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Abstract

Prediction of wetland greenhouse gas (GHG) fluxes has been a challenging undertaking. Machine learning techniques such
as the artificial neural network (ANN) has a strong potential to provide high quality predictions of the wetland GHG fluxes.
We developed eight different ANN models and investigated their suitability to predict the major GHG fluxes (CO, and CH,)
in coastal salt marshes (dominated by Spartina alterniflora) of Waquoit Bay, Massachusetts, USA. Based on the dominant
environmental drivers, the daytime net uptake fluxes of CO, were predicted as a function of photosynthetically active radia-
tion, soil temperature (ST), and porewater salinity (SS). The net emission fluxes of CH, were predicted as a function of
ST and SS. Our models with the radial basis function neural network (RBNN) provided the most accurate and least-biased
predictions of the net CO, uptake (Nash-Sutcliffe Efficiency, NSE = 0.98) and CH, emission (NSE = 0.90-0.92). The lin-
ear layer neural network generated the least successful and most biased predictions of the GHG fluxes (NSE = 0.48-0.80).
Other ANNS, including the commonly-used feed forward neural network (FFNN), provided less accurate and more biased
predictions of the CO, (NSE = 0.86-0.97) and CH, (NSE = 0.73-0.89) fluxes than the RBNN. We, therefore, recommend
using RBNN as the first choice and FFNN (or its variant) as the second choice for predicting the GHG fluxes in coastal
salt marshes. Our findings and tools would help derive plausible scenarios and guidelines for restoration, monitoring, and
maintenance of coastal salt marshes in the U.S. and beyond.

Keywords Artificial neural network (ANN) - Coastal wetlands - Greenhouse gases - Machine learning - Predictions - Salt
marshes

Introduction

Coastal salt marshes are intertidal wetlands, which exhibit
the highest rates of ecosystem carbon accumulations (Ouy-
ang and Lee 2014; Theuerkauf et al. 2015). The net ecosys-
tem exchange (NEE) of carbon dioxide (CO,) and methane
(CH,) are the major greenhouse gas (GHG) fluxes in tidal
salt marshes (Mozdzer and Megonigal 2013; Abdul-Aziz
et al. 2018). The NEE of CO, is the difference between gross
primary productivity and ecosystem respiration (Reichstein
et al. 2005). The net uptake typically dominates the day-
time CO, fluxes due to photosynthesis in the presence of
sunlight and favorable temperature (Juszczak et al. 2012;
Schifer et al. 2014). During nighttime, net emission fluxes
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of CO, result from ecosystem respiration, which is mainly
driven by soil temperature (Lloyd and Taylor 1994; Qi et al.
2002; Smith et al. 2019).

The NEE of CH, is often dominated by CH, emission as
the outcome of soil microbial processes and gas transport
(Conrad 1989). CH, is produced by methanogenic bacte-
ria under anaerobic conditions, whereas CH, is oxidized by
methanotrophic bacteria mostly under aerobic conditions.
These processes of CH, production and oxidation are pri-
marily controlled by soil temperature and moisture content
(or water table) in freshwater wetlands (Walter and Heimann
2000; Nahlik and Mitsch 2011). However, subject to the reg-
ular cycles of tidal flooding, other soil characteristics such as
porewater salinity can also impact the underlying processes
of both CO, and CH, fluxes in coastal salt marshes (Poffen-
barger et al. 2011; Abdul-Aziz et al. 2018).

Subject to the complex biogeochemical processes and
interactions, it has been challenging to predict the GHG
fluxes and carbon storage in coastal wetlands (Oikawa et al.
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2017; Abdul-Aziz et al. 2018). However, accurate modeling
and prediction tools are essential to guide the restoration,
monitoring, and maintenance activities of tidal salt marshes.
Previous research (e.g., Walter and Heimann 2000; Zhang
et al. 2002; St-Hilaire et al. 2010) attempted to develop
process-based models of the GHG fluxes mainly for inland
freshwater wetlands. In contrast, Abdul-Aziz et al. (2018)
determined the environmental controls of CO, and CH,
fluxes in coastal salt marshes and developed emergent power
law scaling models to acceptably predict the GHG fluxes.
Their success inspires further developments into the empiri-
cal and data-driven predictive modeling of the GHG fluxes
with the necessary mechanistic underpinnings.

Machine learning offers data-driven tools that could be
utilized to develop models for accurate predictions of the
GHG fluxes in coastal salt marshes. Relationships between
the GHG fluxes and environmental drivers in salt marshes
are highly non-linear (Moseman-Valtierra et al. 2016; Abdul-
Aziz et al. 2018). Machine learning techniques such as the
artificial neural network (ANN) has a strong potential to
represent highly non-linear relations and provide high qual-
ity predictions of ecosystem carbon fluxes (Kordowski and
Kuttler 2010; Jammet et al. 2017; Tramontana et al. 2020).
However, ANN has considerable variants, representing dif-
ferent levels of accuracy and uncertainty. Therefore, evalu-
ation of various ANNSs is important for developing the most
accurate and consistent models to predict the GHG fluxes in
coastal salt marshes.

In general, ANNSs are known as ‘black-box’ models that
identify complex non-linear relationships between the pre-
dictors and response variable and reproduce the data of the
response by flexibly adjusting assigned weights and biases
for different predictors (Dengel et al. 2013). For the last
several decades, scientists working with terrestrial carbon
dynamics have been extensively utilizing ANN models to
predict CO, fluxes based on the environmental drivers such
as radiation, temperature, soil water content, vapor pressure
deficit, and vegetation indices. The most commonly-used
ANN for this purpose has been the feed forward neural
network (FFNN). For example, many studies (e.g., Moffat
et al. 2010; Knox et al. 2018; Schéfer et al. 2019) developed
FFNN models, often involving multiple hidden layers in the
network structure, to predict the CO, fluxes in forests, crop-
lands, and wetlands from the environmental drivers.

