
  

 

Abstract— A robotic rehabilitation gym is a setup that allows 

multiple patients to exercise together using multiple robots. The 

effectiveness of training in such a group setting could be 

increased by dynamically assigning patients to specific robots. In 

this simulation study, we develop an automated system that 

dynamically makes patient-robot assignments based on 

measured patient performance to achieve optimal group 

rehabilitation outcome. To solve the dynamic assignment 

problem, we propose an approach that uses a neural network 

classifier to predict the assignment priority between two patients 

for a specific robot given their task success rate on that robot. 

The priority classifier is trained using assignment 

demonstrations provided by a domain expert. In the absence of 

real human data from a robotic gym, we develop a robotic gym 

simulator and create a synthetic dataset for training the 

classifier. The simulation results show that our approach makes 

effective assignments that yield comparable patient training 

outcomes to those obtained by the domain expert.  

I. INTRODUCTION 

A. Rehabilitation Robotics and Robotic Gym 

While rehabilitation robots have mostly been utilized in a 
setup consisting of one patient, one robot, and one therapist, 
the last decade has seen an increase in multi-robot systems: 
setups where two or more patients can exercise together using 
two or more robots while supervised by a single therapist [1]– 
[3]. A setup specifically involving three or more rehabilitation 
robots (or other rehabilitation devices such as passive limb 
trackers) can be referred to as a robotic rehabilitation gym [4]. 
While such robotic rehabilitation gyms have not yet seen 
extensive evaluation, results so far indicate that rehabilitation 
outcome is comparable to one-on-one therapy [4], [5], with the 
additional advantage that a single therapist can supervise more 
than one patient. A recent observational study suggests that a 
therapist could effectively supervise up to four patients in a 
robotic gym [6], reducing the need for expert manpower in 
rehabilitation. 

In a robotic gym, patients would ideally move between 
robots within a session as they, e.g., improve their 
performance or get tired of an exercise. However, in existing 
studies, patients either did not switch robots within the session 
or switched between them arbitrarily after a predetermined 

time period [4], [5]. Thus, the effectiveness of a robotic gym 
could potentially be increased further by dynamically 
assigning patients to specific robots. While this could be done 
by a therapist, it could also be done by a central artificial 
intelligence that monitors each patient’s behavior and suggests 
when they may benefit from switching robots. Such an 
intelligent patient monitoring and dynamic patient-robot 
assignment system could assist a human therapist or operate 
with full autonomy to achieve optimal group rehabilitation 
outcome. 

B. Dynamic Task Allocation and Scheduling 

Dynamic patient-robot assignment in a robotic gym can be 
viewed as a task allocation and scheduling problem where a 
set of tasks are assigned to a set of resources or agents such 
that an overall performance objective is achieved [7]. Task 
allocation and scheduling problems have been studied in a 
variety of application domains, including human-robot 
collaborative assembly [8], daily assistance for elderly [9], 
medical services [10], and military operations [11]. However, 
they have not yet been examined in the context of group 
rehabilitation, where the domain features and requirements 
may be different. 

 Task allocation and scheduling is commonly formulated 
as a mathematical programming problem such as mixed-
integer linear programming (MILP) [12] and constraint 
programming (CP) [13]. Optimization-based approaches are 
leveraged to obtain either an exact or approximate solution 
depending on the complexity of the specific problem. The 
computation of an exact solution usually becomes intractable 
for complex problem domains. A common practice is to apply 
heuristic approaches to explore search space for an 
approximate solution in a computationally efficient manner 
[14]. However, designing and encoding effective heuristics 
into the search procedure is problem-dependent and largely 
relies on domain knowledge. Alternatively, metaheuristic 
approaches [15], [16] have been designed that provide high-
level problem-independent search strategies to develop 
heuristic search algorithms rather than using hand-crafted 
heuristics. 

Several recent studies have used machine learning 
techniques to learn heuristics or decision-making policies for 
task allocation and scheduling [17]–[20]. Particularly policy 
learning, a subfield of machine learning that aims to solve 
sequential decision-making problems, has been extensively 
exploited in dynamic task assignment problems. Gombolay et 
al. [18] proposed an apprenticeship scheduling method to learn 
domain expert heuristics for a class of scheduling problems. 
Ingimundardottir & Runarsson [19] used imitation learning to 
learn dispatching rules that are based on hand-crafted features 
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describing scheduling states. Zhang et al. [20] used a graph 
neural network (GNN) to model a job-shop scheduling 
problem and trained the scheduling policy via deep 
reinforcement learning.    

