map α : Rspin

n (BΓ) → KOn(C∗
r Γ). �

3. The image of the relative higher index maps

In this section, we prove our main results. We start by reviewing relevant material on 
the equivariant delocalized Chern character in Section 3.1. Then we collect statements 
for geometrically realizing (equivariant) KO-homology classes in Section 3.2. Finally, 
we put these ingredients together to lift equivariant KO-homology classes to the group 
RΩspin,Γ

∗ (EΓ, EΓ) which was defined in Section 2. From this we deduce new quantitative 
lower bounds on the rank of Stolz’ groups Rspin

∗ (BΓ) and Posspin
∗ (BΓ). In particular, we 

thereby substantially extend earlier results of Botvinnik and Gilkey [8] and Bárcenas 
and Zeidler [3].

3.1. Chern characters

If X is a space, there is the homological Chern character ch : Kp(X) ⊗ Q 
∼=−→⊕

k∈Z Hp+2k(X; Q) for p ∈ {0, 1}. Precomposing this with complexification yields the 

Pontryagin character ph: KOp(X) ⊗ Q 
∼=−→

⊕
k∈Z Hp+4k(X; Q) for p ∈ {0, 1, 2, 3} (using 

that real K-homology is rationally 4-periodic). In particular, if Γ is a group, we obtain 

the Pontryagin character for group homology ph: KOΓ
p (EΓ) ⊗ Q ∼= KOp(BΓ) ⊗ Q 

∼=−→⊕
k∈Z Hp+4k(Γ; Q).
Next we turn to the equivariant setting for proper actions. Let FΓ be the complex 

vector space generated freely by all the finite order elements in Γ. The action by conjuga-
tion of Γ on FΓ turns FΓ into a CΓ-module. The equivariant delocalized Chern character, 
first introduced by Baum and Connes [4], yields an isomorphism

chΓ : KΓ
p (EΓ) ⊗ C

∼=−→
⊕
k∈Z

Hp+2k(Γ; FΓ), p ∈ Z.

For technical purposes, we will work with the “handicrafted Chern character” of 
Matthey [17, Theorem 1.4]. Moreover, to use it for our applications, we need a real version 
of it. We have that FΓ = F0Γ ⊕ F1Γ, where FqΓ = {f ∈ FΓ | f(γ−1) = (−1)qf(γ)}. Pre-
composing the delocalized equivariant Chern character with the complexification map 
KOΓ

p (EΓ) → KΓ
p (EΓ) yields the equivariant delocalized Pontryagin character (see [3, 

Section 2] for more details):

phΓ : KOΓ
p (EΓ) ⊗ C

∼=−→
⊕

Hp+4k(Γ; F0Γ) ⊕ Hp−2+4k(Γ; F1Γ), p ∈ Z.

k∈Z
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3.2. Geometric ingredients

Now we state the main ingredients for geometrically realizing KO-homology classes. 
The first is a folklore concerning rational homology:

Proposition 3.1. Let X be a space and n ≥ 0. Then Hn(X; Q) is generated by Pontryagin 
characters of the spin fundamental classes of closed n-dimensional spin manifolds.

Proof. Consider framed bordism, that is, the bordism homology theory of stably paral-
lelizable manifolds. The framed bordism groups of a point are isomorphic to the stable 
homotopy groups of spheres by the original Pontryagin–Thom isomorphism. In partic-
ular, the framed bordism homology rationally agrees with ordinary homology. So every 
rational homology class can be realized as a rational multiple of a class represented 
by a (stably) parallelizable manifold, which is in particular spin. Moreover, if M is a 
(stably) parallelizable manifold, then its Pontryagin classes must vanish except in de-
gree 0. Hence the Pontryagin character of its spin fundamental class is the same as its 
homological fundamental class. �

The next theorem implies that rationally all information in equivariant KO-homology 
coming from the representation theory of finite cyclic groups can be realized by 4- and 
6-dimensional equivariant spin manifolds.

Theorem 3.2. Let m ≥ 2, k ≥ 1 and q ∈ {0, 1}. The group KOZ/m
2q (∗) ⊗ Q is generated 

by equivariant indices of compact spin (Z/m)-manifolds of dimension 4k + 2q, where 
the action is free outside an invariant submanifold of codimension 4 with trivial normal 
bundle.

