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Generative modeling using samples drawn from the probability distribution constitutes a powerful
approach for unsupervised machine learning. Quantum mechanical systems can produce probability
distributions that exhibit quantum correlations which are difficult to capture using classical models. We
show theoretically that such quantum-inspired correlations provide a powerful resource for generative
modeling. In particular, we provide an unconditional proof of separation in expressive power between a
class of widely used generative models, known as Bayesian networks, and its minimal quantum-inspired
extension. We show that this expressivity enhancement is associated with quantum nonlocality and
quantum contextuality. Furthermore, we numerically test this separation on standard machine-learning
data sets and show that it holds for practical problems. The possibility of quantum-inspired enhancement
demonstrated in this work not only sheds light on the design of useful quantum machine-learning
protocols but also provides inspiration to draw on ideas from quantum foundations to improve purely

classical algorithms.
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L. INTRODUCTION

Over the past three decades, the field of machine learning
has achieved remarkable success. A variety of powerful
models and algorithms have been developed and deployed
for broad applications ranging from computer vision and
natural language processing to autonomous vehicles [1-3].
Unsupervised learning, involving the task of learning from
unlabeled data sets, is among the frontier areas of machine-
learning research. This task is typically much more
challenging than supervised learning. The most common
approach to tackle unsupervised learning problems is
generative modeling, where one attempts to construct
and train models with efficient representations for high-
dimensional probability distributions. One of the most
important aspects of any generative model is its expressive
power, which, together with associated training algorithms,
primarily determines the model performance. Models with
high expressive power can capture complex correlations
in the target probability distribution while upholding the
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standard wisdom of Occam’s razor by keeping the structure
simple (typically corresponding to a simple connectivity
structure or limited number of parameters).

Quantum systems are known to produce complex prob-
ability distributions that are hard to capture with classical
generative models [4-7]. For this reason, quantum models
are believed to be more powerful in tackling unsupervised
learning tasks. Consequently, over the past few years,
quantum machine learning has emerged as a promising
approach to enhance machine-learning performance [8-15].
However, apart from abstract computational complexity
arguments [16-19], any potential quantum advantage in
quantum machine-learning models and its physical origin is
not well understood. Motivated by these considerations, in
this work, we explore the role of quantum correlations
associated with nonlocality and contextuality [20-23], both
of which are known to be the key resource for quantum
advantages in many quantum information processing tasks
[24-28] and are expected to play a role in machine
learning [11].

Specifically, we focus on a class of standard generative
models, known as Bayesian networks, and show that
quantum correlations can be used to achieve provable
separation between such models and their minimal quan-
tum-inspired extension described by a corresponding class
of tensor networks. Focusing on sequential models,
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we compare subclasses of Bayesian networks with the
corresponding 1D tensor networks described by matrix
product states (MPSs) and show that MPSs feature more
expressive power compared to traditional machine-learning
models [29-34]. Since the 1D models can be efficiently
evaluated on a classical computer, we also numerically test
the models on real-world data sets and find an improvement
in generative modeling using MPSs. These results provide
new insights into the power of MPS-based machine-
learning algorithms and open a fruitful direction to use
ideas from quantum foundations to design new quantum
and quantum-inspired machine-learning algorithms.

Our paper is organized as follows. In the next section, we
provide an outline of the main results and discuss their
implications. In Sec. III, we review Bayesian networks
and their quantum circuit interpretation, and introduce our
minimal quantum extension of Bayesian networks and its
relation with tensor networks. In Sec. IV, we prove
separations in expressivity between the two classes of
models in learning sequential data sets. In Sec. V, we give
numerical evidence that this separation often holds not only
in theory but also in practice by showing separations on a
variety of standard machine-learning data sets. Finally, in
Sec. VI, we discuss the implications of our results and
consider future lines of research.

II. SUMMARY OF RESULTS AND THEIR
IMPLICATIONS

Bayesian networks, associated with a class of generative
models based on directed graphs, have a wide range of
applications [35]. Probability distributions described by
Bayesian networks are known to have an equivalent formu-
lation in the computational basis measurements of a class of
quantum circuits known as Bayesian quantum circuits (see
Fig. 1 and Ref. [36]). By extending this class to allow local
measurement beyond the computational basis, we define a
class of quantum-inspired models dubbed BBQCs, which
are a special class of tensor networks that inherit the graph
structure of their corresponding Bayesian networks.

In this work, we construct BBQCs that have uncondi-
tional expressivity separations compared to their classical
counterparts, i.e., Bayesian networks on the same directed
graphs. Instead of requiring an exact representation, we
relax the comparison criterion to allow for any finite error
in the forward and backward Kullback-Leibler (KL)
divergence. This is equivalent to the condition

g(x) =0« p(x)=0, Vx. (1)

where p and g are the two comparison distributions.
However, this error model is still not practical enough;
for instance, when g(x) =0 and p(x) is very small, the
exact KL divergence is infinite. In this paper, we adopt
this error model to obtain rigorous proofs, but we show
numerically that there exists a finite separation in KL

divergence even when, in practical training, g(x) does not
have exact zero probabilities for any x. KL divergence is a
widely used error model in unsupervised machine learning.

As a toy example, we first analyze the implications of
quantum nonlocality for a so-called k-gram model, a very
successful Bayesian network model used in natural lan-
guage processing [see Fig. 1(a)] [37]. In practice, k is
limited to be a constant since the number of model
parameters, and hence the time and space resources, grow
exponentially with k.

We introduce a basis-enhanced 2-gram model, shown in
Fig. 2 (where the left is the BBQC and the right is the
corresponding Bayesian network) and prove that any
k-gram model for k < [(n—1)/2| cannot approximate
its probability distribution under finite KL divergence. The
proof is inspired by the mathematical structure of the
nonlocal correlations present in measuring a Greenberger—
Horne—Zeilinger state (GHZ state) that cannot be described
by local hidden variable models [38]. We extend this
argument to a cluster state where the qubits are measured
either in the X or Y basis. This state can be represented by a
basis-enhanced 2-gram model but not a local hidden
variable model; thus, basis-enhanced 2-gram models
exhibit correlations that share the mathematical structure
of the quantum nonlocality present in the systems. For the
corresponding k-gram model, however, the conditional
probability distribution factorizes and can be described
by a local hidden variable model. This result is summarized
as the following theorem:

Theorem 1. (k-gram models and quantum nonlocality)
There exists a family of basis-enhanced 2-gram models
with generated probability distribution g such that any
classical k-gram models with k = o(n) (where n is the
length of the 2-gram model) cannot approximate g to the
error model in Eq. (1). This separation originates from
quantum-inspired nonlocality present in the basis-enhanced
model that is not present in the classical k-gram model.

We note that quantum-inspired correlations and
quantum-inspired nonlocality (and later, contextuality)
refer to the models that inherit the mathematical structure
of the correlations present in quantum nonlocality and
contextuality, but not the physical scenarios such as space-
like separation; our proofs only rely on the mathematical
properties of these quantum correlations. Since k-gram
models can only capture local correlations, we also inves-
tigate a more expressive class of models, hidden Markov
models [HMMs, shown in Fig. 1(b)], which are widely
used in reinforcement learning and temporal pattern rec-
ognition. HMMs extend k-gram models by introducing
hidden variables as memory to capture long-range corre-
lations, and they are the most generic sequential generative
models, including both feedforward and recurrent neural
networks (given finite precision) as specific instances. We
focus on the HMMs in the so-called translation form, with
input and output regarded as original and target languages,
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Bayesian network and its quantum circuit. (a) k-gram model and its basis enhancement. The leftmost diagram is a 4-gram

model as the transition probability takes the form p(x;|x;_;, x;_3, X;_3), involving four variables. All of the variables are visible. The
middle diagram is a basis-enhanced Bayesian quantum circuit (BBQC). The blue dashed box contains a Bayesian quantum circuit
(BQC) of the corresponding Bayesian network since measuring the output qubits in the computational basis results in the same
probability distribution. The basic elements of BQCs are uniformly controlled gates for which control units and target units are labeled.
The BBQC is a special case of tensor networks. In this case, the BBQC can be written as a MPS as shown in the rightmost diagram.
(b) Hidden Markov model (left) and hidden Markov model for a translation problem (right). Visible variables and hidden variables are
colored in blue and green, respectively. The top and bottom visible units store input and output, respectively. We adopt a dynamical point
of view: The HMM can be understood as a measurement-driven evolution of probability distributions that encode the quantum states at
the tth time step over the hidden variables in the zth virtual bond. (c) Example of a Bayesian network on a general directed graph. A more

detailed discussion can be found in the Appendix B 3.

respectively, as shown in Fig. 1(b). Basis-enhanced ver-
sions of such HMMs correspond to a special instance of
matrix product operators (MPOs). We show that MPOs
exhibit correlations that share the mathematical structure of
quantum contextuality present in the represented quantum
systems. We directly show that the presence of this
correlation gives rise to an expressivity separation between
classical HMMs and their basis-enhanced counterparts.
Specifically, we prove the following theorem:

Theorem 2. (Hidden Markov models and quantum
contextuality) There exists a family of basis-enhanced
2-gram models, with a state space of dimensionality D,
that cannot be approximated, in the sense of Eq. (1), by any
classical hidden Markov models in the translation form
[Fig. 1(b)], with a number of hidden units fewer than

D®(logD) This separation originates from quantum-inspired

contextuality present in the basis-enhanced model that is
not present in the classical HMM.

Here, the quantum-enhanced model is based on a 2-gram
model [Fig. 5(c)], which is a special case of a HMM.
The corresponding quantum circuit representation is shown
in Figs. 5(a) and 5(b), with D = 2", where n is the number
of qubits.

This result can be understood by considering the 1D
structure of the models as a time dimension, as shown in
Fig. 1(b). The state of the HMM (or the corresponding
basis-enhanced 2-gram model) is encoded as a probability
distribution py,, (quantum state [y, )) over the hidden states
of the HMM (virtual bond of the MPO) at the rth time step.
The number of hidden states (bond dimension) corresponds
to the memory of the system, of which the logarithm is the
number of bits (qubits) of memory required to store the
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FIG. 2. (a) Example of a quantum 2-gram model. In this
example, each pair of two qubits (counting from the top)
corresponds to one variable. This BBQC can produce a
(2 + 3)-qubit cluster state and measure each qubit on the cluster
state in either the X or Y basis. For each pair, the first qubit is used
to choose the measurement basis; i.e., if it is measured to be 0, the
second qubit in this pair will be measured in the X basis and
otherwise in the STXS = Y basis. The second qubit is used as the
“physical” qubit in the cluster state. The cluster state can be
extended to be arbitrarily long. Among all pairs, three pairs are
measured respectively in the basis b; with output results s;. In
between the three pairs, there is an odd number of ancillary pairs.
These ancillary pairs are measured in the X basis with outputs
postselected to be (. There is a nonzero probability of getting a

string that satisfies the constraint in Eq. (5). (b) Corresponding
2-gram model.

state of the system. The inputs and outputs are different
measurement bases and measurement results, respec-
tively. In order to simulate the quantum process, the
HMM should have enough memory of the previous
measurement basis and measurement results to predict
future behavior. Within this picture, the translation form
of HMMs is essentially equivalent to hidden variable
models (also called noncontextual ontological models)
[39-41]. Quantum contextuality formalizes the phenome-
non that a measurement result of an observable should
depend on which commuting observable set (known as a
context) the observable belongs to in the given measure-
ment scenario. However, since there are many different
commuting sets that include this observable and there is
no consistent preset assignments to all the observables
(which is the key to contextuality), when it is measured, a
hidden variable must memorize which context this
observable belongs to in any given measurement sce-
nario. A well-known example of contextuality is asso-
ciated with the Mermin-Peres magic square [42,43]. Our
proof strategy for Theorem 2 relies on showing that
Mermin-Peres magic squares are very common in stabi-
lizer states [44], and we use that feature to find a lower
bound on the number of hidden states needed to accu-
rately represent stabilizer measurements.

