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Large zero point density fluctuations in fluids
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Zero point density fluctuations in a liquid and their potential observation by light scattering are discussed. It
is suggested that there are two distinct effects of interest. One gives an average number of scattered photons, and
depends upon an inverse power of the photon wavelength. The second effect arises in the scattering of finite size
photon wave packets and depends upon an inverse power of the spatial size of the wave packet, as well as upon
the shape of the wave packet. This effect appears as large fluctuations in the number of scattered photons, and is
analogous to the vacuum fluctuations of space-time averages of the energy density in quantum field theory. It is
an illustration that quantum fluctuations become larger when probed on smaller length and time scales.
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Zero point fluctuations play an important role in several
areas of physics, including both condensed matter physics
and quantum field theory. These fluctuations are a direct
consequence of the uncertainty principle. When a quantum
system is observed on smaller length or time scales, the zero
point fluctuations become greater. In quantum field theory,
this means that the operators describing observable quantities
must be averaged over finite regions. The electric field or
energy density at a single space-time point is not meaningful,
but a space and time average is. This fact has a deep connec-
tion with quantum measurement and the principle that only
observable quantities are physically meaningful. Any mea-
surement of a field operator necessarily involves an average
over finite space and time regions.

The quantum fluctuations of a quadratic field operator, such
as energy density, are especially subtle, with a probability
distribution which falls more slowly than exponentially [1-3].
This leads to an enhanced probability for very large vacuum
fluctuations for quantum stress tensors, which can in turn
drive large fluctuations of the gravitational field, a variety of
quantum gravity effect [4].

The zero point fluctuations in the density of a fluid provides
an analog model for quantum stress tensor fluctuations, as
well as being an interesting phenomenon in its own right. We
can write the local mass density of the fluid as

p(t,x) = po + p1(t, x), ey

where pq is the average mass density, and g,(¢,x) is an
operator which describes the local density fluctuations around
the mean value. This operator may be expanded in terms of
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phonon creation and annihilation operators as [5]

At.x) =)
q

where V is a quantization volume and w = ¢;|q|, with ¢, the
speed of sound in the fluid. This operator is proportional to
the time derivative of a massless scalar field [6,7], ¢:
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Here ¢ is identical to the relativistic massless scalar field,
except with the speed of light replaced by the speed of sound,
¢ — ¢,. Thus the fluctuations of §; may be understood from
those of ¢.

The density fluctuations are potentially observable in light-
scattering experiments. This effect was discussed in Ref. [8],
where the differential cross section for scattering by the
zero point density fluctuations was derived. Integrating over
scattering angle, summing over final photon polarizations, and
averaging on initial polarizations convert this result into a total
Ccross section
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Here A is the vacuum wavelength of the light, 7 is the index of
refraction for the fluid, and V is the effective scattering volume
of the fluid. As discussed in Ref. [8], this effect may be viewed
as Brillouin scattering by the density fluctuations, and the A 5
dependence may be viewed as a product of a factor of A;?,
characteristic of Rayleigh-Brillouin scattering, and a factor of
Ay ' o« w arising from the frequency spectrum of zero point
fluctuations. This cross section was derived assuming that the
initial and final photon states are plane waves.

In this Rapid Communication, our primary interest will be
a related, but distinct effect which depends crucially upon
the initial photon state being a localized wave packet. We
will examine a space and time average of the squared density
operator, f;2, or equivalently of ¢2. This averaging will be
determined by the details of the wave packet and the scattering
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measurement, and will give an additional contribution to the
photon scattering. Consider the average of the squared density
operator over finite regions of space and time in the form

