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This is a review of recent work on quantum fluctuations of the electric field and of
stress tensor operators and their physical effects. The probability distribution for vacuum
fluctuations of the electric field is Gaussian, but that for quadratic operators, such as the
energy density, can have a more slowly decreasing tail, leading to an enhanced probability
of large fluctuations. This effect is very sensitive to the details of how the measurement
is performed. Some possible physical effects of these large fluctuations will be discussed.

1. Introduction

Vacuum fluctuations of the quantized electric field are primarily responsible for the
Lamb shift, and can also contribute to an increase in the quantum tunneling of
charged particle through a potential barrier. Both of these effects, as well as the
Gaussian probability distribution of the fluctuations, will be reviewed in Sec. 2. The
need to average the field in space or time with functions of compact support will
also be discussed. Such functions are nonzero only in finite intervals, and are needed
to describe physical measurements, which necessarily occur in finite time intervals
and spatial regions. Some important properties of these functions, especially their
Fourier transforms, are summarized in Sec. 3. These Fourier transforms fall more
slowly than an exponential function for large argument.

This slow rate of decrease has important implications for the probability distri-
butions of quadratic operators, such as the energy density. These operators must be
averaged in time to have finite fluctuations. The resulting probability distributions
are discussed in Sec. 4, where it is argued that these distributions can fall relatively
slowly for large argument, specifically as an exponential of a fractional power. This
makes large vacuum fluctuations more likely than one might have expected, and
may lead to observable effects, as discussed in Sec. 5. Section 6 deals with false
vacuum decay in field theory. The key results are summarized in Sec. 7. Units in
which A = ¢ = 1 are used throughout.

2. Linear Field Operators
2.1. Spacetime averaging and the variance

In this section, we discuss the fluctuations of a free, linear quantum field such as the
electric field. A simple example which contains many essential features is the time
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derivative of a massless scalar field, which is similar to a cartesian component of the
electric field. This operator may be expanded in terms of creation and annihilation
operators as
p(x,t) = > (ax Fi + af F). (1)
k

Here quantization in a finite volume V' with periodic boundary conditions is as-
sumed. The mode functions may be taken to be

/ w t(k-x—w
Fk = ﬁ ez(k t) 5 (2)

We wish to consider a spacetime average of the local operator ¢(x,t), given by

where w = |K]|.

averaging with a temporal sampling function f(¢) and a spatial sampling function
g(x),. The averaged operator is

&= / dt £(t) / 4 g(x) p(x,1) = Xk: ,/% (ax + af) f(w) §(k). (3)

Here f(w) and (k) are Fourier transforms of the sampling functions, given by

ﬂmz/wmmm (4)
and

309 = [ da gl e, (5)

We will take both sampling functions to be real and even, which implies that f (w)
and §(k) are also real and even. The sampling functions are assumed to be non-
negative and normalized so that

/ dt (1) = / P gx) = 1. (6)
This implies
£(0)=g(0)=1. (7)

In the vacuum state, ¢ undergoes fluctuations with a vanishing mean value,
(0]|0) = 0, and a variance of

o= (01"10) = Y- 55 (@) (). (8)

This variance is finite so long as either f or § decrease sufficiently rapidly for
increasing argument, which will be the case of the functions we consider. Thus,
averaging in time alone or in space alone is sufficient to render o finite. In the
continuum limit, V' — oo, we have

_ ﬁ/d?’kwﬁ(u}) P(K). (9)
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Let 7 be the temporal sampling scale, or the characteristic width of f(¢). Then
f(w) = 0if w> 1/7. If £ is the spatial sampling scale, then g(k) — 0 if w = |k| >
1/£. Thus if 7 >> ¢, temporal sampling dominates and o o 1/74. Similarly, if £ > 7,

spatial sampling dominates and o oc 1/¢4.

2.2. Probability distribution

Here we review the result that the fluctuations of a linear operator, such as ¢, obey
a Gaussian probability distribution. One way to see this is through a calculation of
the moments of ¢. Let the n-th moment be defined by

pn = {(#)") (10)

where the expectation value is taken in the vacuum state. Here we take n to be an
even integer, as p, = 0 for n odd. We may calculate p,, explicitly by use of Wick’s
theorem to find

i = (n— DI g™/2. (11)

Note that Wick’s theorem is most commonly used to express a time ordered prod-
uct of operators in terms of a normal ordered product and products of contractions,
which are just factors of . Time ordering is not relevant for time independent op-
erators such as ¢, and the vacuum expectation value of the normal ordered product
vanishes. Finally, the factor of (n—1)!! is a combinatorial factor describing the num-
ber of ways of contracting (¢)". The set of moments given in Eq. (11) corresponds
to the Gaussian distribution

1 200
P(x):,/%e /(29) (12)

as may be seen by calculation of the moments directly from P(x) by

Ly = /OO P(z)a"dx. (13)

—0o0

The final step in the argument comes from the Hamburger moment theorem,!

which states that a probability distribution is uniquely determined by its moments
if there exist constants C' and D such that

litn] < C D™l (14)

for all n, which is satisfied by the moments given in Eq. (11). Later in this review,
we will encounter situations where the Hamburger criterion is not satisfied.