Apart from the FFNN models, the radial basis function
neural network (RBNN) and the generalized regression
neural network (GRNN) models have also been employed
to predict ecosystem CO, fluxes, especially for sites repre-
senting complex environmental settings. The RBNN model
has mostly been utilized to predict CO, fluxes of urban or
peri-urban ecosystems, involving the aerodynamic varia-
bles (e.g., wind speed, wind direction) alongside the typical
environmental drivers as the key predictors (Schmidt et al.
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2008; Kordowski and Kuttler 2010). Archibald et al. (2009)
developed a GRNN model to predict CO, fluxes in an Afri-
can savanna using climate variables, vegetation indices, and
various water stress indicators. Zhu et al. (2013) employed
GRNN to predict CO, fluxes in high latitude wetlands using
climatic variables, water table depth, soil organic carbon,
and porosity. CO, fluxes in rainfed croplands were predicted
by Safa et al. (2021) with RBNN based on the amounts of
irrigation and precipitation. Further, recent studies (e.g.,
Safa et al. 2019; Tramontana et al. 2020) employed a multi-
layer perceptron neural network (MLNN) to achieve strong
predictions of CO, fluxes in terrestrial ecosystems based on
environmental and vegetation indices, with a coefficient of
determination of up to 0.95.

Overall, the ANN models, particularly FFNN and MLNN,
have been employed to predict the GHG fluxes for various
wetland ecosystems, mostly focusing on the northern peat-
lands (e.g., Dengel et al. 2013), temperate and boreal fresh-
water wetlands (e.g., Goodrich et al. 2015; Rey-Sanchez
et al. 2018; Delwiche et al. 2021; Irvin et al. 2021), and
agricultural peatlands (e.g., Hatala et al. 2012; Knox et al.
2015). However, the existing ANN-based studies did not
focus much on predicting the GHG fluxes in coastal salt
marshes.

The main objective of our study is to develop various
types of ANN models and investigate their suitability to
predict the major GHG fluxes (CO, and CH,) in coastal salt
marshes. Our hypothesis is that the GHG fluxes in coastal
salt marshes are predominantly driven by a small set of
environmental variables, which can be utilized to develop
accurate predictive models. The dominant predictors of CO,
and CH, fluxes were first identified by developing univari-
ate (i.e., single-predictor) models with eight types of ANN.
Optimal ANN models were then developed based on the
dominant predictors through a forward selection modeling
approach, and the most successful ANN models were identi-
fied to predict the major GHG fluxes in coastal salt marshes.

Materials and Methods
Study sites and dataset

The salt marshes of our study are located in Waquoit Bay,
Cape Code, Massachusetts, USA, with opening into the
North Atlantic Ocean (Fig. 1). The four salt marsh sites
(Sage Lot Pond, Eel Pond, Great Pond, and Hamblin
Pond) exhibited varying ranges of nitrogen (N) loading
(~5 to 126 kg-ha!-year'!), although no significant dif-
ferences in the measured GHG fluxes were observed
with these variations in N loading (Abdul-Aziz et al.
2018). The salt marsh sites were dominated by Spartina
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alterniflora, a C, halophyte plant, which is prevalent in
majority of the salt marshes along the Atlantic coast of
USA (Boyd et al. 2017).

The dataset used in this study was originally published
by Abdul-Aziz et al. (2018). The data included chamber-
based instantaneous measurements of the NEE of CO,
and CH,, as well as the corresponding environmental
variables during different days of May-October in 2013
(Table S1 in the supplementary information). The envi-
ronmental variables included photosynthetically active
radiation (PAR), soil temperature (ST), porewater salinity
(SS), pH, water level relative to the soil surface (WL), and
soil moisture content (SM). The NEE of CO, represented
the net uptake fluxes of CO, in daytime (measured dur-
ing 8:00 a.m. to 4.30 p.m. Eastern Standard Time; sample
size, n = 137) and NEE of CH, represented the day and
nighttime net emission fluxes of CH, (n = 107). Nega-
tive and positive values of NEE indicated, respectively,
the net uptake and emission fluxes. The different sample
sizes between the datasets for the two GHG fluxes led to
differences in the summary statistics (e.g., mean, standard
deviation, minimum, maximum, and 25" to 75" percen-
tiles) of the associated environmental variables (Table 1
and Table S1). Further details into the data collections
and processing can be found in Abdul-Aziz et al. (2018).
The complete dataset is available online at no-cost in the
figshare data repository (Abdul-Aziz et al., 2021).