Finally, we evaluate the relative performance of BBQCs
and Bayesian networks on standard machine-learning data
sets. We focus on the relative performance of HMMs
and their basis-enhanced counterparts, but here we use the
general HMM graph structure in Fig. 1(b). As basis-
enhanced HMMs are a special case of MPSs, we are able
to evaluate the expressive performance of both HMMSs and
basis-enhanced HMMs efficiently on a classical computer.
Specifically, we evaluate both models on the biofam data
set [45,46], which is known to be well modeled by a simple
2-gram model. Additionally, we evaluate both models
on the more difficult SPECT Heart and Promoter Gene
Sequences data sets [47]. We find that the basis-enhanced
HMM outperforms the HMM on both the training and
testing data for both the SPECT Heart and Promoter Gene
Sequences data sets and that it achieves comparable
performance on the control biofam data set. These results
are summarized in Fig. 7. In addition, we perform a
likelihood-ratio test on the goodness of fits of the two
models; this measures the statistical significance of the
expressivity gap of the two models, accounting for the
potential overfitting of the basis-enhanced model due to it
having more parameters. We show that the improvement
in KL divergence of the basis-enhanced HMM over the
HMM is statistically significant on the SPECT Heart and
Promoter Gene Sequences data sets to a confidence of
greater than 5¢. These results are summarized in Fig. 8.

Our results have important implications for developing
both classical and quantum machine-learning methods.
Although the source of the advantage mechanisms
described above is inspired by quantum correlations, for
many classes of Bayesian networks—including k-gram
and hidden Markov models—our extension still results
in classical models, described by special cases of MPS or
MPO that can be efficiently implemented on classical
systems. In such cases, our results indicate that with a
minimal computational overhead, one can obtain markedly
improved modeling of data using novel quantum-inspired
classical approaches. While a number of classical machine-
learning techniques are already employing methods based
on tensor networks [31,32,34,48], our results demonstrate
that one could draw on ideas from quantum foundations
to show unconditional efficiency separations for such
novel classical models. Interestingly, our results also apply
to models introduced by the classical machine-learning
community compared with HMMs. One example is the
observable-operator-model (OOM) [49] and its special
case, the normed-observable-operator-model (NOOM)
[50], which are generalization of HMMSs to the complex
number domain. Our methods also give a separation
between these models and HMMs because of the normali-
zation independence of the error model we considered.

Furthermore, for more complicated models, such as 2D
Bayesian networks, where our extension cannot be effi-
ciently implemented on a classical computer, our results
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provide important insights into designing novel quantum
machine learning algorithms. We emphasize that in contrast
with the previously proposed quantum machine-learning
models, which consider generic quantum circuits to provide
quantum correlations, our approach makes use of the
minimal extension of classical models. This is important
since unstructured quantum circuits are not practical
machine-learning models because of training difficulties
associated with barren plateaus [51-55], poor local minima
[56], and the no-free-lunch theorem [57]. Our results suggest
that by restricting ourselves to minimal quantum extensions
of classical machine-learning models, we may be able to
sidestep these issues and maintain a quantum advantage
over the corresponding classical model. In addition, this
minimal approach allows us to understand the origin of the
potential quantum advantage, which is essential for efficient
design of new quantum machine-learning models. As an
example, the technique of basis enhancement is also shown
to be useful in other circuit-based quantum generative
models in a subsequent work [58].

III. UNSUPERVISED GENERATIVE MODELING
AND MINIMAL QUANTUM EXTENSIONS

Many unsupervised machine-learning tasks can be under-
stood through a probabilistic lens. In this approach, the data
x [e.g., x could be a vector (x,, ..., x,,) representing pixels of
a handwritten digit] are regarded as being generated iden-
tically and independently from an unknown probability
distribution pp [1,3]. The task of unsupervised learning is
to characterize some aspects of this distribution explicitly or
implicitly. Generative models attempt to represent the entire
probability distribution p, approximately, thus providing an
almost complete characterization of pyp.

Directly representing a probability distribution over
(xy,...,x,) requires a number of parameters exponential
in n. However, assuming some underlying structure on
the distribution pp, it is expected that only a polynomial
number of parameters is sufficient to approximate pp for
most natural distributions. One can draw an analogy to
quantum many-body physics: Physical states, which play
the role of naturally occurring distribution pp, typically
require a polynomial number of parameters to represent,
whereas generic states in the entire Hilbert space, like
generic distributions with n variables, need an exponential
number of parameters [59]. Graphical structures with a
polynomial number of parameters often constitute efficient
representations for generative models, similar to the rep-
resentation of tensor networks in quantum many-body
physics [60—64].

In what follows, we focus on a particular type of
probabilistic graphical model, called Bayesian networks,
and explore one minimal quantum—or, for simple enough
networks, quantum-inspired—extension of this classical
model. This allows us to understand the origin of the

underlying quantum enhancement or advantage, which
sheds light on the design of quantum models. We empha-
size that our approach is not limited to Bayesian networks
and can be extended to other models.

A. Bayesian networks and language processing

Bayesian networks are a class of generative models
that define a probability distribution through a directed
acyclic graph in the following way [see example in
Figs. 1(a) and 1(c)]: For each node x; (associated with a
random variable x;), we assign a transition probability
p(x;|parents ofx;), where the parents of x; are nodes with
edges directed towards x;; if there is no parent node for x;,
the transition probability reduces to the marginal proba-
bility p(x;); then, the product of these transition (marginal)
probabilities,

p(x1,...ox,) = [ [ p(xilparents of x),  (2)

is the final joint probability distribution.

Bayesian networks are useful in natural language
processing as statistical language models. Roughly speak-
ing, statistical language models are generative models for
language, and they are used to generate a probability
distribution of “meaningful” combinations of word sequen-
ces. A good design for the statistical language model is
crucial to the performance of machine learning for natural
language processing such as translation, speech recogni-
tion, and natural language generation [65].

Historically, prior to the rise of deep learning, one of the
most commonly used statistical language models was the
k-gram model [65], which is a Bayesian network on a 1D
graphical structure with k& — 1 neighbors connected [see
Fig. 1(a) for an example with k = 4]. Despite their
simplicity, certain types of generative neural networks
can also be viewed as k-gram models, e.g., deep belief
nets [66] even for k = 2 (see Appendix A).

In order to capture more complex correlations, a more
complex model, the HMM, with additional hidden nodes
on a 1D graphical structure with nearest-neighbor con-
nections, is introduced as shown in the translation form of
Fig. 1(b). Note that k-gram models are a special case of
HMMs (see Appendix A), as HMMs can store k-length
correlations in the hidden variables. The graph structure of
the HMM is easily generalized for translation problems.
From a probabilistic point of view, a translation problem
can be considered as a modeling problem for a conditional
probability distribution p(y|x) by a generative model, e.g.,
using the HMM shown in the translation form of Fig. 1(b),
where x (represented by the visible variables in the top row)
is a “sentence” in the original language and y (represented
by the visible variables in the bottom row) corresponds to
the translation in the target language with the conditional
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probability p(y|x). If the prior probability p(x) can be
captured by a HMM in the general form of Fig. 1(b),
the joint probability distribution p(x,y) could be viewed as
a special case of the general form of Fig. 1(b).

B. Bayesian quantum circuits
and minimal quantum extensions

The key to defining our quantum extension of Bayesian
networks is the equivalence between Bayesian networks
and a restricted class of quantum circuits, which we call
Bayesian quantum circuits (see also Ref. [36]). BQCs are
defined such that the probability distribution sampled from
the quantum circuits, by measuring the visible qubits in the
computational basis, is the same as the probability dis-
tribution defined by the corresponding Bayesian network.
In addition, we define a minimal quantum extension of
Bayesian networks, basis-enhanced Bayesian quantum
circuits, by allowing the final measurements to be in an
arbitrary local basis.

1. Bayesian quantum circuits

The building blocks of BQCs are uniformly controlled
gates. A uniformly controlled gate is a generalization of a
control-U gate, which consists of k control qubits and one
target qubit [67]: If the control qubits are in the state
|x1, ..., x;), the target qubit will be applied by a unitary
U(x,- -x;) (ie., a single qubit unitary determined by
Xp, ..., X;). For convenience, we introduce the concepts of
control units and target unit for a uniformly controlled gate
as shown in Fig. 1(a).

Definition 1. (Bayesian quantum circuits) A Bayesian
quantum circuit consists of a sequence of uniformly
controlled gates followed by a measurement of a subset
of the qubits in the computational basis, with the following
restrictions:

(i) Each uniformly controlled gate only targets a single
qubit, reflecting the fact that there is only a single
target variable in a transition probability in Bayesian
networks.

(ii) After being used as a control qubit, the qubit cannot
be targeted by a uniformly controlled gate, reflecting
the fact that Bayesian networks are defined on
directed acyclic graphs.

The exact mapping between Bayesian networks and
BQCs can be found in Appendix B 1. The implementation
of an arbitrary uniformly controlled gate by elementary
gates is, in general, not efficient since it typically consists of
an exponential number of standard control gates [67].
However, for most relevant Bayesian networks, the tran-
sition probabilities only involve a few variables or are
highly structured, which will make the corresponding
uniformly controlled gates easy to implement. We further
discuss the implementation of BQCs with multiqubit
collective gates in Appendix B 2.

2. Basis-enhanced Bayesian quantum circuits

As defined above, BQCs can only produce distributions
that correspond to Bayesian networks; thus, there is no
quantum advantage in the expressivity of the model. In
principle, there are many possible ways to generalize this
model, such as violating the order requirement between
target and control units or generalizing the uniformly
controlled gates to more general gates. These generaliza-
tions will include universal quantum circuits and thus lose
resemblance with classical Bayesian networks. To identify
the differences between quantum models and their classical
counterparts in terms of a quantum enhancement or
advantage, we introduce a natural, minimal extension by
allowing the measurements to be in other local bases
beyond the computational basis. We call this basis-
enhanced Bayesian quantum circuits. Note that the locality
in the measurement basis is important; otherwise, the
model will be as powerful as universal quantum circuits.

