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Bulk and boundary quantum phase transitions in a square Rydberg atom array
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Motivated by recent experimental realizations of exotic phases of matter on programmable quantum simula-
tors, we carry out a comprehensive theoretical study of quantum phase transitions in a Rydberg atom array on
a square lattice, with both open and periodic boundary conditions. In the bulk, we identify several first-order
and continuous phase transitions by performing large-scale quantum Monte Carlo simulations and develop an
analytical understanding of the nature of these transitions using the framework of Landau-Ginzburg-Wilson
theory. Remarkably, we find that under open boundary conditions, the boundary itself undergoes a second-order
quantum phase transition, independent of the bulk. These results explain recent experimental observations and
provide important insights into both the adiabatic state preparation of novel quantum phases and quantum

optimization using Rydberg atom array platforms.
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L. INTRODUCTION

Rydberg atom arrays have recently emerged as a pow-
erful platform for programmable quantum simulation [1-5]
and quantum information processing [6-9]. Recent theoretical
[10-14] and experimental work on this system has allowed
for unprecedented insights into a variety of quantum phases
characterized by complex density-wave [4,15] or topological
[16-18] orders. Moreover, Rydberg simulators allow for de-
tailed studies of dynamics across quantum phase transitions
(QPTs) and other quantum critical phenomena. Finally, they
provide a natural many-body platform for exploring quantum
advantage in solving combinatorial optimization problems
[19,20]. These advances motivate detailed quantitative un-
derstanding of the QPTs between complex phases in such
systems, with realistic interactions and geometries. In par-
ticular, on even the simplest square two-dimensional (2D)
arrays, where a compendium of ordered phases was theoreti-
cally predicted [15]—and probed both by experiments [4] and
approximate numerics [21]—a thorough classification of the
associated QPTs is still lacking.

The many-body physics of Rydberg atom arrays can be
understood as resulting from two competing processes. On
one hand, atoms in highly excited (Rydberg) states interact via
strong van der Waals interactions [22], preventing neighboring
atoms from simultaneously occupying the excited state—a
mechanism known as the “Rydberg blockade” [23]. On the
other hand, a detuned laser field favors occupation of the
Rydberg state, enticing the system to maximize the number of
excited atoms [24]. This competition leads to a rich phase dia-
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gram [Fig. 1(a)]. On a square lattice, when the blockade radius
is comparable to the lattice spacing, the double occupancy of
neighboring sites is highly suppressed, leading to a “checker-
board” pattern of excited atoms [Fig. 1(b)]. Upon increasing
the blockade radius further, more complicated symmetry-
breaking phases (namely, the “striated” and the “star”’) emerge
[15]. The transitions between these ordered phases (and to
the disordered phase) can, in principle, be either continuous
or first order. Crucially, the nature of these phase transitions
dictates the efficacy of experimentally preparing the corre-
sponding states via quasiadiabatic dynamics in large systems.
Therefore, in order to utilize Rydberg atom arrays to probe
different phases of matter or prepare the ground states of
Hamiltonians encoding combinatorial optimization problems
[19], it is essential to establish a quantitative understanding of
the quantum critical points.

In this work, we employ both numerical and analytical
methods to investigate the nature of these QPTs in large
systems with realistic, long-range interactions. First, using
large-scale quantum Monte Carlo (QMC) simulations [25],
we construct the phase diagram [Fig. 1(a)] and identify the
nature of five distinct QPTs between the phases. This is pos-
sible only because QMC can reach system sizes large enough
for a careful finite-size scaling analysis under periodic bound-
ary conditions (PBC) with realistic long-range interactions,
which are computationally difficult to realize in tensor-
network-based methods [15]; addressing these challenges has
stimulated a lot of progress in the field of tensor-network
simulation [21,26]. Interestingly, we find that while the QPTs
from the disordered to the checkerboard phase and from the
checkerboard to the striated phase are continuous, the tran-
sitions from the disordered to both the striated and the star
phases are first order.
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FIG. 1. (a) Quantum phase diagram: First- and second-order
QPTs are denoted by the circle and star markers, respectively. Purple
stars mark boundary transitions in systems with OBC. The shaded
area marks the region where the system lies in the disordered
phase when using PBC but exhibits a boundary-ordered phase with
OBC. The gray dashed lines indicate parameter ranges investigated
in Figs. 2 and 4. (b) Schematic pictures of three distinct density-
wave orders corresponding to the star (orange), striated (green), and
checkerboard (blue) phases. Filled sites denote Rydberg excitations
while gray sites represent ground-state atoms.

Second, to understand the origin of the first-order tran-
sitions, we develop low-energy Landau-Ginzburg-Wilson
(LGW) theories describing the QPTs in the system. Our anal-
ysis reveals the emergence of fluctuation-induced first-order
transitions, arising from the inaccessibility of stable fixed
points in the renormalization group (RG) flow. Additionally,
we discover that systems with open boundary conditions
(OBC) can undergo boundary phase transitions [pink stars in
Fig. 1(a)] independently from the bulk. Intuitively, the bound-
ary transition is a consequence of the reduced connectivity
near the boundary: Fewer neighbors result in fewer block-
ade constraints and reduced frustration, allowing for easier
ordering.

The presence of first-order phase transitions has significant
ramifications for adiabatic state preparation in experiments:
Since the spectral gap often becomes exponentially small in
the system size at a first-order transition point, it makes all
adiabatic processes forbiddingly difficult. This is in stark con-
trast to the successful experimental preparation of quantum
phases reported in Ref. [4]. We find that this discrepancy is
resolved by the boundary phase transition: For intermediate
system sizes, the ordered boundary “seeds” the bulk order
and weakens the first-order transition, effectively enabling
experimental adiabatic state preparation. We also show that
the observed phase diagram (specifically, the extent of the
striated phase) is significantly affected by the presence of a
boundary.

The structure of this paper is as follows. First, we introduce
our model of the Rydberg system in Sec. II. Next, in Sec. III,
we numerically study the quantum phase transitions between
the various phases in a system with PBC, and in Sec. IV, we
present their unified field-theoretical description. Thereafter,

in Sec. V, we analyze the boundary ordering in a system with
OBC. Finally, we summarize our conclusions in Sec. VL.

II. MODEL

We consider an array of Rydberg atoms on a square lattice
interacting via the Hamiltonian

H= QZ(R,,/R,-,-)“n.-n,- —A an + %Zaﬁ (eY)

i<j i

where n; = (of + 1)/2 measures the Rydberg excitation den-
sity at site i, Rp is the so-called “blockade radius” [27]
encapsulating the strength of the interactions, R;; is the dis-
tance between sites i and j, and o is the Pauli X operator
at site i representing a transverse field. A and 2 > 0 denote
the detuning from the Rydberg state and the Rabi frequency,
respectively. In practice, we adopt a finite cutoff for the in-
teraction potential such that the interactions are set to 0 for
Rij > Ro. We systematically investigate different values of
R, and choose an optimal value, Ry = 4a (where a is the
lattice spacing), that maximizes the computational efficiency
without significantly affecting numerical results for given sys-
tem sizes (the role of the cutoff distance is elaborated on in
Appendix C).