In this paper, we investigate the problem of dynamic 
patient-robot task assignment and scheduling for a robotic 
rehabilitation gym with the goal of optimizing the group 
rehabilitation outcome. In our problem, a patient’s skill 
acquisition is considered a stochastic process and the model 
describing the skill improvement over time is unknown. As a 
result, the objective function specifying the goal of task 
assignment and scheduling is not given explicitly in terms of 
assignment and scheduling decision variables and can only be 
evaluated numerically. We thus cast the task assignment and 
scheduling problem as a sequential decision-making problem 
and propose to exploit machine learning techniques to learn 
assignment and scheduling heuristics and policies from 
domain expert demonstrations. The problem considered in this 
paper differs from the class of scheduling problems studied in 
previous works [18]–[20] in that neither the precedence nor the 
duration of tasks performed on each agent is given a priori. 
Both precedence and duration should be determined by the 
policy to arrive at the optimal assignments and schedules. 

The contributions of this paper are threefold. 1) We 
developed a sequential decision-making formulation for the 
dynamic patient-robot assignment problem in a robotic gym; 
2) We proposed a two-stage assignment approach and used a 
neural network model that learns from expert demonstrations 
to predict pairwise priority; 3) We developed a robotic gym 
simulator to generate synthetic datasets in the absence of data 
from real robotic rehabilitation gyms.  

The remainder of this paper is organized as follows. 
Section II presents the robotic gym scenario and the dynamic 
patient-robot assignment problem. Section III discusses our 
proposed approach. The results and discussion are presented 
in Section IV. We conclude our work in Section V. 

II. PROBLEM DEFINITION 

A. Scenario Description 

For purposes of this study, a robotic gym consists of 𝑀 

patients and 𝑁 robots working together for 𝑇 time steps. Each 

patient has 𝐾 skills to be improved corresponding to different 

functional abilities – e.g., hand function, shoulder function, 

etc. Before each time step ,  each patient is assigned to a 

specific robot and works with it for that time step. The 

following scenario constraints have been implemented 

regarding scheduling: 

• Each session has a fixed duration of 𝑇 time steps, with all 

patients beginning and ending the session simultaneously.  

• Each robot only trains a single skill, and each skill is only 

trained by a single robot. Thus, N = K. 

• At any given time step, only one patient can use a given 

robot, and a given patient can only use a single robot. 

• All patients are assigned to robots before each time step 

simultaneously. Each patient must use the robot for the 

entire time step, with no switching possible mid-step. 

• Once a patient-robot assignment is done, there are no 

further choices that need to be made for the robot – for 

example, it is not necessary to set the exercise difficulty level. 

The patients’ skill levels are not directly measurable but 

are reflected in the patient’s performance during a time step. 

In the real world, performance could be measured using 

various metrics - task success, exercise intensity or motion 

quality [21], [22]. For purposes of this study, we assume that 

only task success rate is measured in each time step and is 

visible to the patient-robot assignment system after the time 

step ends. This success rate is imperfectly linked to the 

patient’s skill level in the skill trained by the robot. 

B. Dynamic Patient-Robot Assignment 

For the scenario described in the previous subsection, we 

define a set of robots to be 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑁}, a group of 

patients 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑀},  and a set of motor skills 𝑆 ={𝑠1, 𝑠2, … , 𝑠𝐾}. For each patient 𝑝𝑖 ∈ 𝑃, a feature set 𝐺𝑝𝑖(𝑡) ={𝑔𝑝𝑖1 (𝑡), 𝑔𝑝𝑖2 (𝑡), … , 𝑔𝑝𝑖𝑁 (𝑡)} , measured at each time step 𝑡 ∈[1, 𝑇], is defined as the set of success rate 𝑔𝑝𝑖
𝑟𝑗(𝑡) of the patient 

on each robot 𝑟𝑗 ∈ 𝑅. The skill level of patient 𝑝𝑖  on robot 𝑟𝑗 

at time step 𝑡 ∈ [1, 𝑇] is denoted by 𝑆𝑝𝑖
𝑟𝑗(𝑡). Both success rate 

and skill level are evaluated on a continuous scale of [0,100]. 

