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Abstract— We propose a novel graph-theoretical dynamic user
pairing strategy based on the user rate requirements in cellular
networks employing non-orthogonal multiple access (NOMA).
The proposed approach relies on first constructing a conflict
graph corresponding to all possible user pairings and then
reformulating the problem of finding the best user pairs as that
of finding the maximum weighted independent set (MWIS) on
the conflict graph. This formulation turns the originally NP-hard
problem into one that can be solvable in polynomial time thanks
to the claw-freeness property of the conflict graph. The proposed
user pairing method satisfies the maximum number of user
demands with optimal network sum-rate as shown theoretically
and as validated by the simulation results.

Index Terms—Non-orthogonal multiple access, user pairing,
conflict graph, maximum weighted independent set.

I. INTRODUCTION
ON-ORTHOGONAL multiple access (NOMA) has been
proposed as an enabling technology to realize the data

rate requirements envisioned for the next generation net-
works [1]. Unlike orthogonal multiple access (OMA), where
the resources are orthogonally allocated to each user, NOMA
principle relies on allocating multiple user signals on each
resource block at the transmitter side which are decoded
by using successive interference cancellation (SIC) at the
receiver [1]. Since the number of supported users is not
limited by the number of available orthogonal resources in
NOMA, a higher number of connections, a higher system
throughput and a higher spectral efficiency requirements for
fifth generation (5G) cellular networks and beyond can be
achieved by NOMA where long-term evolution (LTE) stan-
dards, which adopt orthogonal frequency-division multiple
access (OFDMA), are rapidly becoming obsolete to satisfy
such demands as discussed in [2] and [3].

A variety of techniques such as the use of different code-
books, waveforms, modulation types or power levels have been
used to differentiate the superimposed user signals from each
other on each resource block as summarized in [1] and [4].
Among these approaches, power-domain NOMA (PD-NOMA)
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has attracted the most attention where in the two-user case,
a strong signal from/to one user and a weak signal from/to
another user are assigned to the same resource block and
at the receiver, the received messages are decoded in an
order depending on the channel gains by employing SIC as
explained in [1]. Therefore, a proper user clustering/pairing
is a key factor for NOMA in order to reach its potential
gains by surpassing a possible drawback which may be caused
by SIC issues. The importance of user pairing to satisfy the
needs of key performance indicators (KPI), such as system
throughput and spectral efficiency, is shown both theoretically
and numerically in [5]-[7]. In works such as [6], [8]-[12],
and [13], user clustering and power allocation problems are
jointly addressed for PD-NOMA. However, due to the NP-hard
complexity caused by the underlying combinatorial nature of
the problem, in most cases only sub-optimal solutions are pro-
posed by simplifying the objective functions and/or by relaxing
some of the original constraints. In some works, the problem
requires complex user pairing and power allocation strategies
which are not easily applicable in practical systems. Regarding
that complex power allocation strategies would not be feasible
in many practical deployment scenarios, in [10], only the user
clustering/pairing optimization is addressed by adopting a pre-
defined power allocation scheme where heuristic solutions are
proposed again for the original problem. Adopting the same
principle and also applying a pre-defined power allocation
policy where each user is allocated a power that is proportional
to the experienced path-loss, the main contribution of this letter
is a graph-theoretical user-pairing strategy that is shown to be
optimal in the sum-rate. The proposed algorithm circumvents
the NP-hard complexity of the original problem and provides
optimal sum-rate for the adopted power allocation scheme.
Specifically, in this letter, we consider a downlink commu-
nication system employing PD-NOMA with two users in each
resource block and with a practical pre-defined power allo-
cation scheme and variable user rate requirements. Two-user
NOMA systems have lower decoding complexity and delay
at the receivers than those in multi-user NOMA systems
and therefore have more potential for applicability as noted
in [7]. For the best user pairing strategy, instead of form-
ing a conventional constrained optimization framework as in
[6]-[8], [10], and [13] which will have NP-hard complexity,
we take a different approach and propose a novel graph-
theoretical and dynamic solution to this problem. In our
approach, all possible user pairs are placed as vertices on a
conflict graph and labelled with deftly specified weights. Then
the problem of finding the optimal user pairs becomes that
of finding the maximum weighted independent set (MWIS)
on the conflict graph. Notice that unlike the NP-hard time
complexity of the former problem, as presented in [14]-[16]
the solution to the latter problem can be found in polynomial
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time in claw-free graphs. That is why, we first prove that
the conflict graph corresponding to the NOMA user pairing
problem is claw-free. Then we use this claw-free conflict
graph and the graph search algorithms such as those given
in [14]-[16] to determine the MWIS. The resulting MWIS
provides us with the achievability of the rate demand vector
of users and the pairing that guarantees to satisfy the maximum
possible number of user demands in the sum-rate optimal
sense. Finally, by comparing the sum-rates obtained with the
proposed graph-based approach with those of the benchmark
methods, we show that the proposed graph-theoretic approach
clearly outperforms both the OMA setup and also the alterna-
tive user pairing optimization methods under the same channel
conditions.