Definition 2. [Basis-enhanced Bayesian quantum cir-
cuits] A basis-enhanced Bayesian quantum circuit is a
generalization of the Bayesian quantum circuit, where the
measurements can be in any local basis beyond the
computational basis.

This seemingly modest extension of classical Bayesian
networks comes with considerable quantum advantages.
For general underlying Bayesian networks, it can be shown
that the quantum extension has an exponential improve-
ment in expressive power compared to any “reasonable”
classical generative models based on computational com-
plexity assumptions (see Appendix B 3 for the rigorous
proof). However, certain aspects of the complexity proof
are unsatisfying. First, it relies on unproven computational
complexity assumptions. Second, it does not provide
physical insights and understanding on what gives rise
to the purported quantum advantage. Therefore, in Sec. IV,
we show explicitly that quantum correlations are the source
of quantum enhancement and potential advantages for
BBQCs. The unconditional separation between classical
and quantum models based on quantum correlations is,
however, more modest than the separation guaranteed by
the complexity-theory-based arguments. The analysis can
potentially be generalized to other models beyond Bayesian
networks as discussed in Sec. VL.

3. BBQCs as tensor networks

Here, we remark that the quantum model BBQC is still a
special case of tensor networks. We can use the k-gram
model as an example, as shown in Fig. 1(a). Clearly, the
BQC is a tensor network. Since the qubits are arranged on a
line, we regard this tensor network as a MPS. The bond
dimension is bounded by 21, The exponent is the maxi-
mum amount of information transmitted through qubits, and
the unitary to change the measurement basis does not
increase the bond dimension. Generally speaking, if the
degree of the graph is bounded, the bond dimension around a
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qubit in the tensor network is also bounded. Therefore, a
BBQC can still be understood as a tensor network.

IV. PROVABLE EXPRESSIVITY SEPARATION
THROUGH QUANTUM CORRELATIONS

To demonstrate how quantum correlations give rise to
quantum enhancement, we compare the power of BQCs and
BBQCs in generating sequential data. We show that, at least
for some toy models, several fundamental nonclassical
characteristics of quantum theory, ie., nonlocality and
contextuality, can be used as resources of quantum enhance-
ment for generative models. At the same time, BBQCs are
special classes of tensor networks. Our proof also demon-
strates that ideas from quantum correlations can be used to
show unconditional separation between purely classical
models (k-gram versus MPS or HMM versus MPO).

A. Error models

Given a target probability distribution pp and a distri-
bution generated by a generative model p, one of the most
commonly used cost functions to measure the effectiveness
of p at modeling pp is the forward KL divergence [3,68]:

Duapollr) = Y poios 25 9

which is non-negative and lower bounded by 0 when
p = pp. Since KL divergence is asymmetric, one may also
consider the reverse KL divergence, Dy, (p||pp). The
choice of forward versus reverse KL divergence when
training unsupervised learning models reflects different
priorities in the trained distribution [3].

To compare the expressive power of classical versus
quantum models in generative modeling, we use the KL
divergence to measure how effective classical models can
generate a distribution originating from the corresponding
minimally extended quantum model. In particular, we
denote the probability distribution generated from BQCs
as p and from BBQCs as g, and we investigate what the
separation is between p and g in terms of expressive power.

The error model we use in the following theoretical
analysis requires that both the forward KL divergence
Dy (q||p) and the reverse KL divergence Dy (p||q) are
finite. This is equivalent to Eq. (1). Thus, p approximating
g under this error model is a weaker requirement than a
small divergence of p from g. Nevertheless, we now show
that quantum correlations, such as nonlocality and con-
textuality, give rise to quantum enhancement.

Before proceeding, we note that various other common
error models can be considered. One widely used one, the
multiplicative error, is a stronger requirement and a less
realistic error model than the finiteness of KL divergence.
This is used in our complexity-theory-based proof of
the quantum advantage in Appendix B 3. In Sec. VI, we

discuss additional error models that are more realistic
and more robust to small perturbations of model param-
eters. Relations among error models are explained in
Appendix C.

B. Toy model: k-gram models and quantum nonlocality

In this section, we prove Theorem 1. The separation of 2
versus O(n) between the basis-enhanced 2-gram model and
classical k-gram model [Fig. 1(a)] is demonstrated through
an example constructed from three-partite Bell tests of a
GHZ state [38,69]. The GHZ state is embedded in an
n-qubit 1D cluster state [70], such that measurement on
n — 3 qubits in the X basis will produce a GHZ state (up to
Pauli corrections according to the measurement results).
A similar embedding was also used in Refs. [71,72]. The
basis-enhanced 2-gram model is shown in Fig. 2(a), which
can be verified directly to be a BBQC, where each variable
corresponds to two qubits.

The measurement result b; of the first qubit in the ith pair
plays the role of choosing a measurement basis for the
second qubit: b; = 0 corresponds to measurement in the X
basis, and b; = 1 corresponds to measurement in the ¥ =
STXS basis for the second qubit. All of the second qubits in
each pair form a cluster state because they are connected
through control-Z gates and the initial states are all |+).
Suppose we choose three qubits to form the GHZ state and
measure the remaining qubits according to Fig. 2(b). The
resulting quantum state will be a GHZ state, where the
probability to get b; and s; is

q(b151by5,b35300...00) o 1 + jPrtbatbs(—)siteatss o (g)

where b; and s; denote the measurement result from the
first and second qubits of the ith pair. When b, @ by @
b; = 0, the strings generated by this model with nonzero
probability only contain b; and s; constrained by

I‘b]+b2+bj(_l)5|+53+53 =1. (5)

It can be shown that any local hidden variable theory [i.e.,
s; = 5;(4,b;) does not depend on bj.;, where A is the
hidden variable] cannot satisfy this equation [38,72].

We now prove that, for any k < |(n — 1)/2], a classical
k-gram model cannot approximate the probability distri-
bution g generated by the above BBQC up to the error
defined in Eq. (1). We show this by reducing the classical
model to a local hidden variable theory by fixing some
variables, i.e., considering the conditional probability.
When considering the full probability distribution, classical
k-gram models are not strictly a “local” theory since there is
information flow from the leftmost to the rightmost nodes
even if k is a constant. There is causal influence between
any pairs of nodes; i.e., a k-gram model can simulate the
scenario that any node could communicate, though pos-
sibly only one way, to a node on the right. However, since
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our error model in Eq. (1) only compares the support of the
distributions, if one can show an expressivity separation in
the conditional probability distributions, it directly implies
a separation in the full probability distributions. For the
conditional probability of the k-gram models, one can fix
some variables, which can effectively cut the information
flow. It turns out that the corresponding conditional
probability of classical k-gram models is described by a
local hidden variable theory:

pc(bys1bys,bsss|other variables are 0s)

_ S1(81,b1) f2(52, b2) f3(53, b3)
Zs,-,b,-fl (1, D1)f2(52, b2) f3(s53,b3)

(6)

where f;(s;,b;) is the product of the terms
P(brsk-1511k-1|biS1-. - biix-2S11k—2) involving s;, b; while
setting other variables to (. Because the three variables are
chosen to be further than 2k apart, each product only
involves one variable. We can thus normalize f;(s;, b;) to
be p(s;|b;, ), where 1 is determined by the measurement
basis and results, as well as each term in the k-gram model,
but A does not depend on b ;. This shows that Eq. (6) can
be described by a local hidden variable theory and thus
completes the proof of Theorem 1.

In fact, our proof is very general. Using the chain rule
of probability, one can show that if a conditional probability
distribution factorizes (i.e., it is local), the model is a
k-gram model with k = O(1). This means any separation
between the k-gram model and its basis-enhanced model
must originate from the presence of correlations that share
the mathematical structure of quantum nonlocality.

We note that the 2 vs O(n) separation still holds under
the error in Eq. (1), implying a separation also under the
KL divergence. The circuit in Fig. 2 is essentially the same
as the one used in Ref. [72] other than the boundary
conditions. However, their result cannot be applied directly
here since the k-gram model is not a constant-depth
classical probabilistic circuit. Concretely, k does not
correspond to the circuit depth, and the “light cone” scales
with the system size even when k is small. On the other
hand, hidden Markov models with bond dimension 6 could
simulate this basis-enhanced 2-gram model. We give an
explicit construction in Appendix F.

C. Hidden Markov models and quantum contextuality

We now study basis-enhanced HMMs [the translation
form in Fig. 1(b)] in the context of translation problems. We
find that any classical HMM requires D®(°22) hidden
variables in order to approximate a basis-enhanced HMM
with D hidden variables, under the error model of Eq. (1).
The separation originates from quantum contextuality—in
particular, our proof is constructed from the Mermin-Peres
magic square [42,73].

Our approach is as follows. First, we discuss hidden
variable theories—more precisely, noncontextual ontologi-
cal theories [23,39,41]—and show that they are equivalent
to classical hidden Markov models. Then, we give a lower
bound on the number of ontological states needed to
simulate Pauli measurements on stabilizer states using
the Mermin-Peres magic square [73-75]. Finally, we
discuss how basis-enhanced 2-gram models can efficiently
simulate Pauli measurements on stabilizer states, proving
our result.

1. Noncontextual ontological theories
and hidden Markov models

First, we give a description of hidden variable theories
(more precisely, noncontextual ontological theories)
[23,39,41] in terms of hidden Markov models. At any
moment, such an ontological theory is characterized by a
state variable 4; € {1, 4, ..., Ay}, which we assume com-
pletely determines the resulting distribution of the meas-
urement outcomes of various observables. In particular, the
model assumes that a quantum state |y) is encoded as a
probability distribution over hidden variables as p|w>(li),
where »°; p,)(4;) = 1, and the measurement output from

measuring an observable O is described as

plw) y:lo) ZP()’:M:, plw ( ) (7)

where pj, ( y:|0) is the quantum mechanical measurement
output probability for output y; and p(y;|4;, @) is an
indicator function independent of the quantum state |y).
Below, we use the following notations as illustrated in
Fig. 3(a). After a measurement of an observable @x! from

some restricted set of observables {0, } labeled by x; and
upon obtaining a measurement result y; with probability
p(yilA;, x;), there is also generally a transition probability
to another state A; with probability I'y;(4;|4;), where M =
(x;,¥;) characterizes the measurement and its result.

As discussed in Sec. IIT A, a HMM used for translation
problems is a Bayesian network characterized at any
moment by a hidden state A, with some input x;, and it
transitions to a new internal state A} with probability

@(Aj|4;,x;) and some probability A(y;|4;) emitting a

(b} ) ’\: = (’\4!:“"1'!?5"5)

xj I.; X )

) ' v ¥ ¥
+ A — A »—»II,-'.A; —

1 ¥

y](’\JMI)

BlwlX) |

FIG. 3. (a) Ontological model in terms of Bayesian networks.
(b) Standard hidden Markov model.
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symbol y; [see Fig. 3(b)]. We note that if we set
A; = (4, x;,y;), this is identical to a noncontextual onto-
logical theory in the above paragraph.