Remark 3.3. A similar claim was made by Weinberger and Yu in [25, Proposition 4.4]. In 
the case q = 0, the statement in [25] essentially agrees with the formulation given here. 
However, in the case q = 1 and m an even integer, the original statement of Weinberger 
and Yu is not correct. The reason for this is—as we shall discuss in the proof below—
that after inverting the prime 2, the group KOZ/m

2 (∗) can be identified with the group 
generated by antisymmetric characters on the cyclic group Z/m. For m even, the rank of 
this group is actually one less than what is claimed in [25, Proposition 4.4]. This can be 
seen most acutely in the case of a cyclic group of order two because KOZ/2

2 (∗) ⊗ Q = 0. 
Indeed, the example given in the proof of [25, Proposition 4.4] does not work for the 
base case m = 2 and so the inductive argument cannot get started for even m. The 
arguments given for the other cases (q = 0 or m odd) conceivably still work and would 
give the correct result but the full details of the equivariant index computation were not 
given. To remedy all of this, we provide a new proof here. It is partly inspired by the 
construction in [8].
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Proof of Theorem 3.2. In the course of the proof, we will have to relate equivariant real 
K-theory to the representation theory of finite groups. In the following, we will give a 
brief account of the necessary identifications and computations; for more details we refer 
to [9, Chapter 2]. To this end, let H be a finite group and write RO(H), RU(H) and 
RSp(H) for the Grothendieck groups of finite dimensional real, complex and quaternionic 
representations, respectively. There are complexification maps RO(H) → RU(H) and 
RSp(H) → RU(H). In these terms, there are canonical identifications KOH

0 (∗) = RO(H)
and KOH

2 (∗) = RU(H)/RSp(H), see for instance [9, Theorem 2.2.12]. After inverting 2
the latter is the same as RU(H)/(1 + τ), where τ : RU(H) → RU(H) is the map induced 
by complex conjugation. Moreover, after inverting 2 the group RU(H)/(1 + τ) can be 
identified with the image of (1 − τ) in RU(H). Similarly, RO(H) can be identified with 
the image of (1 + τ). We thus obtain a decomposition

RU(H)
[

1
2

]
= im(1 + τ) ⊕ im(1 − τ),

where the first summand corresponds to KOH
0 (∗) 

[1
2
]

and the second to KOH
2 (∗) 

[1
2
]
. Note 

that im(1 +τ) is the subgroup generated by those virtual representations with symmetric 
characters and im(1 − τ) is generated by those with antisymmetric characters.

It suffices to prove the proposition for k = 1, that is, produce 4- and 6-dimensional 
manifolds. To obtain higher-dimensional examples, we can then simply take products 
with copies of the particular Kummer surface V = {[Z0 : Z1 : Z2 : Z3] ∈ CP3 |
Z4

0 + Z4
1 + Z4

2 + Z4
3 = 0} whose index is a generator of KO4(∗), see [15, p. 92].

We start with the case q = 0 and prove the statement by induction on m. Begin with 
m = 2. Note that KOZ/2

0 (∗) ⊗ Q is 2-dimensional. The equivariant index of Z/2 × V , 
where the action on V is trivial, corresponds to the left-regular representation of Z/2. 
The other generator is obtained as follows. Consider the action of Z/2 by inversion 
(z1, z2, z3, z4) �→ (z̄1, ̄z2, ̄z3, ̄z4) on the standard 4-torus T4 = {(z1, z2, z3, z4) ∈ C4 |
|zi| = 1}. This action is free outside its 16 fixed points. Using the trivialization of the 
tangent bundle via the Lie group structure, one proves that this lifts to an action on 
the spinor bundle. The character corresponding to the equivariant index of this manifold 
can be computed using the Atiyah–Bott fixed point formula [2, Theorem 8.35]. The signs 
that appear in the formula must be the same for each fixed point because the lift of the 
action to the spinor bundle was defined using a global trivialization. Hence the character 
satisfies χ([1]) = −4 csc

(
π
2

)
= −4 �= 0. Since it is non-trivial at the generator of Z/2, 

the representation generates KOZ/2
0 (∗) ⊗ Q modulo the left-regular representation.

Now let m > 2. The induction hypothesis implies that the subspace I0 ⊆ KOZ/m
0 (∗) ⊗

Q generated by those representations that are induced from a proper subgroup is gener-
ated by equivariant indices of 4-dimensional closed spin Z/m-manifolds, where the action 
is free outside a finite set of points. To obtain the remaining part of KOZ/m

0 (∗) ⊗ Q, we 
construct explicit examples. Set d := m−1

2 if m is odd and d := m−2
2 if m is even. For 

each k ∈ {1, . . . , d} that is coprime to m consider the action αk of Z/m on the 4-disk 
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D4 ⊂ C2 such that the generator acts by scalar multiplication with e 2πik
m ∈ S1 ⊂ C, 

that is, (z1, z2) �→ (e 2πik
m · z1, e 2πik

m · z2). It is an orientation-preserving isometric action 
on the standard disk which, by coprimality, is free outside the fixed point at the ori-
gin. Moreover, the element corresponding to scalar multiplication on C2 with e 2πik

m in 
SO(4) has a lift of order m to the double covering Spin(4). To see this, observe that 
the map Spin(2) → SO(2) is the double self-covering S1 → S1. Thus there exists a lift 
ε ∈ Spin(2) of e 2πik