II. USER PAIRING IN NOMA

User clustering is generally an NP-hard optimization prob-
lem and all the possible combinations should be considered
to find the optimal solution for any given cost function.
Nevertheless, a number of heuristic solutions are also proposed
to this problem such as those given in [7] and [10].

In [7], the users are paired starting with the ones which have
the best and the worst channels and then with the ones having
the second best and worst channels, and so on. This strategy
can be written as

_J L, iffa+rb=N+1
Pap = 0, otherwise.

where p, , = 1 implies the pairing of users a and b assuming
|ha| = |hs| for a < b where a,b € {1,2,...,N}.

Alternatively, the geometrical approach of [10] given for
a downlink NOMA framework forms a disjoint disc and a
ring. In this technique, the disc is at the center of the cell
with a radius of r; and the ring is the difference of the cell
with radius r from the aforementioned disc. Then each cluster
contains one user from the disc and another from the ring so
as to pair a near-user that has a good channel condition with
a far-user that has a worse channel condition. This approach,
albeit being simple to implement, has been shown to provide
satisfactory performance in [1] and [10]. An illustration for
this benchmark model is provided in [10].

These approaches as well as the random pairing scheme
are considered as benchmark methods used in performance
comparisons with the proposed graph theoretical user pairing
strategy that is presented in the following.

III. SYSTEM MODEL

We consider a cellular downlink communication scenario
where a base station (BS), located at the center of a disc
having a radius r, serves randomly located N users inside the
disc. There are % sub-carriers, with N being an even number
without loss of generality, and each sub-carrier is assigned to a
pair of users. Note that we only consider the pairing scenario,
so more than two users in a cluster is not allowed. We assume
that each channel gain is denoted by h, = v/ da " g, Where d,
is the distance between the BS and the user a, -y is the path-loss
exponent and g, represents the small-scale fading coefficient
which is assumed to be Rayleigh distributed. In addition,
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we consider a fixed power allocation scheme as in [10] and
allocate powers, gq,, proportional to path-losses of users, i.e.
da < d}, Va. Therefore, the power allocation coefficients are
assigned as g, = Z—;'QT’ VYa € {1,2,...,N}. In this case,
the signal received b?hs?:r a, which is paired with user b in
the same sub-carrier, can be given as

Ya = hq V GaProt5a + hq V Qv Protsy + ng (1

where P, is the total transmit power of the BS, s, denotes
the message sent to user a and n, denotes the additive white
Gaussian noise (AWGN) with zero mean and variance Ny /2.
We denote the bandwidth assigned to each user pair a and b
as B, meaning the effective noise power experienced by each
pair is NyB.

We assume that |h,| > |hy| for a < b throughout this letter
without any loss of generality. With this assumption, user a
performs SIC in order to decode the message sent to user
b, having a poorer channel condition, and then removes this
message from the overall signal to decode its own message.
On the other hand, user b directly decodes its own message
by treating the message destined to user a as noise. After
the decoding operations, the data rates of users b and a are
respectively expected to be

2
@ |ho| ) @)

R, (b) = log (1 + —
() dalho|? + 525

and
R4 )(a) = log (1 + galha|>*SNR) 3)

where SNR = Py, /NoB denotes the transmit signal-to-noise
ratio of the BS. Notice that we can also write the rate of user
k in the benchmark OMA system as

R(a) = log (1 + 2¢a|ha|*SNR) )

which corresponds to the case that user a is assigned a resource
block in the considered time slot with twice as much average
power as that in NOMA. Finally, we denote the rate demand
of user a as R(a). Any user failing to reach its rate demand
is considered to be in outage.