Framework for modeling and analysis

Eight types of conventional ANN models were developed to
predict the GHG fluxes in the coastal salt marshes. We first
employed the linear layer neural network (LLNN), which
uses a linear function (Fig. 2a) and is arguably the simplest
ANN model (Zhang et al. 2008). Then, we developed mod-
els with the feed forward neural network (FFNN), followed
by its two variants: multi-layer perceptron neural network
(MLNN) and cascade forward neural network (CFNN). The
three models are unidirectional (i.e., involve no feedback
loops) and utilize a sigmoid (e.g., hyperbolic tangent-sig-
moid, and log-sigmoid) or piecewise-linear (e.g., rectified
linear unit, and saturated linear) transfer function in hidden
layer(s) for non-linear transformations of data (Fig. 2b-d;
also see Wang et al. 2019; Stursa and Dolezel 2019). MLNN
utilizes multiple hidden layers to compensate for the lost
efficiency of predictions typically seen in FFNN (Stathakis
2009). CFNN uses weighted connections from the input to
both hidden and linear layers to learn the underlying rela-
tionships quicker than FFNN (Saeedi et al. 2016). Then, we
developed models with the layer-recurrent neural network
(LRNN) and the non-linear autoregressive neural network
with exogenous inputs (NARX). These models use a sigmoid
or piecewise-linear function in their hidden layers, similar
to the FFNN (Kun et al. 2018; Korprasertsak and Leephak-
preeda 2019). However, both models further involve a single
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Table 1: Summary of the predictive modeling data of the GHG fluxes and the environmental predictors collected during May-October of 2013
across the four tidal salt marshes of Waquoit Bay, Massachusetts, USA.

Dataset Variables Mean  Standard deviation Minimum 25" percentile 50™ percentile 75" percentile Maximum
Modeling of Net CO, uptake -5.33 4.72 -17.10 -9.27 -3.47 -1.04 -0.05
daytime net (umolCO,-m2s7)
CO, uptake PAR 1395.53 519.73 303.70 1053.18 1514.95 1867.03 2093.08
(n=137) (pmol-m2s")
ST 17.57  4.15 8.89 14.79 17.22 20.59 26.10
O
SS 30.50  4.70 10.00 28.00 32.00 33.00 40.00
(ppt)
Modeling of day Net CH, emission 0.62 0.55 0.10 0.24 0.35 0.94 2.35
and nighttime ~ (nmolCH,-m™2-s™")
net CH, emis- g 1721 439 8.75 14.75 16.92 20.40 26.35
sion (°C)
(n=107) SS 3122 397 20.00 29.00 32.00 34.00 40.00
(ppt)

*PAR, ST, and SS refer to photosynthetically active radiation, soil temperature, and porewater salinity. n represents sample sizes of the modeling
datasets. The different sample sizes (n) between the datasets for the two GHG fluxes (n = 137 for CO, and 107 for CH,) led to the differences in
summary statistics (e.g., mean, standard deviation, minimum, maximum, and 25th to 75th percentiles) of the associated environmental variables.

(a) LLNN Linear Layer (b) FFNN Hidden Layer Linear Layer

Input Output Input

(¢) MLNN (d) CFNN
Hidden Layer 1 Hidden Layer 2 Linear Layer

Linear Layer

(f) NARX Hidden Layer

(2) RBNN Hidden Layer Linear Layer

Input Output

Output
= Weights = o o . . . :
M -: J‘ | : | =7| = Log-sigmoid or = Tangent-sigmoid or =4 = Rectified linear unit or =)= Saturating linear transfer function
= Biases |
@) = Single delay input through [— . . B ) } '
the feedback loop ' /| = Linear transfer function N = Radial basis transfer function

Fig.2 Configurations of the eight ANN models developed to predict cascade forward neural network, LRNN = layer-recurrent neural net-

the GHG fluxes in coastal salt marshes based on MATLAB2020a. work, NARX = nonlinear autoregressive neural network with exog-
LLNN = linear layer neural network, FFNN = feed forward neural enous inputs, RBNN = radial basis function neural network, and
network, MLNN = multi-layer perceptron neural network, CFNN = GRNN = generalized regression neural network
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delay feedback loop to also incorporate latent structures
from the previous time-step and improve the network for
the current time (Hussain et al. 2015). In LRNN, the feed-
back loop is designed to work within the non-linear hidden
layer, whereas in NARX the feedback loop is implemented
between the non-linear hidden layer and the linear output
layer (Fig. 2e-f).

Finally, we employed the radial basis function neural net-
work (RBNN) and its variant called the generalized regres-
sion neural network (GRNN). Instead of using a sigmoid or
piecewise linear function for data transformations, RBNN
and GRNN involves locally-tuned networks, which helps
overcome the issue of obtaining a suboptimal solution (e.g.,
a local minima) in the learning process (Fig. 2g-h; also see
Zirkohi et al. 2010). Each hidden neuron adjusts the weights
of predictors using Euclidean distances and then transfers
their summation to a radial basis transfer function within
the hidden layer. Results of the hidden neurons for all ANNs
using either the sigmoid or the piecewise linear or the radial
basis function are transferred to the output layer, which
involves a linear transfer function. However, contrary to the
rest of the ANNS, the output layer in GRNN utilizes a linear
transfer function without the bias term to facilitate a rapid
training of the model (Fig. 2h; also see Ozyildirim and Avci
2013). Further details into the eight types of ANN with the
necessary mathematical formulations are given in the sup-
plementary information (Text S1).

We used MATLAB2020a for all coding, analysis, and
visualization related to the model developments and evalu-
ations. Built-in MATLAB functions were utilized to develop
the eight ANN models (Text S1 in the supplementary infor-
mation). Prior to model development, data for all variables
were standardized via a Z-transformation (i.e.,
Z = (X - f) /Sy, where X = original variable, X = mean of

X, and Sy = standard deviation of X). This standardization
of the data brings different units and magnitudes of variables
to a comparable range and improves performance of the
ANN models (Ladlani et al., 2012; Irvin et al. 2021). We
estimated each ANN model 100 times by randomly resam-
pling data (maintaining the original sample size in each
iteration) for the GHG fluxes and the concurrent environ-
mental variables using a boot-strap method. This helped
achieve robust estimations of the ANN models and quantify
the uncertainty associated with the predictions. For each
iteration of model estimations, cross-validation was per-
formed by randomly splitting the resampled dataset into the
training, validation, and testing ratios of 80:10:10 (respec-
tively), 70:15:15, 60:20:20, 50:25:25, 40:30:30, 30:35:35,
and 20:40:40. These ratios represented the most desirable to
the least desirable data-splits, given the sample sizes (n =
107 to 137) in the study. Our approach helped incorporations
of prediction performance from the various combinations of

data-splitting for model training, validation, and testing. Fol-
lowing previous studies (e.g., Kawamoto and Kabashima
2017; Willard et al., 2020), we reported the average predic-
tion performance along with associated uncertainty from the
100 sets of cross-validations.