2= [arfo) [ xem [ pten:] 6

Here we have normal ordered this operator, as we are here
concerned with its fluctuations around its mean value. The
functions f(¢) and g(x) are sampling functions in time and
space, respectively, and are assumed to have compact support,
meaning that they vanish outside of finite intervals. These
functions will model the measurement process of the density
fluctuations, which is assumed to occur in a finite space-
time region. A class of such functions was constructed in
Refs. [2,3], and may be characterized by their asymptotic
forms of their Fourier transforms:

fl@)~ e,

wtr>1, O<a<l 6)

and

k) ~e® ki1 0<i<], (7

where we take the spatial function to be spherically symmetric
for simplicity. Here v and £ are the characteristic time and
space scales for the sampling, so f(¢) is nonzero over a time
interval of order 7, and similarly g(x) is nonzero in a sphere
whose diameter is of order £. The constants « and A determine
the rates of switch-on and switch-off, with smaller values
corresponding to more rapid switching. The detailed relation
between the value of « and the switch-on behavior of f(¢) was
described in Sec. II D of Ref. [2]. A simple electrical circuit
was also given in Ref. [2] in which the current increases after
a switch is closed in accordance with the o« = 1/2 function, so
this is a physically realizable case.

Let §p% = (: 62 D/ ,05 be the averaged fractional squared
density fluctuations. The second moment, also the variance,
of this operator is, in the continuum limit,

2
= (60> = ——
b2 = (00™) = o

x fH ) + 0)@(q1 + ), ®)

/d3611 d*qr wyw;

which depends upon the details of the sampling functions.
As discussed in Ref. [3], time averaging is essential for the
fluctuations to be finite. If we were to let f(¢z) = 3(¢), so that
f (w) = 1, then w, would diverge due to a large contribution
from modes with q; &~ —(q;.

Here we assume that the sampling functions arise from
the shape of a probe wave packet of light, which propagates
through the fluid, and measures the density fluctuations by
light scattering. We take the packet to be approximately
spherical with a size of about £, so it takes a time of about
T &~ n{/c to travel a distance £, as the speed of light in the
fluid is ¢/n. If we are able to detect the photons scattered from
the packet in this time, we have effectively measured §p2.
The root-mean-square value of a set of such measurements
is predicted to be 8p2 = \//12. Because the speed of light
is orders of magnitude larger than that of sound, we have

¢ =ct/n > cst. In this case, we find
N (RI)
Br4pe3tSc]’

12 ©)

where 77 is the dimensionless integral

I’ = /Oodv v2§2(v/l)/ooduu4f2(u/r). (10)
0 0
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= x/m ~ 24720 €4\ 37’ (11)

where in the final expression we have set T = 1 £/c. A crucial
feature of this result is that §p2 oc £=*. This means that
the fluctuations of the squared density increase rapidly when
probed on smaller scales. Note that the variance u, also
depends upon the shape of the wave packet through the de-
pendence of 1% on the parameters & and A. In general, we can
expect that smaller values of these parameters, corresponding
to more rapid switching and a slower rate of decrease of f and
8, will lead to a larger variance.

The right-hand sides of both Eqgs. (9) and (11) are leading
terms in asymptotic expansions in powers of c;/c, as well
as being excellent approximations to the exact values for our
problem. We can also calculate the third moment, u3, to find
that

Now we can write

2
8 Ptms

1/3 T\ 1/2
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The above ratio is small because £ > ¢,t, so the probability
distribution for §p? is only very slightly skewed.

The factor of 1/t in Eq. (9) is a reflection of the need
for time averaging, which was discussed above. This factor
in turn causes 8p2,, in Eq. (11) to be proportional to the
very large dimensionless ratio, (c/c,)’/?, which greatly en-
hances the magnitude of the squared density fluctuations in
the fluid. Note that the density fluctuations we consider are
large because of this factor which enhances the variance. Here
we do not address the asymptotic form of the probability
distribution, which depends upon higher moments.

