
Reports on Progress in Physics

Rep. Prog. Phys. 84 (2021) 116901 (20pp) https://doi.org/10.1088/1361-6633/ac1b23

Review

Cosmological particle production: a review

L H Ford∗

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155,
United States of America

E-mail: ford@cosmos.phy.tufts.edu

Received 2 February 2021, revised 29 July 2021
Accepted for publication 5 August 2021
Published 22 October 2021

Abstract
This article will review quantum particle creation in expanding universes. The emphasis will
be on the basic physical principles and on selected applications to cosmological models. The
needed formalism of quantum field theory in curved spacetime will be summarized, and
applied to the example of scalar particle creation in a spatially flat Universe. Estimates for the
creation rate will be given and applied to inflationary cosmology models. Analog models
which illustrate the same physical principles and may be experimentally realizable are also
discussed.
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1. Introduction and basic concepts

1.1. Preliminary remarks

This review will cover selected aspects of quantum field the-
ory in curved spacetime, with emphasis on quantum particle
creation in expanding universes. For broader treatments of
quantum field theory in curved spacetime, see, for example,
the books by Birrell and Davies [1] and by Parker and Toms
[2]. As much as possible, the focus will be on the key physi-
cal ideas more than the mathematical formalism, but a certain
amount of the latter is essential. I have attempted to give a bal-
anced selection of references, but it is not possible to cite all of
the numerous papers which have been written on cosmological
particle creation and the related topics covered in this review.
I apologize in advance to the authors whose work has not been
cited.

1.2. An overview

This review will deal with quantized fields propagating on a
classical background spacetime other than Minkowski space.

∗ Author to whom any correspondence should be addressed.
Corresponding editor: Dr Lucy Joy.

As general relativity describes a gravitational field as a curved
four dimensional spacetime, this is a means to describe the
interaction of quantum particles with a background gravita-
tional field. One of the key features of quantum field the-
ory in Minkowski spacetime is heavy reliance on Poincare
symmetry, which is broken by the background gravitational
field. If the gravitational field is spatially inhomogeneous, then
space translation symmetry is broken, and linear momentum
in no longer conserved. The initial and final momenta of parti-
cles scattering from a localized gravitational field need not be
equal, as the gravitational field can absorb some momentum,
as in the case of a particle scattering from a black hole.

If the background gravitational field is time-dependent, as
in the case of an expanding Universe, then time translation
symmetry is broken. Now the energy of the quantum parti-
cles need not be conserved, and the quantum field may absorb
energy from the background. This will play a key role in
cosmological particle creation.

The outline of this review is as follows: the formalism
of field quantization in a curved spacetime is reviewed in
section 1.3, and the mathematical tools needed to describe
quantum particle creation will be developed in section 2. This
will include Bogolubov transformations, and a discussion of
some exactly soluble models, as well as of a perturbative
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approximation method. Some estimates of particle creation
rate will be discussed. Section 3 will treat the quantum state
of the created particles, and discuss decoherence and entropy
production. The implications of quantum particle creation for
inflationary cosmology, and for subsequent epochs of the Uni-
verse, are discussed in section 4. The backreacion of the cre-
ated particle on the expansion of the Universe is the topic of
section 5. Section 6 discusses some other physical systems
which rely upon the same principles as cosmological parti-
cle creation, and may be able to be studied in the laboratory.
Section 7 summarizes the key topics covered in the review.

1.3. Quantization in curved spacetime

There are four basic ingredients in the construction of a quan-
tum field theory. These are

• The Lagrangian, or equivalently, the equation of motion
of the classical theory.

• A quantization procedure, such as canonical quantization
or the path integral approach.

• The characterization of the quantum states.
• The physical interpretation of the states and of the

observables.

In flat spacetime, Lorentz invariance plays an important role
in each of these steps. For example, it is a guide which gener-
ally allows us to identify a unique vacuum state for the theory.
However, in curved spacetime, we do not have Lorentz sym-
metry. This is not a crucial problem in the first two steps listed
above. The formulation of a classical field theory and its formal
quantization may be carried through in an arbitrary spacetime.
The real differences between flat space and curved space arise
in the latter two steps. In general, there does not exist a unique
vacuum state in a curved spacetime. As a result, the concept of
particles becomes ambiguous, and the problem of the physical
interpretation becomes much more difficult.

The best way to discuss these issues in more detail is in the
context of a particular model theory. Let us consider a real,
massive scalar field for which the Lagrangian density is

L = −1
2

(∂αϕ∂αϕ+ m2ϕ2 + ξRϕ2). (1.1)

(We adopt the (+++) sign conventions of Misner, Thorne,
and Wheeler [3]. In particular, the metric signature will
be (−+++). Unless otherwise noted, units in which
G = c = h̄ = 1 are used.) The corresponding wave equation
is

�ϕ− m2ϕ− ξRϕ = 0. (1.2)

Here m is the mass, R is the scalar curvature, and ξ is a new cou-
pling constant. There are two popular choices for ξ: minimal
coupling (ξ = 0) and conformal coupling (ξ = 1/6). The for-
mer leads to the simplest equation of motion, whereas the latter
leads to a theory which is conformally invariant in four dimen-
sions in the massless limit. For our purposes, we need not settle
this issue, but rather regard ξ on the same footing as m, as a
parameter which specifies our theory. Note that here � denotes
the generally covariant d’Alembertian operator, � = ∇μ∇μ.

A useful concept is that of the inner product of a pair of
solutions of the generally covariant Klein–Gordon equation,
equation (1.2). It is defined by

( f1, f2) = i
∫

( f ∗2
↔
∂μ f1)dΣμ = i

∫
( f ∗2∂μ f1 − f1∂μ f ∗2)dΣμ,

(1.3)
where dΣμ = dΣ nμ, with dΣ being the volume element in a
given spacelike hypersurface, and nμ being the timelike unit
vector normal to this hypersurface. The crucial property of the
inner product is that it is independent of the choice of hypersur-
face. That is, if Σ1 and Σ2 are two different, non-intersecting
hypersurfaces, then

( f1, f 2)Σ1 = ( f1, f2)Σ2 . (1.4)

The proof of this property is straightforward. We assume that
f1 and f2 are both solutions of equation (1.2). Furthermore,
if the space is such that the hypersurfaces are non-compact,
we assume that these functions vanish at spatial infinity. Let
V be the four-volume bounded by Σ1 and Σ2, and, if neces-
sary, time-like boundaries on which f 1 = f 2 = 0. Then we
may write

( f1, f2)Σ2 − ( f1, f2)Σ1 = i
∮
∂V

( f ∗2
↔
∂μ f1)dΣμ

= i
∫

V
∇μ( f ∗2

↔
∂μ f1)dV , (1.5)

where the last step follows from the four dimensional version
of Gauss’ law, and dV is the four dimensional volume element.
However, we may write this integrand as

∇μ( f ∗2
↔
∂μ f1) = ∇μ( f ∗2∂μ f1 − f 1∂μ f ∗2) = f ∗2� f 1 − f 1� f ∗2

= − f ∗2(m2 + ξR) f1 + f1(m2 + ξR) f ∗2 = 0.

(1.6)

Thus equation (1.4) is proven.
The quantization of a scalar field in a curved spacetime may

be carried out by canonical methods. Choose a foliation of the
spacetime into spacelike hypersurfaces. Let Σ be a particular
hypersurface with unit normal vector nμ labeled by a constant
value of the time coordinate t. The derivative of ϕ in the nor-
mal direction is ϕ̇ = nμ∂μϕ, and the canonical momentum is
defined by

π =
δL
δϕ̇

. (1.7)

We impose the canonical commutation relation

[ϕ(x, t), π(x′, t)] = iδ(x, x′), (1.8)

where δ(x, x′) is a delta function in the hypersurface with the
property that ∫

δ(x, x′)dΣ = 1. (1.9)

Let { f j} be a complete set of positive norm [( f j, f j) > 0]
solutions of equation (1.2). Then { f ∗j} will be a complete set
of negative norm solutions, and { f j, f ∗j} form a complete set
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of solutions of the wave equation in terms of which we may
expand an arbitrary solution. Write the field operator ϕ as a
sum of annihilation and creation operators:

ϕ =
∑

j

(a j f j + a†
j f ∗j), (1.10)

where [a j, a†
j′] = δ j, j′ follows from equation (1.8). This expan-

sion defines a vacuum state |0〉 such that aj|0〉 = 0. In flat
spacetime, we take our positive norm solutions to be posi-
tive frequency solutions, f j ∝ e−iωt. Regardless of the Lorentz
frame in which t is the time coordinate, this procedure defines
the same, unique Minkowski vacuum state.

In curved spacetime, the situation is quite different. There
is, in general, no unique choice of the { f j}, and hence no
unique notion of the vacuum state. This means that we can-
not identify what constitutes a state without particle content,
and the notion of ‘particle’ becomes ambiguous. One possi-
ble resolution of this difficulty is to choose some quantities
other than particle content to label quantum states. Possible
choices might include local expectation values [4], such as 〈ϕ〉,
〈ϕ2〉, etc. In the particular case of an asymptotically flat space-
time, we might use the particle content in an asymptotic region.
Even this characterization is not unique. However, this non-
uniqueness is an essential feature of the theory with physical
consequences, namely the phenomenon of particle creation,
which we will now discuss.

2. Particle creation by gravitational fields

2.1. Bogolubov transformations

Let us consider a spacetime which is asymptotically flat in the
past and in the future, but which is non-flat in the intermediate
region. Let { f j} be positive frequency solutions in the past
(the ‘in-region’), and let {F j} be positive frequency solutions
in the future (the ‘out-region’). We may choose these sets of
solutions to be orthonormal, so that

( f j, f j′) = (F j, F j′) = δ j j′

( f ∗j , f ∗j′) = (F∗
j , F∗

j′) = −δ j j′

( f j, f ∗j′) = (F j, F∗
j′) = 0.