The quality of predictions from an ANN model may
depend on the underlying training algorithm. We evaluated
four algorithms to train the eight ANN models: Levenberg-
Marquardt (LM) backpropagation, Bayesian regularization
(BR) backpropagation, Broyden-Fletcher-Goldfarb-Shannon
(BFGS) quasi-Newton backpropagation, and scaled conju-
gate gradient (SCQG) backpropagation (see Text S2 in the
supplementary information for details). During the learn-
ing procedure in the MATLAB platform, each algorithm
iteratively updated the network weights and biases using
the training dataset until (1) the best possible performance
with the validation dataset was achieved or (2) algorithm’s
requirements to avoid getting stuck at local minima was met
or (3) 1000 epochs were completed. The testing dataset was
then used to independently evaluate the performance of the
final ANN models.

An essential part of developing ANN models is opti-
mizing the training dataset for network hyper-parameters.
Important hyper-parameters for ANNs are typically the
number of hidden neurons, selection of transfer function,
learning rate, and the number of training epochs (Smithson
et al. 2016; Jo et al. 2019). Neurons are the basic units of
an ANN, whereas the transfer functions perform a non-
linear transformation of the input data. The learning rate
controls how slowly or quickly the network updates the
weights and biases, and the training epochs refer to the
number of network updates towards obtaining the final
models. The FFNN, MLNN, CFNN, LRNN, and NARX
models were optimized for 1 to 20 hidden neurons, four
transfer functions (hyperbolic tangent-sigmoid, log-sig-
moid, rectified linear unit, saturating linear function; see
Text S1 in the supplementary information for details), and
four learning rates (0.1, 0.01, 0.001, and 0.0001). We opti-
mized the LLNN model only for the learning rates as it
utilizes one hidden neuron and a linear transfer function
to train the input data. For RBNN and GRNN models, the
incorporated number of hidden neurons are the same as the
length (i.e., sample size) of the input data (Sudheer and
Jain 2003). However, the spread parameter, which repre-
sents the distribution density of the radial basis function in
both models, has to be optimized (Benoudjit and Verley-
sen 2003). The RBNN and GRNN models were optimized
for a spread of 1 to 20 and the four learning rates. We
evaluated all possible combinations of the hyper-param-
eters following a grid search approach and selected the
combination with the best cross-validation performance
by minimizing the root-mean-square error (RMSE) as the
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objective function and as a prediction error metric (Text
S3 in the supplementary information; also see Chittaragi
et al. 2019; Lorencin et al. 2021). The training epochs for
all ANNs were optimized in the MATLAB environment
through the convergence of training and validation errors
(RMSE).

We initially developed univariate (single predictor) mod-
els to determine the strength of individual environmental
variables (PAR, ST, SS, pH, WL, and SM) to predict the
net fluxes of CO, uptake and CH, emission (Table S1 in
the supplementary information). The prediction efficiency
of the ANN models was assessed by computing the Nash-
Sutcliffe efficiency (NSE), which can range from negative
infinity (— oo) to unity (1.0). The square of Pearson’s correla-
tion coefficient (12, which can range from 0 to 1.0) was also
computed as an indicator of linear correspondence between
the observed and predicted values of the GHG fluxes. The
model prediction accuracy was measured by computing
the RMSE and the ratio of RMSE to the standard devia-
tion of observations (RSR). RMSE (range: 0 to o) presents
the overall error in model predictions in actual units (e.g.,
pmolCO,-m*s! and nmolCH,-m?:s™"), which is easy to
understand but can widely vary based on the magnitude or
scale of the response variable (i.e., CO, or CH, fluxes). RSR
(range: 0 to co0) provides a normalized index of model accu-
racy, which is helpful for comparison of prediction errors
across the various scales of the response variables.

The variables exhibiting the strongest predictions were
used to obtain the optimum set of predictors for the corre-
sponding GHG fluxes through a forward selection approach.
The Akaike information criterion (AIC; Akaike 1974) was
used to obtain the sets of optimum predictors for the CO, and
CH, fluxes, alongside the prediction efficiency (NSE), corre-
spondence (%), and accuracy (RMSE and RSR) metrics (Text
S3 in the supplementary information). The optimal predictor
sets were then used to predict the respective GHG fluxes by
developing multivariate ANN models and utilizing all avail-
able data of the selected environmental predictors (Table 1).

The means of NSE, 2, RMSE, and RSR obtained from
the 100 resampled estimates were used to assess the overall
prediction efficiency, correspondence, and accuracy of the
ANN models. Similar to 1>, NSE = 1.0 refers to a perfectly
predictive model. However, unlike r* (which cannot be nega-
tive), NSE < 0 (i.e., negative) suggests that the average of
observations represents a better model than the proposed
model (Nash and Sutcliffe 1970). In contrast, a perfect
model has an RSR of 0; an RSR between 0 and 0.50 (and an
NSE between 0.75 and 1.00) indicates a very good model,
whereas a satisfactory model has an RSR between 0.50 and
0.70 (and an NSE between 0.50 and 0.75) (Moriasi et al.
2007). Although these criteria were originally developed for
watershed hydrologic models and may appear stringent for
ecological models, we still set the thresholds as reference
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metrics to achieve good quality predictions of the GHG
fluxes in coastal salt marshes.