m ∈ SO(2) such that εm = (−1)k. Moreover, recall that Spin(n) can be 
identified with a subgroup of the units in the even part of the Clifford algebra Cln and 
that there are canonical identifications Cln1 ⊗̂ Cln2 = Cln1+n2 , see e.g. [15, Chapter 1]. 
Then ε ⊗̂ ε ∈ Cl2 ⊗̂ Cl2 = Cl4 represents an element in Spin(4) of order m which lifts the 
element in SO(4) represented by multiplication with e 2πik

m . Note that in general the lift 
to Spin(2) does not have order m and this is why we need to work in dimension four here. 
In conclusion, this implies that αk extends to a spin action of Z/m on D4. In particular, 
the lens space obtained as the quotient manifold of the boundary sphere S3/αk is a spin 
manifold with fundamental group Z/m. Since the spin bordism group Ωspin

3 (BZ/m) is a 
torsion group, there is an n ∈ N such that 
n

i=1 S3/αk is spin null-bordant over BZ/m

for each k. Thus there exists a compact spin manifold Wk together with a free spin action 
βk of Z/m such that ∂(Wk, βk) = 
n

i=1(S3, αk). Gluing (Wk, βk) along the boundary 
to 
n

i=1(D3, αk), we obtain a spin manifold Mk together with a spin Z/m-action which 
is free outside the origins of the copies of the disks. We will prove that the equivariant 
indices of Mk with gcd(k, m) = 1 together with the subspace I0 generate KOZ/m

0 (∗) ⊗Q

and thereby complete the induction step. Recall that KOZ/m
0 (∗) ⊗ Q can be identified 

with the group of complex virtual representations whose characters are symmetric. Thus, 
by character theory, it suffices to establish the following claim:

Lemma 3.4. The vector space of symmetric functions F0(Z/m) is generated by charac-
ters corresponding to the representations generating I0 and those corresponding to the 
equivariant indices of Mk, where k runs through all elements of {1, . . . , d} satisfying 
gcd(k, m) = 1.

Proof of Lemma 3.4. The dimension of F0(Z/m) is equal to d +1 if m is odd and d +2 if 
m is even. It suffices to prove the statement modulo the characters which are supported 
on [0], [m/2] ∈ Z/m if m is even, and on [0] ∈ Z/m if m is odd, respectively. This 
is because the representations corresponding to such characters lie in I0 anyway. The 
remaining characters corresponding to I0 are generated by

χk([l]) :=
{

1 [l] = [±k],
0 otherwise,

k ∈ {1, . . . , d}, gcd(k, m) �= 1, [l] ∈ Z/m.

To deal with the equivariant indices, we use the Atiyah–Bott fixed point formula [2, The-
orem 8.35] again. It implies that the character corresponding to Mk, where gcd(k, m) = 1, 
is given by
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χk([l]) := −n

4
csc2

(
πkl

m

)
, [l] ∈ Z/m, [l] �= 0.

The factor n arises because by construction there are n identical fixed points in Mk. 
By symmetry, the values on [1], [2], . . . , [d] ∈ Z/m determine such a character uniquely 
modulo the entries on [0], [m/2] ∈ Z/m (we do not consider the latter if m is odd). Thus, 
to prove the lemma, it suffices to establish that the matrix

A =

⎛⎜⎜⎝
χ1([1]) χ1([2]) . . . χ1([d])
χ2([1]) χ2([2]) . . . χ2([d])

...
. . .

...
χd([1]) χd([2]) . . . χd([d])

⎞⎟⎟⎠
is invertible. To that end, first consider k ∈ {1, . . . , d} with gcd(k, m) = 1. Then the k-th 
row of the matrix A consists of a permutation of the entries of the first row. Recall that 
the first row reads explicitly as follows:

−n

4
(

csc2 (
π
m

)
csc2 ( 2π

m

)
. . . csc2 (

dπ
m

))
.

The entry in the k-th row corresponding to csc2 (
π
m

)
occurs in the l-th column, where 

l ∈ {1, . . . , d} is such that kl ≡ ±1 mod m. From this we can deduce that the entry 
−n

4 csc2 (
π
m

)
occurs precisely once in each of the columns of A whose column index l

satisfies gcd(l, m) = 1. Thus, we can permute the rows of the matrix A in such a way 
that the k-th row has −n

4 csc2 (
π
m

)
on the diagonal position in the case of gcd(k, m) = 1

and is equal to the k-th unit vector in the case of gcd(k, m) �= 1. Denote the matrix 
obtained from this row permutation by Ã.