To characterize the phases and the transitions between
them, we focus on the corresponding order parameters, de-
fined by the symmetrized Fourier transform of the Rydberg
density as F (k,, k,) = [F (k,, ky) + F (ky, k,)] /2 at momen-
tum (k,, ky) [4,15] with

- 1
Flke ky) = <= D mj explilke k)@, 31 ()
a

where N, is the total number of atoms. The checkerboard,
striated, and star order parameters correspond to F(m, ),
F(0, ), and F (r, m /2), respectively. Additionally, we com-
pute the Binder ratio of each order parameter F as Uy(F) =
B — (FY /(F 2)2)/2 [28], which is system size independent
at the quantum critical point of a second-order transition.
Another useful observable is the average Rydberg density
n = (1/N,) Y, ni—this is a first derivative of the free energy,
so any sharp behavior of this quantity across a phase boundary
may signal a first-order transition.

III. NUMERICAL STUDY OF PHASE TRANSITIONS

We begin by numerically examining the QPTs between
the four phases in the considered phase diagram: disordered,
checkerboard, striated, and star [Fig. 1(a)]. The disordered
phase does not break any symmetries, while the checker-
board and striated phases break Z, and Z, x Z- translational
symmetries, respectively. The star phase breaks both the Z,
symmetry and the Cy rotational symmetry.

For our numerical simulations, we adapt a QMC algorithm,
based on the continuous imaginary-time representation [29];
the algorithm is local in space but nonlocal in the imaginary-
time direction [25]. We found that, for our system, this QMC
method performs better than the conventional stochastic series
expansion algorithm with cluster updates [30]. Our full QMC
approach is detailed in Appendix A.
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FIG. 2. Phase transitions between the disordered, checkerboard,
and striated phases. Markers correspond to sizes L = 8 (circle),
12 (triangle), and 16 (star) with increasing color intensity. The
order parameter of the checkerboard [striated] phase across the
disordered—checkerboard [checkerboard—striated] boundary shows a
second-order QPT in panel (a) [(b)], with its universal collapse pre-
sented in the inset. [(c), (d)] The transition between the disordered
and striated phases shows distinct signatures of a first-order transi-
tion: sharp jumps in the order parameter (c), and the Rydberg density
(d) with a double-peaked distribution of QMC measurements at the
transition.

First, we study the transition from the disordered to the
checkerboard phase. To this end, we calculate [Fig. 2(a)] the
order parameter F'(;r, ) and its Binder ratio across a range
of detunings at a fixed value of the blockade radius R, = 1.2
[gray line in Fig. 1(a)]. We observe a smooth behavior of
the Rydberg density n and notice the Binder ratio crossing
at a single point for multiple system sizes N, = L x L;
L = {8, 12, 16}. In Fig. 2(a) and hereafter, increasing system
sizes are denoted by circles (L = 8), triangles (L = 12),
and stars (L = 16). To confirm the second-order nature of
this transition, we attempt a universal scaling collapse of
the order parameter near the critical point according to F =
L f((A — A.)L'V)—where v and B are the correlation
length and magnetization critical exponents, respectively—
while simultaneously scaling the temperature as T ~ 1/L, in
accordance with the z = 1 dynamical critical exponent of the
underlying CFT [31]. We obtain good data collapse [Fig. 2(a)
inset] and extract the exponents v =~ 0.632, B ~ 0.29, con-
sistent with the (2 4+ 1)D Ising universality class [32]. A
detailed summary of the exponent-extraction procedure is pre-
sented in Appendix B.

Now, we turn our attention to the transition between the
checkerboard and the striated phase. Even though the two
phases break different symmetries, the latter effectively breaks
a second Z, symmetry on top of the one already broken by
the former. Therefore, a second-order transition is still gener-
ically allowed. Indeed, on tuning our system across the phase
boundary at a constant detuning A/Q = 2.6, we observe a
smooth behavior of the Rydberg density, and the order pa-
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FIG. 3. Transition between the disordered and star phases. [(a),
(b)] Both the order parameter and the Rydberg density converge to
sharp step functions for increasing system sizes. (b) Double-peaked
distribution of density measurements at the phase boundary indicates
a first-order transition.

rameter collapses under universal scaling with the exponents
v = 0.612, B =~ 0.314 [see Fig. 2(b)], again consistent with
the (2 + 1)D Ising universality class.

Next, we investigate the transition from the disordered to
the striated phase, keeping the blockade radius fixed at R, =
1.45. In Figs. 2(c) and 2(d), we show the order parameter
F (0, ) and the Rydberg density n across this boundary. Both
observables feature a sharp jump at the critical point, which
converges toward a step function for larger system sizes, indi-
cating a potential first-order transition. To further corroborate
this claim, we plot a histogram of Rydberg densities obtained
during the QMC sampling, from multiple random seeds, at
the transition point. This shows a clear double-peaked distri-
bution, conveying a coexistence of the two phases near the
transition. These features, together with the lack of universal
scaling, strongly suggest that this is indeed a first-order QPT.

Finally, we simulate the transition from the disordered
phase into the star phase at R, = 1.7. In Fig. 3, we see a
behavior similar to the transition into the striated phase: Both
the order parameter and the Rydberg density seem to converge
toward a sharp step-like function. We again plot the histogram
of the density sampling [Fig. 3(b); inset] and observe a clear
double-peaked distribution, reflecting the first-order nature of
the transition.

The star and striated phases break different symmetries;
thus, in the absence of any exotic mechanisms such as de-
confined quantum criticality [33], the QPT between them
must be first order. We study this transition numerically and
find that our QMC algorithm exhibits diverging equilibration
times near the phase boundary, indicating the coexistence of
two incompatible symmetry-breaking patterns. We employ a
seeding procedure where the simulation first equilibrates deep
within one of the phases and is then slowly driven toward the
transition point. This method results in a convergence to a
sharp jump, indicating the first-order transition, as expected.
Further details on extracting the phase boundary are presented
in Appendix D.

In summary, two of the three possible transitions between
the disordered, checkerboard, and striated phases prove to be
second order while the third is seen to be first order. The star
phase is connected to the neighboring phases considered here
solely through first-order QPTs. To understand the origins of
these differences, we now analyze the different QPTs using
the framework of LGW theory.
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IV. FIELD-THEORETIC DESCRIPTION

Having identified the locations and orders of the various
quantum phase transitions from numerical simulations, we
now turn to their theoretical descriptions. More specifically,
we construct effective LGW theories [34] to describe the
nature of the phase transitions observed in the square-lattice
Rydberg atom arrays. Here, we present the main results while
the detailed analysis is summarized in Appendix E.