Results and Discussion

Dominant predictors of the GHG fluxes based
on univariate ANN models

The univariate ANN models suggested PAR, ST, and SS
as moderate to strong predictors (as indicated by NSE, 2,
RMSE, and RSR) of the GHG fluxes in the coastal salt
marshes, whereas pH, WL, and SM were weak predictors
(Fig. 3, 4; Fig. S1-S6 in the supplementary information).
The predictive control of PAR on the net uptake fluxes of
CO, mainly reflected the photosynthetic activities of the salt
marsh plants during the daytime. However, the mechanistic
link of PAR to CH, fluxes through primary productivity is
confounding and unclear (Gomez-Casanovas et al. 2020). In
fact, by using the dataset of the current study, Abdul-Aziz
et al. (2018) found PAR to be a statistically insignificant
predictor (p value = 0.54) of the CH, emission fluxes. They
further demonstrated that the apparent control of PAR on
the emission fluxes of CH, in coastal salt marshes had been
spurious, representing mostly a surrogate effect of ST on
methanogenesis. However, weakened relationship between
ST and CH, emission in deep freshwater wetlands (Zhu
et al. 2021) possibly might indicate PAR as a predictor that
indirectly influences emission of CH, by triggering plant-
mediated transport (Koebsch et al. 2015).

The strong linkage of ST on the net CO, uptake reiterated
the strong influence of high temperature on the photosynthe-
sis in coastal wetlands (Guo et al. 2009; Inglett et al. 2012).
Specifically, temperature controls the activation process of
the primary photosynthetic enzyme (RuBisCO) in the plants
(C,) of salt marshes (Sage and Kubien 2007). The link of
SS indicated the adverse impacts of high salinity on the pro-
ductivity of halophytic plants in salt marshes (Vasquez et al.
2006; Mateos-Naranjo et al. 2010; Pierfelice et al. 2017).
High salinity leads to the production and accumulation of
phytotoxic substances (e.g., hydrogen sulfide) in the anaer-
obic marsh sediments (Bradley and Morris 1990; Lamers
et al. 2013). The phytotoxins impact leaf chlorophyll con-
tent, protein synthesis, and lipid metabolism of marsh plants
leading to a reduced primary productivity (Mateos-
Naranjo et al. 2010; Pierfelice et al. 2017).

The strong linkage of ST with the net CH, emission fluxes
indicated temperature as the dominant driver of methano-
genesis in the presence of adequate organic substrate in the
wetland soil (Martin and Moseman-Valtierra 2017; Abdul-
Aziz et al. 2018). ST drives the microbial activities involving
both methanogenesis (CH, production) and methanotrophy
(CH, oxidation). However, methanogenesis can be more
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ultimately results in increased emission of CH, to the atmos-
phere (Walter and Heimann 2000). The control of SS on the
net CH, emission can be attributed to the highly sulfate-rich
soil in salt marshes (Poffenbarger et al. 2011; Vivanco et al.
2015; Abdul-Aziz et al. 2018). Total anaerobic decomposi-
tion in sediments is typically dominated by sulfate reduction,
which can hinder methanogenesis by outcompeting metha-
nogens (Bartlett et al. 1987; Poffenbarger et al. 2011; Weston
et al. 2014). Further, CH, can also be oxidized by sulfate-
reducers (Bartlett et al. 1987; Segers 1998). Together, these

and reduce emission to the atmosphere in highly saline
coastal salt marshes.

Previous studies (e.g., Wilson and Morris 2012; Abdul-
Aziz et al. 2018) reported higher fluxes of both CO, uptake
and CH, emission during high tides than low tides, subject
to the higher flushing of salt accumulated in the marsh soil
by the high tides. However, we found a weak relationship
of WL with the GHG fluxes; this might have been caused
by the inherent time-lag between the well (where water lev-
els were measured) and tidal water levels. In contrast, the

@ Springer



37 Page8of16 Wetlands (2022) 42: 37
Fig.4 Average Nash—Sut- mm Training mm Validation mm Testing
cliffe efficiency (NSE) of the
univariate models of net CH, 1.0 1.0
emission fluxes for the eight
ANN models. PAR, ST, SS, 0.5 A 0.5 1
WL, and SM refer to photosyn-
thetically active radiation, soil ® 0.0 4 = 0.0 -
temperature, porewater salinity, Z Z
water level with respect to "
soil surface, and soil moisture 0 LLNN 051 FFNN
content.
-1.0 -1.0
PAR ST SS pH WL SM PAR ST SS pH WL SM
1.0 1.0
0.5 - 0.5 A
[Sa) m
0.0 - » 0.0 1
Zz z
-0.5 -0.5
MLNN CFNN
-1.0 -1.0
PAR ST SS pH WL SM PAR ST SS pH WL SM
1.0 1.0
0.5 1 0.5 A
0 0
©2 0.0 n 4
z z 00
-0.5 4 LRNN -0.5 - NARX
-1.0 -1.0
PAR ST SS pH WL SM PAR ST SS pH WL SM
1.0 1.0
0.5 1 0.5
o} 59}
0.0 » 0.0 1
z z R B
051  RBNN 0541 GRNN
-1.0 -1.0
PAR ST SS pH WL SM PAR ST SS pH WL SM

weak relation of SM with the GHG fluxes may be attributed
to the predominant soil saturation in our study area, which
represented low marshes (Table S1 in the supplementary
information). Further, the near neutral pH of soil porewater
in our salt marshes (mean ~7 and standard deviation ~ 0.30;
Table S1 in the supplementary information) resulted in its
weak relationships with the GHG fluxes. However, given
that tidal hydrology contributes to the variation of soil tem-
perature and porewater salinity (Wang et al. 2007), the con-
trols of ST and SS might have reflected the overall effects of
tidal hydrology on the GHG fluxes (Abdul-Aziz et al. 2018).