(2.1)

Although these functions are defined by their asymptotic prop-
erties in different regions, they are solutions of the wave
equation everywhere in the spacetime. We may expand the
in-modes in terms of the out-modes:

f j =
∑

k

(α jkFk + β jkF∗
k ). (2.2)

Inserting this expansion into the orthogonality relations,
equation (2.1), leads to the conditions∑

k

(α jkα
∗
j′k − β jkβ

∗
j′k) = δ j j′ , (2.3)

and ∑
k

(α jkβ j′k − β jkα j′k) = 0. (2.4)

The inverse expansion is

Fk =
∑

j

(α∗
jk f j − β jk f ∗j). (2.5)

The field operator, ϕ, may be expanded in terms of either
the { f j} or the {F j}:

ϕ =
∑

j

(a j f j + a†
j f ∗j) =

∑
j

(b jF j + b†
jF

∗
j ). (2.6)

The a j and a†
j are annihilation and creation operators, respec-

tively, in the in-region, whereas the b j and b†
j are the corre-

sponding operators for the out-region. The in-vacuum state is
defined by aj|0〉in = 0, ∀ j, and describes the situation when no
particles are present initially. The out-vacuum state is defined
by b j|0〉out = 0, ∀ j, and describes the situation when no par-
ticles are present at late times. Noting that aj = (ϕ, f j) and
bj = (ϕ, Fj), we may expand the two sets of creation and
annihilation operator in terms of one another as

a j =
∑

k

(α∗
jkbk − β∗

jkb†
k), (2.7)

or
bk =

∑
j

(α jka j + β∗
jka†

j). (2.8)

This is a Bogolubov transformation, and the α jk and β jk are
called the Bogolubov coefficients.

Now we are ready to describe the physical phenomenon of
particle creation by a time-dependent gravitational field. Let
us assume that no particles were present before the gravita-
tional field is turned on. If the Heisenberg picture is adopted
to describe the quantum dynamics, then |0〉in is the state of
the system for all time. However, the physical number opera-
tor which counts particles in the out-region is Nk = b†

kbk. Thus
the mean number of particles created into mode k is

〈Nk〉 = in〈0|b
†
kbk|0〉in =

∑
j

|β jk|2. (2.9)

If any of the β jk coefficients are non-zero, i.e. if any mixing
of positive and negative frequency solutions occurs, then parti-
cles are created by the gravitational field. The above discussion
describes the spontaneous creation of bosons, which will be the
main interest in this review, but an analogous procedure may
be used to describe fermion creation.

The most straightforward application of the concepts devel-
oped above is to particle creation by an expanding Uni-
verse. This phenomenon was first hinted at in the work of
Schrödinger [5], but was first carefully investigated by Parker
[6, 7]. Let us restrict our attention to the case of a spatially
flat Robertson–Walker Universe, for which the metric may be
written as

ds2 = −dt2 + a2(t)dx2 = a2(η)
(
−dη2 + dx2

)
, (2.10)

where a is the scale factor. We may use either the comoving
time t or the conformal time η, but the solutions of the wave
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equation are simpler in terms of the latter. The positive norm
solutions of equation (1.2) in this metric may be taken to be

f k(x, η) =
eik·x

a(η)
√

(2π)3
χk(η), (2.11)

where χk(η) satisfies

d2χk

dη2
+ [k2 + V(η)]χk = 0, (2.12)

with

V(η) ≡ a2(η)

[
m2 +

(
ξ − 1

6

)
R(η)

]
. (2.13)

The norm of f k being equal to one is equivalent to the Wron-
skian condition

χk
dχ∗

k

dη
− χ∗

k
dχk

dη
= i. (2.14)

Let us consider the idealized situation in which the Uni-
verse is static both in the past and in the future, as illustrated
in figure 1. In this case, we have the necessary asymptotically
flat regions needed to define in and out vacua. Let

a(η) →
{

ai η →−∞

af η →∞
, (2.15)

where ai and af are constants. Let χ(in)
k (η) be a solution of

equation (2.12) which is pure positive frequency in the past:

χ(in)
k (η) ∼ e−iωinη

√
2ωin

, η →−∞. (2.16)

Similarly, χ(out)
k (η) is pure positive frequency in the future:

χ(out)
k (η) ∼ e−iωoutη

√
2ωout

, η →∞. (2.17)

Here

ωin =
√

k2 + a2
i m2, (2.18)

and

ωout =
√

k2 + a2
f m2. (2.19)

When we include the spatial dependence, the positive fre-
quency modes in the past are given by equation (2.11) with
χk(η) = χin

k (η), and those which are positive frequency in
the future, Fk(x, η), are given by the same relation, but with
χk(η) = χout

k (η).
Note that although these modes are defined by their asymp-

totic forms in the past or future, both sets are valid solutions
for all η, and hence one set may be expanded in terms of the
other. Let

χ(in)
k (η) =

ai

af
[αkχ

(out)
k (η) + βkχ

(out)
k (η)∗] (2.20)

for some constants αk and βk. This leads to the relation

f k(x, η) = αkFk(x, η) + βkF∗
k(x, η). (2.21)

Figure 1. Here the scale factor a(η) for an asymptotically bounded
expansion of the universe is illustrated, in the past, the in-region,
spacetime is flat and a = ai. The universe then expands for a finite
interval of conformal time, η. In the future, the out-region, spacetime
is again flat and a = af . Often we set af = 1 for convenience.

This is just equation (2.2), where the Bogolubov coefficients
are given by αkk′ = αkδkk′ and βkk′ = βkδk,−k′ . The condition
equation (2.3) becomes

|αk|2 − |βk|2 = 1, (2.22)

and the mean number of particles created in a given mode, from
equation (2.9), is now 〈Nk〉 = |βk|2. The simple forms of the
Bogolubov coefficients in a spatially flat Universe follow from
the spatial translation symmetry of the metric, equation (2.10).
This means that three-momentum is conserved, even though
energy is no longer conserved on a time-dependent back-
ground. Indeed, it is the lack of energy conservation which
allows particle creation from the vacuum in an expanding Uni-
verse. It also allows other processes which are forbidden in flat
spacetime, including new decay channels for unstable particles
[8, 9].

If we quantize the fieldϕ using periodic boundary condition
in a box with coordinate volume V , then the wave number k
takes discrete values, and in the limit of large V ,

∑
k

→ V
(2π)3

∫
d3k, (2.23)

just as in flat spacetime. However, the physical volume of the
box in the out-region is a3

fV , so the total number of created
particle per unit volume becomes

n =
1

(2πaf)3

∫
d3k|βk|2. (2.24)

The density of created particle per unit volume and per unit
wave number interval is

dn
dk

=
1

2π2a3
f

k2|βk|2. (2.25)

The energy of a particle in the final region is

Eout =
ωout

af
=

√(
k
af

)2

+ m2. (2.26)

Note that in h̄ = 1 units, k has the units of momentum, and
k/af is the physical momentum of the particle as measured by
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an observer at rest in the cosmological frame in the final region.
The energy density of created particles is

u =
1

(2πaf)3

∫
d3kEout|βk|2. (2.27)

In the massless limit, m = 0, this becomes

u0 =
1

(2π)3a4
f

∫
d3kk|βk|2. (2.28)

The extra factor of af in the denominator of equation (2.28), as
compared to equation (2.24), arises from the redshifting of the
energy of massless particles by the cosmological expansion.

Note that conformally invariant massless particles are not
created by cosmological expansion in a conformally flat space-
time, such as that of equation (2.10), as was first noted by
Parker [6]. We can see this in the case of the scalar field; if we
set m = 0 and ξ = 1/6 in equation (2.13), then V = 0 and the
solutions of equation (2.12) become proportional to e±ikη. This
means that a positive frequency solution in the past remains
a positive frequency solution, so that βk = 0 for all modes
and no particles are created. Thus particle creation requires
a nonzero mass or non-conformal coupling to the curvature,
ξ �= 1/6, or both. For most choices of the scale factor, a(η), it
can be difficult to find exact solutions to equation (2.12). How-
ever, there are a few exactly soluble models which we will now
consider.

2.2. Specific models

2.2.1. The Bernard and Duncan model: effects of nonzero
mass. One exact solution which illustrates the effects of
nonzero mass was given by Bernard and Duncan [10], and is
also reviewed in section 3.4 of [1]. This model was originally
formulated in a two-dimensional spacetime, but can be eas-
ily extended to a four-dimensional model, which will be done
here. Consider a Universe with the metric equation (2.10),
where

a2(η) =
1
2

[1 + a2
i + (1 − a2

i ) tanh(ρη)] . (2.29)

This describes a Universe which expands from an initial scale
factor of ai < 1 to a final scale factor of af = 1, as illus-
trated in figure 1. For the case of conformal coupling, ξ = 1/6,
equation (2.12) becomes

d2χk

dη2
+

{
k2 +

1
2

m2
[
1 + a2

i + (1 − a2
i ) tanh(ρη)

]}
χk = 0.

(2.30)
This equation may be solved in terms of hypergeometric

functions. The solution which is pure positive frequency in the
past, and has the asymptotic form given in equation (2.16), is

χin
k (η) =

1√
2ωin

exp

{
−iω+η − i

ω−
ρ

ln [2 cosh(ρη)

}

× F

(
1 +

iω−
ρ

,
iω−
ρ

; 1 − iωin

ρ
;

1
2

[1 + tanh(ρη)]

)
,

(2.31)

where ω± = (ωout ± ωin)/2. Here F, sometimes denoted by

2F1, is a hypergeometric function. The corresponding solu-
tion which is pure positive frequency in the future and has the
asymptotic form in equation (2.17) is

χout
k (η) =

1√
2ωout

exp

{
−iω+η − i

ω−
ρ

ln [2 cosh(ρη)

}

× F

(
1 +

iω−
ρ

,
iω−
ρ

; 1 +
iωout

ρ
;

1
2

[1 − tanh(ρη)]

)
.