2. Noncontextual ontological theories representing
quantum states

Let us now consider how noncontextual ontological
theories can simulate measurements on a quantum system.
We follow Ref. [40] on the discussion of such ontological
models, only keeping concepts that are relevant for our
goal. We use Mermin-Peres magic squares explicitly to
demonstrate the advantage of quantum contextuality.

A naive way to simulate a quantum system subject to
sequential measurements is by recording each quantum state
[yr;) that the system could generate as its own state variable
A;. Though this encodes all information in a quantum theory,
there is a large overhead in terms of the number of internal
states A; needed, depending on which classes of circuits are
modeled. We thus consider encodings that allow an internal
state 4; to be shared by different quantum states |y). In this
case, each quantum state is encoded as a probability
distribution over {A,4,...,Ay}. Since we consider the
error model in Eq. (1), we only need to consider if a
measurement probability is zero or not, while the precise
values of the probabilities are not important. Thus, a
quantum state can be associated with a support

supp(ly)) = {4i|py,(4:) # 0}, (8)

which is the subset of internal states that the ontological
theory could be in when representing the quantum state |y).

As illustrated in Fig. 1(b), we interpret the translation
form of the HMM from a dynamical point of view. The
state of the HMM is encoded as a probability distribution
Py, over the hidden states of the HMM at the rth time step.
The quantum state at time 7, |y,), depends on all the
previous measurement outcomes, MP™ = {M,M,, ...,
M,_}. Thus, in order to faithfully simulate the quantum
process, the HMM should have enough memory about all
previous measurement bases and outcomes to predict future
behavior. The number of hidden states corresponds to the
memory of the system. We could define the union of all
the states at time ¢ resulting from different measurement
outcomes, {|y,(M?*"))}, but there is ambiguity in setting
the weights for different measurement histories. However,
under the error model in Eq. (1), one only needs to be
concerned with whether the probabilities are nonzero or
not. Each measurement history can be associated with a
support of hidden variables, i.e., supp(|y,(M?*))), and the
union over different histories can be defined as the union
of the support spaces. We emphasize that this is well
defined because there is no interference in the hidden
Markov model; i.e., summation of different histories cannot
be canceled.

Naively, one might believe that it is possible to encode
2V — 1 quantum states using only V ontological states
since a set with V elements has 2V — 1 nontrivial subsets.
However, in order for the ontological theory to make the
same predictions as the quantum theory, there are restric-
tions on which subsets of hidden variables are used to label
quantum states. For instance, if two states |y ) and |y, ) are
eigenstates with different eigenvalues of an allowed observ-
able O, then we must have supp(|w;)) N supp(|y,)) = @.
As an example to illustrate this, suppose Oly) = —|y;)
and O|y,) = |y,), and there is at least one overlapping
hidden variable in the support denoted as A;. Let us first
assume the output is always +1 when measuring 4; by O,
ie., p(+1/4;, 0) = 1; then, there is a nonzero probability
for both |y, ) and |y, ) to obtain the measurement result +1
according to Eq. (7), which contradicts the prediction from
quantum measurements. Similarly, assuming the output of
measuring 4; by O is always —1 or nonzero on both +1 also
leads to the same contradiction.

A less trivial example is given by considering quantum
contextuality, where the intersection among the supports
of several quantum states should still be empty even if
there is not a pair of states that are orthogonal. We now
proceed to use the Mermin-Peres square to construct such
triplets of states.

3. No common hidden variables
in the Mermin-Peres magic square

In the following, we focus our attention on stabilizer
states [44]. We first extend, in a more formal way, the
discussion between memory and contextuality through the
Mermin-Peres magic square example mentioned in Sec. II.
Then, in Sec. IVC4, we prove a lower bound on the
number of hidden states required to simulate Pauli mea-
surements on all stabilizer states.

Given three stabilizer states |w;), |w2), and |w3), let
{04}, {0}, and {0,3} be their corresponding stabilizer
groups. If

{0a}u{0n}U{0s} 9)

contains nine observables that form a Mermin-Peres square
as shown in Table I, then we show, by contradiction, that
the following must be true:

supp(|y1)) N supp(|w)) N supp(|ys)) = @. (10)

Concretely, we consider an example to illustrate this idea
and leave the general proof to Appendix D. Let

1) = [00), wa) = |+ +),
|00) + |01) + [10) — [11)
A=Z, a=2Z,, B=X, b=X. (11)
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TABLE I. Mermin-Peres magic square. The commutation rela-
tions among these operators are given in the following equations:
[A,a] = [B,b] = [A,B] = [a,b] = 0 and {A, b} = {a,B} = 0.

1) A a Aa +1

w2) B b Bb +1

) AB ab ABab +1
+1 +1 -1

These stabilizer states and stabilizers form a Mermin-Peres
magic square as in Table I. Here, we show that the
intersection among the supports of the above three states
must be empty. Suppose, instead, the intersection contains
a hidden variable 4;. We consider a measurement of the
stabilizer ABab = Y,Y,. Since |y3) is the eigenstate of
ABab with eigenvalue +1, we have that for any non-
contextual ontological theory in state A; belonging to the
support of |y3),

(12)

in order to make the same prediction with quantum
mechanics and since ), pj,.)(4;) = 1. In addition, there
exists a 4; such that

ply= +1|O_v =YYy, 4) =1,

C(y,v,.41)(45]4:) > 0. (13)

Since 4; also belongs to the supports of |y) and |y), 4;
must also belong to the supports of

(147,Y,) 1
S ) e (00) = 1),
wm) a%(ml) +110)), (14)

which are the resulting states after measuring Y,Y, on
states |y) and |y, ) and getting the measurement result +1.
However, these two states are orthogonal and thus cannot
share a common 4; as explained in Sec. [IVC2 (e.g.,
consider measuring Z,Z, or X,X,). We thus arrive at a
contradiction, and the three states cannot share a common
hidden variable 4;. It is straightforward to extend this
example to more general stabilizers with the same com-
mutation relations as those in Table I, which is detailed in
Appendix D.

4. Bounding the efficiency of hidden Markov models

We now prove a lower bound, which has been used in
Ref. [40], for the number of hidden states needed in the
HMM. Denote § as the set of all the possible quantum
states appearing in the quantum system that we want to
simulate using a noncontextual ontological theory; in our
case here, it is the set of all stabilizer states. Denote s as a
subset of § such that

|"el:)lsupp(Iw)) # Q. (15)

Let

(16)

m = max|s|.
5

Then, the number of state variables V needed in such an
ontological theory in order to simulate the quantum system
is not smaller than |S|/m. The reason for this is illustrated
in Fig. 4.

The following two lemmas show that by allowing for all
stabilizer states and all Pauli measurements, we have large
|S| and relatively small m. We upper bound m by using
contextuality and proving the existence of the Mermin-
Peres square.

Lemma 1. (Proposition 1 in Ref. [76]) The total number
of stabilizer states is

|S| — 2n2/2+0(n2}, (17)
where n is the number of qubits.

Lemma 2. For any subset of stabilizer states s such that
|s| > 2n*/4+7n/2  there exist three states such that some of
their stabilizers form a Mermin-Peres magic square as
shown in Table I. Therefore, m < 27/4+7n/2,

The idea of the proof is as follows: (1) Up to classical
Clifford circuits (those only composed of cNOT and Xx), any
stabilizer state can be written as a tensor product of
a uniform superposition state of k qubits (with possibly
nontrivial phases) and a product state of n — k over the
computational basis; (2) for any 27°/4+31/2 . 4n . 2 states, we
can always find one computational basis product state and
4" .2 other states that are superpositions over the same k
qubits up to a Clifford circuit; (3) we can always find

Supp(lw1)) Supp(lwz))

FIG. 4. Each circle corresponds to a support of a quantum state;
there are thus |S| circles. Each dot corresponds to a hidden
variable. We denote the number of dots as V, and the number of
circles that a dot belongs to is, at most, m. Imagine that we
eliminate a dot and its associated circles each time. After V steps,
all of the circles are eliminated. Since each time we can eliminate
at most m circles, we have Vm > |S|.
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2 standard graph states from these 4" - 2 states up to single-
qubit phase gates (which do not change the computational
basis product state); (4) finally, the stabilizers of the
computational basis product state and the 2 graph states
can always form a Mermin-Peres square. Details of the
proof are in Appendix D. From both lemmas, we have a
lower bound for V:

v > Bls purs-om, (18)

m

Following the discussion on the equivalence of noncon-
textual ontological theories and HMMs in Sec. IV C 1, the
lower bound on V shows that any “translation-form”
HMM simulating Pauli measurements on stabilizer states
on n qubits require at least 29(") hidden states. In the
following section, we show that a basis-enhanced
2-gram model, which is a special case of the trans-
lation-form HMM as in Fig. 1(b) (see Appendix B 1),
only needs 2 internal states.

We have three remarks on the above proof. First, the idea
does not need to be restricted to stabilizer states. Here,
we use stabilizer states for the simplicity of illustrating the
key idea, i.e., making use of the simplest example of
contextuality, the Mermin-Peres square. Second, the above
argument also works for HMMs without translational
invariance. One can remove the requirement of translational
invariance by just relabeling I'*) and supp(*) for the rth time
step. Finally, as we show that HMMs are equivalent to
noncontextual ontological models, our proof also implies
that any such model that can express this language with
2°("") hidden states cannot be a noncontextual ontological
model. This shows that this separation stems from the
correlations of quantum contextuality present in the basis-
enhanced hidden Markov model.

5. Basis-enhanced 2-gram model from stabilizer states

Here, we construct a basis-enhanced 2-gram model, as
shown in Fig. 5, that simulates Pauli measurements on
stabilizer states using O(n) qubits—the underlying 2-gram
model, therefore, has D = 2°(") internal states. The input
and output of the HMM correspond to the choices of
different Pauli measurements and the measurement results,
respectively, and the teleportation gadgets connect succes-
sive nodes in the 2-gram model. Together with the result in
Sec. IV C4 on the lower bound for the number of hidden
variables required in a classical HMM to simulate the
quantum process, V > 29(r*) — DRogD) e have thus
completed the proof of Theorem 2. Furthermore, instead
of regarding it as a 1D model with a large bond dimension,
we can also view it as a 2D model: In Fig. 5(a), if each qubit
is regarded as a node in the Bayesian network, the
corresponding directed graph is shown in Fig. 5(d).