2.3. Some physical examples
2.3.1. Vacuum electric field fluctuations

Vacuum fluctuations of the quantized electric field operator can have observable
consequences. One example is the Lamb shift in the hydrogen atom, an upward shift
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of the 25 level relative to the 2P level by an energy corresponding to a frequency of
1046 MHz. These two levels are degenerate in relativistic quantum mechanics, so the
Lamb shift is a quantum field effect. The full quantum electrodynamics calculation is
rather complex, but the primary contribution comes from electric field fluctuations,
as was shown by Welton.? Welton argued that the electric field fluctuations cause
the electron to move slightly further from the nucleus, slightly increasing the energy.
Because the 25 wavefunction is nonzero at the nucleus, it is affected more than is
the 2P state, where the wavefunction vanishes at the nucleus.

A second system where vacuum electric field fluctuations can produce a po-
tentially observable effect is in quantum tunneling of a charged particle through a
potential barrier.®* Here the fluctuations can give the electron a small kick, the
net effect of which is to increase the tunneling probability by a small fraction of the
order of 1%. This effect arises in perturbative quantum electrodynamics from the
vertex diagram, describing a radiative correction to the scattering amplitude.

A related but possibly somewhat larger effect might occur in the Casimir effect,
where the presence of reflecting boundaries can modify and enhance the vacuum
electric field fluctuations. This effect was recently discussed in Ref. 5, where it
was suggested the resulting enhanced quantum tunneling rates might explain some
experimental results of Moddel et al.%7 These authors found that the presence of
a reflecting plate can increase the current flowing through a metal-insulator-metal
interface.

2.3.2. Density perturbations in inflationary cosmology

A very different system where vacuum fluctuations of a linear quantum field could
produce observable effects is in the early universe. Different versions of the infla-
tionary model were first proposed by Starobinsky® and by Guth.® This model often
involves a scalar field, the inflaton, whose energy density and pressure drives a pe-
riod of exponential expansion of the universe. For a recent review, see Vazquez et
al.'® A remarkable prediction of inflationary cosmology is that quantum fluctua-
tions of the inflaton field can produce the initial spectrum of density perturbations
which later grow to form structure in the universe, such as galaxies and clusters of
galaxies.!1 16 In a typical version of scalar field driven inflation, the inflaton behaves
as a nearly massless classical field ¢(t) slowly evolving (slow roll) in a nearly flat
potential, V' (¢). When the magnitude of the field reaches a critical value, ¢., the
evolution becomes more rapid and standard model particles are created (reheating),
leading to the end of inflation and a transition to a radiation dominated universe.
However, the inflaton field is subject to small quantum fluctuations, d¢p, around its
mean value. These quantum fluctuations lead to density perturbations in the follow-
ing picture:'? Take ¢(t) to be slowly increasing. Then a local region in which §p > 0
will reach ¢, and hence reheat sooner than surrounding regions. This region will
begin redshifting soon, and hence become under dense compared to its neighbors.
In contrast, a region in which d¢ < 0 will become a local over density, and is likely
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later to form galaxies and clusters of galaxies by gravitational collapse. This picture
of primordial density perturbations arising from vacuum fluctuations of a nearly
linear quantum field makes two predictions: a nearly scale invariant spectrum of
perturbations, meaning that the expected magnitude is approximately independent
of length scale, and perturbations described by a Gaussian probability distribution.
Both of these predictions seem to be supported by cosmological observations.

3. Sampling Functions with Compact Support

It is desirable that the sampling functions f(¢) and g(x) have compact support,
meaning that they are strictly equal to zero outside of a finite region. This re-
striction comes because the sampling functions are intended to model a physical
measurement, which necessarily occurs in finite space and time intervals. This im-
plies that the sampling functions cannot be analytic, but we will require that they
be infinitely differentiable. Compactly supported test functions are used in rigor-
ous approaches to quantum field theory,'” but as a formal device to treat operator
valued distributions, and are not given any physical interpretation.

A compactly supported, infinitely differentiable function will have a Fourier
transform that decreases faster than any power, but more slowly than an exponential
function. A class of such functions of time was treated in Sec. IT of Ref. 18. Here
the Fourier transform decays as an exponential of a fractional power:

flw) ~e 9% 7> 1, (15)

where 0 < a < 1. The case a = % has special interest, as there is an electric circuit
in which the current switches on in accordance with the f(¢) for this case. In general,
if f(t) switches on at ¢ = 0, its form near this point is

f(t) ~ Dt He vt (16)

where the constants D, w, p, and v are functions of «. In particular, v = a/(1—«), so

o = L corresponds to a temporal switch on of the form f(t) ~ e~/ ast — 0%. This

class 2of compactly supported functions are special cases of the Fox H-function.!?

A crucial feature of compactly supported functions is the relatively slow decay
of the Fourier transform for frequencies w > 771 illustrated in Eq. (15). This leads
to relatively large contributions of high frequencies to physical quantities, such as

the variance in Eq. (9).