(2.32)

The two solutions χin
k (η) and χout

k (η) are related by the lin-
ear transformation properties of the hypergeometric function,
which leads to a relation of the form of equation (2.20). Here

αk =
1
ai

√
ωout

ωin

Γ(1 − iωin/ρ)Γ(−iωout/ρ)
Γ(1 − iω+/ρ)Γ(−iω+/ρ)

, (2.33)

and

βk =
1
ai

√
ωout

ωin

Γ(1 − iωin/ρ)Γ(iωout/ρ)
Γ(1 + iω−/ρ)Γ(iω−/ρ)

. (2.34)

This leads to

|βk|2 =
sinh2(πω−/ρ)

a2
i sinh(πωout/ρ) sinh(πωin/ρ)

. (2.35)

These particles each have energy ωout =
√

k2 + m2 in the
out-region.

In the limit of small mass, so m � kai < k, we have

ωout ≈ k +
m2

2k2
+ · · · ,

ωin ≈ k +
a2

i m2

2k2
+ · · · ,

ω− ≈ m2

4k
(1 − a2

i ), (2.36)

so

|βk|2 ≈ π2(1 − a2
i )m4

16k2a2
i ρ

2 sinh2(πk/ρ)
. (2.37)

Thus the number of created particles vanishes as m4 when m →
0. If we also assume that k � ρ, then

|βk|2 ≈ π2(1 − a2
i )2m4

4k2a2
i ρ

2
e−2πk/ρ. (2.38)

In the limit of large mass, so m � k > aik, equation (2.35)
becomes

|βk|2 ≈ 1
a2

i

e−2πmai/ρ. (2.39)

This limit describes particles which are created at rest in
the cosmological frame, but with an exponentially suppressed
probability.

A somewhat different limit may be explored by assuming
that ρ becomes small with k, m, and ai fixed, so that ωin, ωout,
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and ω−, are all large compared to ρ. This is the limit of slow
expansion, where we find

|βk|2 ≈ 1
a2

i

e−2πωin/ρ. (2.40)

If we use equation (2.18), and assume that k � mai, then we
again obtain equation (2.39). However, if we now assume that
k � mai, then we find

|βk|2 ≈ 1
a2

i

e−2πk/ρ. (2.41)

This result contains the same exponential factor as does
equation (2.38), although with a different prefactor, arising
from assuming somewhat different limits. Both forms show
that the creation of very energetic particles is exponentially
suppressed.

Note that in the two-dimensional version of this model
described in [1, 10], the factors of ai in the final results, such
as equation (2.35), do not appear. This is because in two
spacetime dimensions, the factor of 1/a(η) which appears in
four dimensional solutions of the Klein–Gordon equation, e.g.
equation (2.11), does not appear. In four spacetime dimen-
sions, the fact that |βk|2 ∝ a−2

i leads to enhanced particle cre-
ation when ai � 1 and the fractional change in scale factor is
large.

The total number density and energy density of the cre-
ated particles are given by equations (2.24) and (2.27), respec-
tively, with af = 1. For the purposes of an estimate, let us use
equation (2.38). Although this form does not hold over the
entire range of integration, it should be a fair approximation
for k ≈ ρ, which is expected to give the dominant contribution
to the integrals. In addition, we use Eout ≈ k. This leads to

n ≈ (1 − a2
i )2m4

16πa2
i ρ

, (2.42)

and

u ≈ (1 − a2
i )2m4

32π2a2
i

. (2.43)

If we take the ratio of these two expressions, we may estimate
the average energy of the created particles to be

Eave =
u
n
≈ 2πρ, (2.44)

so this average particle energy is proportional to the inverse
expansion time, ρ.

2.2.2. The Parker and Toms model: effects of non-conformal
coupling. There is a similar model, given by Parker and Toms
[2, 11], with statically bounded expansion which provides an
exact solution for the creation of massless, minimally coupled
scalar particles, and hence of gravitons as will be discussed in
section 2.5. If one defines a new time coordinate τ in the metric
equation (2.10) by dt = a3 dτ , then the metric becomes

ds2 = −a6(τ )dτ 2 + a2(τ )dx2, (2.45)

and the solutions of the massless, minimally coupled
Klein–Gordon equation �ϕ = 0 can be written as

f k(x, τ ) =
eik·x√
(2π)3

χk(τ ). (2.46)

Note that there is no explicit scale factor in this expression, in
contrast to equation (2.11). Now χk(τ ) satisfies the equation

d2χk

dτ 2
+ k2a4(τ )χk = 0. (2.47)

The scale factor used by Parker and Toms can be expressed
in a form analogous to equation (2.29)

a4(τ ) =
1
2

[1 + a4
i + (1 − a4

i ) tanh(ρτ )], (2.48)

and also expands from an initial value of ai < 1 to a final value
of af = 1, as illustrated in figure 1, but now as a function of τ .
Equation (2.47) becomes

d2χk

dτ 2
+

1
2

k2
[
1 + a4

i + (1 − a4
i ) tanh(ρτ )

]
χk(τ ) = 0, (2.49)

which is the same as equation (2.30) if we make the substitu-
tions

k → 0, m → k a2
i → a4

i , η → τ (2.50)

in the latter. As a consequence, the solutions for the in and
out modes, and also the Bogolubov coefficients, may be found
from those in section 2.2.1 by this substitution, except here
there will be no overall factors of ai. Now the Bogolubov coef-
ficients are given by equations (2.33) and (2.34) without the
leading 1/ai factor, and where now

ωin = ka2
i , ωout = k, (2.51)

so here ω± = k(1 ± a2
i )/2. Now we have the result

|βk|2 =
sinh2[πk(1 − a2

i )/(2ρ)]
sinh(πk/ρ) sinh(πka2

i /ρ)
. (2.52)

In the high frequency limit, k > ka2
i � ρ, we have

|βk|2 ≈ e−2πka2
i /ρ. (2.53)

Equations (2.38)–(2.40), and (2.53) all illustrate that the cre-
ation rate of particles with energies larger than the inverse
expansion time, ρ, is exponentially suppressed. Parker [11] has
noted that these exponential factor are similar to those which
appear in thermal spectrum at finite temperature. Note, how-
ever, that here the particles are created in a pure quantum state
and hence have zero entropy until decoherence occurs. This
issue will be treated in section 3. Several other authors have
discussed cases where an approximately thermal spectrum of
particles is created [12–15].

As in the previous subsection, we may use equation (2.53)
to obtain estimates for the total number and energy density of
the created particles. The results are

n ≈ ρ3

8π5a6
i

(2.54)
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and

u ≈ 3ρ4

16π6a8
i

. (2.55)

The associated estimate for the mean energy of the created
particles is

Eave =
u
n
≈ 3ρ

2πa2
i

. (2.56)

The inverse powers of ai in the above expressions indicate
that a large change in scale factor, where ai � 1, is especially
effective in creating massless minimally coupled scalars and
gravitons.

2.3. A perturbative approach

It is difficult to solve equation (2.12) for the mode functions in
all but a few examples, such as those just discussed. However,
there is a perturbative method, developed by Zeldovich and
Starobinsky [16] and by Birrell and Davies [17], which is often
useful. The first step is to rewrite equation (2.12) as

d2χk

dη2
+ [ω2

in + U(η)]χk = 0, (2.57)

where

U(η) = V(η) − a2
i m2 = m2[a2(η) − a2

i ] + a2(η)

(
ξ − 1

6

)
R(η).

(2.58)
Note that U(η) → 0 as η →−∞. Next we rewrite
equation (2.57) as an integral equation:

χk(η) = χ(in)
k (η) − ω−1

in

∫ η

−∞
U(η′) sin [ωin(η − η′)] χk(η′)dη′,

(2.59)
where here χ(in)

k (η) is understood to be the asymptotic form
given in equation (2.16). This integral equation is equivalent
to equation (2.57) plus the boundary condition that χk(η) ∼
χ(in)

k (η) for η →−∞. We now wish to assume that U is suf-
ficiently small that we may iterate this integral equation to
lowest order by replacingχk(η′) byχ(in)

k (η′) in the integrand. If
we compare the resulting formula in the limit η →∞ with the
right-hand side of equation (2.20), the Bogolubov coefficients
may be read off:

αk ≈
af

ai

[
1 − i

2ωin

∫ ∞

−∞
U(η) dη

]
, (2.60)

and

βk ≈
iaf

2aiωin

∫ ∞

−∞
e−2iωinη U(η) dη. (2.61)

We can see that the above procedure is a first order expan-
sion in m2 and in (ξ − 1

6 )R, or more precisely, the dimen-
sionless ratios of these two quantities to the inverse squared
expansion time scale. In the limit that m2 = (ξ − 1

6 )R = 0,
there is no particle creation, as expected. Otherwise,
equation (2.61) tells us that the particle creation will be peaked
at the values of ωin associated with the peak of the Fourier
transform of U(η), which is of the order of the characteris-
tic inverse time scale, in conformal time, of the expansion.
Strictly, the perturbative approach assumes that U is always

small, which requires that the scale factor not change by large
factors if m �= 0, in which case ωout ≈ ωin.