The objective of the dynamic patient-robot assignment is to 

find a schedule of the patients’ skill training on the robots that 

optimizes the overall group skill gain, defined by ∑ ∑ ∑ Δ𝑆𝑝𝑖
𝑟𝑗(𝑡)𝑁𝑟𝑗=1𝑀𝑝𝑖=1𝑇𝑡=1 , over the training period [0, 𝑇] . 

Here, Δ𝑆𝑝𝑖
𝑟𝑗(𝑡) = 𝑆𝑝𝑖

𝑟𝑗(𝑡) − 𝑆𝑝𝑖
𝑟𝑗(𝑡 − 1)  represents the skill 

gain obtained as the difference between the skill level at time 𝑡 and skill level at previous time step 𝑡 − 1. This problem can 

be framed as a sequential decision-making problem where the 

optimal schedule can be determined by solving the patient-

robot assignment problem sequentially for every time step. 

The problem then amounts to finding a scheduling policy that 

at each time step automatically assigns robots to patients 

based on the patients’ current features.   

To address the defined dynamic patient-robot assignment 

problem, we propose to learn a scheduling policy that can 

reproduce the underlying strategies employed by a domain 

expert (e.g., occupational therapist) and achieve comparable 

patient training outcomes to those yielded by the domain 

expert’s schedules. The scheduling policy is learned from a 

dataset of domain expert demonstrations via supervised 

learning. As real data from robotic rehabilitation gyms does 

not yet exist, we have also developed a simulator that 

generates a synthetic dataset as a basis for policy learning.  

III. APPROACH 

A. Dataset 

1) Robotic Gym Simulator. A robotic gym simulator is 

created to simulate the dynamic process of the scenario 

described in Section II.A and generate synthetic data. The 

simulator takes patient-robot assignments given by a user 

(e.g., a domain expert) as input to update the skill level 𝑆𝑝𝑖
𝑟𝑗(𝑡) 

and the success rate 𝑔𝑝𝑖
𝑟𝑗(𝑡) at each time step 𝑡. Only success 

rate is returned and visible to the user for making patient-robot 
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assignments. The initialization and updating of skill level and 

success rate are given as follows.  

Skill level. The skill level is initialized at the start of the 

simulation using the following equation.  

𝑆𝑝𝑖
𝑟𝑗(0) = 𝐿𝑝𝑖 + 𝑑𝑠0 , ∀𝑝𝑖 ∈ 𝑃, 𝑟𝑗 ∈ 𝑅                 (1) 

where 𝐿𝑝𝑖 ∈ [0,100]  is defined as the overall impairment 

level whose value is generated randomly between 16-40.  The 

boundary values for impairment generation are kept lower to 

allow improvement during training; 𝑑𝑠0  is a random number 

sampled from a normal distribution with a mean of 5 and 

standard deviation of 3, i.e., 𝑑𝑠0~𝑁(5, 32). The skill level is 

then updated in subsequent time steps using the following 

equation. 

𝑆𝑝𝑖
𝑟𝑗(𝑡) = 𝑆𝑝𝑖

𝑟𝑗(𝑡 − 1) + 𝐼𝑝𝑖
𝑟𝑗 + 𝑑𝑠, ∀𝑝𝑖 ∈ 𝑃, 𝑟𝑗 ∈ 𝑅        (2) 

where 𝑑𝑠  is a random number sampled from a uniform 

distribution 𝑈(−1,1)  and 𝐼𝑝𝑖
𝑟𝑗

 is defined as the skill 

improvement which is given by  

𝐼𝑝𝑖
𝑟𝑗 = { 0.00102𝐺𝑝𝑖

𝑟𝑗 , for 𝐺𝑝𝑖
𝑟𝑗 < 70

5𝑒0.005(𝐺𝑝𝑖𝑟𝑗−69)2 , for 𝐺𝑝𝑖
𝑟𝑗 ≥ 70 , ∀𝑝𝑖 ∈ 𝑃, 𝑟𝑗 ∈ 𝑅     (3) 

For our simplified scenario, the improvement increases 

gradually based on the success rate until the success rate 

reaches 70, which is often considered as an optimal target 

point that balances motivation and challenge 0. After this 

point, the improvement decreases. This is done to produce 

diminishing returns in skill level [23].  