4. Quantum Stress Tensor Fluctuations

Our primary topic will be the probability distribution for components of the stress
tensor for a quantized field, such as the energy density. Even before we begin a
discussion of fluctuations, we need to ensure that the expectation value of this op-
erator is well defined. On a curved background spacetime, this is difficult problem
involving regularization and renormalization of parameters in the Einstein equa-
tions, including Newton’s constant and the cosmological constant. Here we restrict
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our attention to Minkowski spacetime, where normal ordering with respect to the
Minkowski vacuum state is sufficient. The amounts to setting the mean value of
the operator, about which fluctuations in the vacuum state occur, to be zero. Off-
diagonal components of the stress tensor, such as an energy flux T,;, require no
normal ordering. By symmetry, such components can have either sign. As a result,
the corresponding probability distribution is symmetric; a negative value will arise
with the same probability as a positive value with the same magnitude.

The case of operators which are classically non-negative, such the energy density,
is more subtle. It is well known that in quantum field theory there exist quantum
states in which the expectation value of energy density can be negative in some
regions. However, the magnitude and duration of this negative energy density is
constrained by quantum inequalities. Let (p(¢)) be the normal ordered energy den-
sity at one space point. The time average of this quantity obeys an inequality of the
form (See Ref. 20 for a recent review.)

/<p(t)> f(t)dt > —%, (17)

.
where 7 is the characteristic width of f(t), C is a dimensionless constant, and d is
the number of spacetime dimensions. The physical content of this inequality is the
following: a measurement on a short timescale can observe a negative energy density
with a relatively large magnitude, but this magnitude decreases as the observation
time increases. If Eq. (17) is the optimal bound, then there will exist some quantum
state for which the inequality becomes an equality.

We now turn to the probability distribution for the averaged energy density
operator, p = [ p(t) f(t) dt. This distribution must have a lower bound at the right
hand side of Eq. (17), if the bound is optimal, because this is the lowest eigenvalue
of p. That is, smallest value that can be found in a measurement is this eigenvalue,
which is also the smallest possible expectation value of the operator in any state.
This is the optimal quantum inequality bound. Because this bound is negative, there
are eigenstates of p with negative eigenvalues and a measurement of the averaged
energy density has a nonzero probability of yielding a negative outcome. Hence
P(zx) # 0 for values of x larger than the optimal quantum inequality bound.

4.1. A Two Dimensional Example

Here we consider the energy density of a massless scalar field in two dimensional
spacetime, which was given in Ref. 21. Here d = 2 and we may let = be an eigen-
value of the dimensionless energy density operator, 72 p. For a particular choice of
f(¢), it is possible to find the probability distribution, P(x), explicitly as a gamma
distribution function:
A2 (g g2

P(x) = 9(z — x) F(i/12) e m@—wo) (18)
Here T is the gamma function and ¥ is a step function, which insures that P(z) =0
for © < xy = —1/(12m). This is the quantum inequality bound for this case, which
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was found by Flanagan,?? and shown to be the optimal bound. Thus C' = ¢ in
Eq. (17). This distribution is illustrated in Fig. 1%, and satisfies

/OO P(z)de =1, (19)

as required of a probability distribution.

Although the magnitude of negative outcomes in a measurement of x is bounded,
there is no upper limit on the values of x for which P(z) # 0, so arbitrarily large
positive outcomes are possible. However, the area under the P(x) curve for < 0
is about 0.84, so 84% of measurements will yield a negative value, and only 16%
a positive value. The positive outcomes tend to be larger in magnitude, so the
mean value is zero. Here P(x) contains an integrable singularity at = xo. Note
that although the probability distribution satisfies Eq. (19), it is possible to have
P(z) > 1 in a small interval.

Further results in two dimensional spacetime are given in Refs. 23-25.

4.2. Results in Four Spacetime Dimensions

Here we consider the quadratic operator defined as the spacetime average of the
normal ordered square of ¢(x, 1)

T = / dat f(t) / @ g(x) : (60, 1) - . (20)

This operator arises in the components of the stress tensor for a massless scalar
field, and is a convenient test case for the general behavior of these components,

aQriginally published as Fig. 1 in Ref. 21.
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Fig. 1. The probability distribution for the time averaged energy density of a massless scalar field
in two dimensional Minkowski spacetime. The lower limit of P(z) occurs at z = 29 = —1/(127),
illustrated by the vertical line.
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such as the energy density. The mode expansion, Eq. (1), leads to

T = Z(A” CLI Qj +B’Lj Qi aj —‘y—B” aI a;), (21)
ij
where
Wi A R
Ajo = ‘j f(wj —we) g(k; — ke) (22)
and
JWiWe A .
Bj, = Q‘J/ flwj +we) g(k; + ke) - (23)
The moments are vacuum expectation values of powers of T’

and are expressible as n-th degree polynomials in the A;, and Bj,. In particular,
the second moment or variance is yus = 2 Zje BJZL,. In the V' — oo limit, it becomes