We can compare the perturbative result with the exact solu-
tion in the Bernard and Duncan model. In this case, the squared
scale factor is given by equation (2.29) and ξ = 1/6. The inte-
gral in equation (2.61) may be performed explicitly. The result
contains a term proportional to δ(ωin), which would seem to
describe created particles with zero energy, and which does
not appear in the exact solution. If we assume that this term
should not be present, and drop it, we then find

|βk|2 ≈ π2(1 − a2
i )2m4

4ω2
ina2

i ρ
2

e−2πωin/ρ, (2.62)

where we have set af = 1 and assumed thatωin � ρ. This result
agrees with equation (2.38) in the small mass limit, where
ωin ≈ k + O(m2) and ωout ≈ ωin.

Let us now consider the case where m = 0. In this case, the
mean number density becomes

n =

(
ξ − 1

6

)2

16πa3
f

∫ ∞

−∞
a4(η)R2(η) dη, (2.63)

and the energy density becomes

u = −
(
ξ − 1

6

)2

32π2a4
f

∫ ∞

−∞
dη1

∫ ∞

−∞
dη2

×
{

ln(|η1 − η2|μ)
d

dη1

[
a2(η1)R(η1)

]

× d
dη2

[
a2(η2)R(η2)

]}
. (2.64)

Here μ is an arbitrary quantity with the dimensions of mass;
u is independent of μ provided that a2(η)R(η) → 0 as η →
±∞. The approximation which is being used in the m = 0
case amounts to perturbation around the conformally invari-
ant theory in powers of (ξ − 1

6 ). Note that here n and u are
independent of ai, and we have restored a general value of af .

2.4. Estimates of magnitude of the particle creation

The rate of particle creation is not precisely defined, but in the
massless case one can view the integrand of equation (2.63)
as an approximate number density creation rate per unit con-
formal time η. The energy density creation rate is more
complicated, because equation (2.64) involves a double time
integration, and because the integrand depends upon the arbi-
trary constant μ. However, if one estimates a characteristic
energy of the created particles from the Fourier transform in
equation (2.61), then this may be combined with the approxi-
mate number density creation rate to estimate the energy den-
sity creation rate. However, in the case that m �= 0, even the
particle number is expressed as a double time integral [17], so
there no obvious candidate of a number creation rate.

More generally, we may combine the perturbative method
with the exact solutions given in sections 2.2.1 and 2.2.2 to
make some estimates of the number and spectrum of the cre-
ated particles. First, equations (2.25) and (2.61) tell us that
the number density of particles created into a given interval
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of wavenumber or energy is proportional to the square of a
Fourier component of the function U(η) associated with that
energy interval. Let ηC be the characteristic timescale asso-
ciated with the scale factor a(η). For example, in the case of
equation (2.29), we could take ηC = 1/ρ.

We have found in the exact solutions in sections 2.2.1
and 2.2.2 that the creation of particles with energies large
compared to 1/ηC is exponentially suppressed, as seen in
equations (2.38)–(2.40), and (2.53). The feature also appears
in the perturbative results in section 2.3 due to exponential
decay of Fourier transforms at high frequencies for a wide
class of functions. More generally, we can expect the energy
spectrum of the created particles to be peaked near energies
E ∝ 1/ηC, as illustrated in equations (2.44) and (2.56).

The particle creation rate depends upon the cosmological
expansion rate, which is in turn determined by the matter
equation of state. The effects of a stiff equation of state have
been discussed by Lankinen and Vilia [18].

Note that this review has focused on the quantum creation of
bosons, especially scalar particles. The creation of fermions in
an expanding Universe was treated by Parker [7], where anti-
commutation relations replace the commutation relation used
here in section 2.1. In general, one can expect the creation rate
of fermions to be somewhat less than for bosons of similar
mass and coupling to curvature. This is due to the effects of
the exclusion principle for fermions.

2.5. Quantum creation of gravitons

Although there is not yet a universally accepted quantum
theory of gravity, there are limits in which gravity may be
quantized unambiguously. One such limit is the quantiza-
tion of tensor perturbations of an expanding Universe, such
as that of equation (2.10). This is treated, for example, in
[19]. If one imposes the transverse tracefree gauge, then all
of the gauge freedom is removed, leaving only the two phys-
ical degrees of freedom associated with the two indepen-
dent choices of polarization. The metric perturbations in this
gauge satisfy the scalar wave equation, equation (1.2), with
m = ξ = 0, that is the equation for a massless, minimally cou-
pled scalar field [20]. Because of the two polarization degrees
of freedom, we can view gravitons in a spatially flat expand-
ing Universe as being equivalent to a pair of massless min-
imally coupled fields. A somewhat different approach using
Hamiltonian methods was given by Berger [21].

A key point is that the wave equation for gravitons, unlike
that for photons, is not conformally invariant. The means
that in general gravitons will be created by the cosmolog-
ical expansion, as was emphasized by Grishchuk [22]. For
example, the creation of gravitons by the Parker–Toms model
of section 2.2.2 may be obtained by multiplying the number
density or energy density of created massless scalar particles
by two. Similarly, the perturbative method of section 2.3 may
be used to obtain the number density or energy density of the
created gravitons. In this case, set ξ = 0 in equations (2.63)
and (2.64), and then multiply the result by two to account for
the two graviton polarization states. An explicit example will
be treated in section 4.2.

2.6. The issues of initial conditions and local definitions of
particle number

Here we have used initial and final flat regions to give asymp-
totic definitions of particle number. In section 4.1.2, we will
discuss a more natural definition of initial particle number
in the context of inflationary cosmology. In general, particle
number is not well defined during the expansion. Expressions
such as equation (2.63) give a total number of created par-
ticles as a time integral, and it is tempting to interpret the
integrand as a number creation rate. However, this should be
done with caution. In general, one should not expect the instan-
taneous number of particles during the expansion to be well
defined. Nonzero particle creation occurs when the particle
number definitions in the initial and final regions differ. Cer-
tainly particle creation is also linked to the time dependence of
the background and the lack of a conserved energy on such a
background.

There are limits in which an approximate local definition
may be given. When the wavelength of the particle is small
compared to the local radius of spacetime curvature, then the
particle is locally in an approximately flat region of spacetime,
and particle number is meaningful. This may be made more
precise in the context of an adiabatic or WKB approximation.
Equation (2.12) has a solution of the form

χk(η) =
1√

2Wk(η)
exp

(
−i

∫ η

Wk(η′) dη′
)

, (2.65)

where Wk(η) is a solution of

[Wk(η)]2 = k2 + V(η) − 1
2

(
W ′′

k

Wk
− 3(W ′

k)
2

2W2
k

)
, (2.66)

where W ′
k = dWk/dη. When the expansion rate is sufficiently

slow that the derivative terms in the above equation may be
ignored, we have the familiar WKB approximation

χk(η) ≈ 1√
2ωk(η)

exp

(
−i

∫ η

ωk(η′) dη′
)

, (2.67)

where
ωk(η) =

√
k2 + V(η). (2.68)

This approximation is valid when both (a′)2 and |a′′(η)| are
small compared to [ωk(η)]2. Note that this can be viewed as
either a slow expansion, or a high frequency approximation.

Note that equation (2.67) is a positive frequency solution,
with a slowly varying frequency. It may be taken to define
the adiabatic vacuum state, and hence adiabatic particle num-
ber. So long as the WKB approximation holds, this form for
χk(η) remains a positive frequency mode, and hence no par-
ticle creation occurs and particle number remains constant.
Thus, the WKB solutions may be used for an approximate local
definition of particle number. This approach has been used by
several authors [23–28].

Another attempt to give a local definition of particle num-
ber is the Hamiltonian diagonalization approach of Grib and
Mamaev [29]. Here one defines a Hamiltonian, diagonalizes
it by a Bogolubov transformation, and defines particles in the
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new Fock space after diagonalization. The physical motiva-
tion for this definition is not clear, and it has been critically
discussed by Fulling [30], who argues that the choice of Hamil-
tonian is ambiguous. However, Fulling also notes that in some
cases Hamiltonian diagonalization is essentially equivalent to
the WKB approach.

Several other criteria for defining particular classes of quan-
tum states have been discussed in [31–34].

3. Quantum state of the created particles,
decoherence, and entropy

3.1. The quantum state

Let us return to the Bogolubov transformation, equation (2.7)
for particle creation in a spatially flat Universe. In this case,
we have

ak = α∗
kbk − β∗

k b†
−k, (3.1)

where ak is the annihilation operator for a particle in mode k
in the in-region, and bk is the corresponding operator in the out
region. Recall that the quantum state of the system, when no
particles are initially present, is the in-vacuum |0〉in, for which
ak|0〉in = 0. The effect of the expansion of the Universe is to
create pairs of particles in the out-region, where one member of
each pair is in mode k, and the other in mode−k. For a moment
we ignore all other modes, and write the quantum state in the
out-region as

|0〉in =
∞∑

n=0

cn|n, n〉, (3.2)

where |m, n〉 a number eigenstate in the out-region with m par-
ticles in mode k, as well as n particles in mode −k. Thus

b†
kbk|m, n〉 = m|m, n〉, b†

−kb−k|m, n〉 = n|m, n〉. (3.3)

Now we have

ak|0〉in =
∞∑

n=0

cn [α∗
k

√
n|n − 1, n〉 − β∗

k

√
n + 1|n, n + 1〉

=
∞∑

n=0

(α∗
k

√
n + 1cn+1 − β∗

k

√
n + 1cn)|n, n + 1〉 = 0,

(3.4)

which leads to the recurrence relation

cn =
β∗

k

α∗
k

cn−1 =

(
β∗

k

α∗
k

)n

c0. (3.5)

The normalization of the state |0〉in yields

∞∑
n=0

|cn|2 = |c0|2
∞∑

n=0

∣∣∣∣βk

αk

∣∣∣∣
2n

=
|c0|2

1 − |βk/αk|2
= |c0|2|αk|2 = 1,

(3.6)
where the second from last step follows from equation (2.22).