Success rate. Each patient’s success rate is updated as a 

function of skill level. The equation to calculate it is given 

below. 

𝐺𝑝𝑖
𝑟𝑗(𝑡) = 𝑆𝑝𝑖

𝑟𝑗(𝑡) + 𝑑𝑔, ∀𝑝𝑖 ∈ 𝑃, 𝑟𝑖 ∈ 𝑅               (4) 

For our simplified scenario, the success rate is directly 

proportional to the skill level with a small random component, 𝑑𝑔~𝑈(−4, 4), added to it.  

2) Data Generation. For the data generation, first the 

domain expert is prompted for the number of time steps 

needed. The simulator then displays randomly generated 

initial values of the patients’ success rate of all the patients 𝑝𝑖 ∈ 𝑃 in all the robots 𝑟𝑗 ∈ 𝑅. Based on the displayed data, 

the domain expert then assigns the patients to the robots for 

the next time step. After the assignment is done, the values of 

the success rates are updated based on the assignment, and the 

new values for the subsequent time step are displayed to the 

domain expert. The domain expert repeats this process until 

the end of the desired number of time steps. At the end of the 

data generation, we obtain a data file with the feature set 

consisting of the success rate of all the patients as the input 

and the patient-robot assignment as the output for all time 

steps, with the assignment in each time step being 

independent of the other.  

B. Learning Scheduling Policy from Demonstrations 

In this section, we present a learning model that can learn 

from the synthetic data obtained as described in the previous 

subsection  to make patient-robot assignments and produce 

comparable patient training results to those yielded by a 

domain expert. We propose a two-stage procedure to make 

assignments at each time step. In the first stage, a highest-

priority patient for each robot is predicted using a neural 

network classifier trained by the demonstration dataset. 

Within the first stage, we adopt two approaches for the 

priority prediction: we train 1) multiple classifiers, one for 

each robot, and 2) a single classifier that will be used for all 

robots. In the second stage, if multiple robots have the same 

highest-priority patient, we resolve the conflict to determine 

which robot should be assigned to that patient. 

1) Priority Prediction. We adopt the pairwise 

comparison method [18], which determines the priority 

between two patients by comparing their features. The 

advantage of the pairwise approach is that it helps to learn the 

rationales behind the assignment priority from the difference 

between the features of scheduled and unscheduled patients. 

The classifier for priority prediction, denoted as 𝑓(𝑝𝑖 , 𝑝𝑥) ∈{0,1}, takes as input the features of two patients, 𝑝𝑖  and 𝑝𝑥, 

and produces a binary label indicating whether patient 𝑝𝑖  has 

a higher priority over patient 𝑝𝑥 for a robot.  

The data samples for training the pairwise classifier 

consist of both positive samples and negative samples. For 

positive samples, the input element, 𝜙(𝑝𝑖,𝑝𝑥), is the difference 

between the features of the assigned patient 𝑝𝑖  and the 

unassigned patients 𝑝𝑥  at each time step, and the 

corresponding output label, 𝑦(𝑝𝑖,𝑝𝑥), is set to 1. For negative 

samples, the input element, 𝜙(𝑝𝑥,𝑝𝑖), is the difference between 

the features of the unassigned patient 𝑝𝑥  and the assigned 

patients 𝑝𝑖  at each time step, and the corresponding output 

label, 𝑦(𝑝𝑥,𝑝𝑖), is set to 0. Since the classifier predicts priority 

for a single robot 𝑟𝑗 at a time, only features associated with 

the robot 𝑟𝑗 are used to create the input element. That is, for 

every robot 𝑟𝑗 ∈ 𝑅 at time step 𝑡, we prepare the positive and 

negative samples as follows,  

𝜙(𝑝𝑖,𝑝𝑥) = 𝑔𝑝𝑖
𝑟𝑗(𝑡) − 𝑔𝑝𝑥𝑟𝑗 (𝑡),  𝑦(𝑝𝑖,𝑝𝑥) = 1,                   ∀𝑝𝑖 ∈ 𝑃 and 𝑝𝑖  assigned to robot 𝑟𝑗 , ∀𝑝𝑥 ∈ 𝑃\ 𝑝𝑖      (5) 

