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Abstract— A robotic rehabilitation gym is a setup that allows
multiple patients to exercise together using multiple robots. The
effectiveness of training in such a group setting could be
increased by dynamically assigning patients to specific robots. In
this simulation study, we develop an automated system that
dynamically makes patient-robot assignments based on
measured patient performance to achieve optimal group
rehabilitation outcome. To solve the dynamic assignment
problem, we propose an approach that uses a neural network
classifier to predict the assignment priority between two patients
for a specific robot given their task success rate on that robot.
The priority classifier is trained wusing assignment
demonstrations provided by a domain expert. In the absence of
real human data from a robotic gym, we develop a robotic gym
simulator and create a synthetic dataset for training the
classifier. The simulation results show that our approach makes
effective assignments that yield comparable patient training
outcomes to those obtained by the domain expert.

I. INTRODUCTION

A. Rehabilitation Robotics and Robotic Gym

While rehabilitation robots have mostly been utilized in a
setup consisting of one patient, one robot, and one therapist,
the last decade has seen an increase in multi-robot systems:
setups where two or more patients can exercise together using
two or more robots while supervised by a single therapist [1]—
[3]. A setup specifically involving three or more rehabilitation
robots (or other rehabilitation devices such as passive limb
trackers) can be referred to as a robotic rehabilitation gym [4].
While such robotic rehabilitation gyms have not yet seen
extensive evaluation, results so far indicate that rehabilitation
outcome is comparable to one-on-one therapy [4], [5], with the
additional advantage that a single therapist can supervise more
than one patient. A recent observational study suggests that a
therapist could effectively supervise up to four patients in a
robotic gym [6], reducing the need for expert manpower in
rehabilitation.

In a robotic gym, patients would ideally move between
robots within a session as they, e.g., improve their
performance or get tired of an exercise. However, in existing
studies, patients either did not switch robots within the session
or switched between them arbitrarily after a predetermined
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time period [4], [5]. Thus, the effectiveness of a robotic gym
could potentially be increased further by dynamically
assigning patients to specific robots. While this could be done
by a therapist, it could also be done by a central artificial
intelligence that monitors each patient’s behavior and suggests
when they may benefit from switching robots. Such an
intelligent patient monitoring and dynamic patient-robot
assignment system could assist a human therapist or operate
with full autonomy to achieve optimal group rehabilitation
outcome.

B. Dynamic Task Allocation and Scheduling

Dynamic patient-robot assignment in a robotic gym can be
viewed as a task allocation and scheduling problem where a
set of tasks are assigned to a set of resources or agents such
that an overall performance objective is achieved [7]. Task
allocation and scheduling problems have been studied in a
variety of application domains, including human-robot
collaborative assembly [8], daily assistance for elderly [9],
medical services [10], and military operations [11]. However,
they have not yet been examined in the context of group
rehabilitation, where the domain features and requirements
may be different.

Task allocation and scheduling is commonly formulated
as a mathematical programming problem such as mixed-
integer linear programming (MILP) [12] and constraint
programming (CP) [13]. Optimization-based approaches are
leveraged to obtain either an exact or approximate solution
depending on the complexity of the specific problem. The
computation of an exact solution usually becomes intractable
for complex problem domains. A common practice is to apply
heuristic approaches to explore search space for an
approximate solution in a computationally efficient manner
[14]. However, designing and encoding effective heuristics
into the search procedure is problem-dependent and largely
relies on domain knowledge. Alternatively, metaheuristic
approaches [15], [16] have been designed that provide high-
level problem-independent search strategies to develop
heuristic search algorithms rather than using hand-crafted
heuristics.

Several recent studies have used machine learning
techniques to learn heuristics or decision-making policies for
task allocation and scheduling [17]-[20]. Particularly policy
learning, a subfield of machine learning that aims to solve
sequential decision-making problems, has been extensively
exploited in dynamic task assignment problems. Gombolay et
al. [18] proposed an apprenticeship scheduling method to learn
domain expert heuristics for a class of scheduling problems.
Ingimundardottir & Runarsson [19] used imitation learning to
learn dispatching rules that are based on hand-crafted features
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describing scheduling states. Zhang et al. [20] used a graph
neural network (GNN) to model a job-shop scheduling
problem and trained the scheduling policy via deep
reinforcement learning.