This argument determines the state |0〉in in the out-Fock
space up to an overall phase, so we have

|0〉in = c0

∞∑
n=0

(
β∗

k

α∗
k

)n

|n, n〉, (3.7)

where |c0| = 1/|αk|. From this expression, we see that the state
of the system in the out region is a superposition of all possible
number of pairs of particles, where within each pair, the two
particles have opposite momenta. Furthermore, the probability
of finding n pairs in this state is

Pn = |cn|2 = |αk|−2

∣∣∣∣βk

αk

∣∣∣∣
2n

. (3.8)

So far, we have considered only one value of k, but particles
are expected to be created into all modes for which βk �= 0. We
may generalize the above discussion to the case of multiple
values of k. The result may be written as

|0〉in = c0

∑
{nk}

∏
k

(
β∗

k

α∗
k

)nk

|{nk}〉. (3.9)

Here {nk} denote a set of occupation numbers; for each mode
k there is non-negative integer nk which gives the number
of particles in mode k and the number of particle in mode
−k. In our enumeration, we may require kz � 0 to avoid over
counting. The overall constant c0 satisfies

|c0| =
(∏

k

|αk|
)−1

. (3.10)

The quantum state of the created particles is a multi-mode
squeezed vacuum state.

3.2. Correlations, entropy and decoherence

The quantum state, equation (3.9), is a highly entangled state
with numerous quantum correlations. The two-particle sector
of this state describes pairs of particles with equal and opposite
momenta. In effect, each created particle is entangled with a
partner moving in the opposite direction. In addition, there are
sectors of the state with all possible numbers of pairs, which
are in turn correlated with one another. So long as the state of
the system is a pure quantum state, then its entropy is zero.
However, one can define a formal entanglement entropy, or
von Neumann entropy, for such a state. This is discussed by
Lin et al [35], who show that the von Neumann entropy for the
state equation (3.9) may be written as

SvN =
∑

k

[(nk + 1) ln(nk + 1) − nk ln nk], (3.11)

where nk = |βk|2 is the mean number of particle in mode k.
As before, we are assume quantization in a box of coordinate
volume V , and in the large volume limit, the sum on discrete
modes is replaced by an integral, as in equation (2.23). This
shows that SvN is an extensive quantity proportional to V , as
expected.
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The physical meaning of entanglement entropy is that it
may be converted into thermodynamic entropy by decoher-
ence, which is the loss of phase information in the quantum
state through interaction with an environment. The details of
this process need not concern us, so long as the mean num-
ber of particles per mode is approximately constant. Con-
sider the case of a massless scalar field, and assume that after
decoherence, nk is replaced by a Planck factor:

nk →
1

eω/(kBT) − 1
, (3.12)

where ω = |k| and kB is Boltzmann’s constant. Then SvN

becomes the usual thermodynamic entropy ST at temperature
T ,

SvN = ST =
2π2

45
V(kBT)3. (3.13)

This is the expected entropy of massless scalars at temperature
T and is one-half of the familiar expression for the entropy of
electromagnetic blackbody radiation.

4. Applications to cosmology

4.1. Inflation

4.1.1. Essentials of inflation. Inflationary models postulate
a period of accelerating expansion in the early Universe
[36, 37]. These models successfully solve some previous cos-
mological puzzles, the horizon and flatness problems, and pre-
dict a nearly scale invariant spectrum of initial perturbations
for the post-inflationary Universe as well as a Universe which
is very close to the spatially flat model of equation (2.10). For a
recent review, see [38]. During inflation, the spacetime metric
is approximately that of de Sitter space, given by

a(t) = eHt = a(η) = − 1
Hη

, η < 0, (4.1)

where H is the Hubble parameter, a constant with dimensions
of inverse time. de Sitter space is a solution of Einstein’s
equations with a positive cosmological constant, or, equiva-
lently, a matter stress tensor which is proportion to the metric
tensor and an energy density of

ρI =
3H2

8π
. (4.2)

There are many versions of inflationary cosmology, but one
of the simplest assumes a classical scalar field (the ‘inflaton’)
with an effective potential which has a flat region, where the
first derivative of the potential with respect to the field is small.
This field obeys an equation analogous to that of a classical
particle in this potential. When the field is in the flat region, its
energy density is approximately constant and equal to ρI . This
is the inflationary period, which is assumed to end at a finite
value of t = tR or of η = ηR. As inflation ends, the energy in
the scalar field is converted into ordinary matter particles. If
these particle are relativistic, then the subsequent epoch of the
Universe is a radiation dominated expansion, where

a(t) ∝ (t − tR)1/2, or a(η) ∝ η − ηR. (4.3)

Apart from a successful resolution of the horizon and flat-
ness problem, one of the great successes of inflationary cos-
mology is the prediction of a nearly scale invariant spectrum
on initial density perturbations, which has been confirmed by
several observations, especially the temperature fluctuations of
the cosmic microwave background (CMB). These density per-
turbations arise from quantum fluctuations of the inflaton field
during inflation [39–43]. For a review, see [44]. This effect
may be visualized as follows: the inflaton is a nearly classical
field, but has small vacuum fluctuations, which cause some
spatial regions to evolve slightly faster than nearby regions.
The regions which evolve faster transition from the de Sitter
phase to a radiation dominated phase somewhat sooner and
begin redshifting sooner. At later times, these regions have
a lower temperature and smaller energy density compared to
regions which ended inflation later. In addition to these density,
or scalar, perturbations, inflation also predicts tensor perturba-
tions in the form of primordial gravity waves which will be
discussed in section 4.1.6.

The creation of matter at the end of inflation (‘reheating’)
is usually assumed to occur due to self-coupling of the infla-
ton field and its coupling to other matter fields. This reheat-
ing period necessarily requires a finite interval of time, during
which the spacetime metric makes a smooth transition from
that of de Sitter space to that of a radiation dominated Uni-
verse. For recent reviews of reheating, see [45, 46]. In addition
to matter creation by field couplings, there should be at least
some particle creation by the mechanism described above in
section 2, which is the principle topic of this review. This is
sometimes called gravitational particle creation to distinguish
it from creation by field couplings.

4.1.2. Initial conditions: the Bunch–Davies vacuum. One of
the requirements for well-defined quantum particle creation
are clear definitions for the in and out vacua. In our discus-
sion in section 2, both the initial and final regions were taken
to be flat spacetime regions. In the context of cosmology, the
final approximately flat region is not a problem, but the initial
one is problematic. Fortunately, inflation seems to offer a nat-
ural resolution of this difficulty. An essential feature of a long
period of inflationary expansion is that it effectively erases the
memory of whatever preceeded it through redshifting of any
preexisting matter. Regardless of the quantum state of the mat-
ter fields at the beginning of inflation, the effective state rapidly
approaches the vacuum state as inflation proceeds. For mass-
less conformal fields there is no ambiguity in the definition of
the vacuum in a conformally flat spacetime, such as that of
equation (2.10), and the natural definition is called the confor-
mal vacuum. For massive or other nonconformal fields, there
is generally a choice of vacuum in de Sitter space which is de
Sitter invariant, and respects the spacetime symmetries of de
Sitter space. This is often called the Bunch–Davies vacuum
[47], and is the state which any initial state will asymptotically
approach after an extended period of inflation. There is a sub-
tlety in the case of the massless, minimally coupled scalar field
in that the two point function suffers from an infrared diver-
gence, so in a strict sense, the Bunch–Davies vacuum does not
exist for this field. However, there are a family of quantum
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states which are infrared finite and any initial state of the mass-
less, minimally coupled scalar field will approach one of these
states [48]. These states are also close to the Bunch–Davies
state in the sense that expectation values of quantities such as
the stress tensor, which are free of infrared divergences, due
to the presence of space or time derivatives, are the same in
all of these states as in the Bunch–Davies state. Thus it is rea-
sonable to take the Bunch–Davies vacuum as the in-vacuum
for discussions of quantum particle creation during the tran-
sition from inflationary expansion to the radiation dominated
Universe. Note, however, that particles in very high frequency
modes in the initial state could have an effect if these modes
are not sufficiently redshifted by the inflationary expansion.
This possibility was discussed by Agullo and Parker [49], who
consider the effect of stimulated emission produced by such
particles.

4.1.3. Estimates of gravitationalparticle creation during reheat-
ing. Here we wish to estimate the magnitude of the num-
ber and energy densities of particles which are created by the
transition from de Sitter expansion to a radiation dominated
epoch. We follow the treatment in [50], using the perturbation
method of section 2.3. Consider the case of massless, non-
conformally coupled scalar particles, and set a = af = 1 at the
end of reheating, η = ηR. The scalar curvature vanishes in a
spatially flat radiation dominated Universe, so take R = 0 for
η > ηR. The particle creation effectively ceases at η = ηR, and
we can estimate the number density of created particles in the
subsequent phase from equation (2.63) to be

n ≈
(
ξ − 1

6

)2

16πa3

∫ ηR

−∞
a4(η)R2 dη =

(
ξ − 1

6

)2
H3

12πa3
, (4.4)

where we have used the fact that R = 12H2 during inflation,
and the factor of a−3 describes the dilution of the particle num-
ber density by the cosmological expansion after their creation.
If we assume that the transition occurs on a comoving time
scale ofΔt � 1/H, then it is shown in [50] that equation (2.64)
implies that the energy density of the created particle is

ρ ≈
(
ξ − 1

6

)2
H4

8π2a4
ln[1/(HΔt)]. (4.5)

This implies that the mean energy of the created particles is
of the order of H ln[1/(HΔt)]. Note that, unlike the number
density, the energy density and the mean energy per particle
diverge asΔt → 0. This reflect a general feature that very rapid
changes in spacetime geometry can lead to violent particle
creation.