1
2(2m)6
In contrast to the case of a linear operator, the moments of quadratic operator
are finite only with time averaging. With spatial averaging alone, the factors of f
would not appear in the above expression, and the integral would receive a divergent
contribution from regions where k = —k’. For a similar reason, quantum inequalities

o = /d3k PE wo' fPlw+d)Pk+K). (25)

in four dimensional spacetime require temporal averaging.2¢

4.3. Probability Distributions

The treatment of the probability distribution for a quadratic operator in four di-
mensional spacetime, such as T, is more complicated than in the case of linear
operators. One approach is to examine the rate of growth of the moments p,, as n

increases.1827:28

4.3.1. Moments Approach: Worldline Limit

This was first done in Ref. 27 for the case of $?(x,t) averaged in time only with
a Lorentzian function. This is not a compactly supported function, but its Fourier
transform is an exponential, and hence the a — 1 limit of the functions described
by Eq. (15). Here the special properties of a Lorentzian allowed the explicit com-
putation of a finite set of moments (n < 65) by an algebraic computing program.
The result is that the moments grow as

tn < (3n)! (26)

for n > 1, a remarkably rapid growth, which implies that the asymptotic tail of
the probability distribution must fall relatively slowly with increasing x. However,
the Hamburger condition Eq. (14) is clearly not satisfied here. There is a weaker
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condition for uniqueness which applies to a probability distribution which is nonzero
on a half line, applicable to operators such as ¢?(x,t) which are non-negative in
classical physics. This is the Stieltjes condition, which is the same as Hamburger
condition, but with n! replaced by (2n)!,

lin| < C D™ (2n)!. (27)

However, this condition is also not fulfilled here, so the moments do not uniquely
determine P(z).

Nonetheless, we may attempt to infer some features of the asymptotic form of
P(zx). Assume that

P(z) ~coale™ ™ x> 1, (28)

for some constants cp, b, a, and c. Because P(z) = 0 for x < =z, the quantum
inequality bound, the moments are

fin, :/ P(z)z"dx. (29)

zo
If we assume n > 1, we may use the postulated asymptotic form in Eq. (28) and
ignore the interval [x¢, 0]. Then

o0
Hn ~ Co / "m0 dp = %0 am D/ [(n b+ 1) e — 1) (30)
0

The most important constant in Eq. (28) is the exponent ¢. The (3n)! growth of
the moments from Eqs. (26) leads to ¢ = 1/3 in this case. This implies a relatively
high probability for large fluctuations, at least as compared to that predicted by
a Gaussian distribution. The other constants in the asymptotic form Eq. (28) may
also be determined, not only for ¢?(x,t), but also for several related operators,
including the scalar and electromagnetic energy densities and the squared electric
field. The results are listed in Table IV of Ref. 27. In all of the cases studied using
a Lorentzian time sampling function, ¢ = 1/3, b = —2, but ¢y and a vary slightly
but are somewhat less than one.

The issue of the non-uniqueness of the probability distribution remains to be
addressed. Because the Stieltjes condition, Eq. (27) is not fulfilled, there can exist
two distinct probability distribution functions, P;(z) and P»(z), with exactly the
same moments, which would imply that

o0
[ 1) - Pa@))a” da =0 (3
o
for all n. This can only happen if the difference P;(z) — Py(x) is an oscillatory
function of x. However, in physical applications of the probability distribution, we
are not interested in the values of P(z) at a specific point, but rather integrals over
finite ranges, which give the probability of an outcome in that range. For example,
one might be interested in the probability of an outcome where x > y, which is the
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probability of a fluctuation at least as large as that described by the value y. This
probability is given by the complementary cumulative distribution

Poy)= [ Pl)ds, (32)

which can be expected to be relatively insensitive to oscillating contributions to
P(z). We will return to the uniqueness issue later in Sec. 4.3.2.

The approach used in Ref. 27 is limited to the case of a Lorentzian sampling
function. A more general method, which can apply to compactly supported func-
tions, was developed in Ref. 18. Here the moments cannot in general be computed
explicitly, but some general features of their growth for large n can be inferred from
an iteration procedure. Consider the case of ¢?(x,t) averaged in time with one of
the functions discussed in Sec. 3, whose Fourier transform has the asymptotic form
given in Eq. (15). The key result is that the moments grow as

tn ~ (3n/a)!. (33)

In the limit that o — 1, this agrees with Eq. (26).

The resulting probability distribution is of the form of Eq. (28) with ¢ = «/3.
Thus, switching corresponding to a = 1/2, as could be produced by the electrical
circuit described in Sec. IIC of Ref. 18, will produce a probability distribution falling

as an exponential of 2:2/6.

4.3.2. Moments Approach: Spacetime Averaged behavior

The effects of spatial as well as temporal averaging on the rate of growth of the
moments was treated in Ref. 28. Again an iteration procedure was developed to
find approximations to the n-th moment, given by Eq. (24) for n > 1. Here we
assume spatial sampling over a finite spherically symmetric region, so g(x) = g(|x|)
and g(k) = g(k), where k = |k|. We take the asymptotic form of §(k) to be of a
form analogous to Eq. (15)

G(k) ~ e k>, (34)

where / is the characteristic spatial sampling scale and 0 < A < 1 is a constant.
If £ <« 7, then the worldline approach described in Sec. 4.3.1 will be a good
approximation for a finite range, specifically x < x,, where

() g

If the spatial scale is small compared to the temporal scale, so that x, > 1, then
there will be a finite range where > 1, but = < z,. This is a worldline regime
where P(z) has the form in Eq. (28) with ¢ ~ a/3.