𝜙(𝑝𝑥,𝑝𝑖) = 𝑔𝑝𝑥𝑟𝑗 (𝑡) − 𝑔𝑝𝑖
𝑟𝑗(𝑡), 𝑦(𝑝𝑥,𝑝𝑖) = 0,                       ∀𝑝𝑖 ∈ 𝑃 and 𝑝𝑖  assigned to robot 𝑟𝑗, ∀𝑝𝑥 ∈ 𝑃\ 𝑝𝑖       (6) 

With the pairwise training samples created in the form of 

(5) and (6), we propose two approaches to predict the 

highest-priority patient for each robot at each time step. The 

first approach trains multiple classifiers, one for each robot in 

the scenario. That is, for an N-robot scenario, there are 𝑁 

separate classifiers to predict the highest-priority patient for 

each robot. The second approach trains a single classifier that 

is used for all the robots. The output of the classifier is the 

prediction of patient priority for the robot that the input 

features are associated with. Both approaches use the same 

neural network architecture discussed in subsection C. 
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While using the neural network classifier with each 

patient’s pairwise training sample as described in subsection 

B.1), we obtain the output 1 if the patient is chosen and 0 if 

the patient is not chosen by the classifier. Each patient will 

obtain 𝑀 − 1 priority labels for a robot, one for each pairwise 

comparison of that patient and every other patient. Thus, for 

each robot 𝑟𝑗 in a time step, we obtain the data, denoted by 𝑐𝑜𝑢𝑛𝑡𝑝𝑖
𝑟𝑗

, representing how many times a patient 𝑝𝑖  has been 

chosen for robot 𝑟𝑗  after being compared with every other 

patient. We also obtain the probability for each count 

produced by the sigmoid function in the final layer of the 

neural network. Then, we can take the mean of all 

probabilities of patient 𝑝𝑖 to determine a mean probability, 𝑃𝑟(𝑝𝑖), of all the pairwise comparisons where the patient 𝑝𝑖  
has been chosen by the classifier. Based on 𝑐𝑜𝑢𝑛𝑡𝑝𝑖

𝑟𝑗
, we can 

have a rank of priority patients for each robot 𝑟𝑗 and obtain 

the highest-priority patient depending on which patient has 

the highest count for each robot. For patients with the same 

count, we use the mean probability, 𝑃𝑟(𝑝𝑖), to sort the rank 

of the patients. 

2) Conflict Resolving. In our scenario, it is assumed that 

a single patient can only use a single robot in each time step. 

The results of the first stage can be such that multiple robots 

might have the same suggested highest-priority patient. To 

resolve this conflict, we choose the robot  𝑟𝑗∗ for which the 

patient has the highest mean probability value of all the 

counts. Subsequently, for other robots with the same priority 

patient, we look at the patients which have the next highest 

mean probability, and if they have not been selected as the 

priority patient for any other robot in the scenario, we choose 

that patient. The overall dynamic assignment and scheduling 

procedure is summarized in Algorithm 1. 

Algorithm 1 Dynamic Assignment and Scheduling 

1:     for 𝑡 =  0 to 𝑇 

2:      // Stage 1 – Determine highest-priority patient 

3:      for all robot  𝑟𝑗 ∈ 𝑅 do 

 // Choose highest priority patient 𝑝𝑗 based on        

// pairwise comparison 

4:             𝑝𝑖∗ ⃪  argmax𝑝𝑖∈𝑃 ∑ 𝑓(𝑝𝑖 , 𝑝𝑥)𝑝𝑥∈𝑃\𝑝𝑖  

5:             Return 𝑐𝑜𝑢𝑛𝑡𝑝𝑖∗ 𝑟𝑗
and 𝑃𝑟(𝑝𝑖∗ ) associated with 𝑝𝑖∗   

6:      end for 

          // Stage 2 – If multiple robots have same priority      

           // patient 

7:  for patient 𝑝𝑗 shared by multiple robots {𝑟𝑗′} ∈ 𝑅  

do 

            // Choose the robot for which the patient has          

// highest mean probability 

8:       𝑟𝑗∗ ⃪ argmax𝑟𝑗∈{𝑟𝑗′} 𝑃𝑟(𝑝𝑗) 

9:  For the remaining robots with the same priority 

patient, choose the next patient with the highest    

                mean probability not taken by another robot 

10:       end for 

11: end for 

C. Neural Network Classifier Architecture 

The neural network classifier consists of 1 input layer with 

hyperbolic tangent activation function, 1 output layer with 

sigmoid activation function, and 1 hidden layer with 

hyperbolic tangent activation function. The number of 

neurons in the input layer is equal to 1. The number of neurons 

in the output layer is equal to 1. The hidden layer consists of 

32 neurons. The sigmoid function in the final layer of the 

neural network classifier provides the probability of the 

output label. An Adam optimizer is used with a learning rate 

of 𝜂 = 0.01 and a binary cross entropy loss function to train 

the model. 