As mentioned before, a predetermined power allocation is
assumed to be employed so as to maximize the fairness among
users, leaving us with the problem finding the user pairing
set that maximizes the number of satisfied user demands with
optimal sum-rate in the network. Having the NOMA user rates
in hand, the proposed optimum graph-theoretical approach
for finding the optimum user pairing set is based on the
construction of the so-called conflict graph that is described
in the following section.

IV. THE GRAPH-THEORETICAL PAIRING STRATEGY

We propose a novel graph-based dynamic user pairing
strategy for downlink PD-NOMA that is able to achieve the
maximum number of demanded rates of users in a sum-
rate optimal fashion. In the following, we first make some
necessary definitions to describe the problem on a conflict
graph, then present the construction principles of this graph
and state some of the fundamental properties, which lead to
the optimal user pairing solution, of the conflict graph.
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A. Construction of the Conflict Graph

Definition 1 (Conflict Graph): A graph G = (V,£) is a
conflict graph if there is an edge between two vertices when
at most one of the variables represented by the vertices can
equal one in an optimal solution [17].

Definition 2 (Claw-Free Graph): A graph G = (V,&)
is claw-free if none of its vertices has three pairwise non-
adjacent neighbors [18]. Graphical illustration of a typical
claw is not included here due to space limitations but we refer
the interested reader to [14] for an example.

Definition 3 (Independent Set): Given an undirected graph
G = (V,€), a subset of vertices S CV is an independent set
ifVi,j €S, {i,5} ¢ & is satisfied [19].

Definition 4 (Independence Number): Independence number
of a graph G = (V, £) is the size of the largest independent
set in the graph [20].

Definition 5 (Maximum Weighted Independent Set): Given
an undirected and weighted graph G = (V,wy, £), where the
weights are assigned on vertices wy : V — R, a subset of
vertices S C V constitute a maximum weighted independent
set if Vi,j € S, {i,7} & € and there is no other independent
set having a greater weight sum E:‘es w; [19].

The user pairing conflict graph is the graph of possible
pairings among users. In the construction of the conflict graph
G = (V,wy, &), V is the set of possible pairings, wy is the set
of weights belonging to V and £ is the set of conflicts. The
vertices, weights and edges of the conflict graph are found as
follows: Given N users indexed from 1 to NN, each vertex of
the conflict graph corresponds to a pair of users (a,b), where
l1<a< Nanda<b<N.

The weight w, ;) of the vertex of user pair (a, b) is given in
Eq. (5), as shown at the bottom of the page, where R4 )(a)
is the data rate of user a assuming that user a is paired with
user b, R(a) is the rate demand of user a. u denotes the rate
bias that is significantly bigger than the user rates which can
be chosen as

p= Y [Rap(@ +Rapy®)]
a,b

1<a<N
a<h<N

(6)

and which corresponds to the sum-rate for all possible user
pairs without any rate requirements. Notice that the last case
in Eq. (5) corresponds to the 0 rate for both users in the pair.
However, in order to avoid numerical instability problems in
MWIS algorithms, we employ a small non-zero rate which is
denoted by 0,.. Also, the data rate contributions of users who
are in outage (those unable to reach their data rate demands)
are omitted in the weight assignment and rate calculations.
Introducing the edges (conflicts) to the conflict graph is
straightforward. The vertex containing (a,b) pair must have
edges with all vertices containing (a,.) and (b,.) pairings,
except with itself, due to the fact that we cannot pair a user
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User pairing conflict graph for a 4-user NOMA scheme.

Fig. 1.

Fig. 2. Illustration for proof of Theorem 1.

with two different users simultaneously. An example of user
pairing conflict graph for a 4-user NOMA scheme is shown
in Fig. 1. Notice that this construction turns the original sum-
rate maximum user pairing problem into that of finding the
MWIS over a conflict graph.

B. Achievability of the Demanded User Rates

To understand the benefits of the bias term u, suppose we
are able to obtain the MWIS, & C V, of the conflict graph
so that we have the total weight, W = Zie s Wi, and the
vertices, S, whose weights sum up to the weight of the MWIS
are known. By choosing g as in (6), the maximum number
of users achieving their demanded rates M and the resulting
sum-rate in the network R can be found, respectively, as

M =W/pu, @)
R = mod(W, u). (8)

Note that Eq. (7) shows an integer division. If M = N,
we conclude that the demanded rates are achievable and
the achieving pairings are given as S. Also, the resulting
pairing is sum-rate optimal after guaranteeing the satisfaction
of users’ rate demands. If M < N, the demand vector is
not achievable by any pairing in the system. In this case, the
graph-based pairing strategy aims at maximizing the number
of successfully served users where the result is also sum-rate
optimal.