When z = z,, there is a transition to the region of spacetime averaged behavior.
If @« > A, in this region P(z) again has the form in Eq. (28) if z >> 1, but with
¢ =~ a. The increase in the value of the exponent ¢ due to spatial averaging has the
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effect of decreasing the probability of large fluctuations compared to the worldline
behavior. It is of interest to note that in this regime, the moments are now growing
as fn ~ (n/a)! for large n. This implies that if o« > 1/2, the Stieltjes criterion,
Eq. (27) is fulfilled, and the probability distribution is uniquely determined by its
moments.

In summary, quadratic massless field operators in four dimensional spacetime,
which have dimensions of length ™, have the following general forms for their asymp-
totic probability distribution P(z): In the worldline limit, x < z,, the distribution
has the form of Eq. (28) with ¢ = /3. Here we assume a compactly supported sam-
pling function whose Fourier transform decays according to Eq. (15). In the space-
time averaged limit, z > x, with space as well as temporal sampling, the exponent
¢ becomes ¢ & «. Thus for the o = 1/2 case, there is a transition from ¢ = 1/6 be-
havior to a region where ¢ = 1/2. This applies to a wide class of operators, including
P?(x,t), and the energy density for the massless scalar and electromagnetic fields.
This class also includes the momentum density operator for the electromagnetic
field which will be discussed in Sec. 5.3.

4.3.3. The Diagonalization Approach

There is a completely different approach to finding the probability distribution,
which was developed in Refs. 29 and 30. This involves diagonalization of the
quadratic operator in the form of Eq. (21) by a Bogolubov transformation and
construction of the operator’s eigenstates and eigenvalues. In practice, this requires
the use of a finite number of modes and numerical computations. Here we outline

the basic ideas, and then summarize the numerical results.

t
J
which appear in Eq. (21), correspond to physical particles, and the state of the
system is taken to be the vacuum state, for which a;|0), = 0 for all j. We perform

The creation and annihilation operators for mode j, a; and aj, respectively,

a Bogolubov transformation to a new set of creation and annihilation operators, b}
and b;. This is a linear transformation of the form

a; = Z(ajkbk — Bjkb}) - (36)
k

If we deal with a system with N modes, then the Bogolubov coeflicients, o, and
Bjk, are the components of a pair of N x N matrices.

The operator T is diagonal in the new set of creation and annihilation operators
if it takes the form

T = Xiblb; + Conise 1, (37)
J

where I denotes the N x N identity matrix, and Csniee and the A; are constants.
Let [{n;}), be eigenstates of the number operators in the b-basis:

bibi 1 {n; 1) = njl{ni 1. (38)
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These states are also the eigenstates of the operator T with eigenvalues

A({n;}) = Z Aj 1 + Cenitt - (39)
J
Note that if the A; > 0, then Cqpig is the lowest eigenvalue of T', and hence is the
quantum inequality bound, and the lower limit of the probability distribution.
In a measurement in the physical vacuum, |0),, the probability of finding A({n;})
is the squared overlap of the eigenstate |{n;}), with [0)q,

P(A({n;}) = la(0{n;})sl*- (40)

Note that the b-vacuum, |0)p, is a squeezed vacuum state in the a-Fock space,
which is a superposition of all possible even numbers of a particles. Because the
Bogolubov transformation, Eq. (36), and its inverse are linear, the one b-particle
states, b}|0>b, contain only odd numbers of a-particles. This applies to all odd b-
number eigenstates. This implies that we need only consider eigenstates of T" where
the n; are even, as other eigenstates will have vanishing probability to be found in
the physical vacuum, |0),, .

It is convenient to divide the set of states [{n;}); into different particle number
sectors, where the n particle sector is all states with n particles in various modes,
son = ) ;n;. Thus the vacuum sector contains only [0),, the two particle sector
contains states of the form |2;);, two particles in a single mode, or |1;,1)s, one
particle in each of two different modes. The four and higher sectors are constructed
similarly. The numerical computations in Ref. 29 used N = 120 for the @ = 1/2
case, and included states through the four particle and part of the six particle
sectors. However, it was found that the dominant contributions to P(x) comes
from the vacuum and two particle sector. This can be measured by the cumulative
distribution function, 1 — P (x), which should approach one for large z, but will
always be slightly less than one in an approximate calculation. It shown in Table
1 of Ref. 29 that the four particle sector gives a contribution of about 1.9 x 10~4
when a = 1/2, and that of the six particle sector is about two orders of magnitude
smaller. In Ref. 30, N = 600 and only the vacuum and two particle sectors were
included.