Let us consider a wave packet of light propagating through
the fluid, as illustrated in Fig. 1. We take the spatial size of the
packet in all directions to be of order ¢, and its peak vacuum
wavelength to be Ay < £. Here 7 is the index of refraction
of the fluid at the peak wavelength, and is assumed to be of
order one. We wish to consider photons scattered from this
packet in a time of T = n £/c, during which the packet moves
a distance of order ¢, so the scattering volume V' will be of
order £3. The continuum approximation which we use seems
to require that both Ay and ¢,t be larger than the interatomic
spacing. In particular, we take

¢ > 100 m. (13)

Let n,, be the approximate number of photons in the packet,
so the photon number flux is of order n, /(7 ¢?). First consider
the scattering effect described by Eq. (4). The mean number
of scattered photons in time 7 is about

368(n)*ht

ng X n
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FIG. 1. A space-time diagram for the fluid. The dotted lines are
the soundcone, the space-time paths of sound waves. The lightly
shaded region is the space-time path of a light pulse, which moves in
the +x direction much more rapidly than sound. Here the pulse has
a temporal duration of about t. The darker shaded region, whose
spatial size is about ¢, represents the region which will scatter
photons in a particular measurement.

Because Eq. (4) is a total cross section, n, includes photons
scattered at all angles. The differential cross section from
which Eq. (4) is derived [Eq. (23) in Ref. [8]] is proportional
to «/1 —cosf, where 6 is the scattering angle. This means
that backscattering, 8 ~ m, is somewhat more probable than
scattering in other directions. Note that ny; depends linearly
upon £, but this is simply due to the increased scattering
volume as ¢ increases. In contrast, n, increases as the the
wavelength, Ao, decreases. We interpret n; as a mean number
of scattered photons, and §p2  as producing fluctuations
around this mean value. Note that Eq. (4) and hence Eq. (14)
strictly assume an initial plane-wave state with wavelength 1.
However, if our wave packet has a spatial size £ > Ao, then
the bandwidth will be small, AA < Ap, and Eq. (4) is still
applicable.

We may estimate the magnitude of the fluctuations due to
8p2 . by first considering an inhomogeneous medium with a
local variation in density on a length scale £, which scatters
light with a much shorter wavelength. Model the boundary
between the region of varied density and the background
medium as approximately a plane interface, and use the well-
known results for Fresnel scattering at such an interface. Let
dn be the fractional variation in index of refraction. Then the
reflection probability for normal incidence is about (87)/4
for both polarizations, and for wave packets as well as plane
waves if the dispersion is small. At other incidence angles,
there is some dependence upon both the scattering angle and
the polarization, but we will use the normal incidence results
for an estimate. Note that if the magnitude of §»n is small,
it is also approximately the fractional density variation. In
our quantum treatment of density fluctuations, the classical
fractional density variation is replaced by £,/00, so (61)*
becomes 8p2,.. In the case of a pulse of light containing
n,, photons, the expected variation in the number of photons

Y
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FIG. 2. The path of a wave packet of spatial size £ moving in the
+x direction is illustrated by the dotted lines. The shaded region is
the approximate position of the wave packet during a time interval of
about 7, and is also the fluctuation region from which approximately
backscattered photons will be detected.

scattered by a density fluctuation becomes
Ang ~ tn,8p.. (15)

The scattering of a wave packet by a local density fluctuation
is illustrated in Fig. 2. In our view, the number of scattered
photons, averaged over many trials, will be n;, given by
Eq. (14). However, in any one trial, the number of scattered
photons is likely to differ from n; by about An,. This dis-
tribution will be skewed very slightly toward numbers larger
than ng, but smaller numbers of scattered photons are almost
equally probable in light of Eq. (12), although the associated
probability distribution must vanish as the number of scattered
photons goes to zero. We can view Ang as arising from
modifications of the phonon vacuum fluctuations due to the
averaging produced by the finite wave packet size and shape,
and the choice to select photons scattered in a finite region, as
illustrated in Fig. 2.