The Gershgorin circle theorem implies that a matrix is invertible if for each row the 
sum of the absolute values of the non-diagonal entries is strictly smaller than the absolute 
value of the diagonal entry. We will verify this condition for the matrix Ã.2 Therefore 
we will see that Ã and subsequently A are invertible, thereby finishing the proof of the 
lemma. By construction of Ã, the rows of index k with gcd(k, m) �= 1 are unit vectors 
with 1 on the diagonal position. So, the condition holds trivially in this case. In the case 
of gcd(k, m) = 1, the Gershgorin condition for the k-th row of Ã is equivalent to the 
inequality

d∑
l=2

csc2
(

lπ

m

)
< csc2

( π

m

)
. (3.1)

To prove (3.1), we make use of the elementary formula

m−1∑
l=1

csc2
(

lπ

m

)
= m2 − 1

3 . (3.2)

2 The idea for this argument goes back to a comment on the MathOverflow question [16].
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This formula first appeared as a step in an elementary solution to the Basel problem, 
see [1, p. 56–57] for this, where (3.2) is proved for m odd. Moreover, angle sum identities 
imply that csc(x) + csc(π/2 + x) = 4 csc(2x) for 0 < x < π/2. If we denote the left-hand 
side of (3.2) by Sm, then this implies the recurrence relation S2m = 4Sm + 1. As a 
consequence of this, (3.2) also holds if m is even.

This implies

d∑
l=1

csc2
(

lπ

m

)
=

{
m2−1

6 m odd
m2−4

6 m even
<

m2

6 .

Thus

d∑
l=2

csc2
(

lπ

m

)
<

m2

6 − csc2
( π

m

)
< 2m2

π2 − csc2
( π

m

)
≤ 2 csc2

( π

m

)
− csc2

( π

m

)
= csc2

( π

m

)
,

where we used the elementary estimates π2/2 < 6 and x−2 ≤ csc2(x) for x ∈ R \ {0}. 
This establishes (3.1) as required. �

The lemma completes the induction step and hence the proof of Theorem 3.2 in the 
case q = 0.

Continue with the proof in the case q = 1. We again set d := m−1
2 if m is odd and 

d := m−2
2 if m is even. We will use the following lemma.

Lemma 3.5. Suppose that m > 2 and choose k ∈ {1, . . . , d}. There exists a 2-dimensional 
spin Z/m-manifold such that the character χ corresponding to its equivariant index sat-
isfies χ([±k]) �= 0.

Proof of Lemma 3.5. The order of the subgroup generated by [k] is also strictly larger 
than 2 because d < m

2 . Thus we can assume without loss of generality that [k] generates 
Z/m because otherwise we can induce up from the subgroup generated by it.

As a further preparation, we claim that if there exists a surjective homomorphism 
ϕ : Z/m′ � Z/m and the lemma is proved for m and all generators [k] of Z/m, then 
the lemma also holds for m′ and all generators [k′] of Z/m′. This is because any such 
Z/m-manifold with corresponding index character χ can be turned into a Z/m′-manifold 
with index character χ′ = χ ◦ ϕ via the homomorphism ϕ. Since ϕ is surjective, it maps 
each generator of Z/m′ to a generator of Z/m and the claim follows.

Now, since m > 2, there exists a surjective homomorphism Z/m � Z/4 or a surjective 
homomorphism Z/m � Z/r, where r is an odd number. Thus by these preparations it 
suffices to prove the lemma for the cases m = 4 and m odd.
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Start with m = 4. The action of Z/2 by inversion on the standard 2-torus lifts to an 
action of Z/4 on the spinor bundle which is non-trivial on the generator. The Atiyah–Bott 
fixed point formula [2, Theorem 8.35] shows that the corresponding character satisfies 
χ([k]) = 2i csc

(
π
2

)
= 2i �= 0 if [k] is a generator of Z/4.

To deal with an arbitrary odd m, we use an analogous construction as in the induction 
step in the case q = 0. That is, consider the action α of Z/m on the 2-disk D2 ⊂ C

such that the generator acts by multiplication with e 2πi
m . It is an orientation-preserving 

isometric action which is free outside the fixed point at the origin. Moreover, e 2πi
m ∈ SO(2)

has a lift of order m to Spin(2). Note that here we used that m is odd because in 
dimension two this fails for even m. Thus this construction yields a spin action on the 
2-disk. Furthermore, by the same argument as before, some number n ∈ N of copies 
of the boundary circle is equivariantly null-bordant with a free action. Gluing these 
null-bordisms with the disk, we obtain a 2-dimensional spin Z/m-manifold M which 
is free outside n identical fixed point. Now the Atiyah–Bott fixed point formula [2, 
Theorem 8.35] implies that the character χ corresponding to the equivariant index of M
for a generator [k] ∈ Z/m satisfies

χ([k]) = ni
2 csc

(
kπ

m

)
�= 0 �

To see how Lemma 3.5 implies the claim of Theorem 3.2 in the case q = 1, recall that 
KOZ/m

2 (∗) ⊗ Q can be identified with complex virtual representations whose characters 
are antisymmetric. Since KOZ/2

2 (∗) ⊗ Q = 0, we can assume that m > 2. The space of 
antisymmetric functions F1(Z/m) has dimension d and is generated by

χk([l]) =
{

±1 [l] = [±k],
0 otherwise,

k ∈ {1, . . . , d}, [l] ∈ Z/m.