Focusing on the long-wavelength and low-energy physics,
the key tenet of LGW theory is the “soft-spin” approximation
[31], which promotes the discrete local density »; at each site
i to a coarse-grained continuous density field, o(r), that can
be expanded in the basis set of the real-space eigenfunctions
of the N lowest energy modes as

N
p(r) =Re (Zj ¥ e*) 3)

n=1

where 1, € C is the order parameter corresponding to the
nth mode. The momentum-space positions of these soft modes
can be identified from the peaks in the Fourier spectra of
the real-space density-wave profiles. The Landau functional
is then given by all homogeneous quartic polynomials in
the amplitudes y, which are invariant under the symmetry
transformations of the underlying square lattice [35-38]. In
this spirit, the Rydberg density in or around the striated
phase can be expanded in terms of three real fields ¥,
Wy, and @ as p(r) = W e @07 4 W, o OMT L @ el (r7)T,
note that this set already includes the (7, ) Fourier peak of
the checkerboard phase as well. The symmetry properties of
the order parameters show that & ~ W;W; and the interplay
between the three bears interesting consequences for the Lan-
dau theory. Up to quartic order, the most general effective
Hamiltonian is

2
Hyow = f dﬂx[Z(Buw;)%(aﬂ)z+r(\I'12+‘1’22)
i=1
+5 D+ g Wb, + “1(“1’12 + "I’zz)l
+u®* + v W W2 + w (W7 + \If%)}, @

where x denotes a D = 2 + 1-dimensional spacetime coordi-
nate, and we have suppressed the explicit dependence of the
W and @ fields on the continuum position r. We have also
rescaled all the field variables so as to make the coefficients
of the gradient terms equal to unity. The parameters r and
s tune the system across the various phase transitions. The
cubic coupling g is allowed by all the symmetries and plays
an essential role in establishing the important features of the
phase diagram.

A mean-field analysis of 7,y leads to the phase diagram
in Fig. 4, yielding (i) the trivial disordered phase, where no
lattice symmetry is broken and (®) = (¥;) = 0, (ii) the
checkerboard phase, where only the & field is condensed, i.e.,
(®) # 0, (¥;) = 0, and (iii) the striated phase, where both
the order parameters are nonzero, so (®) # 0, (¥;) # 0.
Although there can be a second-order QPT between any two
of these three phases, the presence of the cubic term in Eq. (4)

0.1} Striated
L] 0
S
§ T2
-0.1} Disordered
(@) =0 Checkerboard
-021 (@;) =0 (®)#£0 (¥;)=0
—0.2 ~01 0.0 0.1 0.2
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FIG. 4. Mean-field phase diagram of the low-energy Landau the-
ory in Eq. (4), illustrating the disordered, checkerboard, and striated
phases as well as the fields condensed in each. The black and red lines
represent second-order and first-order QPTs, respectively. The black
dots mark the two tricritical points T; and T>. The numerical min-
imization was performed taking g = —u; = v = =1, u, = 0.75,
and w = 0.5 in Eq. (4).

implies the existence of a line of first-order transitions close
to the origin r = s = 0 [39-41]. This line terminates in two
tricritical points (labeled T; and T, in Fig. 4), at which the
coefficients of both the quadratic and quartic terms of the
effective theory vanish; the theory is then controlled by its
sextic term [not shown in Eq. (4)].

Let us now address the role of the fluctuations neglected in
the mean-field calculation so far by considering a more careful
RG analysis. For the purpose of describing the QPT from the
disordered to the striated phase, the most general Hamiltonian
density consistent with square-lattice symmetries can be writ-
ten as

2

2

1
2 l:{(au\ll,»)2+r\ll,2} + z :l(uo + vod;) )W T
i= i,j=

S R

This theory is known to have four RG fixed points (FPs)
[42,43], butin D = 3, only the O(2)-symmetric FP describes
the generic critical behavior of the system. However, there is
an extended region in the (ug, vo) parameter plane, defined by
the wedge {(ug, vo) | — vo/2 < up < 0}, from which the FP
is inaccessible, thus rendering the transition first order [44].

Therefore, there are two possible mechanisms which could
lead to the first-order transition between the disordered and
striated phases observed numerically. First, we could have a
scenario where the transition to the star phase occurs before
the point T (Fig. 4) can be reached, ensuring that the entire
line of transitions between the disordered and the striated
phase remains first order. Alternatively, if the parameters of
our theory place us in the above-mentioned swath of (i, vg)
space, one could have a fluctuation-induced first-order transi-
tion due to the inaccessibility of the relevant FP.

On the other hand, the Z, symmetry breaking on going
from the checkerboard to the striated phase is described by
the standard ®* field theory, where, for D < 4, the physics of
the critical point is given by the celebrated Wilson-Fisher FP
[45—47]. Therefore, any second-order QPT between these two
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phases must be in the universality class of the (2 + 1)D Ising
model.

Having detailed the LGW theory of QPTs in the lower part
of the phase diagram, we now turn to the star phase. The QPT
from the disordered to the star phase involves four real fields
and is described by a three-dimensional O(4)-symmetric vec-
tor model with anisotropic perturbations [48]. The effective
Hamiltonian, consistent with all symmetries, is (up to quartic
order)

2

Hy = f de[ > %{(Bu%.i)z + 15}

i,a

2
1
+ D 7 (o + vodi + wobijdun)d; i, j], )

ijab
where the coefficients ug, vp, wo must satisfy

wy

—(up + vg) < 3 < —y, for wg > 0
2

up > 0 and { (6

—(up + vg) < wy < —vy, forwy<O0

to ensure the stability of the theory and the appropriate con-
densation of fields in the star phase. Within the framework of
the & expansion, this so-called tetragonal theory has eight FPs
[49-51]. However, a careful analysis shows that there are only
three possible stable FPs [52]: the cubic one in the vyp = 0
plane as well as its symmetric counterpart, and the XY FP with
ug = wy = 0. The cubic FP, which is stable in the vy = 0
subspace, is unstable with respect to the quartic interaction as-
sociated with the coupling vg; similar considerations apply to
the other cubic FP which is stable in the vy + (3/2)wg = 0
plane [53]. The XY FP is stable on the up = 0 plane and
while its behavior in the full parameter space has been a sub-
ject of much debate [54-58], recent six-loop fixed-dimension
expansion calculations [52] have confirmed its global stability
[including on the wy = 0 plane in Fig. 10(c)]. Thus, systems
described by the tetragonal Hamiltonian are generically ex-
pected to demonstrate XY critical behavior.

Crucially, the XY FP is rendered inaccessible from the
allowed region in the parameter space of our effective theories
given by Eq. (6) as shown in Appendix E. Therefore, the
QPT between the disordered and star phases is a fluctuation-
induced first-order transition.

V. BOUNDARY CRITICALITY

The notion of a QPT is formally defined in the thermody-
namic limit. In practice though, one always considers a finite
system, in which case the boundaries may have important
effects on the critical behavior [59]. Concentrating on the
disordered—striated transition in an array endowed with OBC,
here, we address this issue in the context of the experimentally
realizable Rydberg phase diagram.