The inflaton energy density, ρI , which drives the expansion,
is related to H by the Einstein equation:

H2 =
8πρI

3
√
ρPl

, (4.6)

where ρPl ≈
(
1019 GeV

)4
is the Planck density. We can

express our estimate for the energy density of the created

particles just after the end of inflation as

ρ ≈ (1 − 6ξ)2 ρ
2
I

ρPl
. (4.7)

If, for example, we were to take ρI ≈
(
1015 GeV

)4
, then we

obtain the estimate

ρ ≈ (1 − 6ξ)2
(
1011 GeV

)4
. (4.8)

This energy density is much less than ρI , and would hence
be negligible if there is efficient reheating. However, if other
reheating mechanisms are not efficient, then particle creation
by the gravitational field could play a significant role in cos-
mological evolution.

However, a very weak coupling between the inflaton and
other fields has some phenomological advantages, as it facil-
itates a very long period of slow roll needed to have enough
inflationary expansion to solve the horizon and flatness prob-
lems. Peebles and Vilenkin [51] have discussed this issue and
constructed a plausible inflationary model in which gravita-
tional particle creation plays a key role. Some more recent
work on the role of gravitational particle creation in various
reheating models has been given, for example, in [52–57].
Dissipation and entropy production have been discussed in
[58–60].

4.1.4. De Sitter particle creation?. There have been many
papers written claiming that de Sitter space itself is unsta-
ble to runaway quantum particle creation. See, for example,
Mottola [61]. These claims are controversial, and have been
disputed by Marolf and Morrison [62, 63], who give argu-
ments in favor of the quantum stability of de Sitter space.
The model described in the previous subsection, which leads
to equation (4.5), seems to support the quantum stability, at
least so far as quantum particle creation is concerned. Here the
energy density of created particles depends upon the transition
time from de Sitter to the radiation dominated Universe, but
does not depend upon the duration of the de Sitter phase. If
runaway particle creation were occurring, one would expect
this energy density to grow with increasing duration of infla-
tion. This appears to be a situation where the questions of ini-
tial conditions and definition of particle number, discussed in
section 2.6, play an important role.

4.1.5. Dark matter and baryogeneis from gravitational particle
creation. One of the mysteries of modern cosmology is the
nature of the dark matter, which composes about 25% of the
mass density of the Universe. This is in contrast to only about
5% due to stars and other luminous matter. The dark mat-
ter reveals its presence only through its gravitational effects.
Furthermore, the fraction of dark matter appears to grow as
one probes larger length scales. For example, the dynamics of
galaxy clusters reveal a larger dark matter to luminous matter
ratio than do the rotation curves of individual spiral galaxies.

One plausible explanation of the dark matter is that it con-
sists of weakly interacting, massive particles. The difficulty in
directly detecting dark matter particles requires that they inter-
act only very weakly with ordinary matter particles. However,
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this makes formation of dark matter in the early Universe more
difficult. One possibility is that the dark matter couples only
through the gravitational interaction, which is vastly weaker
than the other known forces of nature. In this case, gravita-
tional particle creation becomes a promising model for the
origin of the dark matter, and has been explored by many
authors [64–73]. Several models have been explored, includ-
ing ones where the present dark matter particles were directly
created by the expansion of the Universe at the end of inflation,
as described above. Another possibility is that very massive
particles were initially created, and subsequently decayed into
lighter particles [64, 65, 69]. Massive particles created at the
end of inflation have also been proposed as models for gamma
rays [74] and ultra high energy cosmic rays [75–77].

Gravitational particle creation could also play a role in
baryogenesis, the creation of a net baryon number in the
Universe. This has been discussed in [78, 79].

4.1.6. Graviton creation in inflation and tensor perturbations.
The transition from de Sitter expansion to a subsequent radia-
tion dominated phase will not only create matter particles, but
also gravitons, which can later appear as primordial gravity
waves which will contribute to the net energy density of the
Universe, but also lead to anisotropic, tensor perturbations of
the CMB. This possibility was first suggested by Starobinsky
[80], who used a somewhat heuristic procedure of matching a
graviton mode function in de Sitter space to one in the radi-
ation dominated phase. In the transverse tracefree gauge, this
amounts to matching two different solutions of equation (2.12)
with different choices of a(η) but m = 0 and ξ = 0. The result-
ing mode in the radiation dominated phase is interpreted as
describing a classical, stochastic gravity wave. A similar pro-
cedure was used in [81–84], where estimates of the resulting
anisotropy of the CMB were given. Later Abbott and Harari
[85] and Allen [86] gave more rigorous treatments using the
Bogolubov coefficient approach.

After their creation, the gravitons are in a squeezed vacuum
state of the form of that found in section 3.1. At this point, they
are far from describing a classical gravity wave, as the expec-
tation values of the metric and curvature perturbation vanish
in such a state. In order to become a classical wave, the gravi-
tons need to decohere into a state closer to a coherent state.
Once this has occurred, the resulting classical waves can pro-
duce anisotropies in the temperature and polarization of the
CMB which are potentially observable, but have not yet been
detected.

In many models of inflation, the inflaton field is expected
to oscillate around a minimum value as reheating proceeds.
These field oscillations can drive metric oscillations, which
can in turn lead to gravitational creation of gravitons and of
other particles. This is distinct from particle creation by direct
coupling of matter fields to the istanton, gravitational parti-
cle creation by metric oscillations at the end of inflation was
discussed by Vilenkin [87] in the context of the Starobinsky
model [36], and by Suen and Anderson [88] in other ver-
sions of inflation. Graviton creation was discussed in [89] as
a mechanism for inflaton decay. Several other authors have

discussed various aspects of gravitons created in inflationary
models [90–97].

4.1.7. Effects of anisotropy and inhomogeneity. It has been
noted by several authors that anisotropic expansion can lead
to enhanced particle creation. Before the inflationary model
was proposed as a solution to the remarkable observed isotropy
of the Universe, particle creation was investigated as a damp-
ing mechanism for anisotropic expansion [16, 98–101]. The
effects of small anisotropy may be studied in the perturba-
tive method discussed in section 2.3. Anisotropy results in a
nonzero Weyl tensor, Cαβμν . For the case of massless scalar
particles, equation (2.63) for the mean number density of
created particles, now becomes [16, 17]

n =
1

16πa3
f

∫ ∞

−∞
a4(η)

×
[

1
60

CαβμνCαβμν +

(
ξ − 1

6

)2

R2(η)

]
dη. (4.9)

Thus the anisotropy produces a contribution to the average par-
ticle creation rate which is proportional to the square of the
Weyl tensor. Note that particles are created even in the confor-
mal limit, ξ = 1/6. More generally, massless conformal parti-
cles, including photons and fermions [102], can be created in
an anisotropic Universe. Anisotropy can also enhance entan-
glement entropy, as was recently discussed by Pierini et al
[103].

Although inflation removes the immediate motivation for
anisotropy damping mechanisms, it leaves other questions
unresolved. One of these is the issue of the set of initial condi-
tions which can give rise to inflation. This has been discussed
by several authors, including Calzetta [104], who argues that
particle creation can enlarge this set of initial conditions.

The treatments of anisotropy summarized above still
assume a homogeneous Universe. However, they may be gen-
eralized to include the effects of small inhomogeneities. This
was done by Frieman [105] and by Cespedes and Verdaguer
[106].

4.2. Late time particle creation

After inflation has ended, and the Universe has entered a
radiation or a matter dominated epoch, gravitational particle
creation would normally be expected to become very small,
as the spacetime curvature has become relatively small, and
the expansion time correspondingly large. However, there
are some possible exceptions, including emergent cosmology
models. These models postulate a Universe which undergoes
a very long, and possibly infinite, period of oscillations before
emerging into an inflationary Universe. Emergent models have
been discussed by Bag et al [107], who show that quantum cre-
ation of gravitons during the oscillatory phase places strong
constraints on such models.

Another possible source of late time metric oscillation
arise from effective actions for gravity which contain terms
quadratic in the curvature. Such terms can arise either in mod-
ified classical theories of gravity or from one loop quantum
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corrections, and can produce rapid metric oscillations around
an expanding background spacetime [108]. These oscillations
can produce gravitons, as was discussed in [109, 110]. The
scale factor, including the oscillations, can be taken to be

a(t) = aB(t)[1 + A0 cos(ω0t)], (4.10)

where A0 and ω0 are the amplitude and angular frequency of
the oscillations, and aB(t) is the background scale factor. The
graviton creation rate may be calculated using the perturba-
tive approach described in section 2.3. On time scales short
compared to the background expansion time, both the graviton
number density and energy density seen by a local comoving
observer grow linearly in time:

ng =
A2

0ω
4
0 t

16π
, (4.11)

and

ρg =
A2

0ω
5
0 t

32π
. (4.12)

Comparison of these two expressions reveals that the mean
energy per graviton is ω0/2. This result may be understood
from local energy conservation. In general, energy is not con-
served in a time-dependent background spacetime, but here we
may take the rate of variation of aB(t) to be small compare to
the oscillatory factor. In this case, we effectively have oscilla-
tions around an average background of flat spacetime, and the
time averaged energy is conserved. The metric oscillation may
be viewed as a classical gravity wave at angular frequency ω0,
or equivalently, as a coherent state of gravitons with energy
ω0. This energy is converted into a pair of quantum created
gravitons, each with energy ω0/2. This effect is similar to that
of parametric nonlinear down conversion in nonlinear optics.
(See, for example, [111].)