C. Properties of the NOMA User Pairing Conflict Graph

We now present some of the key properties of the NOMA
user pairing conflict graph as follows:

Theorem 1: The user pairing conflict graph is guaranteed
to be claw-free.

Proof: Consider a vertex representing a possible pairing
of users a and b as the central vertex of a possible claw in the
user pairing conflict graph as in Fig. 2. Then, there must be
at least 3 different vertices which are connected to the vertex
(a, b) but not connected to each other in order to set up a claw

2u+ Rap)(@) + Ra,p)(b),
b+ R (a)
B+ R p(b),
04,

Wa,p) = ’

if Rea)(a) > R(a), Riap)(b) > R(b)
if R(a,b) (a) = {Q(a‘): R(a,b) (b) < }?(b) (5)
if Rapy(a) < {5(0): Ra ) (b) > 1?(5)
if R(a,b) (a) < R(G.), R(a,b) (b) < R(b)
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in the graph, i.e., the independence number of the vertices
connected to the vertex (a,b) must be at least 3. We define
(a,.) as the set of possible pairings of user a with others, also
(b, .) is defined in the same manner. It is clear that the vertex
(a, b) must be connected to all vertices in the set (a,.) since
if a is paired with b, then any other pairing is not possible
for a. Note that there are N — 2 such vertices in the set (a, .).
However, since all of the vertices are connected to each other
leading to a complete graph, the independence number of the
set (a,.) is 1. The same logic applies to the set (b, .) leading to
a total independence number of 2 for the sub-graph of vertices
connected to the central vertex (a,b). A third vertex cannot
be found to set up a claw. Hence, we conclude that the user
pairing conflict graph is claw-free. ]

Notice that as shown in [14]-[16], the MWIS can be
obtained over a claw-free conflict graph in polynomial time.
In this regard, the outcome of Theorem 1 is significant because
it implies that finding the NOMA user pairing solution is
not NP-hard but can be found in polynomial time since the
corresponding conflict graph is claw-free. However, in order
for the MWIS formulation to work, an important constraint
is to have all users paired with each other while leaving no
user being unpaired, which is a condition guaranteed by the
following theorem.

Theorem 2: The polynomial time MWIS algorithm imple-
mented on a claw-free user pairing conflict graph has all users
paired.

Proof: We prove the theorem by contradiction. Assume
that there are N users to be paired in the network, N being
even, without loss of generality. Firstly, consider the case that
the output of the MWIS algorithm has a cardinality | X| and
|X| > & + 1. Having § + 1 or more vertices means having
N + 2 or more users in the final set, therefore at least 2 users
have to be repeated. However, this cannot be satisfied due
to the violation of the independence of the chosen set. Now,
consider the case that the output of the MWIS algorithm has a
cardinality | X| < & —1. Having & —1 or less vertices means
having N — 2 or less users in the final set, therefore at least
2 users remain unpaired. This, in turn, means that the weight
of the final set can be increased by adding the vertex (pair) of
missing users. Therefore, a set with cardinality [X| < & —1
cannot be the MWIS of the graph. As a result, [X| = ¥ is
satisfied and no user will be unpaired. ]

Example I: Consider the conflict graph in Fig. 1. The
independent sets of the conflict graph are {}, {(1,2)},
{(1,3)}, {1, 9} {(2,3)} {(2,4)}, {(3,9)}, {(1,2),(3,4)},
{(1,3),(2,4)} and {(1,4), (2,3)}. Note that MWIS has to be
the one(s) with the highest cardinality set(s), {(1,2),(3,4)},
{(1,3),(2,4)} or {(1,4),(2,3)} in this case, since such sets
are guaranteed to have greater weight than the sets with less
elements. Thanks to this fact, the set that an MWIS algorithm
produces not only has the greatest sum-rate but also the one
that guarantees the pairing of all users.

Corollary I: Given N users and % resources in a NOMA
system, the optimal user pairing solution is found in polyno-
mial time.