In this paper, we investigate the problem of dynamic
patient-robot task assignment and scheduling for a robotic
rehabilitation gym with the goal of optimizing the group
rehabilitation outcome. In our problem, a patient’s skill
acquisition is considered a stochastic process and the model
describing the skill improvement over time is unknown. As a
result, the objective function specifying the goal of task
assignment and scheduling is not given explicitly in terms of
assignment and scheduling decision variables and can only be
evaluated numerically. We thus cast the task assignment and
scheduling problem as a sequential decision-making problem
and propose to exploit machine learning techniques to learn
assignment and scheduling heuristics and policies from
domain expert demonstrations. The problem considered in this
paper differs from the class of scheduling problems studied in
previous works [18]—[20] in that neither the precedence nor the
duration of tasks performed on each agent is given a priori.
Both precedence and duration should be determined by the
policy to arrive at the optimal assignments and schedules.

The contributions of this paper are threefold. 1) We
developed a sequential decision-making formulation for the
dynamic patient-robot assignment problem in a robotic gym;
2) We proposed a two-stage assignment approach and used a
neural network model that learns from expert demonstrations
to predict pairwise priority; 3) We developed a robotic gym
simulator to generate synthetic datasets in the absence of data
from real robotic rehabilitation gyms.

The remainder of this paper is organized as follows.
Section II presents the robotic gym scenario and the dynamic
patient-robot assignment problem. Section III discusses our
proposed approach. The results and discussion are presented
in Section IV. We conclude our work in Section V.

II. PROBLEM DEFINITION

A. Scenario Description

For purposes of this study, a robotic gym consists of M
patients and N robots working together for T time steps. Each
patient has K skills to be improved corresponding to different
functional abilities — e.g., hand function, shoulder function,
etc. Before each time step, each patient is assigned to a
specific robot and works with it for that time step. The
following scenario constraints have been implemented
regarding scheduling:

e Each session has a fixed duration of T time steps, with all
patients beginning and ending the session simultaneously.

e Each robot only trains a single skill, and each skill is only
trained by a single robot. Thus, N = K.

e At any given time step, only one patient can use a given
robot, and a given patient can only use a single robot.

o All patients are assigned to robots before each time step
simultaneously. Each patient must use the robot for the
entire time step, with no switching possible mid-step.

e Once a patient-robot assignment is done, there are no
further choices that need to be made for the robot — for
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example, it is not necessary to set the exercise difficulty level.

The patients’ skill levels are not directly measurable but
are reflected in the patient’s performance during a time step.
In the real world, performance could be measured using
various metrics - task success, exercise intensity or motion
quality [21], [22]. For purposes of this study, we assume that
only task success rate is measured in each time step and is
visible to the patient-robot assignment system after the time
step ends. This success rate is imperfectly linked to the
patient’s skill level in the skill trained by the robot.

B. Dynamic Patient-Robot Assignment

For the scenario described in the previous subsection, we
define a set of robots to be R = {ry, 1y, ... ,7y}, a group of
patients P = {p,, pz, ...,Pu}, and a set of motor skills S =
{s1,52, .., sk} For each patient p; € P, a feature set G, () =
{95,(), 95,(®), ..., g5, ()}, measured at each time step t €
[1,T], is defined as the set of success rate g;i (t) of the patient
on each robot r; € R. The skill level of patient p; on robot 7;
at time step t € [1, T] is denoted by S;{ (t). Both success rate

and skill level are evaluated on a continuous scale of [0,100].
The objective of the dynamic patient-robot assignment is to
find a schedule of the patients’ skill training on the robots that
optimizes the overall group skill gain, defined by

t=1Zpi=1 27=1 AS;{ (t), over the training period [0,T].
Here, AS;: ) = S;l{ ) — S;Z (t — 1) represents the skill
gain obtained as the difference between the skill level at time
t and skill level at previous time step t — 1. This problem can
be framed as a sequential decision-making problem where the
optimal schedule can be determined by solving the patient-
robot assignment problem sequentially for every time step.
The problem then amounts to finding a scheduling policy that
at each time step automatically assigns robots to patients
based on the patients’ current features.