(@) 1 I+ z4 |p—e————— 7
@ I\ ?
I+)II é [+) s
® @
I+) z |+) z
® ®
I+) z |+)‘I z
0m— x Z] e S— —”;-[x |—| Z]
10) ~ 'xHzl» —— 'xHz
|+)-..-. * & N |+) *—o— X
3 i 6
(b)
2 >

(d)

(<

(v1)

(vir) (av)

FIG. 5. (a) Quantum circuits for generating all of the possible
stabilizer states by measurements. Circles 1 and 4 are super-
positions of 2n-bit strings with uniform weights, of which
measurement results in the Z basis determine which stabilizers
are to be measured for the qubits initialized as |0)®" (those qubits
in the middle). The measurement results in the X basis of circles
3 and 6 give the outcome of measuring the corresponding Pauli
determined by the measurement result of circles 1 and 4,
respectively. With all of the outcomes of circles 1,3,4,6, -,
the qubits in the middle can be any possible stabilizer state.
(b) Teleportation gadget for the part in the red dashed box of
diagram (a). The stabilizer to be measured in the next time step
should be determined by measurement results of both 2 and 5
because the measurement result of 2 will sometimes produce
some Pauli corrections. (c) Corresponding Bayesian network
circuit of (a) after using (b). All of the red circles correspond to
circles in (a) and (b) with the same number labels. We group {1},
{2,3} and {4}, {5,6} as blue circles to form a 2-gram model
with input, which is a special case of the translation form of the
HMM given in Fig. 1(b). (d) 2D arrangement of the Bayesian
network for the circuit shown in (a). The correspondence
between quantum circuits and circles is labeled by Roman
numerals.
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Before concluding this comparison between HMMs
and basis-enhanced HMMs, we note that although this
basis-enhanced circuit is constructed from stabilizer states,
which can be efficiently simulated classically, this does
not imply that a quantum computer is not useful in this
case. In particular, one can consider continuous Pauli
rotations instead of Clifford gates, which will be required
in practice in order to train the model using a method such
as gradient descent. Such quantum training algorithms for
these models are analyzed in Appendix B 4. In general,
such algorithms cannot be efficiently simulated classically.
Furthermore, more general models than HMMSs that are
beyond one dimensional would need to sample from a
quantum computer.

V. NUMERICAL TESTS ON REAL-WORLD DATA

In the previous section, we have proven theoretically
that the quantum-inspired models we consider have more
expressive power than the corresponding classical models.
The sources of the quantum enhancement are quantum
nonlocality and contextuality. In this section, we numeri-
cally test that the quantum models do indeed have better
performance in practice. These numerical results primarily
serve two purposes. First, they demonstrate that the
quantum models actually have a potential advantage on
real-world data. Second, they show that the separation is
robust to more practical error models beyond the one used
theoretically as in Eq. (1).

Concretely, we focus on classical HMMs and the quan-
tum extension of 2-gram models introduced in Sec. IV C.
As in most generative modeling tasks, the quantity of
interest to evaluate the performance of the parametrized

pdata(m) .
Z Pdus (m) log Pmodel (m) ’

(19)

consistent with our convention used in previous sections,
we let M denote the dimensionality of a given visible node
in our model, and we let n be the number of visible nodes in
the model. Since summing over the exponential number of
terms in Eq. (19) is intractable in practice, we use the
stochastic estimate of the KL divergence given in Eq. (B7).

DKJ_.(pdata| |Pmnde]) =

A. Simulation of basis-enhanced 2-gram models

We now focus on (translationally invariant) classical
hidden Markov models and basis-enhanced 2-gram models,
both of which were introduced in Sec. IV C. Though in
Sec. IV C we considered a specific translation task for the
sake of our analysis, here we consider general basis-
enhanced 2-gram models, with the parameters trained to
represent some given data set. The general structure of the
model we consider is given in Fig. 6.

Though basis-enhanced 2-gram models cannot directly
be interpreted as classical Bayesian networks, they are still
classically simulable using tensor networks when they have
low bond dimension [32,48], making them a natural choice
for numerical tests of our analysis [see Fig. 6(b)]. In
particular, the direction of steepest descent of Eq. (B7)
when varying a particular tensor U is given by its negative
gradient with respect to the conjugate of the parameters
[77]; that is, the direction of steepest ascent with respect to
U takes the form

Dy, 2057 2 5 Sy(m)

model proqe given a data set pgy, is the forward KL -— — (20)
divergence ou Z K, Sulm)
® o Ju}l—e ' ®) v, v [ |o® 23
| r1 |
51 Yo | -
10y m )
1 - 2 | —
1|0} L"f‘ ) %, o v v | | g@ 7@
S9! /.Y : o
» g
:::::::::::::::::::::::::::::::::::::: |m2)
) e '
| t @ | ; — ——
sy Ul | u® v | | p® @

FIG. 6.

! |0) : mg I

|rms)

(a) BBQC interpretation of a three-node 2-gram model, with states s, 57, s3. An initial unitary Uy, constructs the prior, and

uniformly controlled unitaries CU, encode transitions between 2-gram states. Each measurement is in some standard basis encoding of
the M-dimensional output space. To directly compare with classical HMMSs, we only consider transfer unitaries on a k-dimensional
subspace of each state (top wire), and we consider the distribution on an M subspace of each state (bottom wire). (b) Tensor network

representation of the same quantum circuit.
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where S is the unnormalized probability distribution given
in Fig. 6(b) and Z is its normalization. When we perform
the Riemannian descent algorithm described in Sec. V B,
we optimize on the manifold of unitary matrices, and thus
Z =1. As we maintain translational invariance in our
model, the total derivative with respect to some parameter
U is given by the sum of the variation over all equivalent
tensors:

0Dy, 0Dy,
KL _ §ICKL (21)
ou ; U

For completeness, we give examples of the tensor network
representations of d;;Sy (m) and 9;Z in Appendix G. Since
within one training minibatch many of the same tensors
are contracted, in practice, we precompute intermediate
tensor contraction results for each minibatch. For a basis-
enhanced 2-gram model with bond dimension h, the
classical runtime is O(nh*M) for computing the gradient
with respect to the unitaries in the model. For comparison, a
classical HMM trained using the Baum-Welch algorithm
[78] takes time O(nh(h + M)) per training iteration.

B. Model training

In general, training Bayesian networks beyond tree
graphs is hard [79,80]. We note that there exist many
heuristic and approximate algorithms that work well in
practice for training classical Bayesian networks [81],
and we consider similar heuristics for BBQCs here, as
described in more detail in Appendix B 4.

Since we focus on translationally invariant HMMs here,
we can use the Baum-Welch algorithm to efficiently train
the classical model [78]. Furthermore, as discussed in
Sec. VA, computing the gradient of the loss function with
respect to the parameters in the basis-enhanced 2-gram
model is classically efficient using tensor networks for
small bond dimension. However, naively performing gra-
dient descent on the parameters of the model would
generally violate unitarity constraints in the underlying
quantum circuit model. Therefore, to optimize the unitaries
used in the construction of the quantum model, we perform
a variant of the Riemannian gradient descent algorithm
introduced in Ref. [82].

Normally, in the gradient descent of some loss function
L({A;}) for complex-valued matrices A;, one iteratively
estimates the optimal A; through the update rule [77]

A,-_>Ai—a£, (22)
OA,

where a is the learning rate. In practice, keeping a moving
average of previous gradient estimates smooths out sto-
chastic fluctuations in estimates of aﬁ/aE; thus, we
consider the momentum-based update rule [83]:

oL
”A,-_’ﬁ”,qﬁ'aaAj, (23)

Ai - Ai - ‘UA!_ . (24)

For unitary A;, however—as in the case of quantum
circuits—this procedure will generally yield nonunitary A;.
Therefore, we analytically calculate the direction of steep-
est descent in unitary space in terms of JL/0A; and
perform parallel transport in that direction [82]. This leads
to the update rule for a unitary matrix U:

o en-afv(2) 2w, s

We modify the method in Ref. [82] slightly to allow for the
momentum update rule of Eq. (24); namely, we use the
update rule

U — exp (- (Uv}, — vy UH)U. (26)

C. Model comparison on data sets

We test the performance of our implemented quantum
extension of a 2-gram model on three data sets: the biofam
(sequence length n = 16, output dimensionality M = 8)
[45,46], Promoter Gene Sequences (n = 57, M = 4) [47],
and SPECT Heart (n = 23, M = 2) [47] data sets. For all of
our simulations, we use f = 0.5. For the biofam data set
[45,46], we use @ = 1073, and for the Promoter Gene
Sequences and SPECT Heart data sets [47], we use
a = 1072, For the biofam data set, we train for 75 epochs,
and for the Promoter Gene Sequences and SPECT Heart
data set, we train for 150 epochs. For all data sets, we
estimate the gradient over a minibatch size of 8 training
samples. The biofam data set tracks the family life of
individuals from year to year (e.g., married, divorced,
married with children) and is correlated from year to year.
We expect it to be efficiently captured by a classical HMM
due to the local nature of the data, and we use it as a control.
The Promoter Gene Sequences data set consists of DNA
sequences that encode promoters and nonpromoters; there-
fore, it has a less-obvious local structure. Finally, the
SPECT Heart data set encodes binary feature vectors of
heart images, with little to no local correlations.

To estimate the generalization performance of the
models, we withhold a quarter of the data for testing the
biofam and Promoter Gene Sequences data set, and use
the standard SPECT Heart testing data set. Our results are
summarized in Fig. 7, where we plot the stochastic estimate
of the KL divergence Dy, (normalized by the sequence
length) as a function of the local hidden dimension k. As we
are interested in the optimal performance over all param-
eters to compare the expressive power of quantum-inspired
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FIG. 7. Best performances over ten trials of the classical HMM (blue circles) and the basis-enhanced 2-gram model (orange crosses)
on the (a,b) biofam, (c,d) Promoter Gene Sequences, and (e,f) SPECT Heart data sets. The first row plots the performance on the training
data, and the second the performance on withheld testing data. The basis-enhanced 2-gram models have better performance than
classical HMMs on the SPECT Heart and Promoter Gene Sequence data sets. Error bars denote 1 standard error of the mean over ten

trials. Dashed lines are to aid the eye.

models versus classical models, we plot the minimum
achieved loss over ten trials. In particular, for the Promoter
Gene Sequences and SPECT Heart data sets, the basis-
enhanced 2-gram model learns the distribution of samples
more effectively and also generalizes more effectively than
the classical HMM. As expected, both models perform
equally well on the biofam data set since it has very local
correlations. These results also demonstrate that for data sets
that have no obvious local structure, quantum models tend to
perform better, which is consistent with our theoretical
analysis in Sec. IV C. Furthermore, we perform a like-
lihood-ratio test between the two models to measure the
statistical significance of the improvement in performance,
accounting for any potential overfitting due to the quantum
model having more parameters than the classical model.
Taking the null hypothesis that the optimal parameters of the
basis-enhanced 2-gram model reduce the model to a classical
hidden Markov model, using the observed difference in
achieved KL divergence, we find that the null hypothesis
can be rejected with 5¢ confidence on the Promoter Gene
Sequences and SPECT Heart data sets (see Fig. 8).
Interestingly, the performance separation between quan-
tum and classical models persists even when considering
the average performance over many runs. These results are
summarized in Appendix G. With these specific examples,
the sets of numerical results suggest that quantum models
with nonclassical correlations may have better performance

as generative models on real-world data. The performance
boost is also robust to practical training procedures and
realistic performance metric considerations.
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FIG. 8. Plotted with dashed lines are the improvements in KL
divergence between the best-performing basis-enhanced 2-gram
model and the best-performing classical hidden Markov model
for each tested model size on the Promoter Gene Sequences and
SPECT Heart data sets. The solid lines show the improvement
needed to reject the null hypothesis in a likelihood-ratio test with
5¢ confidence (see Sec. V C). Wherever the dashed lines are
above their corresponding solid lines, the null hypothesis was
rejected with more than 5¢ confidence.
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VI. CONCLUSION AND OUTLOOK

In this work, we have presented unconditional proof of the
separation in expressive power between Bayesian networks
and their minimal extension, basis-enhanced Bayesian
quantum circuits. We showed that the origin of this sepa-
ration is associated with quantum nonlocality and contex-
tuality. Focusing on sequential models, we constructed
examples via quantum nonlocality of a linear separation
in k between k-gram models and their basis-enhanced
version, and through quantum contextuality, a quasipoly-
nomial separation in bond dimension for the hidden Markov
model and its basis-enhanced version. In addition, we
numerically tested this separation on standard data sets,
showing that this separation holds even on practical data sets.