@ Springer

Optimal multivariate ANN models to predict
the GHG fluxes

The AIC plots for model training suggested that the net
uptake fluxes of CO, were optimally predicted by using up
to three predictors (i.e., ST, SS, and PAR) for most ANNs,
whereas two variables (ST and SS) represented the optimal
predictor set for net CH, emission (Fig. S7 in the supple-
mentary information). However, some ANNs (e.g., RBNN
and GRNN) exhibited potential for including additional pre-
dictors to predict the GHG fluxes. This could be attributed
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to the over-fitting tendency of the RBF-based ANNs consid-
ering that they use the same number of hidden neurons as
the sample size of the input data (Skolthanarat et al. 2014).
The NSE, 12, RMSE, and RSR of the corresponding models
provided complementary results to that for AIC (Fig. S8-S11
in the supplementary information).

Based on the identified dominant predictors of the GHG
fluxes, we developed eight multivariate ANN models to
predict the daytime net uptake fluxes of CO, as a function
of PAR, ST, and SS. The net emission fluxes of CH, were
predicted as a function of ST and SS. All models were opti-
mized for network hyper-parameters to obtain the maximum
accuracy in cross-validations (minimum RMSE) with the
predicted GHG fluxes using the best performing train-
ing algorithm. Although the different training algorithms
(LM, BR, BFGS, SCQG) provided similar performance in
predictions, the LM algorithm provided the most accurate
predictions from the various ANN models across the train-
ing, validation, and testing phases (Table S2 and S3 in the
supplementary information). In cross-validations with the
LM algorithm, prediction performance metrics were nearly
robust with various amounts of data-splitting among the
model training, validation, and independent testing phases
(Table S4 and S5 in the supplementary information).

The optimal models with FFNN, MLNN, CFENN, LRNN,
and NARX mostly utilized the sigmoid transfer functions

for the non-linear transformations of data (Table S6 in
the supplementary information). The optimal FFNN and
MLNN models did not require more than 10 hidden neu-
rons, whereas CFNN, LRNN, and NARX typically used up
to 15 hidden neurons. The value of spread parameter for the
optimal models of RBNN were between 10 and 15, whereas
the spread values ranged from 5 to 15 for GRNN. The dif-
ferent learning rates (0.1, 0.01, 0.001, and 0.0001) did not
have much effect during optimization of the ANN models.
Further, the optimal models for the different ANNs were
typically achieved within 50 epochs of model estimations.
The low standard deviations of the performance metrics
(NSE, r?, RSR, and RMSE) in predicting the GHG fluxes
further indicated robust estimations of the final models for
all eight ANNSs (Table S7 in the supplementary information).

Among the multivariate ANN models of net CO, uptake,
RBNN provided the most accurate and least biased pre-
dictions across training, validation, and testing (NSE =
0.98, r> = 0.99, RSR = 0.11 to 0.12, RMSE = 0.53 to 0.59
pmolCOz-mz-S'l) (Table 2 and Fig. 5). The FFNN, MLNN,
CFNN, LRNN, NARX, and GRNN models provided very
good predictions (NSE = 0.86 to 0.97, r* = 0.92 to 0.99,
RSR =0.14 t0 0.33, RMSE = 0.67 to 1.55 pmolCO,-m*s™),
although the associated uncertainties were quite high, spe-
cifically in model validation and testing. However, LLNN
produced a biased model that yielded the least successful

Table 2: Average performance of the optimal ANN models in predicting the GHG fluxes in the coastal salt marshes.

Response ANN Training Validation Testing
NSE 12 RMSEt RSR NSE P RMSEf RSR NSE 1 RMSEt RSR
Daytime net LLNN  0.80 090 2.08 044  0.80 0.90 2.07 044 079 090 2.10 0.45
uptake fluxes  FENN  0.92 096 125 026 0.91 0.96 131 028 0.89 095 1.50 0.32
(noiclg);) MLNN  0.89 095 145 031 086 096 138 029 088 092 155 0.33
CENN 095 097 1.03 022 091 0.97 123 0.26  0.90 095 1.49 0.32
LRNN  0.94 097 1.08 023 0.92 0.97 120 025 0.90 095 145 0.31
NARX  0.94 097 107 023 0.92 0.96 126 027 0.89 095 1.50 0.32
RBNN  0.98 099 0.58 012  0.98 0.99 053 0.11 098 099 0.59 0.12
GRNN  0.97 099 0.67 0.14 0.93 0.97 115 024 092 096 134 0.28
Day and night-  LLNN  0.66 082 032 0.58  0.59 0.83 0.32 0.58 0.48 0.82 034 0.61
time netemis- FENN  0.80 090 022 041 078 0.93 021 0.39 077 090 0.25 0.46
2%‘1 fluxes of VNN 0.82 091 022 040 0.77 0.92 022 040 0.79 091 024 0.45
(n=107) CENN  0.86 093 0.0 036 078 0.93 021 0.39  0.76 0.89 0.6 0.48
LRNN  0.84 093 021 038 082 0.93 021 0.38 0.78 090 0.25 0.45
NARX  0.86 093 020 036 0.84 0.93 021 0.38 073 0.88 027 0.49
RBNN 091 096 0.15 028 092 0.97 0.14 0.26  0.90 096 0.16 0.29
GRNN  0.89 095 0.17 031 0.84 0.93 021 037  0.77 090 0.26 0.47