Remarkably, we notice that the boundary itself undergoes a
second-order QPT before the bulk in the thermodynamic limit
[top panel of Fig. 5(a)]. Intuitively, atoms at the boundary
have fewer neighbors (and interactions), so it is easier for
them to order. For a finite-size system, this surface order
shifts the onset of bulk ordering towards smaller A /2 because
the boundary “seeds” the interior of the system. Such an

(b)

Uy (Fpg)
U Fg)

4 1.8 19 2.0
A/9

2
A/Q

FIG. 5. Boundary phase transition and its implications for exper-
iments, (a) Comparison of the striated order parameter (color map)
obtained from our QMC simulation with OBC against that of the ex-
periment in Ref. [4], showing good agreement. The boundary orders
first (lower A/S, pink stars) and strongly influences the extent of
the striated phase, which is extended to a wider range of parameters
compared to the bulk behavior on a torus. Orange and green dots
denote phase transitions in a system with PBC (Fig. 1). (b) Binder
ratio of the boundary order parameter across the transition marked in
gray in panel (a). The insets show the boundary ordering (upper left)
and universal collapse with 1D exponents (lower right).

onset of bulk order in the presence of established boundary
order defines an extraordinary boundary universality class
[60]. Furthermore, since the Z; ordering at the boundary is
compatible with the checkerboard and striated phases—but
not with the star—the striated phase is significantly expanded,
relative to a system with PBC, at the cost of the shrunken star
phase.

Next, we determine the critical exponents of the boundary
transition by calculating the boundary order parameter Fg =
[Fa(r, ) + Fg(m, m)]/2 with

~ 1
Falke k) = > nj explilke, k)(xj, 301 (1)
NBjeBoundary

Np being the number of atoms along the boundary. In
Fig. 5(b), we present the Binder ratio of Fz while the inset il-
lustrates its universal collapse with v = 1.004(8), consistent
with a (1 + 1)D Ising transition. Signatures of this bound-
ary ordering have been also obtained from experimental data
using machine learning in a complementary work [61].

The ordering of the boundary has direct implications
for quasiadiabatic state preparation across a critical point.
According to the Kibble-Zurek [2,62-66] mechanism, the
scaling of the density of defects in the resultant phase after
a quench is governed by the universal static critical exponents
of the QPT. Since (1 + 1)D and (2 + 1)D Ising universality
classes exhibit scaling behavior with different critical expo-
nents, the efficiency of adiabatic state preparation may depend
on the interplay between the boundary and the bulk. For
example, during dynamical preparation, the system could un-
dergo a cascade of boundary transitions propagating inward,
effectively masking the bulk first-order transition.

Apart from understanding the existing experimental ob-
servations, an important open question is whether one can
leverage the boundary ordering to facilitate improved prepa-
ration of bulk-ordered states in larger systems. Detailed
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understanding of these processes requires careful theoretical
and experimental studies of real-time quantum dynamics of
large systems.

V1. DISCUSSION AND OUTLOOK

The results in this work demonstrate the emergence of
both first- and second-order QPTs in a square-lattice Rydberg
array with periodic boundary conditions and present their
unified field-theoretic description. Furthermore, we identified
the crucial role of boundary ordering in systems with OBC,
which allows one to adiabatically access compatible phases
that are otherwise hidden behind a first-order transition line.
Our findings suggest that the boundary plays a major role in
understanding experimental results.

These studies can be extended along several directions.
First, we note that at stronger interactions, other phases are
known to emerge for the system at hand [15]. The classifica-
tion and theoretical study of those orders, as well as different
lattice geometries [4,16,17] or interparticle interactions, is an
interesting direction for future work. Second, the applica-
tion of the phenomena discussed in this work to disordered
systems warrants a separate investigation. Understanding the
role of boundary ordering and quasiadiabatic state prepara-
tion in these settings is a key factor in predicting practical
performance and potential quantum advantage of near-term
quantum simulators for optimization problems such as the
maximum independent set [67,68].
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APPENDIX A: QUANTUM MONTE CARLO SIMULATION

Our algorithm is based on the work in Refs. [25,69]; here,
we briefly summarize it for completeness. We found that, for
the Hamiltonian in Eq. (1) of the main text, this QMC method
performs better than the conventional stochastic series expan-
sion algorithm with cluster updates [30], which we attribute to
the presence of strong nearest neighbor blockade interactions
that violate the Ising symmetry. Our QMC scheme operates

at a finite temperature 7', and, in order to access properties
of the ground state, we work at sufficiently low temperatures,
e.g.,T/Q = 0.01 and 0.02.

We write our d-dimensional system’s Hamiltonian as
H= ﬁo +ﬁ1, with

H=ZV,-,ﬁﬁ,—AZﬁ,-—%Z&f (A1)
i<j _ i i
Hy B

where H, denotes the part diagonal in the z basis and H;
is the off-diagonal term proportional to 6*. In the discrete
imaginary-time representation (with N sites in the imaginary-
time direction), the partition function is

Ni—1
Z="Tre ") = lim - ]'[ (@arile o™ o),
a =0

(A2)

where @ = ay, @, ..., ay,, @; is a state in the computational
(z) basis with ay, = ap due to the periodicity induced by the
trace, and T = B/M is assumed to be very small such that
the above Suzuki-Trotter decomposition holds. The partition
function in Eq. (A2) can be recast as a partition function
of a (d + 1)-dimensional classical model, with the index a
labeling the additional dimension

Za =) (aalePM]aa),

Ol

(A3)

where «) are computational basis states of N; x N, spins and

N1 N V.
H‘:':Z(ZAZF"“'I”J Zn:

a=0 i<j

lncoth 258
Z a,i {;+ll ’

where a labels the imaginary-time direction. This Hamiltonian
is diagonal in the computational basis. In order to avoid errors
stemming from the Suzuki-Trotter decomposition, one has to
use large values of M, which makes the simulation inefficient.

To amend this issue, Refs. [25,69] go to the limit of N; —
oo directly. This can be achieved by keeping track of domain
walls in the imaginary-time direction, rather than individual
spins. Assuming that there are reasonably many clusters, this
approach should reduce the computational complexity by a
large factor. Fortunately, cluster lengths obey the Poisson dis-
tribution [70]; therefore, in each update step, we can sample
potential domain wall positions accordingly and attempt to
flip whole clusters using the usual importance sampling. This
scheme is therefore nonlocal in the imaginary-time direction
(cluster update) but local in space (local update).

‘We note that an independent work in Ref. [71] developed a
similar method, which is local in space and nonlocal in imag-
inary time, based on the stochastic series expansion (SSE)
approach. In certain parameter regimes, Merali et al. [71] ob-
serve better performance using this “line method” compared
to the usual cluster updates for SSE approach.

(A4)

174417-6



BULK AND BOUNDARY QUANTUM PHASE TRANSITIONS ...