D. Evaluation Methodology 

Both proposed approaches were evaluated on a synthetic 

dataset. The dataset consisted of training sessions with 5 

patients and 5 robots. Five different skills were considered, 

with each skill trained on a different robot. Ten data files, each 

consisting of a 12-time step session with different initial 

patient skills, were created. For the synthetic dataset, co-

author VDN (a rehabilitation engineering researcher) worked 

with the simulator as the “domain expert”. She was able to see 

the equations of the model before working with the simulator, 

and (self-reported) aimed to target each patient’s lowest skill 

at each time step. Before generating the 10 data files used for 

the study, she generated 10 “practice” files that were not used 

for the study. 

The files were split into training and test using a leave-

one-out cross-validation method and the results were obtained 

for all 10 sessions. Two evaluation metrics were used. First, 

we compared the patient-robot assignment made by the 

domain expert in each time step with the assignments made 

by our two approaches for every session. By comparing each 

individual patient-robot assignment in every time step, we 

obtained the percentage accuracy between the domain expert 

scheduling assignment and the scheduling assignment of our 

approaches. Second, we took the overall skill growth of each 

patient obtained during a session and took a mean of those 

values to get the mean skill growth obtained during a session 

for the patient-robot assignment made by our approaches, 

domain expert, and a random assignment.  To obtain all four 

results, all the patients were initialized with the same skill 

level for each session.  

IV. RESULTS 

The results of 10 simulated sessions are shown in Table I 

and Table II. Table I shows the classification accuracy of 

patient-robot assignments done by the two approaches and 

assignments done by the domain expert. A paired t-test on the 

data from Table I found that Approach 1 yielded significantly 

higher accuracy than Approach 2 (p < 0.001). 

Table II shows the mean skill growth averaged over all the 

patients in a session for 10 different sessions for different 

approaches. A one-way repeated-measures analysis of 

variance on the data from Table II found that the approaches 

were significantly different (p < 0.001) and that the random 

assignment was significantly worse than all three other 

approaches (p < 0.001 in all three post-hoc Holm-Sidak tests). 
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TABLE I: ACCURACY RESULTS OF PATIENT-ROBOT ASSIGNMENT BETWEEN 

DOMAIN EXPERT AND THE TWO APPROACHES: APPROACH 1 (MULTIPLE 

CLASSIFIERS) AND APPROACH 2 (SINGLE CLASSIFIER) 

Session Approach 1  Approach 2 

1 87.1% 82.1% 

2 89.2% 80.2% 

3 84.6% 74.6% 

4 83.9% 77.8% 

5 85.3% 78.4% 

6 90.3% 79.5% 

7 88.5% 78.3% 

8 87.6% 81.1% 

9 89.4% 76.5% 

10 87.9% 78.3% 

Mean ± SD 87.4 ± 2.4% 78.7 ± 2.3% 

 
 

TABLE II. MEAN SKILL GROWTH OF THE PATIENTS OVER 12 TIME STEPS 

FOR PATIENT-ROBOT ASSIGNMENTS DONE BY APPROACH 1 (MULTIPLE 

CLASSIFIERS), APPROACH 2(SINGLE CLASSIFIER), DOMAIN EXPERT AND 

RANDOM ASSIGNMENT  

Session 
Mean Skill Growth 

Approach 1 Approach 2 
Domain 

expert 
Random  

1 33.4 31.5 32.8 27.1 

2 27.8 26.6 27.2 25.2 

3 25.1 24.6 25.3 22.8 

4 30.2 30.5 29.8 27.1 

5 29.3 28.6 29.6 25.2 

6 30.9 29.4 29.7 27.7 

7 28.1 27.6 28.4 25.1 

8 32.8 32.6 31.7 27.1 

9 23.8 23.5 24.8 21.7 

10 26.6 24.7 25.5 22.9 

Mean ± 

SD 
28.8 ± 3.1 27.9 ± 3.1 28.5 ± 2.8 25.2 ± 2.1 

 

Fig. 1 shows the total skill gain for each patient over a 

session for patient-robot assignments done by the two 

presented approaches, the domain expert, and a random 

assignment. Fig. 2 shows the box plot of mean skill growth of 

all patients for all 10 sessions. 