Fix k ∈ {1, . . . , d}. It follows from the already established case q = 0 that there exist 4-
dimensional spin Z/m-manifolds which are free outside a finite set of fixed points whose 
corresponding characters admit a linear combination which is equal to

ψk([l]) =
{

1 [l] = [±k],
0 otherwise,

[l] ∈ Z/m.

Taking products of these with an example given by Lemma 3.5, yields 6-dimensional 
spin Z/m-manifolds whose corresponding characters admit a linear combination which 
is equal to a multiple of χk. Moreover, these products are free outside a submanifold of 
codimension 4 with trivial normal bundle because they are products of 4-dimensional 
Z/m-manifolds, which are free outside a submanifold of codimension 4, with arbitrary 
2-dimensional Z/m-manifolds. Since the functions χk with k running through {1, . . . , d}
generate F1(Z/m), we deduce by character theory that KOZ/m

2 (∗) ⊗ Q is generated by 
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examples of these types. This concludes the proof of the case q = 1 and thus the proof 
of Theorem 3.2. �

In the proof of our main result, we will need that the manifolds from Theorem 3.2
can be endowed with an invariant metric of positive scalar curvature in a neighborhood 
around the submanifold where the action is non-free. This can be achieved by way of 
torpedo metrics:

Definition 3.6. Let Dd be the d-disk. A torpedo metric is an O(d)-invariant positive 
scalar curvature metric gtor ∈ R+(Dd) which is of product structure near the boundary 
∂Dd = Sd−1, agrees with the round metric at the boundary, and near the origin 0 ∈ Dd

agrees with the round hemispheric metric on the disk.

Torpedo metrics are a standard tool in the study of the topology of positive scalar cur-
vature. They always exist if d ≥ 3; for a detailed construction see for instance Walsh [24, 
Chapter 1]. We use them in the following:

Proposition 3.7. Let H be a finite group acting on a closed manifold M and N ⊂ M an H-
invariant submanifold of codimension d ≥ 3. Then an H-invariant tubular neighborhood 
of N can be endowed with an H-invariant metric of positive scalar curvature which is 
collared near the boundary.

Proof. Let ν → N denote the normal bundle of N in M and start with any H-equivariant 
tubular neighborhood embedding ν ↪→ M . Fix an H-invariant Riemannian metric on N
and an H-invariant fiberwise Euclidean metric on the normal bundle ν and form the 
associated unit disk bundle Dν → N . Using the torpedo metric fiberwise (this makes 
sense because of O(d)-invariance), we obtain an H-invariant fiberwise Riemannian metric 
on Dν → N which is fiberwise collared near the boundary. After choosing an H-invariant 
horizontal bundle for Dν → N , we can use these fiberwise metrics to construct an H-
invariant Riemannian metric on Dν, collared near the boundary, which turns the map 
Dν → N into a Riemannian submersion. Applying O’Neill’s formulas [7, Chapter 9 D]
after—if necessary—shrinking the fibers, we see that this metric has positive scalar 
curvature. �
3.3. Main results

Finally, we prove our main theorem and state its corollaries.

Theorem 3.8. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Then the image of the composition

RΩspin,Γ
4k+p (EΓ, EΓ) ⊗ C

ω⊗C−−−→ Ωspin,Γ
4k+p (EΓ) ⊗ C

β⊗C−−−→ KOΓ
p (EΓ) ⊗ C

contains
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⊕
l<k

H4l+p(Γ; F0Γ) ⊕ H4l−2+p(Γ; F1Γ)

with respect to the equivariant delocalized Pontryagin character.

Proof. By Matthey [17, Theorem 1.3 and Section 7], the complex K-homology group 
KΓ

p (EΓ) ⊗ C is generated by the images of maps of the form

KΛ
p (EΛ) ⊗ KH

0 (∗) ⊗ C → KΓ
p (EΓ) ⊗ C,

x ⊗ y �→ ψ∗(x × y),

where Λ ⊆ Γ is a subgroup, γ ∈ Γ is an element of some finite order m which commutes 
with Λ, H = 〈γ〉 ∼= Z/m, and ψ : Λ × H → Γ is the homomorphism (λ, γl) �→ λγl.