To address the defined dynamic patient-robot assignment
problem, we propose to learn a scheduling policy that can
reproduce the underlying strategies employed by a domain
expert (e.g., occupational therapist) and achieve comparable
patient training outcomes to those yielded by the domain
expert’s schedules. The scheduling policy is learned from a
dataset of domain expert demonstrations via supervised
learning. As real data from robotic rehabilitation gyms does
not yet exist, we have also developed a simulator that
generates a synthetic dataset as a basis for policy learning.

III. APPROACH

A. Dataset

1) Robotic Gym Simulator. A robotic gym simulator is
created to simulate the dynamic process of the scenario
described in Section II.LA and generate synthetic data. The
simulator takes patient-robot assignments given by a user

. . . rj
(e.g., adomain expert)ra_s input to update the skill level Sp; ®
and the success rate gp’i (t) at each time step t. Only success
rate is returned and visible to the user for making patient-robot
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assignments. The initialization and updating of skill level and
success rate are given as follows.

Skill level. The skill level is initialized at the start of the
simulation using the following equation.

.
$,7(0) = Ly, +ds,, Vp; € P,1; €R €Y

where L,; € [0,100] is defined as the overall impairment
level whose value is generated randomly between 16-40. The
boundary values for impairment generation are kept lower to
allow improvement during training; d;  is a random number
sampled from a normal distribution with a mean of 5 and
standard deviation of 3, i.e., dg,~N(5, 3%). The skill level is
then updated in subsequent time steps using the following
equation.

i T T
Sy =St -1+ I,/ +ds,Vp, EP,; ER  (2)

where d; is a random number sampled from a uniform
distribution U(—1,1) and I;{ is defined as the skill
improvement which is given by

0.00102G,/, for G,’ < 70
) Vpi € P,r;€ER (3)
pi o) . » VPi )
i 5eo.oos(am 69) for G;{ > 70
For our simplified scenario, the improvement increases
gradually based on the success rate until the success rate
reaches 70, which is often considered as an optimal target
point that balances motivation and challenge 0. After this
point, the improvement decreases. This is done to produce
diminishing returns in skill level [23].

Success rate. Each patient’s success rate is updated as a
function of skill level. The equation to calculate it is given
below.

i i
Gpi’(t) = Spl{(t) +dg,Vp; EP,1; ER 4

For our simplified scenario, the success rate is directly
proportional to the skill level with a small random component,
dy~U(—4,4), added to it.

2) Data Generation. For the data generation, first the
domain expert is prompted for the number of time steps
needed. The simulator then displays randomly generated
initial values of the patients’ success rate of all the patients
p; € P in all the robots 7; € R. Based on the displayed data,
the domain expert then assigns the patients to the robots for
the next time step. After the assignment is done, the values of
the success rates are updated based on the assignment, and the
new values for the subsequent time step are displayed to the
domain expert. The domain expert repeats this process until
the end of the desired number of time steps. At the end of the
data generation, we obtain a data file with the feature set
consisting of the success rate of all the patients as the input
and the patient-robot assignment as the output for all time
steps, with the assignment in each time step being
independent of the other.
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B. Learning Scheduling Policy from Demonstrations

In this section, we present a learning model that can learn
from the synthetic data obtained as described in the previous
subsection to make patient-robot assignments and produce
comparable patient training results to those yielded by a
domain expert. We propose a two-stage procedure to make
assignments at each time step. In the first stage, a highest-
priority patient for each robot is predicted using a neural
network classifier trained by the demonstration dataset.
Within the first stage, we adopt two approaches for the
priority prediction: we train 1) multiple classifiers, one for
each robot, and 2) a single classifier that will be used for all
robots. In the second stage, if multiple robots have the same
highest-priority patient, we resolve the conflict to determine
which robot should be assigned to that patient.