A typical result for the numerical probability distribution is illustrated in Fig. 2P.
Here ¢? for a massless scalar field has been averaged in time by a sampling function
with @« = 1/2 and 7 = 1 and in space by a spherically symmetric function with
A =1/2 and ¢ = 0.14. For smaller values of z, the plot of In[— In(P)] as a function of
In z is straight line with slope of about 0.14, which is roughly equal to the predicted
value of ¢ = 1/6 for the worldline regime. For larger values of x, there is a smooth
transition to linear behavior with a slope of 0.501, which is very close to the predicted
value of ¢ = 1/2 for spacetime averaged behavior. The better fit to the predicted
value of ¢ in the spacetime averaged regime is probably due to having more data

bOriginally published as the upper panel in Fig. 2 of Ref. 30
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in that region. In this case, the predicted value of the transition from Eq. (35) is
at Inx, ~ 6, which is illustrated by the vertical dashed line. The actual transition

9))

I

In[-In(

e Fulldata
e Spacetime-averaged fit

e Worldline fit

4 8 10 12
In(X)

Fig. 2. The probability distribution for the space and time averaged (2 of a massless scalar field
in four dimensional Minkowski spacetime.
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occurs at a somewhat larger value, in the range 8 < Inz, < 10. The derivation of
Eq. (35) in Sec. VIB of Ref. 28 offers a criterion for the upper limit of validity of the
worldline approximation. The numerical results suggest that this criterion may be
too conservative, and the worldline approximation may remain valid to somewhat
larger values of x.

Overall, these numerical results confirm the behavior of the probability distribu-
tion for space and time averaged quadratic operator found by the moments approach
in Ref. 28. There is a clear transition from the worldline regime, where P(x) falls
as an exponential of a fractional power, to a spacetime averaged regime, where it
falls as an exponential of a larger fractional power, which reflect the effects of space
averaging in addition to time averaging.

5. Physical Effects of the Fluctuations

In this section we discuss several effects of quantum stress tensor fluctuations and
related phenomena.

5.1. Gravitational and Cosmological Effects

In Einstein’s general theory of relativity, the stress tensor 7}, is the source of gravity
through the Einstein equations

Gu = Ry — %g,“,R:SWGTW. (41)
Here g,,, is the spacetime metric, G\, and R, are the Einstein and Ricci tensors
which describe the spacetime curvature, R = Rf, is the scalar curvature, and G is
Newton’s constant. It is apparent that quantum fluctuations of 7},,, will drive passive
fluctuations of G,,,, and hence of the spacetime geometry. These fluctuations are
distinct from the active fluctuations of gravity which will arise if gravity is quantized.
Both types of fluctuations are expected in a quantum theory of gravity, so the study
of passive fluctuations can provide some insight into quantum effects in gravity.

5.1.1. Spacetime geometry fluctuations and light propagation

Light propagating through a fluctuating spacetime can undergo several related ef-
fects, which may have the potential to leave observable signatures. An example is
lightcone fluctuations; the fixed lightcone of classical gravity can undergo quantum
fluctuations. Because gravity is non-dispersive, this effect applies to all light fre-
quencies equally. In principle, lightcone fluctuations lead to a variation in the flight
times of pulses, with some traveling slower than the mean light speed, and others
faster.3132 Some closely related effects were discussed by Hu and Shiokawa.33
Both passive and active fluctuations of gravity will modify light propagation, and
both can lead to fluctuations of the Riemann tensor and of geodesic deviation,3*
which in turn can produce spectral line broadening.3® However, there is one effect
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which is especially sensitive to passive geometry fluctuations, and hence to quantum
stress tensor fluctuations. This is fluctuations in focussing of light rays,?6-37 which
can be studied using the Raychaudhuri equation: (See, for example, Wald.?®)

% =—R, k'K — %92 — 00" Wy wh (42)
Here 6 is the expansion of a bundle of light rays, the logarithmic derivative of the
bundle’s cross sectional area as a function of the affine parameter, A, which increases
along the bundle’s propagation direction. Here k* is the null vector tangent to
the bundle’s worldline, and may be taken to be the four-momentum vector of the
photons in the bundle. The tensors o and w*” are the shear and vorticity, and
measure the tendency of the rays in the bundle to either shear or twist relative to
one another. In the limit of weak gravitational fields, the quadratic terms in 6, o*”
and w"” can be small compared to the Ricci tensor term. This term is determined
by Eq. (41) in terms of the stress tensor T),. In this case, Eq. (42) becomes a
Langevin-type equation in which fluctuations of the stress tensor determine those
of the expansion 6. This can lead to the blurring of images by the fluctuating
gravitational field.?”

5.1.2. Perturbations in Inflationary Cosmology

As was briefly discussed in Sec. 2.3.2, inflationary models explain the large scale
structure of the present day universe as arising from the vacuum fluctuations of an
approximately linear field. This results in a nearly Gaussian probability distribution
for the perturbations. However, there is a possibility that quantum stress tensor
fluctuations could contribute either to the primordial density perturbations,3®4° or
to primordial gravitational waves,*! and introduce non-Gaussian behavior. These
references concentrate on the calculation of the variance of the fluctuations, and
there is more work to be done to better understand the spacetime averaging and
the probability distributions.