As a consequence, using the isomorphism K•
∗ ⊗C ∼= (KO•

∗ ⊕KO•
∗+2) ⊗C of equivariant 

homology theories (see [3, Proposition 2.1]) on both sides and sorting the summands 
appropriately, we obtain that KOΓ

p (EΓ) ⊗ C is generated by the images of maps of the 
form

KOΛ
p−2q(EΛ) ⊗ KOH

2q(∗) ⊗ C → KOΓ
p (EΓ) ⊗ C,

x ⊗ y �→ ψ∗(x × y),

where q ∈ {0, 1} and, as above, Λ ⊆ Γ is a subgroup, γ ∈ Γ is an element of some finite 
order m which commutes with Λ, H = 〈γ〉 ∼= Z/m, ψ : Λ ×H → Γ is the homomorphism 
(λ, γl) �→ λγl. Moreover, it follows from the construction of Matthey’s handicrafted 
Chern character [17, Theorem 1.4] that there is a commutative diagram

KOΛ
p−2q(EΛ) ⊗ KOH

2q(∗) ⊗ C KOΓ
p (EΓ) ⊗ C

⊕
k∈Z Hp−2q+4k(Λ;Q) ⊗ H0(H, FqH)

⊕
k∈Z Hp+4k(Γ; FqΓ).

ψ∗◦×

ph ⊗ph
H

phΓ

ψ∗◦×

To be precise, we again first deduce the complex variant of this from [17, Theorem 1.4]
which, in turn, restrict to the real version via the isomorphism K•

∗ ⊗ C ∼= (KO•
∗ ⊕

KO•
∗+2) ⊗C; see also [3, Proof of Proposition 2.2]. From this diagram we then deduce that 

if x ∈ KOΛ
p−2q(EΛ) ⊗Q with ph(x) ∈ Hp−2q+4l(Λ; Q) for some l ∈ Z and y ∈ KOZ/m

2q (∗), 
then

phΓ (ψ∗(x × y)) ∈ Hp+4l−2q(Γ; FqΓ).

Since the (non-equivariant) Pontryagin character for BΛ and the equivariant Pontryagin 
character for H = Z/m are both isomorphisms, this in particular means that the group 
Hp+4l−2q(Γ; FqΓ) is generated by such elements.
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Hence it suffices to show that for all Λ ⊆ Γ, γ ∈ Γ as in the previous paragraph 
and each q ∈ {0, 1}, l < k, the image of β ◦ ω contains all ψ∗(x × y) with ph(x) ∈
Hp−2q+4l(Λ; Q) and y ∈ KOH

2q(∗).
By Proposition 3.1, we may assume that there is a closed spin manifold M of dimension 

(p −2q+4l) and a map σ : M → BΛ with σ̄∗[M̄ ]ΛKO = x, where M̄ → M is the Λ-covering 
induced by σ. Furthermore, by Theorem 3.2, we can assume that there exists a closed 
H = Z/m-manifold N of dimension 4(k − l) + 2q, which is free outside a submanifold 
N0 ⊂ N of codimension 4, such that y = p∗[N ]HKO, where p : N → ∗.

Let N+ ⊂ N be an H-invariant tubular neighborhood of N0 that is endowed with 
an H-invariant Riemannian metric of positive scalar curvature g ∈ R+(N+) collared 
near the boundary (see Proposition 3.7). Define N− ⊂ N to be the complement of the 
interior of N+. Then N− is also H-invariant and N is the union of N− and N+. The 
H-action on N− is free because all non-free points are contained in N0. Thus there is an 
H-equivariant classifying map ν− : N− → EH. Since N+ is a disk bundle on which H
acts by orthogonal transformations between the fibers, we can extend the map ν−|∂N−

to an H-equivariant map ν+ : N+ → Cone(EH) using the fiberwise radius as the cone 
coordinate. Here Cone(EH) denotes the cone over EH. Since H is finite, it is a model 
for the classifying space EH, and we will use this instead of the one-point space in the 
following. Next we choose a Λ-invariant Riemannian metric gM̄ on M̄ such that gM̄ ⊕ g

has uniformly positive scalar curvature (by first finding an arbitrary Λ-invariant metric 
on M̄ and rescaling it if necessary).

Let W± be the cocompact (4k+p)-dimensional Λ ×H-spin manifold defined as M̄×N±
and let

ξ := [(W−, W+, σ̄ × ν±, gM̄ ⊕ g)] ∈ RΩspin,Λ×H
4k+p (EΛ × EH, EΛ × EH)

If we apply the forgetful map ω from Definition 2.4, we obtain

ω(ξ) = σ̄∗[M̄ ]Λ × ν∗[N ]H ∈ Ωspin,Λ×H
4k+p (EΛ × EH),

where ν := ν− ∪ ν+ : N = N− ∪ N+ → EH = Cone(EH). Thus

(β ◦ ω)(ξ) = σ̄∗[M̄ ]ΛKO × ν∗[N ]HKO = x × y ∈ KOΛ×H
p (EΛ × EH) ⊗ C. (3.3)

Now consider the induction homomorphism (compare Remark 2.5)

indψ : RΩspin,Λ×H
4k+p (EΛ × EH, EΛ × EH) → RΩspin,Γ

4k+p (Γ ×ψ (EΛ × EH, EΛ × EH)).