1) Priority Prediction. We adopt the pairwise
comparison method [18], which determines the priority
between two patients by comparing their features. The
advantage of the pairwise approach is that it helps to learn the
rationales behind the assignment priority from the difference
between the features of scheduled and unscheduled patients.
The classifier for priority prediction, denoted as f (p;, py) €
{0,1}, takes as input the features of two patients, p; and p,,
and produces a binary label indicating whether patient p; has
a higher priority over patient p,, for a robot.

The data samples for training the pairwise classifier
consist of both positive samples and negative samples. For
positive samples, the input element, ¢;, ., is the difference
between the features of the assigned patient p; and the
unassigned patients p, at each time step, and the
corresponding output label, y(,, 5., is set to 1. For negative
samples, the input element, ¢, .y, is the difference between
the features of the unassigned patient p, and the assigned
patients p; at each time step, and the corresponding output
label, yp,.p,, is set to 0. Since the classifier predicts priority
for a single robot 1; at a time, only features associated with
the robot 7; are used to create the input element. That is, for
every robot 7; € R at time step t, we prepare the positive and
negative samples as follows,

Ti Ti
d)(pi:px) = gpi ® - gpi(t)' Ywire) = 1,
Vp; € P and p; assigned to robotr;, Vp, € P\p; (5)

Ti Ti
d)(px,m) = gpi(t) - gp]i (t)'y(px/pi) =0,
Vp; € P and p; assigned to robot 7, Vp, € P\ p;  (6)

With the pairwise training samples created in the form of
(5) and (6), we propose two approaches to predict the
highest-priority patient for each robot at each time step. The
first approach trains multiple classifiers, one for each robot in
the scenario. That is, for an N-robot scenario, there are N
separate classifiers to predict the highest-priority patient for
each robot. The second approach trains a single classifier that
is used for all the robots. The output of the classifier is the
prediction of patient priority for the robot that the input
features are associated with. Both approaches use the same
neural network architecture discussed in subsection C.
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While using the neural network classifier with each
patient’s pairwise training sample as described in subsection
B.1), we obtain the output 1 if the patient is chosen and 0 if
the patient is not chosen by the classifier. Each patient will
obtain M — 1 priority labels for a robot, one for each pairwise
comparison of that patient and every other patient. Thus, for
each robot 7; in a time step, we obtain the data, denoted by

T . . .
countp: , representing how many times a patient p; has been

chosen for robot 7; after being compared with every other
patient. We also obtain the probability for each count
produced by the sigmoid function in the final layer of the
neural network. Then, we can take the mean of all
probabilities of patient p;to determine a mean probability,
Pr(p;), of all the pairwise comparisons where the patient p;

. T
has been chosen by the classifier. Based on count : , We can

have a rank of priority patients for each robot 7; and obtain
the highest-priority patient depending on which patient has
the highest count for each robot. For patients with the same
count, we use the mean probability, Pr(p;), to sort the rank
of the patients.

2) Conflict Resolving. In our scenario, it is assumed that
a single patient can only use a single robot in each time step.
The results of the first stage can be such that multiple robots
might have the same suggested highest-priority patient. To
resolve this conflict, we choose the robot rj* for which the
patient has the highest mean probability value of all the
counts. Subsequently, for other robots with the same priority
patient, we look at the patients which have the next highest
mean probability, and if they have not been selected as the
priority patient for any other robot in the scenario, we choose
that patient. The overall dynamic assignment and scheduling
procedure is summarized in Algorithm 1.

Algorithm 1 Dynamic Assignment and Scheduling
I: fort = 0toT
2: // Stage 1 — Determine highest-priority patient
3: for all robot 7; € R do
// Choose highest priority patient p; based on
// pairwise comparison

4: pi < argmax Lprer\p f (i Px)
pi€
5: Return Count; and Pr(p; ) associated with p;
6: end for
// Stage 2 — If multiple robots have same priority
// patient
7: for patient p; shared by multiple robots {1/} € R
do

// Choose the robot for which the patient has
// highest mean probability

8: i« argmax Pr(p;)
rje{rj}
9: For the remaining robots with the same priority

patient, choose the next patient with the highest
mean probability not taken by another robot

10: end for

11: end for
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C. Neural Network Classifier Architecture

The neural network classifier consists of 1 input layer with
hyperbolic tangent activation function, 1 output layer with
sigmoid activation function, and 1 hidden layer with
hyperbolic tangent activation function. The number of
neurons in the input layer is equal to 1. The number of neurons
in the output layer is equal to 1. The hidden layer consists of
32 neurons. The sigmoid function in the final layer of the
neural network classifier provides the probability of the
output label. An Adam optimizer is used with a learning rate
of n = 0.01 and a binary cross entropy loss function to train
the model.