Although we focused on Bayesian networks, our
approach can also be applied to more general models.
Contextuality provides a general framework since the error
model in Eq. (1) is independent of the normalization of
probability distributions; therefore, our techniques can be
applied to graphical models without well-defined transition
probabilities along some edges of the graph. For example,
Theorem 2 also works for deep Boltzmann machines,
which is a much harder model than Bayesian networks
in terms of computational cost. However, there is an
intrinsic difficulty in extending Theorem 2 to get a
separation with some non-energy-based neural networks
(e.g., CNN, RNN [3]). The reason for this is that one hidden
neuron in such kinds of models can take values over real
numbers; thus, it could potentially carry infinite informa-
tion, and our counting methods used in the proof of
Theorem 2 do not directly apply. The possible extensions
and applications of our approach to such models deserve
further theoretical investigations. However, these models
have to be implemented with finite precision in practice. In
this case, our model still has a separation compared with
these neural network models in terms of the amount of
memory required when transmitting information between
successive layers.

Our results establish a powerful connection between
quantum foundations and machine learning. Since many
traditional machine-learning models are based on the
understanding and intuition from classical physics, they
can be naturally characterized by noncontextual ontological
models. Our study shows that quantum correlation can be a
resource to enhance the expressive efficiency of these
models even if the task is purely classical (e.g., by noting
the similarity between contextuality in natural languages
and quantum contextuality; see also Ref. [84] for the
connection between natural language and quantum-
inspired models from a different point of view). Our work
opens new avenues for using ideas from quantum founda-
tions to develop novel machine-learning models based
on MPS (and its equivalence, OOMs, as we mentioned
near the end of Sec. II), treelike tensor networks, or the
multiscale entanglement renormalization ansatz (MERA)

[31-34,85,86]. Because of the form of our error model, the
separation between classical and quantum-inspired models
is mainly due to the non-negative versus complex numbers
instead of the normalization in obtaining the probability. As
an example, the general MPS has the same separation in
terms of bond dimension compared with the stochastic
MPS [87], which is a kind of MPS with non-negative
numbers. In addition, we expect that the concepts of
quantum correlations can be used to provide theoretical
foundations for other quantum-inspired classical models
and quantum machine-learning models.

Finally, our work provides new insights into designing
practical quantum machine-learning algorithms that exhibit a
quantum advantage in tackling machine-learning tasks; this
can be achieved by starting from a successful classical
machine-learning model and enhancing it with quantum
correlations. This is a markedly different approach from most
proposed quantum machine-learning models, in which
generic quantum circuits are considered. Such structure is
important since unstructured circuits tend to encounter
challenges in training, including encountering barren plateaus
in the loss landscape [51-53] and finding poor local minima
[56]. Although the examples we used here can be efficiently
simulated classically, some of them require the use of
quantum machines during the training stage. Furthermore,
the example models we used in this work are subclasses of
more general, sequential, quantum generative models, involv-
ing quantum circuits with sequential (adaptive or nonadap-
tive) measurements, which are not classically simulable. It
can be expected that the ideas of contextuality presented here
can be extended to these cases to achieve a quantum
advantage beyond classical simulability.
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APPENDIX A: RELATIONS AMONG VARIOUS
MACHINE-LEARNING MODELS

Deep belief nets have the form

p(v,hy,hy, ... hy)

= p(v|h1)...p(ha-2lha1)p(ha-1,ha); (A1)
this is exactly the form of a 2-gram model if the hidden
variables are also observed.

A k-gram model can be simulated by a HMM with L1
hidden variables per site, where L is the vocabulary length
of the k-gram model; this can be done straightforwardly by
combining sets of k — 1 sites in the k-gram model into one
site in the HMM. The L*~! possible values of these sites in
the k-gram model map to each of the L*~! hidden variables
in the HMM.

APPENDIX B: DETAILS OF BASIS-ENHANCED
BAYESIAN QUANTUM CIRCUITS

1. Mapping between Bayesian networks
and quantum circuits

In the following, we give the explicit construction of the
mapping between Bayesian networks and quantum circuits
(see Fig. 9 as an illustration):

(i) Bayesian networks = BQCs. Each node corre-
sponds to a qubit. According to the direction of

@ 2

(b)

- Uniformally controlled gate

edges in the graph, assign an order for these qubits.
Then, do the following steps in order. If the node has
no parent, prepare the corresponding qubit as |y;)
such that | (x;|y;)|* = p(x;). Otherwise, prepare the
corresponding qubit as |y;) and apply U (parents
of x;) on the corresponding qubits such that

|(x;|U (parents ofx;)|y;)|* = p(x;|parents ofx;).
(B1)

Notice that there are no other operations between U
(parents of x;) and |y;) because of the following:
(i) If there were a target unit V in another uniformly
controlled gate, U and V could be merged into a
single uniformly controlled gate, and (ii) the order
guarantees there is no control unit before a tar-
get unit.

BQCs = Bayesiannetworks. First, we assign a
directed acyclic graph to the BQC. Each qubit
corresponds to a node, and we draw an arrow from
node x; to node x; if and only if there exists a
uniformly controlled gate with a control unit on
qubit i and a target unit on qubit j. Then, we assign
each node transition probabilities in the following
way: If there is no target unit on qubit i, assign
p(x;) = |{x;lw;)|? for the corresponding node; oth-
erwise, assign a transition probability for this node
according to Eq. (B1).

(ii)

BQC Measurements

lw1) 1A
: Control unit

y2) 1A
ws) Us H—0— — A
|W4) — U, E /7&
: Target unit ;

ws) 4 Us A

_______

FIG. 9. Bayesian network on a generic graph and its associated Bayesian quantum circuit. (a) Example of a Bayesian network on a
generic graph. Each node x; corresponds to a transition probability p(x;|parents ofx;); e.g., the node x, corresponds to p(x4|x;, x3). If
there is no parent for the node x;, it simply corresponds to a marginal probability p(x;); e.g., the node x, corresponds to p(x,). The joint
probability distribution defined by the Bayesian network is the product of the transition or marginal probability over all of the nodes. For
this example, the probability distribution is p(x, Xy, X3, X4, X5) = p(x1) p(x2) p(x3|x2) p(x4]x1, x3) p(x5]%3, X4). (b) Associated Baye-
sian quantum circuit. Each node in the Bayesian network corresponds to a qubit, and each uniformly controlled gate corresponds to a
transition probability. For example, the uniformly control-U; gate corresponds to p(x4|x;, x3). The marginal probabilities p(x;), p(x2)
have been absorbed into |y}, [y,). Because all Bayesian networks are associated with directed acyclic graphs, an ancestor of a node
cannot also be a child of the same node. This means, in Bayesian quantum circuits, there cannot be a target unit after a control unit.
Furthermore, the target unit can only involve one qubit in a uniformly controlled gate. Measuring the output qubits of Bayesian quantum
circuits in the computational basis will produce the same probability distribution as the corresponding Bayesian network.
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2. Efficient implementation using multiqubit
collective gates

The implementation of uniformly controlled gates is not
efficient, in general [67]. This is true even if we have the ability
to implement collective gates that are native, for instance, to
Rydberg-based quantum platforms [e.g., implementing
quantum fan-out gates with k control units [88] as shown
in Fig. 10(a)]. Even though these gates are very powerful [89],
it is unclear how to implement general uniformly controlled
gates more efficiently (in terms of scaling with k). However, in
almost all machine-learning models, the transition probabil-
ities have specific forms when k is large. In particular,
transition probabilities usually take the form

P(Xes1|x1, -, xk) Zf(x;m (Z foi)); (B2)

that is, the dependence on the parent variables is linear in a
nonlinear function f, in general. For example, in deep belief
nets, f(y) = e /(1 4+ e). Here, we give a construction
showing how to implement such uniformly controlled gates
approximately such that the number of elementary collective
gates does not depend on k.

In the following, we show how to implement the
transition probability shown in Eq. (B2) in BQCs with a
circuit depth independent of k, using collective gates. We
define @ =) w;x;, such that according to Eq. (B2),
p(lel! ---sxk) :f(O) and p(l|x1! ---’xk) :f(e) ThllS,
we have a normalization condition f(0) + f(6) = 1. We
introduce the notation {-),, as a binary representation of - up
to the mth digit. We also introduce 6 as an approximation
of 6, with binary representation (), . We then use the
following procedure to implement the transition:

0)&41|0)®%|0) — |(8)4,)10)®%|0) [phase estimation algorithm, O(d}) gates]

- |(6'}d])|(arcsin1,;‘f(9))dj}|0} [classical computing, usually O (poly(d3)) gates]

— [(8)a,)|(arcsin \/ £(8))4,) (v/£(0)[0)
— [0)®4]0)®%(1/£(0)[0) + /£(6)]1)

The precision of the transition is determined by d,
and d,. Note that d; determines the precision of the input
of the function f, and d, determines the effect of truncation

for the function arcsin 1/ f(-). The total error is bounded by
€= mﬁ::lx| (arcsin \/f(6))'[2~% 4 2%, (B4)
Therefore, if the derivative is bounded by a constant

[for example, in the case of f(6) = e /(1 + e7#9), the
derivative is bounded by f], d, and d, can be taken to be

(@) (b)

Fan
Ry
fan
vy

— le)ﬁ?— _GP_RZ(T) {P R;(—?’)—

[xi) +

+4/f(6)]1)) (controlled rotation along x axis)

) (uncomputing). (B3)

|

O(log (1/€)) such that the depth is bounded by
poly(log(1/€)), which is independent of k and only
depends on the precision €.