*LLNN = linear layer neural network, FFNN = feed forward neural network, MLNN = multi-layer perceptron neural network, CFNN = cascade
forward neural network, LRNN = layer-recurrent neural network, NARX = nonlinear autoregressive neural network with exogenous inputs,
RBNN = radial basis function neural network, and GRNN = generalized regression neural network. n represents sample size of the modeling
dataset. NSE = Nash-Sutcliffe efficiency, 2 = Pearson’s correlation coefficient, RMSE = root-mean-square error, and RSR = ratio of RMSE to

the standard deviation of observations.

funits of RMSE is pmolCO,-m2-s! for CO, fluxes and nmolCH,-m2-s! for CH, fluxes.
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Fig.5 Observed versus pre-
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predictions (NSE = 0.79 to 0.80, ? =0.90, RSR = 0.44 to
0.45, RMSE = 2.07 to 2.10 pmolCO,-m*s™"). It provided
under-predictions of the high fluxes and over-predictions in
the medium range (Fig. 5).

For the net emission fluxes of CH,, the multivariate
RBNN model provided the strongest predictions (NSE =
0.90 t0 0.92, r* = 0.96 to 0.97, RSR = 0.26 to 0.29, RMSE =
0.14t00.16 nmolCH4-m2~s'1) across the training, validation,
and testing phases (Table 2 and Fig. 6). The LLNN model
was biased and generated the least successful predictions
(NSE = 0.48 t0 0.66, 1> = 0.82 to 0.83, RSR = 0.58 t0 0.61,
RMSE = 0.32 to 0.34 nmolCH,-m*s™!), with remarkable
under-predictions in the higher fluxes of CH, emission. The
remaining ANN models (FFNN, MLNN, CFNN, LRNN,
NARX, and GRNN) performed stronger (NSE = 0.73 to

@ Springer

0.89, r* = 0.88 t0 0.95, RSR = 0.31 to 0.49, RMSE = 0.17 to
0.27 nmolCH,-m?s") than LLNN, but weaker than RBNN.
These models also under-predicted the higher fluxes of net
CH, emission and had in general higher uncertainties in pre-
dictions (Fig. 6).

Insights into the varying prediction performance
of different ANNs

To investigate the different quality of predictions from the
various ANNs, we explored the relationships of the GHG
fluxes with the environmental drivers through scatter-plots
(Fig. S12 and S13 in the supplementary information). As
apparent, the expected mechanistic trends of the fluxes with
the predictors were associated with a remarkable noise. For
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example, a seasonal hysteresis was apparent in the plot of
PAR versus net CO, uptake —— with lower fluxes during
September-October than June-August at the similar PAR
values, which could be attributed to the lower temperatures
in the fall than in the summer. Although no hysteresis was
visible in the plots of net CO, uptake with ST, SS or other
environmental drivers, the underlying signals (e.g., increas-
ing uptake with increasing ST or decreasing uptake with
increasing SS) were masked with much noise (Fig. S12 in
the supplementary information).

We posit that the radial basis transfer function (RBF)
in the hidden layers of RBNN, in concert with a bias term
in the output layer (Fig. 2g), learnt signals from the noisy

patterns in the data more efficiently and accurately than the
remaining ANN models (Sudheer and Jain 2003; Xie et al.
2011). This resulted in the strongest predictions of the
GHG fluxes by RBNN among all ANNs. Although RBNN
and GRNN used the same network structure in the hid-
den layer (Fig. 2g-h), the lack of a bias term in the output
layer of GRNN contributed to its weaker predictions and
higher uncertainties. In contrast, the least successful and
biased predictions of the net CO, uptake and CH, emission
fluxes from LLNN suggested that the model with a simple
linear network structure had not been successful to learn
the non-linear and noisy relationships in the respective
datasets (Fig. 2a).

@ Springer
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Comparison with the previously developed
emergent scaling models

The emergent power law scaling models of Abdul-Aziz et al.
(2018) successfully predicted the salt marsh GHG fluxes
using the datasets of the current study: net uptake fluxes
of CO, (NSE =0.90 to 0.91, RSR = 0.30 to 0.31) and net
emission fluxes of CH, (NSE = 0.80 to 0.83, RSR = 0.42 to
0.49). The emergent scaling models had a simple structure
and explicit mathematical formulations, reflecting the ubig-
uitous power law in nature (Enquist et al. 2003; Schwefel
et al. 2017). A comparison of the overall performance (with
average NSE and RSR across training, validation, and test-
ing; see Table 2) of the ANN models in the current study
with the emergent scaling models led to interesting observa-
tions. The emergent scaling models provided much better
predictions than the LLNN models for both GHG fluxes. In
contrast, the RBNN models provided more accurate predic-
tions of the GHG fluxes than the emergent scaling models.
However, based on the averaged metrics, the emergent scal-
ing models predicted the GHG fluxes as well as that from
the remaining ANN models (FFNN, MLNN, CFNN, LRNN,
NARX, and GRNN). This is remarkable given that the scal-
ing models were parametric in type with a simple explicit
structure (emergent power law) and few parameters.