The energy density of the created gravitons contributes to
net energy density which determines the overall expansion
rate of the Universe, and may be constrained by cosmological
observations. This in turn places constraints on the parame-
ters A0 and ω0 and on the underlying modification of gravity
theory.

Another context in which quantum particle creation could
become important in the late Universe would if the effective
equation of state of the matter in the Universe were of the form
p = wρ, wherew < −1, sometime called phantom matter. The
equation of state causes such rapid expansion that curvature
singularity arises, the ‘Big Rip’. Nunes and Pavon [112] have
suggested that quantum particle creation could give rise to such
an equation of state. However, Dimopoulos [113] argues that
the backreaction from particle creation could have the effect
of increasing the value of w, and preventing the Big Rip.

5. Backreaction

In this section, we briefly address the backreaction of par-
ticle creation on the background spacetime geometry. Here
we assume a semiclassical version of general relativity in
which the expectation value of the stress tensor operator of the

quantum field acts as part of the source of the gravitational
field. Thus Einstein equation in this theory takes the form

Gμν = 8πG(Tcl
μν + 〈T̂μν〉), (5.1)

where Gμν is the Einstein tensor of the classical background
spacetime, G is Newton’s constant, Tcl

μν is the stress tensor of
any classical matter present, T̂μν is the quantum stress tensor
operator, and 〈T̂μν〉 is its suitably defined expectation value in
some quantum state. Here the phrase ‘suitably defined’ hides
a great deal of technical complexity, as the formal expectation
value suffers from ultraviolet divergences which need to be
removed by a combination or regularization and renormaliza-
tion. Here we give only a quick summary, and refer the reader
to, for example [1, 2], and the papers cited therein for more
details.

Regularization is a formal prescription for removing the
divergences, but leaving a result which depends upon one
or more undetermined parameters. The conceptually cleanest
regularization methods are covariant ones which respect the
general covariance of the theory, such as dimensional regular-
ization. In this case, the regularized expectation value is finite,
but contains four terms which would diverge if the regulator
were removed. These terms are proportion to the spacetime
metric tensor gμν , the Einstein tensor, and two tensors which
are quadratic in the curvature, H(1)

μν and H(2)
μν . The latter two ten-

sors may be taken to be the functional derivatives of R2 and of
RμνRμν , respectively, with respect to the metric tensor. The reg-
ulator dependence may be absorbed by renormalization, which
is a redefinition of the cosmological constant, Newton’s con-
stant, and two constants which are introduced as coefficients
of R2 and of RμνRμν in the gravitational action. In writing
equation (5.1), we have assumed that the renormalized values
of all of these constants have been set to zero, apart from G,
whose renormalized value is that measured by the Cavendish
experiment. However, the renormalized expectation value can
still contain finite terms proportional to each of the four ten-
sors, gμν , Gμν , H(1)

μν , and H(2)
μν . The latter two terms can cause

particular problems because they involve fourth derivatives of
the metric tensor and lead to a fourth-order Einstein equation,
which can suffer from instabilities or oscillations as discussed
in section 4.2. One resolution to this problem has been dis-
cussed by Simon [114], who argues that higher order the-
ories can be viewed as resulting from approximations to a
nonlocal theory, and may be treated in perturbation theory
with the imposition of constraints which eliminate the unstable
solutions.

More generally, it is not possible to uniquely distinguish
contributions to 〈T̂μν〉 coming from created particles from
those due to vacuum energy effects. This is related to the
intrinsic ambiguity in defining particle number in a dynamic
spacetime. However, we may make some order of magnitude
estimates of the combined effects of particles and vacuum
energy. Let � be the characteristic length scale associated with
the spacetime curvature. In the case of an expanding spatially
flat Universe, such as that described by equation (2.29), � is
the characteristic expansion time scale, 1/ρ. The Einstein and
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Ricci tensors are of order 1/�2,

Gμν ≈ Rμν ≈ O

(
1
�2

)
, (5.2)

while 〈T̂μν〉 is typically of order 1/�4, so

G〈T̂μν〉 ≈ O

(
�2

P

�4

)
, (5.3)

where �P is the Planck length. Thus, we expect the backre-
action from quantum effects on the background geometry to
be small if � � �P. However, as noted in section 4.1.3, even
though the energy density of particles created at the end of
inflation may be small compared to the vacuum energy during
inflation (see equation (4.7)), the effects of the created particles
can still be significant.

Although 〈T̂μν〉 can contain contributions both from created
particles and from vacuum energy which are hard to distin-
guish, there are cases where this distinction may be made. One
case is an out region after particle creation has ceased, as in
equation (2.29) when η � ρ. Here spacetime is essentially flat
so there is no vacuum energy effect, but there can be a nonzero
energy density of created particles. Another case is that of a
conformally invariant field. Here there is no particle creation,
but 〈T̂μν〉 �= 0 during the expansion due to vacuum energy.

In general, covariant regularization and renormalization of
the stress tensor in an expanding Universe is very difficult to
perform explicitly. An alternative approach is the adiabatic
regularization method of Parker and Fulling [115]. This is
based upon a generalization of the WKB method given by
Chakraborty [116]. The key idea is to start with the solution of
equation (2.12) given by equations (2.65) and (2.66). To lowest
order, one takes Wk(η) ≈ ω(η), given by equation (2.68), but
then successively iterates equation (2.66) to obtain a sequence
of better approximations to Wk(η). The leading terms in this
sequence will generate terms in the stress tensor proportional
to the divergent contributions. These terms are subtracted from
the mode functions computed by some other means, such as
numerically. This leads to finite integrals over all modes for
the stress tensor components. This method is especially well
suited to numerical evaluation of the energy density, and has
been used by several authors [117–119].

The treatment of the backreaction on the background space-
time geometry requires a careful consideration of the choice
of gauge. This is also an issue when discussing the backre-
action of classical perturbations, and has been discussed, for
example, by Geshnizjani and Brandenberger [120], who give
a description in terms of a modified local expansion rate.

6. Analog models

In this section, we consider several effects which are analogous
in some way to particle creation by gravitational fields.

6.1. Schwinger effect

An explicit example of quantum particle creation by a classi-
cal external field is the Schwinger effect [121], the creation of

electron–positron pairs by a constant electric field. The rate of
pair creation per unit time per unit volume may be written as

R =
α2

π2
E2

∞∑
n=1

n−2 exp

(
−πnm2

eE

)
. (6.1)

Here m and e denote the mass and magnitude of the elec-
tric charge of the electron, respectively, α = e2/(4π) is the
fine structure constant, and E is the magnitude of the electric
field in Lorentz–Heaviside units. First we note that the pair
creation is exponentially suppressed if m2 � eE. This is anal-
ogous to the suppression of the creation of massive particles by
the cosmological expansion, as illustrated in equation (2.39),
for example. In the electromagnetic case, this leads to a crit-
ical electric field, Ecr = m2/e ≈ 1.3 × 1018 V m−1, above
which the spontaneous electron positron pair creation rate
becomes large. This type of particle creation may be derived
by a Boglubov coefficient approach, of the type outlined in
section 2.1 [122]. The Schwinger effect has not yet been
observed in the laboratory. However, there may be greater
chance of observing pair creation in a time dependent laser
field than in a static electric field [123].

One can understand the above expression for Ecr from a
simple heuristic argument. The work on by an electric field
E moving a charge e through a distance d is, from Newtonian
mechanics, W = eEd. If we set this work to be of the order
of the electron rest mass energy and d = λC = 1/m to be the
electron Compton wavelength, then we obtain E ≈ Ecr.

There is a key difference between the Schwinger formula,
equation (6.1), and the results for gravitational particle creation
discussed in section 2.2. The former depends upon a coupling
constant, e, while the latter do not, presumably reflecting the
universality of the gravitational interaction. Anderson et al
[124, 125] have argued that gravitational particle creation in
global de Sitter spacetime, as opposed to an inflationary Uni-
verse, is analogous to the Schwinger effect. However, as dis-
cussed in section 4.1.4, particle creation in de Sitter spacetime
does not seem to be well-defined.

6.2. Particle creation by moving mirrors

A simple example of quantum particle creation was given by
Fulling and Davies [126, 127]. This consists of a moving mir-
ror in two-dimensional spacetime coupled to a massless scalar
field,ϕ. The field is assumed to satisfy a boundary condition on
the worldline of the mirror, such as ϕ = 0. For a given mirror
trajectory, it is possible to construct exact solutions of the wave
equation which satisfy this boundary condition. Let v = t + x
and u = t − x be null coordinates which are constant upon null
rays moving to the left and to the right, respectively. A null ray
of fixed v which reflects off of the mirror becomes a ray of fixed
u. The relation between the values of v and of u is a function
determined by the mirror’s trajectory. (See figure 2.) Let

v = G(u), (6.2)

or, equivalently,

u = g(v) = G−1(v). (6.3)
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Figure 2. A moving mirror in two-dimensional spacetime
accelerates for a finite period of time. The quantum radiation
emitted to the right of the mirror propagates in the spacetime region
between the dotted lines. There is also radiation emitted to the left
which is not shown.

The mode functions which satisfy the massless wave equation
and which vanish on the worldline of the mirror are

f k(x) =
1√
4πω

(
e−iωv − e−iωG(u)

)
. (6.4)

The incoming positive frequency wave, e−iωv, is reflected from
the mirror and becomes an outgoing wave, e−iωG(u), which
is a superposition of positive frequency (e−iωu) and negative
frequency (eiωu) parts.