3. Exponential separation of expressive power
between BBQCs and Bayesian networks based
on computational complexity theory

The proof of the exponential expressive power of
BBQCs is a slight modification of the proof for quantum
generative models (QGMs) detailed in Ref. [16].

=
[
—_
=
=
R
Fa Y
3
=
[X
—_—
|
| g
=
R

fan
vy
h
Ry

R_

FIG. 10. Basic elements in Bayesian quantum circuits implemented by multiqubit collective gates. (a) “Basic” collective gate.
(b) Implementation of control-R = R_(>_, w;x;) gate. This gate can be implemented directly on a Rydberg-atom-based platform.
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Theorem 3. (Ref. [16]) There exists a BBQC with n
qubits such that, if any Bayesian networks with a poly-
nomial number of parameters in n could approximate it
under the multiplicative error, the polynomial hierarchy in
computational complexity theory would collapse.

For completeness, we give a brief review of the proof.
First, we give a brief introduction of related concepts.
Second, we introduce a specific BBQC, which is used to
separate the expressive power between the classical and
quantum models. Third, we give a sketch of the proof. See
Ref. [16] for more details.

a. Related computational complexity classes

The polynomial hierarchy is a hierarchy of complexity
classes that generalize P and NP, and are denoted as
Xh 2P 25, ... Here, ¥ =P, X} = NP, and £/, | = NP¥,
where NPZ is called NP relative to 7. NP denotes
problems that can be verified in polynomial time by a
Turing machine, and NP’ denotes problems that can be
verified in polynomial time by a Turing machine that is
equipped with an oracle that can solve any X/ problems in
one step. A detailed discussion can be found in Ref. [90] or
in the recent review article on quantum supremacy [91].
It is widely believed that the polynomial hierarchy does
not collapse, which means X7 # X” , (which implies
27 # X7, ; for any constant j > 0).

b. Basis-enhanced Bayesian network used in the proof

Here, we give a construction of a basis-enhanced
Bayesian network such that approximately computing
the probability of a specific configuration up to the
multiplicative error is #P-hard.

This BBQC begins as a cluster state on a square lattice.
The corresponding Bayesian network is drawn as the graph
shown in Fig. 11. Then, we use the measurement basis

—> —» —> |
\ / S AN \ /
l‘\ y ”’l\\ ./l‘\ Ve ™

/ / \ /
—> | > |
~ N/ N N
N N TN TN
—> —> — |
— - \_/ N

FIG. 11. A cluster state in a Bayesian quantum circuit. A cluster
is generated from initial state |+)®" by applying control-Z gates
between each pair of neighbors on a square lattice. We may assign
each edge an arrow in the way shown in this figure in order to get
a directed acyclic graph. We can see that this circuit is a Bayesian
quantum circuit by checking Definition 1 and noticing that, in a
control-Z gate, there is no need to distinguish between control
and target units.

shown in Ref. [92]. One of the important properties of this
construction is its “single-instance hardness,” which means
there is only one measurement basis for any fixed size;
i.e., the probability distribution g(x) only depends on the
size of the lattice. We demand this property because in the
proof of exponential expressive power, we associate a
probability distribution with a problem consisting of non-
negative numbers as outputs: x specifies an instance of the
problem, and the task is to compute the probability given a
specific x, i.e., g(x), to the multiplicative error. Thus, the
complexity of a probability distribution is defined as the
complexity of the associated problem.

The proof of exponential expressive power works for any
efficiently computable classical model. Thus, it also works
for any neural networks.

c. Sketch of the proof

The key to separating the complexity of the classical and
quantum models is formalizing a sign problem caused by
quantum interference: Approximately computing (up to the
multiplicative error) a summation of many non-negative
numbers is easier than the summation of many complex or
real numbers. This can be done via Stockmeyer’s theorem
[93] (see Ref. [16] for an introduction oriented to the proof
here); the former is inside ¢, and the latter is #P-hard. The
same reasoning has been used to separate QGMs and the
general probabilistic graphical model [16]. Here, we only
give a sketch of the proof.

Assume there exists a Bayesian network that generates
the joint probability p(x,y,z) such that the conditional
probability >, p(x,y|z) approximates g(x) to the multi-
plicative error. We can use Stockmeyer’s theorem to prove
that, based on this assumption and supposing that the
parameters of the network are given, approximating g(x) to
the multiplicative error is in 4. We should keep in mind
that the probability defines a problem, with x specifying an
instance of the problem.

However, though we can show that it is possible to
approximate g to the multiplicative error, the proof is not
constructive. More concretely, “/poly” denotes that, for any
fixed input size (the length of x), there exists a polynomial-
sized classical circuit that computes all the instances of the
problem, but the circuit may not be efficiently constructed
[90,94]. In Appendix B 3 b, we construct a BBQC such that
computing g(x) to the multiplicative error is #P-hard.
Thus, assuming the efficient representation of the BBQC
via classical Bayesian networks, we (roughly) obtain

#P C 27 /poly. (B5)
This implies that the polynomial hierarchy would collapse
to the third level, as more formally shown in Ref. [16]

(which follows from a modification of the reasoning of the
proof of Theorem 3 in Ref. [95]).
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4. Algorithms for inference and learning

There are mainly two computational problem associated
with a generative model. One is inference, i.e., how to
extract useful information from the representation of the
generative model. Making inference on a generative model
usually means computing marginal probabilities or condi-
tional probabilities, or performing maximum likelihood
estimation. With this, we can make predictions for new data
after getting an approximately correct representation of a
data distribution pp. Later, we will give examples to show
the applications of computing conditional probabilities.

The other computational problem is training (or learn-
ing), i.e., how to determine parameters of the generative
model from training data in order to approximate pp.
Training usually means minimizing the KL divergence

D(ppllpe) =) _pp(v)log (?:((:)))

between pp and py, the distribution of the generative
model, with the whole parameter set denoted by
0 = (61, ..., Opoly(n))- The B-dependent part of D(pp||ps)
can be expressed as

JD(G)E—i Z

vEtraining data set

(B6)

log pg(v), (B7)

where N denotes the total number of data [1/N approx-
imates pp(v)] and the summation is over all the training
data or a batch of data for stochastic optimization. As the
number of parameters is bounded by poly(n), the required
data size N is typically bounded by poly(n) [1]. We can
also understand optimizing D(#) as maximum likelihood
estimation since D (@) is proportional to the log-likelihood
log ([T, g¢(v))- It is worth mentioning that, in addition to
D(0) with v = (x, y), it is also usual to adopt the following
loss function for supervised learning [96],

L) =- >

vEtraining data set

log g(ylx). (B8)

since it is the log-likelihood log ([T, ge(y|x)). Typically,
we minimize these loss functions via a so-called optimizer,
usually the gradient descent method [3] with a proper
learning rate (the step length for updating parameters) or
its variations, like adding a stochastic term, adjusting the
learning rate adaptively, utilizing training data in batches,
and so on.

a. Heuristic quantum algorithms
for inference and learning

Even for classical Bayesian networks, the training and
inference problems are computationally hard for quantum
computers [79,80]. However, there are a number of

proposed heuristic and approximate algorithms that work
well in practice in tackling these computation problems for
classical algorithms [81].

BBQCs have a similar problem in that exact training and
inference are computationally difficult, and it is natural to
propose heuristic quantum algorithms. Since Bayesian net-
works are a special case of probabilistic graphical models
[81], the quantum algorithm for the learning and inference
problems in extensions of probabilistic graphical models [16]
also works here. The idea is to convert the learning and
inference problems to preparing ground states of a local
Hamiltonian. The runtime of the quantum algorithm is
proportional to the inverse of the energy gap, although we
cannot guarantee that the energy gap scales as 1/poly(n).
Other heuristic quantum algorithms more specific to Bayesian
networks may also exist as in the classical case.

APPENDIX C: RELATIONS AMONG VARIOUS
ERROR MODELS

For completeness, we also define two other error models.
One is the multiplicative error:

p(x) - q(x)| <rg(x), Vx, (C1)
with y being a constant smaller than 1/2. Note that p
approximating g under this error implies that Dy, (p||q) is
bounded by y. Thus, p approximating g under this error
model is a stronger requirement than a small KL divergence
of p from g. This error model is used for our complexity-
theory-based proof of a quantum advantage on general
graphs in Appendix B 3.

For translation problems, the generative models usually
only define conditional probabilities p(y|x) for the classical
model [e.g., the second model in Fig. 1(b)] and g(y|x) for
the quantum extension. The prior probability for x is
unspecified, and we denote it as p(x) and g(x) = p(x).
Then, the KL divergence is

p(x,y)
q(x,y)

- Yot (me:c)log ). @

Dyi(pllg) = > _p(x.y)log

In order to avoid any assumptions on p(x), we require that
the quantity inside the brackets be bounded for any x. This
implies that

q(ylx) =0« p(yk) =0, (C3)

Vx,y.

Now, let us show that the multiplicative error is bounded,
which implies that Dg; (p||q) and Dg; (q||p) are bounded;
this, in turn, implies the error model in Eq. (1). We see that
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p(x)
Zx:p(x) log 3

< g p(x)log (1 +%— 1)‘
<o)
< gp(x)r

=y. (C4)

The second inequality comes from

p(x) — q(x)| < yq(x) (C5)

with small y. A similar proof holds for Dy (g||p) by
exchanging p and q.

According to the definition of Dy (pl|lg), q(x) =0
implies that p(x) =0 in order to make Dy, (p||g) bounded.
According to the definition of Dg; (¢||p), p(x) = 0 implies
that g(x) = 0 in order to make D; (¢||p) bounded. Thus,
both Dy (p||q) and Dy (q||p) are bounded, which implies
the error model in Eq. (1).

APPENDIX D: LEMMA PROOFS FOR THE
MERMIN-PERES MAGIC SQUARE

First, we prove the following lemma:

Lemma 2. For any subset of stabilizer states s such that
[s| > 2n*/4+7n/2 there exist three states such that some of
their stabilizers form a Mermin-Peres magic square as
shown in Table II

Proof.—We write |s| = a(n)b(n)c(n) +1, where
a(n) = 27'/4+3n/2 p(n) = 4" and c(n) = 2; their meaning
will be clear later. Given |s| stabilizer states, we can always
transform these states to another set of stabilizer states by a
Clifford circuit such that one of the states will become
|0)®" and the other a(n)b(n)c(n) states have the following
form (see Ref. [97]):

W) & Y (~1)10il@]x),

xeA

(D1)

where A is an affine subspace of Z% and g(x) and I(x) are
quadratic and linear functions on Z, and Z,4, respectively.
The state is determined by A, g, [.

We denote a(n) as the number of different A: An affine
subspace is composed of a linear subspace and a displace-
ment, and thus there are at most

a(n) < Zz(n—kﬂ)k X N — o /4+3n/2 (D2)
3

TABLE II. Mermin-Peres magic square.

possible A, where the first term involving summation over k
is the number of linear subspaces (where k is the dimension
of the subspace—see Theorem 2.14 of Ref. [98]) and the
second term 2" is the number of possible displacements.