5.1.3. Effects on the Small Scale Structure of Spacetime

Carlip, Mosna, and Pitelli*? 43 have proposed a model in which large stress tensor
fluctuations dramatically alter spacetime structure on scales slightly larger than
the Planck length. These authors use a two dimensional model of the form of that
discussed in Sec. 4.1 in which stress tensor fluctuations lead to light cones closing
on a length scale about one order of magnitude larger than the Planck length, and
spacetime breaking into causally disconnected regions at this scale.

5.2. Effects in Nonlinear Optics

In a nonlinear optical material, the electric polarization vector, and hence the speed
of propagation of light pulses can depend upon an applied electric field. This depen-
dence can be linear (nonzero second order susceptibility), quadratic ( nonzero third
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order susceptibility), or higher order. If the electric field undergoes quantum fluctu-
ations, this leads to fluctuations in the speed of pulses.*4~46 This is an analog model
for the quantum lightcone fluctuations discussed in Sec. 5.1.1, and is a potentially
observable effect in nonlinear optics. These fluctuations may have either a Gaussian
probability distribution for linear fields, or a non-Gaussian distribution analogous
to those for quantum stress tensors treated in Sec. 4.3. In the latter case, there can
be large fluctuations which depend upon the switching of the probe light pulse. This
might provide an experimental means to study large vacuum fluctuations.

5.3. Vacuum Radiation Pressure Fluctuations on Charged
Particles

The energy or linear momentum flux in the electromagnetic field is given by the
Poynting vector, E x B. When the field is quantized, this becomes an operator,
which has a zero expectation value in the vacuum and will fluctuate symmetrically
around this mean value. This leads to vacuum radiation pressure fluctuations on a

47 or a charged particle.*® Here we focus on the latter case. First consider a

mirror
classical plane electromagnetic wave with angular frequency w which scatters from
a particle with rest mass m and electric charge ¢ by Thompson scattering, for which

the total cross section is

q4

o = —— .
67 m2

(43)

This cross section applies when w < m and arises from a dipole pattern of scat-
tered radiation. Here the scattered radiation carries no net momentum. The linear
momentum of the incident radiation is converted to mechanical momentum of the
particle, which experiences a force of o E x B. In the case of a quantized electro-
magnetic field in the vacuum state, the radiation pressure fluctuations lead to force
fluctuations and to linear momentum fluctuations of the particle. The probability
distribution for large vacuum radiation pressure fluctuations on a charged particle
will have the same asymptotic form as that discussed in Sec. 4.3.2 for operators
such as the electromagnetic energy density.

Radiation pressure fluctuations can enhance the rate at which charged parti-
cles penetrate a potential barrier,*® analogous to the effect of electric field fluctu-
ations.®* However, now the effect is potentially larger, due to the relatively high
probability of large fluctuations. Here the magnitude of the effect depends sensi-
tively on how the operator o E x B is averaged. In Ref. 48, it was suggested that
this averaging process might be determined by a combinations of shape of the in-
cident particle’s wavepacket and the shape of the potential barrier. The radiation
pressure fluctuations seem to become more important at higher energies, and might
be observable in nuclear fusion reactions.
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5.4. Vacuum Radiation Pressure Fluctuations on Polarizable
Particles

Vacuum radiation pressure fluctuations on an electrically polarizable particle,
such as an atom, take a very different form as compared to the case of electric
charges.*®49 This is because the dominant form of scattering is now Rayleigh scat-
tering, rather than Thompson scattering. The total cross section for Rayleigh scat-
tering is

_ 9% 4

67

Here g is the static polarizability, and w is the angular frequency of the incident

OR (44)

light, which is assumed to be small compared to typical atomic energy level sepa-
rations. The w-dependence of or can be interpreted as leading to additional time
derivatives in the quantum operator describing vacuum radiation pressure fluctua-
tions on an atom. Take this operator to be
o3
67
In the case that the electric and magnetic field has sinusoidal time dependence, the
time derivatives in Eq. (45) produce the factor of w* in Eq. (44).
The additional time derivatives have a dramatic effect on the probability of
large radiation pressure fluctuations on an atom. Let the dimensionless variable
describing these fluctuations be

(Ex B). (45)

x=7°|E x B (46)
In the worldline regime, now given by
7
T < Ty = (%) , (47)

the probability distribution has the approximate form of Eq. (28) with ¢ = /7. If
the Fourier transform parameter is a = 1/2, then the probability distribution falls
very slowly, with ¢ = 1/14.

This distribution was used in Ref. 49 to estimate vacuum radiation pressure
fluctuations on a Rydberg atom, which is an atom in a highly excited state with a
very large polarizability. Such an atom can be formed by the effect of a switched
laser pulse. In the model of Ref. 49, the Fourier transform of this pulse determines
the parameter o and hence the probability distribution of the vacuum radiation
pressure fluctuations.

5.5. Light Scattering from Quantum Fluid Density Fluctuations

A different analog model for quantum stress tensor fluctuations is provided by
quantum fluctuations in the density of a fluid due to quantized sound waves. Several
authors have discussed the fact that fluid density may be described by an quantum
operator which is proportional to ¢, where ¢ is a massless scalar field, but with the
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speed of light replaced by the speed of sound.?®®2 The possibility of observing these
density fluctuations by light scattering was discussed in Ref. 53. Here a scattering
cross section was treated, which effectively measures the fluid density fluctuations.
More recently, a model was proposed® in which the probability distribution for
large fluctuations might be observed.