D. Evaluation Methodology

Both proposed approaches were evaluated on a synthetic
dataset. The dataset consisted of training sessions with 5
patients and 5 robots. Five different skills were considered,
with each skill trained on a different robot. Ten data files, each
consisting of a 12-time step session with different initial
patient skills, were created. For the synthetic dataset, co-
author VDN (a rehabilitation engineering researcher) worked
with the simulator as the “domain expert”. She was able to see
the equations of the model before working with the simulator,
and (self-reported) aimed to target each patient’s lowest skill
at each time step. Before generating the 10 data files used for
the study, she generated 10 “practice” files that were not used
for the study.

The files were split into training and test using a leave-
one-out cross-validation method and the results were obtained
for all 10 sessions. Two evaluation metrics were used. First,
we compared the patient-robot assignment made by the
domain expert in each time step with the assignments made
by our two approaches for every session. By comparing each
individual patient-robot assignment in every time step, we
obtained the percentage accuracy between the domain expert
scheduling assignment and the scheduling assignment of our
approaches. Second, we took the overall skill growth of each
patient obtained during a session and took a mean of those
values to get the mean skill growth obtained during a session
for the patient-robot assignment made by our approaches,
domain expert, and a random assignment. To obtain all four
results, all the patients were initialized with the same skill
level for each session.

IV. RESULTS

The results of 10 simulated sessions are shown in Table I
and Table II. Table I shows the classification accuracy of
patient-robot assignments done by the two approaches and
assignments done by the domain expert. A paired t-test on the
data from Table I found that Approach 1 yielded significantly
higher accuracy than Approach 2 (p <0.001).

Table 11 shows the mean skill growth averaged over all the
patients in a session for 10 different sessions for different
approaches. A one-way repeated-measures analysis of
variance on the data from Table II found that the approaches
were significantly different (p < 0.001) and that the random
assignment was significantly worse than all three other
approaches (p < 0.001 in all three post-hoc Holm-Sidak tests).
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Figure 1. Total Skill gain for each patient over one session for patient-robot assignments by (a) Approach 1 (multiple classifiers), (b) Approach 2 (single
classifier), (c) domain expert, and (d) random assignment.

TABLE I: ACCURACY RESULTS OF PATIENT-ROBOT ASSIGNMENT BETWEEN
DOMAIN EXPERT AND THE TWO APPROACHES: APPROACH 1 (MULTIPLE
CLASSIFIERS) AND APPROACH 2 (SINGLE CLASSIFIER)

Session Approach 1 Approach 2

1 87.1% 82.1%

2 89.2% 80.2%

3 84.6% 74.6%

4 83.9% 77.8%

5 85.3% 78.4%

6 90.3% 79.5%

7 88.5% 78.3%

8 87.6% 81.1%

9 89.4% 76.5%

10 87.9% 78.3%
Mean + SD 87.4+£2.4% 78.7+£2.3%

TABLE II. MEAN SKILL GROWTH OF THE PATIENTS OVER 12 TIME STEPS
FOR PATIENT-ROBOT ASSIGNMENTS DONE BY APPROACH 1 (MULTIPLE
CLASSIFIERS), APPROACH 2(SINGLE CLASSIFIER), DOMAIN EXPERT AND

RANDOM ASSIGNMENT
Mean Skill Growth
Session Approach 1 Approach 2 Del;'::rl:' Random
1 334 31.5 32.8 27.1
2 27.8 26.6 27.2 25.2
3 25.1 24.6 25.3 22.8
4 30.2 30.5 29.8 27.1
5 29.3 28.6 29.6 25.2
6 30.9 29.4 29.7 27.7
7 28.1 27.6 28.4 25.1
8 32.8 32.6 31.7 27.1
9 23.8 23.5 24.8 21.7
10 26.6 24.7 25.5 22.9
M“;B‘* 288431 | 279+31 | 285+£28 | 252+2.