Proof: The user pairing conflict graph is claw-free as
proven in Theorem 1, hence the MWIS can be found in
polynomial time and there will not be any unpaired users in
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Fig. 3.  Sum-rate comparison of pairing strategies with zero user rate
requirements.

the end as shown in Theorem 2. Since we are able to achieve
the maximum number of satisfied rate demands in a sum-
rate optimal manner when we found the MWIS as explained
in Section IV-B, we get the optimal pairing in polynomial
time. [ |

D. Overall Computational Complexity

The computational complexity of creating vertices to model
the possible pairings becomes O(NN?) since there are N users
and thus N (N — 1)/2 different pairings. 2 different user rates
are also calculated per vertex, so the complexity order does
not change due to the rate calculations; i.e., it remains O (N 2)
throughout this step. Lastly, since there are N — 2 edges in

average per each possible pairing, there will be MN—?—(M
edges in total. In short, the construction of the conflict graph
has a computational complexity of O(N?). The complexity of
the MWIS algorithm given in [16] is O(|V|(|€|+ [V|log|V])).
Since |V| = N(N —1)/2 and |£]| = ML—EMH in the user
pairing conflict graph, the MWIS algorithm has a computa-
tional complexity of @(N®). In other words, the complexity of
the MWIS algorithm clearly determines the overall computa-
tional complexity of the graph-theoretical user pairing method.
This result is encouraging for small networks having moderate
number of users. On the other hand, the complexity can be
an issue for larger networks having large number of users.
However, we observe that in such cases the graph-theoretical
approach presented here can be used in conjunction with
geographical clustering approaches to reduce the complexity
back to manageable levels.

V. SIMULATION RESULTS AND DISCUSSION

The simulations are conducted over N users which have
distances to BS chosen uniformly random between 10m and
1km, in a cell having r = 1km radius with a path-loss
coefficient v = 3.6 and repeated for 500 times for each N
to obtain the average sum-rates. In all simulations, different
number of user scenarios where N = 2-40 are considered.
A channel model in a sub-urban environment is considered
and thus a path-loss exponent of 3.6 is chosen as reported
in [21]. In Fig. 3, there is not any constraint on the minimum
user rate requirement whereas there is a minimum demanded
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rate chosen uniformly random between 0-10 bps for each
user in the results shown Fig. 4. We compare the sum-
rate performances of the standard OMA setup, NOMA with
random pairing, our graph-theoretical pairing strategy adopted
in NOMA, and the benchmarks obtained from some recent
NOMA user pairing research letters seen in [7] and [10] and
explained in Section IL. In the figures, Pairing-1 and Pairing-
2 denote the benchmark user pairing approaches proposed
in [10] and [7], respectively.

The sum-rates as a function of the number of users are
shown in both figures. For N = 2 users, all pairing strategies
perform the same as expected since there is only one possible
choice. However, when N starts to grow, our pairing strategy
starts to outperform the rival approaches thanks to optimality
we can reach. In Fig. 3, since the demanded rate vector is
achievable, i.e. zero demand, we only observe the performance
gain which comes from the sum-rate optimality and the gain
is numerically recorded as approximately 5% over the closest
benchmark. These performance comparisons between pairing
strategies are obtained by averaging the percentage differences
for all N > 20.

In Fig. 4, due to the achievability problems in the demanded
rates, the sum-rate performances are reduced in general.
However, the gains obtained by the proposed strategy increases
to approximately 20% over its closest counterpart (15% from
the increased demand achievability and 5% from the sum-rate
optimality). As expected, the graph-theoretical strategy acts as
an upper bound for all the other strategies.

VI. CONCLUSION

In this letter, user pairing in NOMA has been considered
and a dynamic graph-theoretical solution has been proposed.
We have showed that the optimal pairing in terms of the num-
ber of successfully served users and then the sum-rate can be
completed in polynomial time by exploiting the claw-freeness
of the user pairing conflict graph given that a power allo-
cation scheme, equal received power in this case, is specified
beforehand. We have corroborated the theoretical findings with
simulation results which indicate that the graph-theoretical
method has a better achievability and sum-rate performance
compared to those obtained by alternative approaches.

Notice that clustering of more than two users is not consid-
ered due to the space limitations. Moreover, in this case the

IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 10, OCTOBER 2021

related conflict graph would not be claw-free and the optimal-
ity of the sum-rate maximizing user grouping would no longer
be guaranteed. Nevertheless the general graph-theoretical user
clustering problem and its performance compared to other
clustering optimizations is considered as an interesting future
research work.