PHYSICAL REVIEW B 105, 174417 (2022)

TABLE I. Explicit values of parameters obtained for the fitting ansitze in Eqs. (B1) and (B2). These values correspond to the data shown
in Fig. 6. The data for system size L = 8 exhibit strong finite-size effects, so we use system sizes 12,16,20 for extracting the exponents.

Fitting of the order parameter F' (k)

Transition Liin B ap a; x 10° a, x 10° a; x 10° ay x 10°

Disordered <> checkerboard 12 0.291(1) 0.309(1) 67.9(3) 5.6(1) —0.96(2) —0.035(3)

Checkerboard <> striated 12 0.314(1) 0.225(1) 27.4(1) 20.3(5) —3.8(8) —2.7(8)
Fitting of the Binder ratio Uy

Transition Lin g v by by x 10° b, x 10° by x 10° by x 10°

Disordered <> checkerboard 12 1.0959(1) 0.632(5) 0.7048(9) 122(4) —9.6(6) —2.5(2) 0.34(5)

Checkerboard <> striated 12 1.38000(1) 0.612(6) 0.591(1) 740(34) 5(21) —673(82) 054(157)

APPENDIX B: EXTRACTION OF CRITICAL EXPONENTS

For second-order phase transitions, we assume a dynamical
critical exponent of z = 1 and thus scale the temperature
with the linear system size as T ~ 1/L. We are interested in
the v (correlation length) and B (magnetization) exponents,
which we will extract from the Binder ratio U, and the order
parameter F, respectively. To this end, near a critical point g,
we consider a universal scaling form of the Binder ratio as

Us = fil(g — g)L'"
K

=) a(g— gL + O((g — g ),
k=0

(BI)

where g is the coupling constant being varied (in our case, R}
or A), and f; is some universal function near the critical point.
In practice, we fit the universal function to a polynomial in
the distance to the critical coupling value (g — g.) to the Kth
order with coefficients ay. If the fitting procedure is stable (i.e.,
there is universal scaling), it should be possible to truncate the
expansion at a reasonably small K when close enough to the
critical point. This is visible in the relatively small extracted

(a) o.15f (b) 1.0
K010 S
= =06
0.05 04
1.08 110 1.2
A/Q
(e) 06 > (f) 1.0
E =08
— 0.4 B
F = 0.6{
;q [’
0.2+ 0.4 ’,»
2 0 2 4 2 0 2 4
LY"(A—-AL)/Q LY"(A—-AL)/Q

values of g, for larger k. We set K = 4 in this work and found
it to be sufficient.

Similarly, we assume the universal form of the order pa-
rameter:

F=L"*"fl(g— g)L""]
K

= bi(g— g )L P + O((g — g)*H).
k=0

(B2)

To extract critical exponents, we calculate the order parameter
and its Binder ratio close to the critical point for different
system sizes. Then, we fit the data to the ansatz of Eq. (B1)
to obtain v and subsequently use that value to fit 8 from
Eq. (B2). Note that the error estimates in Table I are results
of the fitting procedure and do not include systematic (e.g.,
finite-size) errors. We attribute the discrepancy between the
obtained exponents and those expected for the (2 + 1)D Ising
universality class to such finite-size effects. Moreover, these
effects seem to be more pronounced at the checkerboard—
striated transition as seen in Fig. 6(d), where the Binder ratios’
crossing points for increasing system sizes drift significantly,
compared to Fig. 6(b).

(d),,
-
E]l 0.61 __g000%
= oooe®
~
} ; 0.3t i
1.3775 1.3800 1.3825 1.3850 1.3775 1.3800 1.3825 1.3850
Ry/a Ry/a
0.5
(@ EIRG
& —
=) 5
o < 6
2 e
= =
»q
o
0.1 0.3t~
-05 0.0 0.5 -0.5 0.0 0.5

L 1““‘“(1?!1 - Rb. r)/Q L ”'V(Rb B Rb()/Q

FIG. 6. Extraction of critical exponents. System sizes are (in increasing color intensity) 8 x &, 12 x 12, 16 x 16, and 20 x 20. [(a), (b)]
The order parameter and the Binder ratio for the transition to the checkerboard phase. [(c), (d)] The order parameter and the Binder ratio for
the transition to the striated phase from the checkerboard phase. [(e), (h)] Corresponding curves in the top row exhibiting data collapse with

the extracted critical exponents.
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(3)012 —— =2 ——Hy=3 ——Ry=4 —— ;=5 (b) O-Qq—._H(.:Z ——Ry=3 ——Ry=4 ——Ry=5 (0)0‘12 —— Ry =2 ——Ry=4 —— Ry=5
& —_ )
3 3
< 0.06 = 01 = 0.067
& =
0 Ryja=1.62 Ry /a=1.45 Af1=23
0.00 B 0.0 =1 000 '
1.4 1.6 1.8 2.0 2.2 14 1.6 1.8 2.0 2.2 1.3 1.4 1.5 1.6 1.7
A/ A/Q Ry/a
(d)024 —— =2 —o— Ry =3 ——Ry=4 ——R;=5 (eb24 —— Ry =2 —o-Ry=3 == Ry=4 ——R;=5 033 —.— =2 —— Ry =4 ——R;=5
0.20 0.28
= = 0.204 I
0.167 0.231
0.12 Ry/a=1.62 0.16 Ry/a=145 0.18 Ar=23
T4 1.6 2.0 2.2 14 1.6 2.0 2.2 1.3 1.4 1.5 1.6 1.7

1.8
A/Q

1.8
A/Q R,/a

FIG. 7. Effect of truncating interactions at different distances R, for a system of size 16 x 16. [(a), (d)] Transition to the star phase at
Ry = 1.62. The slight discrepancy between Ry = 4 and Ry = 5 suggests that the transition can be even sharper at Ry = 5, at this value of the
blockade radius. [(b), (e)] Transitions at R, = 1.45. For R, = 2, the transition is to the star phase, while for R, € {3, 4, 5}, one obtains a striated
phase. [(c), (f)] Transition from the checkerboard to the striated phase for a fixed /A = 2.3. Taking R, = 5 slightly stabilizes the star phase
but does not resolve the difficulty of simulating the interface between these two phases.

APPENDIX C: CUTOFF DEPENDENCE OF THE PHASE
DIAGRAM

The interaction that we use to study Eq. (1) of the main text
is truncated at a finite distance: V(R) = Q(RS/|R|®)O(R, —
[R]), where ©(x) is the Heaviside step function with ®(0) =
1. In this work, we assumed Ry = 4, in units where we set the
lattice spacing to unity (a = 1). This means that a single atom
can interact with up to 48 other atoms. In Fig. 7, we present
various order parameters across transitions to the star and stri-
ated phases with different interaction cutoffs Ry € {2, 3, 4, 5}
fora 16 x 16 lattice with PBC. We observe that setting Ry > 3
is important for recovering the detailed features of our phase
diagram. For instance, taking R, = 2 favors the star phase,
since the intra-unit-cell interactions in the star ordering are
omitted; this accounts for the reduced (enhanced) extent of
the striated (star) phase in Ref. [15] compared to our cur-
rent findings. We also note that Ry = 3 is not sufficient to
capture the full long-tail phase diagram for the star phase
[see Figs. 7(a) and 7(b)]. Noticeably, with increasing cutoff
distance, the phase boundaries in Fig. 7 shift toward larger
detunings and converge for Ry > 4. In Fig. 7(b), we see that
including even longer ranged tails than those assumed in this
work, i.e., Ryp = 5, leads to a sharper (stronger) first-order
transition to the star phase.