Limitations, challenges, and recommendations

The prevalence of noise and uncertainty in ecological and
environmental measurements can often lead to challenges
such as overfitting (specifically for small datasets) in the
training phase of an ANN model (Choi and Park 2001).
Over-training of ANNSs can contribute to a decreased gen-
eralization, resulting in large inaccuracies of model predic-
tions at variable time and space (Maher and Eyre 2011). We
employed ANN algorithms (on MATLAB 2020a platform)
that were equipped with a stopping criterion as soon as the
optimal (i.e., most accurate) model was estimated in the
training phase (see Materials and methods). This stopping
criterion helped avoid a substantial over-training of our mod-
els for the net uptake fluxes of CO, and the emission fluxes
of CH,. However, an important recommendation from the
current study would be to collect more data over longer peri-
ods in coastal salt marshes to develop more reliable ANN
models.

In general, most ANN-based studies of ecosystem carbon
fluxes developed models by employing FFNN with multiple
hidden layers to enhance accuracy in predictions (e.g., Safa
et al. 2019; Tramontana et al. 2020). In contrast, our final
ANN models involved a single hidden layer except for
MLNN that had two hidden layers by default and LLNN that
did not accommodate any hidden layer (Fig. 2). Our RBNN
and GRNN models used RBF for non-linear transformation
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and strictly required one hidden layer for a global conver-
gence (Park and Sandberg 1991; Mahato and Paul 2019).
However, we explored the performance of multivariate
FFNN, CFNN, LRNN, and NARX models for the GHG
fluxes in salt marshes by involving multiple hidden layers
(up to five). No consistent improvement in predictions of
the GHG fluxes was apparent across model training, valida-
tion, and testing with the increasing number of hidden layers
(Fig. S14-S15 in the supplementary information). Further,
the simulation time required on a Dell workstation (Proces-
sor: Intel Xeon E5 @2.40GHz, RAM: 32GB, and operat-
ing system: 64-bit Windows 10) increased in an exponen-
tial manner due to the inclusion of additional hidden layers
in the model structure (Fig. S14-S15 in the supplementary
information). Overall, the analysis indicated that one hidden
layer was adequate to obtain an optimal prediction of the
GHG fluxes in salt marshes from the FFNN, CFNN, LRNN,
and NARX models.

In the backdrop of insufficient data and decreasing
resources for environmental management (Wenger and
Olden 2012; Yates et al. 2018), transferability of ecologi-
cal models across various scales in space (e.g., regional,
global), time (e.g., diurnal, seasonal, annual), and ecological
units (e.g., ecosystem, species) is of paramount importance.
Although some ANN models could be employed as powerful
tools to obtain highly accurate predictions of ecological vari-
ables and indicators, it is quite difficult to interpret how dif-
ferent predictors are used through the hyper-parameterized
structure of neural networks to simulate a response vari-
able (Zhang et al. 2018). Being such a ‘black-box’ model,
ANN s trained for a particular species, site or ecosystem are
often not transferable to their counterparts. However, the
lack of transferability is not unique with ANN-based mod-
eling; it is also prevalent (although potentially at a reduced
level) in process-based and simple empirical models. Future
research should investigate ways to make the presented ANN
models of GHG fluxes (particularly RBNN) generalizable
using appropriately selected dominant predictors across salt
marshes representing gradients in time, space, species, and
associated processes. We further recommend evaluations of
these ANNs in predicting the lateral carbon fluxes (e.g., dis-
solved organic and inorganic carbon) alongside the vertical
fluxes (i.e., GHG fluxes) in the future research. This could
help obtain an accurate and complete estimations of carbon
budget in coastal salt marshes (Bogard et al. 2020).

Conclusions

We evaluated the hypothesis that the GHG fluxes in coastal
salt marshes are predominantly driven by a small set of
environmental variables, which can be utilized to develop
accurate predictive models. The eight different ANN models
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indicated sunlight (PAR), soil temperature (ST), and pore-
water salinity (SS) as the dominant predictors for the day-
time fluxes of net CO, uptake in coastal salt marshes. ST
and SS were the strongest predictors for the net emission
fluxes of CH,. Our overall finding is that the neural net-
work-based machine learning models can be useful tools
to accurately predict the major GHG fluxes in coastal salt
marshes. However, transferability of these models should
be evaluated with additional data from other salt marshes
representing diverse hydroclimatic, vegetation, and salin-
ity regimes. Another key finding is that use of a machine
learning technique does not inherently guarantee a highly
accurate prediction. The quality of predictions depends on
the algorithms of individual ANNs to represent the nonlinear
patterns in data. For example, our models with the radial
basis function neural network (RBNN) provided the most
accurate and least-biased predictions of the net CO, uptake
(NSE = 0.98) and CH, emission (NSE = 0.90-0.92). In con-
trast, the linear layer neural network (LLNN) resulted in the
least successful and most biased predictions of the GHG
fluxes (NSE = 0.48-0.80). Other ANNSs, including the feed
forward neural network (FFNN), provided less accurate and
more biased predictions of the CO, (NSE = 0.86-0.97) and
CH, (NSE = 0.73-0.89) fluxes than RBNN. We, therefore,
recommend using RBNN as the first choice and FFNN (or
any of its variants) as the second choice for predicting the
GHG fluxes in coastal salt marshes with a high accuracy
and consistency. The models (except for LLNNs) would be
useful tools to derive plausible scenarios and guidelines for
restoration, monitoring, and maintenance of salt marshes
(dominated by Spartina alterniflora) along the U.S. Atlantic
coast and around the world.
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