According to the pigeonhole principle, we can prove
that we now have the |0)®" state and at least b(n)c(n)
states belonging to the same affine subspace A. Those
b(n)c(n) states only differ by ¢ and I. Using Ccnor
and Cy, which are circuits only composed of cNoOT and
Pauli x gates, respectively, these states can be trans-
formed to be of the form

Z (=1)30) () | 31) |0) ®(n—k)

ue{0,1}*

(D3)

which are graph states over the first k qubits. These
circuits simultaneously transform |0)®" to a state of the
form |z,z5...2,).

Denote b(n) as the number of ! which is no greater than
4" (where the worst case is k = n). Then, we have the
|z,25...2,) state and at least ¢(n) graph states after applying
S or Z gates to eliminate I. As long as c(n) > 2, we can
always find two graph states such that there exists a pair of
vertices where there is no edge for the first graph and there
is an edge for the second graph. Without loss of generality,
we may assume this pair is comprised of qubits 1 and 2.

The first graph state (without an edge between qubits 1
and 2) has stabilizer generators X,/,Z% and I,X,Z", and
the second has generators X, Z,Z and Z,X,Z%, where a;,
by, ¢y, dy are n — 2-dimensional vectors on Z,. The
computational state has generators ((—1)%Z;), so it could
have any Pauli Z-type stabilizers up to =+ signs. Then, we
have the Mermin-Peres magic square given by Table II. In
this table, operators in each row commute with each other
since they are chosen from stabilizers of the same quantum
states. It is also easy to check that operators in each column
commute with each other. The first two Pauli stabilizers
in each observable form the “traditional” Mermin square,
and the Pauli Z stabilizers after the first two qubits do not
change the commutation relations between observables.
Thus, this table forms a Mermin-Peres magic square and
thus exhibits contextuality. (]

Second, we prove the following lemma:

Lemma 3. If three stabilizer states and a subset of their
stabilizers form a Mermin-Peres magic square as shown in
Table I, the intersection of their support in an ontological
theory should be empty in order to be consistent with
quantum mechanics.

Computational states (=1)1,Z,Z%+¢

(_1);}2[122&3%3 (_1)f'+gzlzzzm+bs+-‘:3+d3

X, 1,7
X, Z,Z

First graph state
Second graph state

X, X, Z0+bs
—X\X,Z,Z,Z¢H4

1,X,7b
Z,X,Z%
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Proof.—The proof basically follows the discussion in
the main text with the example in Eq. (11) but written in a
more general way. Assume there is a common A in the
intersection among the supports of the three states

lw1), w2), and |ys).
It is simple to show the following two equations:

1 — ABab
% [y3) =0, or equivalently,
1 + ABab
EE2R ) = ), (D4)
and
1 + ABab 1 + ABab
LBl | LEAPD ) orcqivatnty,
1 + ABab l+Aal+ABabl+Bb
il ——F—lv2) = (w1l ly2)
2 2 2
=0. (D5)

The first set of equalities forces the measurement result of 4
to deterministically be +1. The second set of equalities
shows that the resulting states of |y;) and |y,) after
measuring ABab and getting +1 are orthogonal. Thus,
there is a contradiction. ]

APPENDIX E: ROBUST SEPARATION OF
k-GRAM MODEL UNDER /; DISTANCE

Here, we prove that any k-gram model with the prob-
ability distribution p with k < n/6 cannot approximate a
particular basis-enhanced 2-gram model with the proba-
bility distribution g to I; distance smaller than 1/288, i.e.,

le

For simplicity, we assume n = 3 + 4k. The key to proving
the separation between the quantum extension and its
classical counterpart is through a Bell test of the GHZ
state through measurements in the X and Y bases. By
measuring the remaining qubits, we obtain a GHZ state up
to three single-qubit Clifford gates. However, as we
restricted measurement to the X and Y bases, this does
not always hold. The following lemma gives the probability
of still having nonlocality.

Lemma 4. The probability of measuring the remaining
qubits to get a GHZ state up to Pauli and § gates is larger than
1/9. We call this measurement a GHZ-type measurement.

Proof.—Suppose the measurement basis and results for
the remaining qubits are b;s;b,s,--- with equal proba-
bility. Then, the resulting state is

—g(x)| > 1/288. (E1)

GlCl ® (g} @ 0'2C2|GHZ), (EZ)

where o; is a Pauli matrix and

C,=HS"H -§2-.... HSS» 1 H - S5,

C, =HS %1 H.§%%2..... HS5w 1 H - S5k (E3)
We only need to prove that the probability of C, equaling /
or S up to a Pauli matrix is at least 1/3.

All of the single-qubit Clifford gates can be represented
as permutations in S3 among single-qubit Pauli matrices up
to an unimportant phase factor. Note that HSH and S can be
regarded as (12) and (23), which are generators of S;.
Starting from I, each time we apply HS*:-'H - §°% with
probability 1/4 for all of the choices of s,;_;, 5,;, we obtain
a random walk among the six group elements of S5. The
transfer matrix is

1 1 1 1
/zzzozo\
bidogo
Lo 1 1 o 1

4 4 4 4

L p 1 1 o 1 (E4)
4 4 4 4

0 307 5 3
\o § 0§ Y

By solving for the eigenstates and eigenvalues, and
choosing an initial state of (1,0,0,0,0,0), we find that after
k steps, the probability to get I and S up to Pauli operators
[which are (1) and (12) in S3] is given by

1 2 1

— ks —

373 —47k> 3 (ES)
which proves the lemma. ]

Lemma 5. For distributions p and g, and any positive
number c,

2 oxlp(x) —q(x)]
e

> Ip(x) —cq(x)| = (E6)

Proof—Denote § = 5 |p(x)
following two cases:

— g(x)|. We consider the

@ [1—c|=68/2:
ZLU (x) — cq(x)| > Zp — cq(x)
=|1-¢|
> §/2. (E7)
Qi) |1 -c|<8/2:
le (x)- cq(x)|>Z|p x)|=[(1-c)g(x)|
=6-|1-c|
>5/2. (E8)
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Lemma 6. Denote the measurement bases and results
for the three chosen qubits as a = (a,,a,,a;) and
t = (t, 12, 13), respectively. Then,

7
> ql@)p(da, GHZ-1ype) < ¢,

atesol,

(E9)

where sol, means £ satisfies Eq. (5) up to flips of some b;
and s; determined by the GHZ-type measurement basis
and results.

Proof.—The probability distribution in Eq. (6) could also
be understood as follows: There is a probability distribution
p(A), and each A determines t;, i.e., f; = t;(s;, ). Because
the GHZ test cannot be described by a local hidden variable
theory, there exists at least one assignment of @ given 4 such

> Ip(a,b,s.t) —q(a.b,s,t)| = D |p(b,s)p(a,t

abst abst

>

(b SEGHZ-type

> >

bseGHZ-type at

+

>

b s#GHZ-type

> |pb.s)p

that ¢ = #(s, A) & sol,. Assuming this and g(a) = 1/8, we
have that

3" g@p(ta) = £ 32 3" plda)

atesol, a tesol,
1
o [ p(l);l(t(.l,a) € sol)

7
<= E10
<g (E10)

where 1(-) is the indicator function, which is 1 if the
condition - holds and 0 otherwise. [

Combining the above lemmas, we now show that
Eq. (El) holds. First,

b,s)—q(bs)q(a.t|b,s)|

)Zm(b,s)p(a, {b.5) - q(b.5)(a.1b.s)|

at

(a,t

b.s) —q(b,s)q(a,t

b,s)|

> Z p(b,s)z pla,tb,s) - a(b.s) qla,tb,s)
bseGHZ-type at P (b*s)
b,s
> Z ?le(ﬂ,rb,s) —ql(a,tlb,s)|
bseGHZ-type at

pb.s)
. Z 2 b.SEIGnP-}glype ; |p(a, tlb’s) Q(a; t|b, S)|

bseGHZ-type
1

=— i t
18 b.seIGnl-}?rtype ; |p(a,

b,s) — q(a,tlb,s)|. (E11)

Making the minimization over GHZ types implicit and noting that q(t|a, GHZ-type) = 1 for t € sol, finally yields

> Ip(a.t) —g(a,1)] = "|p(a)p(tla) - q(a)q(ta)|

=3 "9@) q(tla) - p(a) p(tla)|
q(a)

> 2> 0@ lq(ta) ~ p(da)

:l(

L
3

9]

2

—

- Y qla)p(tla)

atesol, )

(E12)

With the last inequality, we arrive at the separation of 1/288 under the /; distance.
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APPENDIX F: HHM TO SIMULATE FIG. 2(a) pair, only involves single-qubit stabilizer states. The total
number is thus 6 ([0), [1), [+), ), [++), [=))-

APPENDIX G: SUPPLEMENTAL
NUMERICS FIGURES

The process described in Fig. 2 could also be understood
by the HMM model described in Sec. IV C. The total
number of possible quantum states involved is an upper
bound for the number of hidden variables in HMM. The
state stored in the second qubit of each pair in Fig. 2, with In Fig. 12, we plot the tensor network representation of
the evolution driven by measuring the first qubit in each  the derivative of the loss function Eq. (20). Furthermore,

@) . ; — — — (b) — — —
‘ Ur v® v® A v@ v®

i i
= a T v L vl
Ugu k ) Ug:;] L,én ) , L'.iﬂ
oSt (my,myms) | = ] o—@ | F@ I H@ oo | = [ ] | | 1
v 2 Ut e, Ul U@

k

o : . T 2) (3
. Uy vl ul Uy vl u®

FIG. 12.  (a) Derivative of S (m) with respect to U.(Jz) , using the network given in Fig. 6(b) as an illustrative example. (b) Derivative of

Zy with respect to U.(f), using the network given in Fig. 6(b) as an illustrative example.
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I 1.88 X -
1.00 i ey g
W * TR -8 !\ 3
*, 1.86 *e| 050 N E
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FIG. 13. Average performances over ten trials of the classical HMM (blue circles) and the basis-enhanced 2-gram model (orange
crosses) on (a,b) the biofam, (c,d) Promoter Gene Sequences, and (e,f) SPECT Heart data sets. The first row plots the performance on the
training data, and the second the performance on the withheld testing data. The basis-enhanced 2-gram model, on average, performed
better than the classical model even on the simple biofam data set, implying more consistent performance in the basis-enhanced 2-gram
model. Error bars denote 1 standard error of the mean over ten trials. Dashed lines are to aid the eye.
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in Fig. 13, we plot the average performance of both
the trained HMM and the basis-enhanced 2-gram model.
Note that the performance separation between quantum
and classical models persists even when considering the
average performance over many runs. A slight separation
is observed even for the biofam data set, implying
more consistent performance in the basis-enhanced 2-gram
model.
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