REFERENCES

[11 Y. Saito, Y. Kishiyvama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular
future radio access,” in Proc. IEEE 77th Veh. Technol. Conf. (VIC
Spring), Dresden, Germany, Jun. 2013, pp. 1-5.

[2] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501-1505,
Dec. 2014.

[3] K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, and R. Fan, “Non-orthogonal
multiple access: Achieving sustainable future radio access,” IEEE Com-
mun. Mag., vol. 57, no. 2, pp. 116-121, Feb. 2019.

[4] B. Kim et al, “Non-orthogonal multiple access in a downlink
multiuser beamforming system,” in Proc. IEEE Military Commun.
Conf. (MILCOM), San Diego, CA, USA, Nov. 2013, pp. 1278-1283.

[5] Z. Ding et al., “Impact of user pairing on 5G nonorthogonal multiple-
access downlink transmissions,” IEEE Trans. Veh. Technol., vol. 65,
no. 8, pp. 6010-6023, Aug. 2016.

[6] W.Liang, Z. Ding, Y. Li, and L. Song, “User pairing for downlink non-
orthogonal multiple access networks using matching algorithm,” IEEE
Trans. Commun., vol. 65, no. 12, pp. 5319-5332, Dec. 2017.

[71 L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal user pairing
for downlink non-orthogonal multiple access (NOMA),” IEEE Wireless
Commun. Lett., vol. 8, no. 2, pp. 328-331, Apr. 2019.

[8] V.-P. Bui, P. X. Nguyen, H. V. Nguyen, V.-D. Nguyen, and O.-S. Shin,
“Optimal user pairing for achieving rate fairness in downlink NOMA
networks,” in Proc. Int. Conf. Artif. Intell. Inf Commun. (ICAIIC),
Feb. 2019, pp. 575-578.

[9] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “Optimal user
scheduling and power allocation for millimeter wave NOMA sys-
tems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1502-1517,
Mar. 2017.

[10] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework
for NOMA downlink and uplink transmission based on signal align-
ment,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438-4454,
Jun. 2016.

[111 L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X. Xia,
“Millimeter-wave NOMA with user grouping, power allocation and
hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11,
pp. 5065-5079, Nov. 2019.

[12] K. Wang, J. Cui, Z. Ding, and P. Fan, “Stackelberg game for user clus-
tering and power allocation in millimeter wave-NOMA systems,” IEEE
Trans. Wireless Commun., vol. 18, no. 5, pp. 2842-2857, May 2019.

[13] J. Zhu, J. Wang, Y. Huang, S. He, X. You, and L. Yang, “On optimal
power allocation for downlink non-orthogonal multiple access sys-
tems,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2744-2757,
Dec. 2017.

[14] G. J. Minty, “On maximal independent sets of vertices in claw-free
graphs,” J. Combinat. Theory, B, vol. 28, no. 3, pp. 284-304, Jun. 1980.

[15] D. Nakamura and A. Tamura, “A revision of Minty's algorithm for
finding a maximum weight stable set of a claw-free graph,” J. Oper.
Res. Soc. Jpn., vol. 44, no. 2, pp. 194-204, Jun. 2001.

[16] Y. Faenza, G. Oriolo, and G. Stauffer, “Solving the weighted stable set
problem in claw-free graphs via decomposition,” J. ACM, vol. 61, no. 4,
pp. 1-41, Jul. 2014.

[17] A. Atamtiirk, G. L. Nemhauser, and M. W. P. Savelsbergh, “Conflict
graphs in solving integer programming problems,” Eur. J. Oper. Res.,
vol. 121, no. 1, pp. 40-55, Feb. 2000.

[18] M. Chudnovsky and P. D. Seymour, “The structure of claw-free graphs,”
Surv. Combinatorics, vol. 327, pp. 153-171, Jul. 2005.

[19] A. Kdse, H. Gékcesu, N. Evirgen, K. Gokcesu, and M. Médard, “A novel
method for scheduling of wireless ad hoc networks in polynomial time,”
IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 468-480, Jan. 2021.

[20] N. Alon and N. Kahale, “Approximating the independence number via
thed-function,” Math. Program., vol. 80, no. 3, pp. 253-264, Feb. 1998.

[21] T. S. Rappaport, Wireless Communications: Principles and Practice.
New York, NY, USA: Prentice-Hall, 1998.

Authorized licensed use limited to: MIT Libraries. Downloaded on October 05,2022 at 20:27:37 UTC from |IEEE Xplore. Restrictions apply.