The basic idea is to send pulses of light described by compactly supported func-
tions through the fluids, as illustrated in Fig. 3° Because the light scattering is a
coherent process, the expected number of photons scattered by a density fluctua-
tion is proportional to the square of the density variation and hence proportional to
(2. The mean number of photons scattered, averaged over trials, is measure of the
variance of (2. However, a histogram of numbers of scattered photons effectively
generates a plot of the probability distribution of the space and time averaged (2
operator.

¢Originally published as Fig. 2 in.Ref. 54.

To the

detector \

Fig. 3. The scattering of light by a large density fluctuation is illustrated. The pulse of light
moves to the right at a speed much greater than the speed of sound. The fluctuation region of
spatial size £ is shown in color, and photons scattered from this region are seen by a detector.
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6. False Vacuum Decay in Field Theory

A self-coupled scalar field ¢ can be described by a potential V(¢). Suppose that
the potential has a local minimum at ¢ = ¢, which is not a global minimum.
This minimum is stable against small classical perturbations, but is expected to
be unstable in quantum field theory. This is the analog of a quantum particle in
a local potential minimum, which is unstable against quantum tunneling. In field
theory, such an unstable configuration is called a false vacuum and is unstable
against quantum tunneling to the global minimum, the true vacuum. A theory which
describes this process was developed by Coleman®® and by Callen and Coleman.>®
In this approach, the tunneling amplitude is computed in euclidean space from a
path integral, and the dominant contribution is assumed to come a configuration
with minimum euclidean action, called a “bounce” or “instanton”. This leads to
a decay rate per unit volume proportional to exp(—B), where B is the euclidean
action of the bounce. This approach is analogous to the WKB method for computing
tunneling rates in quantum mechanics.

Just as quantum tunneling rates of charged particles can be modified by vac-
uum electric field or radiation pressure fluctuations, we can ask if quantum field
fluctuations can enhance the rate of false vacuum decay. The effect of linear field
fluctuations of ¢ or its time derivative (> has been discussed by several authors.?” 67
These authors generally agree that linear field fluctuations give a contribution to
the decay rate which is of the same order as the exp(—B) result in Ref. 55. However,
there is disagreement as to whether field fluctuations represent a physically distinct
decay channel. The order of magnitude agreement can be viewed as arising from the
Gaussian probability distribution, Eq. (12), for vacuum fluctuations of linear fields,
which has a similar functional form to exp(—B). A heuristic picture of the effect of a
large ¢ fluctuations was given in Ref. 67, in which this effect is analogous to a large
initial value of ¢ for a classical field in a local potential minimum. This can cause
a finite region to evolve classically over the barrier between the local minimum and
the global minimum.

The effects of quadratic operator fluctuations, such as those of (2, were also
discussed in Ref. 67, where it was argued that these can have a larger effect than
either quantum tunneling or linear field fluctuations, This is due to the slower than
exponential decay of the probability distribution for ¢, and suggests that these
may be the dominant contribution in some cases.

7. Summary

In this article, various aspects of quantum field fluctuations have been reviewed,
beginning with vacuum fluctuations of the electric field. These play a role in the
Lamb shift and can enhance quantum tunneling of charged particles. Similar fluctu-
ations of a scalar inflaton field could have been the source of the primordial density
fluctuations in the early universe which gave rise to galaxies. The Gaussian prob-
ability distribution of these fluctuations was discussed, and it was argued that a
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meaningful discussion of the fluctuations requires that the field be averaged in time
or in space, and that this averaging describes the measurement process. Further-
more, the averaging should be over finite regions, requiring averaging functions with
compact support, those which strictly vanish outside of a finite region and are hence
non-analytic.

Such functions are also essential for the treatment of the fluctuations of quadratic
operators, such as energy density or flux. Here the probability distribution becomes
very sensitive to the details of the averaging and hence of the measurement pro-
cess. The probability distribution for vacuum fluctuations can now fall relatively
slowly, as an exponential of a fractional power. This leads to the possibility of large
fluctuations and a dominance of vacuum fluctuations over thermal fluctuations. A
quadratic operator averaged in both space and time typically has a probability dis-
tribution exhibiting two distinct regimes. The first is a worldline regime describing
smaller magnitude fluctuations and which depends primarily upon the temporal av-
eraging. Larger magnitude fluctuations are in a spacetime averaged regime, where
both time and space averaging are important. Here the probability distribution falls
faster than in the worldline regime, but still as an exponential of a fractional power.
This general behavior is supported both by analytic arguments on the rate of growth
of the moments of the distribution, and by a numerical diagonalization approach.

Large stress tensor fluctuations can induce passive fluctuations of the gravita-
tional field, a variety of quantum gravity effect, and in principle produce quantum
lightcone fluctuations, and other effects on light rays which could play a role in
the early universe. There are analog systems, such as nonlinear optical materials or
fluid zero point density fluctuations which have similar effects to those in gravity,
and which might be experimentaly accessible. This is an ongoing area of research.
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