Since the Γ-action is proper on Γ ×ψ (EΛ × EH) and free on Γ ×ψ (EΛ × EH), there is 
a map f : Γ ×ψ (EΛ × EH, EΛ × EH) → (EΓ, EΓ). Then we set

Ξ := f∗ indψ(ξ) ∈ RΩspin,Λ×H
4k+p (EΓ, EΓ)

Finally, (3.3) implies that (β ◦ ω)(Ξ) = ψ∗(x × y) ∈ KOΓ
p (EΓ). �
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Corollary 3.9. Let n ≥ 4. If the rational homological dimension of Γ is at most n − 3, 
then the composition

RΩspin,Γ
n (EΓ, EΓ) ω−→ Ωspin,Γ

n (EΓ) → KOΓ
n(EΓ)

is rationally surjective.

Corollary 3.10. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Then the image of the relative index map 
α ⊗ C : Rspin

4k+p(BΓ) ⊗ C → KO4k+p(C∗
r Γ) ⊗ C contains

μ
(

(phΓ)−1 (H4l−2q+p(Γ; FqΓ))
)

⊆ KOp(C∗
r Γ) ⊗ C

for each l < k and q ∈ {0, 1}.

Corollary 3.11. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Suppose that the Baum–Connes assembly 
map μ : KOΓ

∗ (EΓ) → KO∗(C∗
r Γ) is rationally injective. Then the rank of Rspin

4k+p(BΓ) is 
at least the dimension of ⊕

l<k

⊕
q∈{0,1}

H4l−2q+p(Γ; FqΓ).

Corollary 3.12. Let n ≥ 4 and the rational homological dimension of Γ be at most n − 3. 
Suppose that the real Baum–Connes assembly map for Γ is rationally surjective. Then 
the relative index map α : Rspin

n (BΓ) → KOn(C∗
r Γ) is rationally surjective.

We also obtain consequences for the higher rho-invariant by simply applying the 
boundary maps in Stolz’ positive scalar curvature sequence and the analytic surgery 
sequence of Higson and Roe, respectively. Thus we need to identify the part in equivariant 
group homology that goes to zero under the boundary map. To that end, let Fq

0Γ := {f ∈
Fq

0Γ | f(1) = 0}. Then F0Γ = C ⊕ F0
0Γ and F1Γ = F1

0Γ.

Lemma 3.13. If the Baum–Connes assembly map is rationally injective, then ∂ ◦μ ◦ph−1
Γ

maps ⊕
l∈Z

⊕
q∈{0,1}

H4l−2q+p(Γ; Fq
0Γ)

injectively into the structure group SΓ
p−1(EΓ) ⊗ C.

Proof. By construction of Fq
0 (q ∈ {0, 1}), we have split short exact sequences 0 →

H∗(Γ; C) → H∗(Γ; F0Γ) → H∗(Γ; F0
0Γ) → 0 and 0 → 0 → H∗(Γ; F1Γ) → H∗(Γ; F1

0Γ) → 0. 
From this we obtain the following commutative diagram, where the top and bottom rows 
are exact:
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⊕
l∈Z H4l+p(Γ;C)

⊕
l∈Z

⊕
q∈{0,1} H4l−2q+p(Γ; FqΓ)

⊕
l∈Z

⊕
q∈{0,1} H4l−2q+p(Γ; Fq

0Γ)

KOΓ
p (EΓ) ⊗ C

KOp(BΓ) ⊗ C KOp(C∗
r Γ) ⊗ C SΓ

p−1(EΓ) ⊗ C

∂◦μ◦ph−1
Γ

phΓ
∼=

μ⊗C

phΓ∼=

ν⊗C ∂⊗C

A straightforward diagram chase implies that the vertical arrow on the right-hand side 
must be injective. �
Corollary 3.14. Let p ∈ {0, 1, 2, 3} and k ≥ 1. Suppose that the Baum–Connes assembly 
map μ : KOΓ

∗ (EΓ) → KO∗(C∗
r Γ) is rationally injective. Then the rank of Posspin

4k+p−1(BΓ)
is at least the dimension of

⊕
l<k

⊕
q∈{0,1}

H4l−2q+p(Γ; Fq
0Γ).

Corollary 3.15. Let n ≥ 4 and the rational homological dimension of Γ be at most n − 3. 
Suppose that the real Baum–Connes assembly map for Γ is a rational isomorphism. Then 
the higher rho-invariant ρ : Posspin

n−1(BΓ) → SΓ
n−1(EΓ) is rationally surjective.

Proof. Rational injectivity of the Baum–Connes assembly map implies rational surjec-
tivity of ∂ : KOn(C∗

r Γ) → SΓ
n−1(EΓ). Thus the result follows from Corollary 3.12. �

Finally, we draw conclusions for the Bott stabilized index maps (see (1.1) and (1.2)
in the introduction):

Corollary 3.16. Suppose that the real Baum–Connes assembly map for Γ is rationally 
surjective. Then the stabilized relative index map

α[Bt−1] : Rspin
n (BΓ)[Bt−1] → KOn(C∗

r Γ)

is rationally surjective.