V. DISCUSSION 

From Table I, we can see that Approach 1 has a mean 

accuracy of 87.4% and Approach 2 has a mean accuracy of 

78.7% when compared with the patient-robot assignments 

done by the domain expert. This indicates that both 

approaches can learn the scheduling policy from domain 

expert demonstration. Additionally, Approach 1 consistently 

performs better than Approach 2. The difference in 

performance is likely due to the use of multiple models in 

Approach 1. In Approach 1, each model was trained with a 

robot-specific feature set and could find the feature-priority 

mapping that achieves good prediction accuracy for that 

individual robot. In contrast, the single model in Approach 2 

was trained so that it can generalize to different robots. 

However, the generalizability was obtained at the cost of 

lower prediction accuracy for individual robots. 

Table II and Fig. 2 show the data about mean skill growth 

of all the patients for 10 different sessions. Both approaches 

give comparable results to that of the domain expert while the 

results of the random assignment were worse than all the other 

approaches. This is further evidenced in Fig. 1 where the 

overall skill gains in both approaches are comparable to that 

of the domain expert assignment while the random 

assignment has slightly worse performance than the others. 

Since the random numbers to update the skill levels and 

success rates are generated dynamically, our approaches may 

over/underperform the domain expert due to the randomness. 

It’s worth mentioning that the patients may not benefit equally 

by maximizing the group skill gain. This can be addressed by 

considering multiple optimization objectives to balance the 

skill improvement across all patients.   

It is worth noting that the underlying model is relatively 

simple: there is only one measurable variable (i.e., success 

rate) that is linked to skill level with a fairly straightforward 

relationship. In practice, estimating patient skill level is a 
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Figure 1.  Total Skill gain for each patient over one session for patient-robot assignments by (a) Approach 1 (multiple classifiers), (b) Approach 2 (single 

classifier), (c) domain expert, and (d) random assignment. 

 

Figure 2. Box plot of mean skill gain for sessions 1-10 for domain 

expert, Approach 1 (multiple classifiers), Approach 2 (single 
classifier) and random assignment. 
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significant challenge and may involve interplay between 

multiple patient characteristics (e.g., injury type), robot 

settings (e.g., assistive strategy, task difficulty [21], [24]), 

measurable quantities (e.g., success, workload, motion quality 

[21], [22]) and unmeasurable quantities (e.g., patient 

motivation [24]). Furthermore, skill improvement depends 

only on success rate in our simplified model, but would 

depend on all the above characteristics in the real world as 

well. In the next stage of the work, we will thus aim to test the 

approaches on a synthetic dataset with a more complex 

underlying model. 

Finally, only one domain expert (a co-author of the work) 

created the dataset used for evaluation. Different experts may 

have different scheduling policies that may be easier or harder 

to learn as well as more or less effective than the current one. 

Thus, in future work, we will investigate our approaches with 

multiple domain experts. 

VI. CONCLUSION 

We proposed a model that can learn dynamic patient-robot 

task assignment and scheduling from a domain expert using 

pairwise training samples and neural network. Two different 

approaches were used to get the patient priority. One 

approach used 𝑁  different neural network models for 𝑁 

robots, whereas the other approach used a single model to 

determine the patient priority. We validated our approaches 

using leave-one-out cross-validation and collected the 

statistics on mean skill growth and percentage accuracy with 

the domain expert demonstration. The dataset for the model 

was created using a robotic gym simulator that emulated a 

rehab gym scheduling scenario. The results of both 

approaches showed that they were able to create a patient-

robot assignment that produces results comparable to that of 

the domain expert.  

Our approaches provide a way to learn policies that enable 

automated patient-robot assignment and scheduling for a 

rehabilitation gym. The approaches learn policies in a 

supervised manner and are applicable when the heuristic rules 

are hard to encoded but can be easily demonstrated by domain 

experts. Our future work will explore unsupervised learning 

paradigms to learn optimal policies that could yield better 

rehabilitation training outcomes than those obtained by the 

heuristic rules from domain experts.  
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