Fulling and Davies [126] show that the flux of energy
radiated to the right is

F(u) = 〈Txt〉 = 1
48π

[
3

(
G′′

G′

)2

− 2

(
G′′′

G′

)]
. (6.5)

This flux may also be expressed in terms of the instantaneous
mirror velocity v(t) as

F = − (1 − v2)1/2

12π(1 − v)2

d
dt

[
v̇

(1 − v2)3/2

]
. (6.6)

In the nonrelativistic limit,

F ≈ − v̈

12π
. (6.7)

Note that F may be either positive or negative. In the latter
case, one has an example of the negative energy in quantum
field theory.

Unfortunately, the simple solution for the moving mirror
radiation of a massless field in two-dimensional spacetime
depends upon the special conformal properties of this case and

does not generalize to massive fields or to four-dimensional
spacetime. In the four-dimensional case, there are exact solu-
tions available for special trajectories [128, 129], and approx-
imate solutions for general trajectories [130], but no general,
exact solutions. However, the technique of mapping between
ingoing and outgoing rays is crucial in the derivation of particle
creation by black holes [131].

Particle creation by moving mirrors is sometimes called the
dynamical Casimir effect. An analog version of this effect has
been observed in a metamaterial [132]. The possible effects of
actual moving mirrors in an optical cavity have been discussed
in [133].

6.3. Creation of squeezed light in nonlinear optics

As noted above, the quantum state of the particles created by
a time-dependent gravitational field is a multi-mode squeezed
vacuum state. In recent decades, it has become possible to cre-
ate squeezed states of photons in the laboratory using nonlinear
optical materials [134, 135]. In this section, we will examine
how this is done, and show that the basic physical process
is essentially the same as particle creation by an expanding
Universe or by a moving mirror.

First we review selected aspects of nonlinear optics. Recall
that in SI units, the electric displacement vector D in a material
is related to the electric field E and polarization (electric dipole
moment per unit volume) P by

D = ε0E + P, (6.8)

where ε0 is a constant. This relation holds in both isotropic
and anisotropic materials. In a nonlinear material, the Carte-
sian components of P become nonlinear function of those of
E, and may be expanded in a power series of the form

Pi = ε0

(
χ(1)

i j E j + χ(2)
i jkE jEk + χ(3)

i jklE jEkEl + · · ·
)

, (6.9)

where sums on repeated indices are understood. The coef-
ficients in this expansion are tensors, and are called
susceptibilities.

For simplicity, consider the case where the three vectors, D,
E, and P may be taken to all be in the same direction, which
we take to be the z-direction, so

Di = δizD, Ei = δizE, Pi = δizP. (6.10)

Note that this does not require isotropy, but does require that
certain components of the susceptibility tensors vanish, e.g.
χ(1)

xz = 0, etc. Now equation (6.9) may be written as

P = ε0
(
χ(1) E + χ(2)E2 + χ(3)E3 + · · ·

)
, (6.11)

where

χ(1) = χ(1)
zz , χ(2) = χ(2)

zzz, χ(3) = χ(3)
zzzz. (6.12)

Here χ(1) is the familiar linear susceptibility, χ(2) is the second
order susceptibility, which can only be nonzero in a material
whose unit cell lacks spatial inversion symmetry, and χ(3) is
the third order susceptibility.
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Now let the electric field be a sum,

E = E0 + E1 (6.13)

of a background field E0 and a perturbation E1, where |E1| �
|E0|, and assume similar expressions for D and P. If we sub-
stitute these forms into equations (6.8) and (6.9), and expand
to first order in the perturbation, we find

D1 = εeffE1, (6.14)

where

εeff = ε0[(1 + χ(1)) + 2χ(2)E0 + 3χ(3)E2
0 + · · · ]E1 (6.15)

is an effective dielectric function which will appear in the wave
equation for the perturbation E1. If the classical field E0 is
a function of time, then εeff will be also. If we quantize the
perturbation, in general there will be mixing of the positive
and negative frequency modes of the quantum field and hence
quantum creation of photons.

Consider the geometry illustrated in figure 3. Here the clas-
sical field E0 is linearly polarized in the z-direction, propa-
gating in the x-direction, and has angular frequency ω0. It
passes through a slab of nonlinear material and induces a space
and time-dependent effective dielectric function, εeff(x, t). A
vacuum mode f ω(y, t) of the quantized electromagnetic field,
with angular frequency ω, enters the slab propagating in the
y-direction. Before entry, it is a pure positive frequency mode.
Inside the slab, it obeys a wave equation containing εeff(x, t),
which leads to f ω(y, t) becoming a superposition of positive
and negative frequency components when it exits the slab. This
is analogous to the effect of the expansion of the Universe,
discussed in section 2, and leads to quantum creation of pairs
of photons in a squeezed vacuum state. In both cases, parti-
cle number is not well-defined in the time-dependent region,
and the energy needed to create particles comes from the time-
dependent background. The mean number of photons created
into mode f ω(y, t) will be |β|2, where β is the amplitude of the
negative frequency component of f ω(y, t) in the final region.
The angular frequency of the created photons depends both
upon the frequencyω0 of the classical field, and upon the order
of the relevant nonlinear susceptibility. If second order nonlin-
earity, described by χ(2), dominates, then ω = ω0/2. This was
the case in the experiment reported in [135], so a pair of pho-
tons, each with energy ω0/2, are created by a classical oscil-
lating background with angular frequencyω0. This is the exact
analog of the creation of pairs of gravitons by an oscillating
background described in section 4.2. More general discussions
of the effects of a time-dependent effective dielectric function
have been given in [136, 137].

6.4. Other analog models

The various models discussed in the previous subsections can
all be described as examples of the phenomenon of quantum
vacuum friction, of which there are other examples, such as
atoms moving near a surface [138]. The collapse or expan-
sion of a Bose–Einstein condensate bears some similarities
to the cosmological expansion, and the excitations created in

Figure 3. The quantum creation of photons into a squeezed vacuum
state in a nonlinear material is illustrated. The shaded region is a
slab of nonlinear material in which a classical field with angular
frequency ω0 propagates. This creates a time dependent effective
dielectric function, εeff . A vacuum mode f ω of the quantized electric
field also propagates through the slab in a different direction. This
mode enters the material as a pure positive frequency mode, but exits
as a superposition of positive and negative frequency parts, leading
to quantum photon creation. Both the classical field and the photons
are assumed to be linearly polarized in the direction out of the page.

the condensate are analogous to cosmological particle creation
[139, 140]. Several other analogies between superfluids and
cosmology were discussed by Volovik [141]. The creation
of squeezed states of ions in a trap as an analog model
was discussed by Fey et al [142]. In another model, Walud
et al [143] have discussed the creation of low mass bosons
by an oscillating charged particle as a possible means for
axion detection, as well as an analog of cosmological particle
creation.

7. Summary

This review has covered the quantum creation of particles by
the expansion of the Universe using the formalism of quan-
tum field theory in curved spacetime. A quantum field theory
requires both a set of local field operators, as well as a char-
acterization of the set of quantum states. The latter is espe-
cially subtle in an expanding Universe, where no unique local
definition of particles, and hence of the vacuum state exists. We
have dealt with this ambiguity by use of quasilocal definitions
in regions where the expansion rate is sufficiently small, and
by asymptotic definitions when available. However, it is this
ambiguity which leads to the phenomenon of quantum particle
creation. The definition of a particle in an initial region can dif-
fer from that in a final region, so a quantum state without parti-
cles initially may later contain particles. This was discussed in
section 2.1 using the formalism of Bogolubov transformations.
The particle creation is also due to the non-conservation of
field energy in a time-dependent spacetime, but while the cre-
ation is occurring only approximate definitions of local particle
number are meaningful. The inherent ambiguity of the concept
of particle number in a time dependent situation has observ-
able consequences, as illustrated by the creation of squeezed
states described in section 6.3. This review has concentrated on
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the creation of bosons, and especially scalar particles for sim-
plicity. Some exact results for particular model universes, as
well as approximate results of more general spacetimes were
reviewed, which allowed us to make some estimates of the
particle creation rate.

The quantum state of the created particles was treated
in section 3, where we found that these particles exhibit a
high degree of correlation and entanglement. We saw that the
quantum state is a multi-mode squeezed vacuum state, which
is a superposition of various numbers of pairs of particles.
Each pair contains particles with opposite momenta of equal
magnitude. Interactions can lead to decoherence and entropy
production.

The application of quantum particle creation to various cos-
mological models was discussed. In particular, quantum par-
ticle creation could play a role in the creation of matter in
the Universe after the end of an inflationary era, as discussed
in section 4.1. There has been considerable work recently on
models in which the dark matter arose from quantum particle
creation. Gravitons could be among the created particles, and
a bath of relic gravitons might leave a detectable imprint on
the cosmological microwave background in the form of tensor
perturbations. Cosmological anisotropy, inhomogeneity, and
rapid metric oscillations are other effects which could enhance
particle creation.

The backreaction of the created particle on the background
spacetime was discussed in section 5. In a loose sense, the
energy to create the particle comes from the classical time-
dependent gravitational field of the expanding Universe. How-
ever, the energy of gravitational field is difficult to define
clearly. A better description of the backreaction comes from
the semiclassical theory of gravity, where the renormalized
expectation value of the quantum matter stress tensor acts as
the source of a classical gravitational field.

Several analog models for cosmological particle creation
were treated in section 6. These include photon creation
by moving mirrors and other time-dependent media. Some
of these models are accessible to experimental confirma-
tion, which effectively provides support for the basic formal-
ism reviewed in this article. One example is the creation of
squeezed states of light in nonlinear optical materials dis-
cussed in section 6.3 which is now routinely performed in the
laboratory, and gives rise to squeezed vacuum states of the
form expected in cosmological particle creation. This, and sev-
eral other topics treated in this review, are currently active areas
of research.
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