Proof. Corollary 3.10 implies that the image of every equivariant homology class un-
der the Baum–Connes assembly eventually lies in the image of α ⊗ C : Rspin

n (BΓ) →
KOn(C∗

r Γ) for sufficiently large n. Hence the image of every such class lies in the image 
of the stabilized relative index map. Thus surjectivity of the Baum–Connes assembly 
map implies that every class in KO∗(C∗

r Γ) lies in the image of α[Bt−1]. �
For the Bott stabilized higher rho-invariant we conclude as in Corollary 3.15:
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Corollary 3.17. Suppose that the real Baum–Connes assembly map for Γ is rationally 
bijective. Then the stabilized rho-invariant

ρ[Bt−1] : Posspin
n−1(BΓ)[Bt−1] → SΓ

n−1(EΓ)

is rationally surjective.

4. The two definitions of the group of concordance classes

Let π̃0(R+(M)) be the set of concordance classes of positive scalar curvature metrics 
on a high-dimensional closed spin manifold M . The group Rspin

n+1(BΓ) acts freely and 
transitively on π̃0(R+(M)) [23, Theorem 1.1]. After fixing a base-point g0 ∈ R+(M)
this endows π̃0(R+(M)) with a group structure. Recently, Weinberger and Yu [25] also 
defined a group structure on π̃0(R+(M)) depending on a base-point g0 ∈ R+(M) and 
denoted the resulting group by P (M). We show that these two group structures are the 
same.

Proposition 4.1. Let M be a closed spin manifold of dimension n ≥ 5 with π1M =
Γ. Then the group structure induced by the free and transitive action of Rspin

n+1(BΓ) on 
π̃0(R+(M)) is the same as in the group P (M) of Weinberger and Yu provided that the 
same base-point g0 ∈ R+(M) is used in the definition of both group structures.

Proof. Start with the definition of the action of Rspin
n+1(BΓ) on π̃0(R+(M)) following 

Stolz [23, p. 24]: Let

i : π̃0(R+(M)) × π̃0(R+(M)) → Rspin
n+1(BΓ)

be the map which takes a pair of metrics of positive scalar curvature (g, g′) to the 
element i(g, g′) of Rspin

n+1(BΓ) represented by M × [0, 1] endowed with the metric g ∪ g′

on ∂(M × [0, 1]) = M × {0} ∪ M × {1}. Then the action of Rspin
n+1(BΓ) on π̃0(R+(M)) is 

implicitly defined by the requirement i(g, g′) · [g] = [g′] for all g, g′ ∈ R+(M). Moreover, 
i(g, g′) + i(g′, g′′) = i(g, g′′) for all g, g′, g′′ ∈ R+(M).

The group P (M) of Weinberger and Yu is defined as follows [25, p. 2789]. Let I =
[0, 1]. Consider the connected sum (M × I)�(M × I) which we perform away from the 
boundaries. Then apply further surgeries to (M × I)�(M × I) to remove the kernel of the 
homomorphism

π1((M × I)�(M × I)) = Γ ∗ Γ → Γ.

The resulting manifold is the generalized connected sum (M ×I)�(M ×I). By construction 
its fundamental group is Γ. Now let g, g′ ∈ R+(M). The boundary of (M ×I)�(M ×I) has 
four components, two being M and the other two being −M . We put g0 on one of the 
components M and each of g, g′ on one of the two components −M . Then the surgery 
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theorem implies that there is a metric of positive scalar curvature h on (M × I)�(M × I)
extending g0 ∪ g ∪ g′ with product structure near the boundary. Restricting h to the 
remaining boundary component M yields a metric of positive scalar curvature g′′ ∈
R+(M). Finally, the group structure of Weinberger and Yu is defined by [g] +[g′] := [g′′].

To prove that the group structures agree, we need to show

i(g0, g′′) = i(g0, g) + i(g0, g′).

Indeed, let x ∈ Rspin
n+1(BΓ) be the element represented by (M × I)�(M × I) endowed with 

the metric g0 ∪g ∪g′′ ∪g′ on its boundary ∂((M × I)�(M × I)) = M ∪−M ∪M ∪−M . On 
the one hand, since the metric extends to the metric h of positive scalar curvature on all 
of (M × I)�(M × I), the element x vanishes in Rspin

n+1(BΓ). On the other hand, undoing 
the surgeries and the connected sum shows that (M × I)�(M × I) is bordant relative 
boundary to M × I 
 M × I. Hence 0 = x = i(g0, g) + i(g′′, g′) and so i(g0, g) = i(g′, g′′). 
We conclude that i(g0, g) + i(g0, g′) = i(g′, g′′) + i(g0, g′) = i(g0, g′′). �
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