APPENDIX D: SEEDING PROCEDURE FOR THE
STRIATED-STAR TRANSITION

Since the star and striated phases break different symme-
tries, within the LGW paradigm, we expect the transition

between them to be first order. We find that our QMC al-
gorithm struggles to converge properly near this star—striated
transition. We attribute this to the local-in-space nature of our
QMC update method, wherein it is necessary to reorder the
whole lattice to maintain ergodicity, which is very difficult
when two phases coexist.

In order to estimate the location of the transition, we
perform a “phase seeding procedure.” First, we equilibrate a
QMC realization deep within one of the phases (e.g., striated),
which prepares the initial “seed” for that particular phase. Sec-
ond, we change the blockade radius inside the simulation to
the desired value and then perform a normal QMC procedure
(equilibration together with sampling) using the previously
obtained seed instead of a completely random one. This favors
the phase corresponding to the seed. Finally, we repeat this
procedure starting from the other phase.

In Fig. 8(a), we present the effect of seeding on the behav-
ior of the order parameters; each order parameter is seeded
from its corresponding phase. We estimate the transition point
as the midpoint between the peaks of the two order pa-
rameters. Upon decreasing the temperature, the effect of the
seeding procedure becomes more pronounced, as the system is
progressively more frozen in its initial (seeded) configuration,
and the gap between the peaks becomes narrower. In Fig. 8(b),
we show results for different system sizes at the lowest tem-
perature considered (7 = 0.002) as well as our estimate for
the transition point (gray area). We note that this position
does not vary much with the temperature. This approach to
estimating the transition point is heuristic, so we assign a
rough error to the position of the critical point defined by the
distance between the peaks at the lowest temperature (width
of the shaded area).
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FIG. 8. Seeding procedure for the interface between striated and star phases. Our QMC algorithm struggles in this regime. To estimate the
phase boundary, we resort to phase seeding from both sides. [(a), (b)] Effect of the seeding procedure and temperature change on the phase
boundary at L = 12. [(c), (d)] Scaling with the system size at T = 0.002. The gray region denotes our estimate of the location of the transition

point.
APPENDIX E: DETAILS OF THE LGW THEORIES

In order to systematically address fluctuation corrections,
it is useful to regard the relevant Landau theory not as the free
energy functional but rather as the Hamiltonian of a classical
statistical mechanics problem in which the degrees of freedom
are represented by the field(s) [31]. Landau theory would then
simply follow by making the saddle-point approximation to
the functional integral for the partition function. Here, we
adopt this approach from the very beginning.

The elements of the space group of the square lattice in-
clude single-site translations along the x (7}) and y (7}) axes,
reflections about the x (R,) and y (R,) axes, and fourfold ro-
tations around the out-of-plane z axis (C4). To write down
the effective Hamiltonian, such as that in Eq. (4) of the main
text, we need to determine how the low-energy eigenmodes v,
transforms under these operations. This, in turn, follows from
the transformation properties of the eigenvectors exp(ik, - r),
introduced in Eq. (3) of the main text, as

Op(r) = Re [Z Vn e""»"@”] =Re [Z(@w)"e‘*""].

We outline these symmetry transformations individually for
each of the phases in the following.

1. Checkerboard and striated phases

The minimal set of momenta {k,} required to describe
the density-wave ordering o(r) in the striated phase is
{(,0), (0, ), (;r, w)}. The magnetization in or around these

phases can thus be expressed in terms of three real fields ¥,
W,, and ® as

pr) =W ™07 4, OO L @ (B

In the basis (¥, ¥;), the matrix representations of the
symmetry transformations are

T, = —o3, TV=U3’ R)c:Ry:]l: C4=01: (E2)

where o denotes the usual 2 x 2 Pauli matrices. The field ®
transforms trivially under all symmetries except translations
(T, Ty), which act as & — —&. The Landau functional is
given by all homogeneous polynomials that are invariant un-
der the group generated by these transformations and, up to
quartic order, corresponds to Eq. (4) of the main text. With-
out loss of generality, we consider g < 0 here. Furthermore,
we need v < 0 to ensure that both ¥; and ¥, condense in
the ordered (striated) phase. The stability of the theory also
requires u; > —v/4 > 0, u; > 0, and u; (4u; + v) > w?
(assuming w < 0).

a. Mean-field theory for the tricritical points

Neglecting spatial fluctuations, let us first analyze Eq. (4)
in mean-field theory. The results of such an analysis are pre-
sented in the phase diagram of Fig. 4 in the main text, which
illustrates the checkerboard, striated, and star phases. As in-
dicated in Fig. 4, there can be a second-order phase transition
between any two of these three phases. From a conventional
Landau theory analysis, we find that the second-order phase
boundary between the disordered phase and the checkerboard
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phase is at s = 0, while the line demarcating the disordered
phase from the striated is at r = 0. Finally, the second-order
transition from the checkerboard to the striated is at

_1 /—s+sw E3)
r_2 & 2u2 115) '

Although these three second-order lines would appear to meet
at r = s = 0, as noted by Park and Sachdev [39], this is
pre-empted by a line of first-order transitions close to the
origin. The origin of this feature can be seen by integrating
out the @ fluctuations to derive an effective action for the
. Doing so always induces an effective quartic term W7 W32
with a negative coefficient ~ — g?/|s|. Hence, for sufficiently
small |s|, the net coefficient of W?W? always becomes nega-
tive, thus driving the transitions involving the onset of nonzero
W; first order. This line of first-order transitions terminates in
two tricritical points (labeled T and T, in Fig. 4), at which
the coefficients of both the quadratic and quartic terms of the
effective theory vanish; the theory is then controlled by its
sextic term [not shown in Eq. (4)]. The point T, is located at
r=20,s = gl/(16u1 + 4v), whereas the coordinates of T,
can be found by solving for s in the equation

g

— —4gw
s

2
2 +8(4u+v—w—)=0 (E4)
—S U Uz

and then determining r as given by Eq. (E3) for this value of

s. On going across either of these two tricritical points, the

change in the sign of the quartic term is responsible for the

nature of the transition changing from first to second order.
Next, we address the role of quantum fluctuations.

b. Disordered to checkerboard

The transition from the disordered to the checkerboard
phase is characterized by the onset of a nonzero order param-
eter, namely, the staggered magnetization or, equivalently, the
amplitude of the (r, ) Fourier mode. Expanding in powers
and gradients of this order parameter, we obtain the Hamilto-
nian