We may combine Egs. (11), (14), and (15) to obtain an
expression for the expected fractional variation in scattered
photon number due to the modified vacuum fluctuations:

Ang 10517203

ny 23 x 21076¢)2 n13/2¢5

(16)

Before we discuss the possibility of observing this ratio, we
need to consider statistical and thermal fluctuations. Let Angy,,
be the expected statistical variation, so

Angy 1

1056’5 ,00)\8
=—r | — (17)
ng s 368(n)*n, i
which leads to
Any I 105n, AcA3)
~ . (18)
Angy 28743\ 23ppl%n°
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The ratio between the differential cross sections of zero point
and thermal fluctuations was found in Ref. [8] to be

(do /d2)zp ~ \/m i cs 7]4(,72 . 1)—2’ (19)
(dO' /dQ)thermal )\OkBT
where T is temperature and kp is Boltzmann’s constant. If we
set & = m, for backscattering in the above expression, we can
obtain an estimate of the ratio of ny to nr, the expected number
of photons scattered by thermal density fluctuations:

n 2hmc B
=~ = D7 (20)
nr )xokBT
which implies
Ang 105620 1
nr 23 x 297r5c§/2k3T775/2(n2 —1)2¢5°
The constant I depends upon the choice of sampling functions.
For a specific estimate, we set f(w) = hg(w) and g(k) =

2n

|

&1t (k), where fzﬁt(w) and gg (k) are defined in Appendix A of
Ref. [3], and correspond to & = A = 1/2 in Egs. (6) and (7).
This choice gives I ~ 113.

Now we wish to give some numerical estimates for a
specific liquid, which we take to be He® in its normal (non-
superfluid) phase. At T = 1 K and atmospheric pressure, ¢; &
200 m/s [9], po &~ 83 kg/m?> [10], and 5 ~ 1.026 [11,12].
Furthermore, in the temperature interval 0.1 K <7 <1 K,
both ¢; and py were found in Ref. [13] to be approxi-
mately independent of 7. Given that the index of refraction
is determined by po and the atomic polarizability through
the Claussius-Mossotti relation, we can expect n also to be
approximately independent of 7. The lower bound on £ from
the validity of the continuum limit, Eq. (13), is £ = 150 um,
so let us consider a wave packet of length £ =~ 400 um. For
a wave packet of energy E = 1 uJ peaked at a wavelength of
1 jam, there are around n,, = 5 x 10'? photons. With this data,
we find

ng

An, <4oo um)s <1.026
~0.12
1 n

)13/2(200 m/s)5/2< )\’0 )5
) (22)
Cs 1 um

and

o

An, (400,um>9/2 1.026)9/2 200m/s\° [ o )3( E )‘/2(83kg/m3 172
~ 8 , (23)
Anggy 14 n s I um It Po

Cs

nr L

with n & 1.026. In this case, we find that both the statistical
and thermal fluctuation effects for 7 < 0.5 K can be subdom-
inant. Furthermore, An, can be a reasonable fraction of ny, so
it seems that the effects of space and time averaging might be
observable.

In summary, we have argued that there are two contribu-
tions to light scattering by zero point density fluctuations in
a liquid. One gives an average number of scattered photons
and depends upon an inverse power of the photon wavelength.
Apart from the wavelength dependence, this average is inde-
pendent of the size and shape of the photon wave packets,
and hence of the details of the measurement process. The
other effect, the principal topic of this Rapid Communication,
describes large fluctuations around this average, and depends

5 3/2 4
Ang 4_5<400 Mm) <2OO m/s) ( A0 > <0.1 K>’ (24)
! 1 um T

(

upon an inverse power of the size of the scattering region,
which is determined by the size and shape of the wave packets
and our choice of which scattered photons to count in a given
measurement. This effect is closely analogous to the quantum
stress tensor fluctuations expected in relativistic quantum field
theory, and is a vivid illustration of the deep role of the
measurement process in quantum theory. The observation
of both effects would reveal subtle, but distinct, features of
quantum fluctuations.
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