Fig. 1 shows the total skill gain for each patient over a
session for patient-robot assignments done by the two
presented approaches, the domain expert, and a random
assignment. Fig. 2 shows the box plot of mean skill growth of
all patients for all 10 sessions.

V. DISCUSSION

From Table I, we can see that Approach 1 has a mean
accuracy of 87.4% and Approach 2 has a mean accuracy of
78.7% when compared with the patient-robot assignments
done by the domain expert. This indicates that both
approaches can learn the scheduling policy from domain
expert demonstration. Additionally, Approach 1 consistently
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Figure 2. Box plot of mean skill gain for sessions 1-10 for domain
expert, Approach 1 (multiple classifiers), Approach 2 (single
classifier) and random assignment.

performs better than Approach 2. The difference in
performance is likely due to the use of multiple models in
Approach 1. In Approach 1, each model was trained with a
robot-specific feature set and could find the feature-priority
mapping that achieves good prediction accuracy for that
individual robot. In contrast, the single model in Approach 2
was trained so that it can generalize to different robots.
However, the generalizability was obtained at the cost of
lower prediction accuracy for individual robots.

Table II and Fig. 2 show the data about mean skill growth
of all the patients for 10 different sessions. Both approaches
give comparable results to that of the domain expert while the
results of the random assignment were worse than all the other
approaches. This is further evidenced in Fig. 1 where the
overall skill gains in both approaches are comparable to that
of the domain expert assignment while the random
assignment has slightly worse performance than the others.
Since the random numbers to update the skill levels and
success rates are generated dynamically, our approaches may
over/underperform the domain expert due to the randomness.
It’s worth mentioning that the patients may not benefit equally
by maximizing the group skill gain. This can be addressed by
considering multiple optimization objectives to balance the
skill improvement across all patients.

It is worth noting that the underlying model is relatively
simple: there is only one measurable variable (i.e., success
rate) that is linked to skill level with a fairly straightforward
relationship. In practice, estimating patient skill level is a
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significant challenge and may involve interplay between
multiple patient characteristics (e.g., injury type), robot
settings (e.g., assistive strategy, task difficulty [21], [24]),
measurable quantities (e.g., success, workload, motion quality
[21], [22]) and unmeasurable quantities (e.g., patient
motivation [24]). Furthermore, skill improvement depends
only on success rate in our simplified model, but would
depend on all the above characteristics in the real world as
well. In the next stage of the work, we will thus aim to test the
approaches on a synthetic dataset with a more complex
underlying model.

Finally, only one domain expert (a co-author of the work)
created the dataset used for evaluation. Different experts may
have different scheduling policies that may be easier or harder
to learn as well as more or less effective than the current one.
Thus, in future work, we will investigate our approaches with
multiple domain experts.

VI. CONCLUSION

We proposed a model that can learn dynamic patient-robot
task assignment and scheduling from a domain expert using
pairwise training samples and neural network. Two different
approaches were used to get the patient priority. One
approach used N different neural network models for N
robots, whereas the other approach used a single model to
determine the patient priority. We validated our approaches
using leave-one-out cross-validation and collected the
statistics on mean skill growth and percentage accuracy with
the domain expert demonstration. The dataset for the model
was created using a robotic gym simulator that emulated a
rehab gym scheduling scenario. The results of both
approaches showed that they were able to create a patient-
robot assignment that produces results comparable to that of
the domain expert.

Our approaches provide a way to learn policies that enable
automated patient-robot assignment and scheduling for a
rehabilitation gym. The approaches learn policies in a
supervised manner and are applicable when the heuristic rules
are hard to encoded but can be easily demonstrated by domain
experts. Our future work will explore unsupervised learning
paradigms to learn optimal policies that could yield better
rehabilitation training outcomes than those obtained by the
heuristic rules from domain experts.
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