He = fazl’;.c[%{(aucp)2 +rd?) 4 % d>4], (ES)

where ®, as before, is a real, one-component field. The Hamil-
tonian is invariant under ® — —® and thus possesses a Z,
(Ising) symmetry. Analyzing the renormalization-group (RG)
flow of this theory, one finds that it has a Guassian fixed
point (FP) at r = up = 0; however, the Gaussian FP is stable
toward up perturbations only for D > 4. More relevantly, the
RG flow has another FP at nonzero values of r and uy, which
is the celebrated Wilson-Fisher FP [45-47] located at
* __ _E 2y, * __ 2_‘9 2

rt= 6+0(8 ); u0—384+(9(£ ), (E6)
where ¢ =4 — D, and the phase space factor S; =
2/[T(d /2)(4m)%/?] denotes the surface area of a sphere in
d dimensions. For D < 4, the physics of the critical point is
described by the field theory of the Wilson-Fisher FP, and the
transition from the disordered to the checkerboard phase in
the Rydberg system is in the universality class of the (2+1)D
Ising model.

c. Disordered to striated

The cubic term in Eq. (4) of the main text implies that if
two of the fields (¥, ¥,, ®) are condensed, then so must the
third [41]. In the striated phase, the Fourier transform of the
Rydberg excitation density |n(k)| thus exhibits peaks not only
at (;r,0) and (0, ) but also at (w, ) = (w,0) + (0, 7).
For the purpose of describing the phase transition from the
disordered to the striated phase, therefore, it suffices to focus
on the first two momenta alone. In other words, given two real
fields ¥, and V>,

p(r) — ‘If] ei(fr,O)»r + “PZ ei(O,ﬂ')»r (E?)

correctly describes the Z, x Z, symmetry-breaking pattern
of the striated phase. Using the matrix representations of the
transformations in Eq. (E2), the most general Hamiltonian
consistent with square-lattice symmetries can be written as

N

1
Hy = /de[EZ{(aﬂwi)2+rw?}

i=1

N
1 22
+ 7 2 (o + w08, wj], (E8)

i,j=1

where N = 2. The cubic-symmetric quartic term ), W}
breaks the O(N) invariance of the model down to a resid-
ual discrete D4 symmetry. The relevance of the anisotropic
perturbations can be directly understood by classifying them
using irreducible representations of the O(N) internal group
and computing the RG dimensions of their associated cou-
plings [48]. While the coupling constants r, ug, and vy can be
varied by tuning the parameters of the microscopic Rydberg
Hamiltonian, the stability of the theory requires the positivity
conditions

up+vo >0 and Nug+vy >0 (E9)

to be satisfied. Rewriting the quartic term as [(uo + vo)(‘~l-'12 +
W) — 2 u9WiW3]/4), it follows that we also need v > 0 to
ensure that both ¥, ; condense in the ordered phase.

The theory defined by the Hamiltonian (E8) has been ex-
tensively studied over the past few decades and is known to
have four FPs [42,43]:

(1) The trivial Gaussian one at ug = vg = 0.

(2) The Ising FP with ug = 0, vg # 0. At this FP, the
Hamiltonian (E8) corresponds to that of N Ising systems
coupled by the O(N)-symmetric interaction.

(3) The O(N)-symmetric FP with uy # 0, vy = 0.

(4) The cubic FP with ug # 0, vo # 0.

Both the Gaussian and Ising FPs are unstable for any
number of components N. For sufficiently small N < N, the
O(N)-symmetric FP is stable while the cubic one is unstable
(this designation is reversed for N > N,) [52]. Importantly,
for D = 3, N, has been shown to be less than 3 using pertur-
bative expansions [72-74] and numerical conformal bootstrap
[75]. Hence, in our case, with D =3, N =2, the O(N)-
symmetric FP describes the generic critical behavior of the
system and the resultant RG flow is sketched in Fig. 9.

In the upper-half plane, the only FP is the Ising one which
is unstable. If vy > 0 (as required for the simultaneous con-
densation of W; ) and up > 0, at long distances, the theory
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Up

Gaussian

¥ >

FIG. 9. RG flow of the theory (E8) in the (ug, vy) coupling plane
for D = 3, N = 2 < N,. The blue dot represents the stable O(N)-
symmetric FPs whereas the other three unstable FPs are marked
in red. Owing to the positivity (E9) and condensation conditions,
the parameters of our theory are always constrained to lie in the
(green/yellow) region to the right of vy = —2u, (dashed line) in the
upper-half plane. The yellow wedge marks the region from which the
stable FP is inaccessible. Figure adapted from Ref. [52].

would therefore flow to the O(N)-symmetric FP. The tran-
sition would be second order, governed by this stable FP,
and one would expect the emergence of an O(2) symmetry
at the critical point [76]. The cubic term is a “dangerously”
irrelevant operator and generates correction to scaling in the
ordered phase [52]. However, even though the RG flow has a
stable FP, there is a region in the (1, vg) plane, defined by the
wedge 2 = {(ug, vg)| —vo/2 < uy < 0}, from which the
FP is inaccessible [44]. If uy were to the left of the separatrix
running from the Gaussian to the Ising FP, the flow could
not reach the O(N) FP as the separatrix marks the boundary
of the domain of attraction of the stable FP [77]. Outside
the attraction domain of the FPs, the flow goes away toward
more negative values of uy and/or vy, eventually reaching the
region where the quartic interaction no longer satisfies the
stability condition: These RG trajectories should be related to
first-order phase transitions [52]. This result is to be contrasted
with the mean-field prediction of a continuous transition in the
entire stability wedge defined by Eq. (E9).

d. Checkerboard to striated

The broken symmetry in the striated phase is Z, x Z, ~
D, (which is isomorphic to the Klein 4-group). By itself,
the checkerboard phase already breaks a Z, symmetry. The
residual Z, symmetry that is further broken on going from
the checkerboard to the striated phase is generated by {1, 7},
where T; = T.T, denotes unit translations along the diago-
nals (Ta,2 1). Note that both the checkerboard and striated

phases preserve fourfold-rotational symmetry, so the original
D, symmetry of the Hamiltonian (E8) is broken down to its
subgroup Cj.

The striated phase can be distinguished from the checker-
board by defining the order parameter

, (E10)

m=

Z {(_l)mw(i) + (_1)(:01(1')}("‘_)

which measures the differential occupation of sites along the
diagonals. Now one can write down a Landau functional in
powers and derivatives of the order parameter as usual and the
resultant effective Hamiltonian is given by

Hy =/de|:%{(B#m)2+rm2}+ %m“], (E11)

which is the same as the ®* field theory studied above
in Eq. (E5). The Z,-symmetry-breaking transition from the
checkerboard to the striated phase is thus also in the Ising
universality class controlled by the Wilson-Fisher FP.

2. The star phase

To derive the LGW theory for the quantum phase tran-
sition from the disordered to the star phase, we begin by
noting that the Fourier maxima in the star phase are at (i, 0),
0, m), (7/2,m), and (m,m/2). However, recognizing that
(m,0) = 2 (7 /2, m)—and similarly for (0, 7 )—we can write
the magnetization as simply

p(f) — RC(\II] ei(zr/z,n)»r + \],2 ei(?r.yr/?.)'r), (E12)

with W, ¥, € C, and the other wave vectors are described
by harmonics \1112'2 of the order parameters. Using the basis
(W, Wy, Wf, W), the symmetry operations can be repre-
sented by the following matrices:

0 0 0 10 0 0
0 -1 0 0 0 i 0 0
L=lo o =i ol B=lo o -1 o
0 0 0 -1 0 0 0 —i

10 0 0 00 1 0
00 0 1 01 0 0
Re=1o 0 1 o B=|1 0 0 of
0 1 0 o] 00 0 1
0 0 0 17
1 0 0 0
a=1ly 9 0 ol (E13)
0 0 1 o]

These five matrices generate a subgroup of O(4) and the
effective Hamiltonian composed of all polynomials invariant
under this group (up to quartic order) is

2
1
H, = fd“ [5 3 180 + r WP}
i=1

2
+ ) [a 1l + z{ W + ()} + 22 |w1|2|w2|2].

i=1

(E14)
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(a) Wy (b) Wy

vy Gaussian

(c) Uy

Uy

Gaussian

¥~

Gaussian

FIG. 10. Schematic RG flow of the tetragonal theory, described by the LGW Hamiltonian (E16) with M = 2, N > 1,inthe (a) uy = 0,
(b) vy = 0, and (c) wy = O planes. In the vy = 0 subspace, the stable FP is the cubic one whereas on the other two planes, the XY FP is
stable. As before, all the stable (unstable) FPs are marked in blue (red). Figure adapted from Ref. [52].

For stability of the theory, the coefficients z; must obey the
positivity conditions

721 —2|z3l >0 and 2z + 20 — 4|z3| > 0. (E15)

We further require z; — 2(z; — 2z3|) > 0 to ensure that
only one of ¥;; condenses at a time, as observed in the star
phase.

This model is equivalent to the so-called tetragonal theory
which is the M = 2 version of the general three-coupling
LGW Hamiltonian

1
Hy = f dﬂx[z @0’ + 17}

i,a

1
+ Z E(uo + vodi; + woaijsab)¢3,i¢:,j:|’ (E16)
ijab

where a,b = 1,...,M and i,j = 1,...,N; for our pur-
poses, N = 2. For these parameters (M, N = 2), it corre-
sponds to Eq. (5) in the main text. The theory (E16) is, of
course, constrained to lie within the region of parameter space
where Eq. (E15) as well as the abovementioned condition for
the mutually exclusive condensation of W; are both satisfied.
The mapping between the two sets of coefficients is given by
up = 12z, v9 = 122z — 20 — 1223), wy = 192 z3, which
implies that the allowed region in (uo, vo, wo) space is defined
by Eq. (6) in the main text (see Fig. 11).

Focusing on M = 2, while keeping N (>1) general, it is
instructive to consider certain limits of the Hamiltonian (E16).
For uy = 0, the model reduces to N decoupled cubic models
with two-component spins, while for vy = 0, it describes a
cubic model with 2N-component spins. In the case wy = 0,
the tetragonal Hamiltonian is equivalent to N coupled XY
models [43,78] (also known as the “M N model” [79]). These
limits, and their combinations, are useful in understanding the
different FPs of the theory. Within the framework of the &
expansion, the tetragonal model has eight FPs [49-51], which

are labeled as follows:

(1) Gaussian: uy = vg = wo =0,

(2) Ising: up = vp =0, wy # 0,

(3) Heisenberg [O(2N)-symmetric]: ug # 0,
wo = 0,

(4) XY [0(2)-symmetric]: ug = wo = 0, vy # 0,

(5) tetragonal: ug # 0, vg # 0, wy = 0, and

(6) cubic: ug # 0, vg =0, wo # 0.

Vg =

-1

1

FIG. 11. Allowed region in parameter space of the tetragonal
theory (E16), as defined by Eq. (6) for wy > 0 (green) and wy < 0
(blue). The two planes vy = 0 and vy 4+ (3/2)wy = 0 (on which
the cubic FPs are stable) are shaded in pink. The blue dot represents
the globally stable XY FP; its v, coordinate is greatly exaggerated
here for the sake of visual clarity.
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One thus obtains six FPs. Additionally, the tetragonal
Hamiltonian is symmetric under the transformation [80]

1
(P1,i» $2.0) = E(‘ﬁl,i + @2 P1i — D2.),
(uo, g, wo) — (uo, vg + %lm), —wo). (E17)

The two remaining fixed points are obtained by applying the
transformation (E17) to the Ising and cubic FPs listed above,
bringing the total to eight. The RG flow of the theory along
three different planes (corresponding to one of the quartic
couplings being zero) is shown in Fig. 10. As described in
the main text, the generic critical behavior of the tetragonal
theory is described by the XY FP irrespective of N.
Crucially, even though the XY FP is globally stable, it
is shielded from our allowed region (6) by the vy = 0 and
vo + (3/2)wp = 0 planes (see Fig. 11). We can now extend
the arguments of Kerszberg and Mukamel [44] outlined above
to our three-dimensional parameter space. Suppose our initial
conditions place the microscopic theory in a regime where
wp > —(2/3)vy > 0 (rightmost green region of Fig. 11). All
points in this region are separated from the XY FP by the
vp = 0 plane. On this plane, we know that the cubic FP is

stable but its stability matrix possesses a negative eigenvalue
in full parameter space [53]. Hence, given these initial con-
ditions, the RG flow would take one away from the vy = 0
plane, and accordingly, the stable XY FP. Using the analogous
properties of the vp + (3/2)wy = 0 plane, we can general-
ize this argument to all possible initial conditions shown in
Fig. 11. As a result, we can conclude that the stable XY FP
is inaccessible starting from our allowed region of parameter
space, rendering the transitions from the disordered to the star
phase first order.

Lastly, let us mention that besides the eight FPs refer-
enced above, the tetragonal theory (E16)—restricted to the
wo = 0 plane—is believed to have another stable FP in the
region vy < 0, 4y > 0, the presence of which is not directly
predicted by the e-expansion framework: This is the O(2) x
O(2)-symmetric chiral FP [81]. While &-expansion [82] and
fixed-dimension [83] calculations disagree on the existence
of a stable FP corresponding to this chiral universality class
for N = 2 in D = 3, we note that within the RG approach,
fluctuation-induced first-order transitions are always still pos-
sible for systems lying outside the attraction domain of the
chiral FP if it exists [84]. Moreover, it is presently unclear
whether this chiral FP is stable in the enlarged tetragonal
theory with wy # 0.
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