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Abstract
Prediction of wetland greenhouse gas (GHG) fluxes has been a challenging undertaking. Machine learning techniques such 
as the artificial neural network (ANN) has a strong potential to provide high quality predictions of the wetland GHG fluxes. 
We developed eight different ANN models and investigated their suitability to predict the major GHG fluxes (CO2 and CH4) 
in coastal salt marshes (dominated by Spartina alterniflora) of Waquoit Bay, Massachusetts, USA. Based on the dominant 
environmental drivers, the daytime net uptake fluxes of CO2 were predicted as a function of photosynthetically active radia-
tion, soil temperature (ST), and porewater salinity (SS). The net emission fluxes of CH4 were predicted as a function of 
ST and SS. Our models with the radial basis function neural network (RBNN) provided the most accurate and least-biased 
predictions of the net CO2 uptake (Nash-Sutcliffe Efficiency, NSE = 0.98) and CH4 emission (NSE = 0.90-0.92). The lin-
ear layer neural network generated the least successful and most biased predictions of the GHG fluxes (NSE = 0.48-0.80). 
Other ANNs, including the commonly-used feed forward neural network (FFNN), provided less accurate and more biased 
predictions of the CO2 (NSE = 0.86-0.97) and CH4 (NSE = 0.73-0.89) fluxes than the RBNN. We, therefore, recommend 
using RBNN as the first choice and FFNN (or its variant) as the second choice for predicting the GHG fluxes in coastal 
salt marshes. Our findings and tools would help derive plausible scenarios and guidelines for restoration, monitoring, and 
maintenance of coastal salt marshes in the U.S. and beyond.

Keywords  Artificial neural network (ANN) · Coastal wetlands · Greenhouse gases · Machine learning · Predictions · Salt 
marshes

Introduction

Coastal salt marshes are intertidal wetlands, which exhibit 
the highest rates of ecosystem carbon accumulations (Ouy-
ang and Lee 2014; Theuerkauf et al. 2015). The net ecosys-
tem exchange (NEE) of carbon dioxide (CO2) and methane 
(CH4) are the major greenhouse gas (GHG) fluxes in tidal 
salt marshes (Mozdzer and Megonigal 2013; Abdul-Aziz 
et al. 2018). The NEE of CO2 is the difference between gross 
primary productivity and ecosystem respiration (Reichstein 
et al. 2005). The net uptake typically dominates the day-
time CO2 fluxes due to photosynthesis in the presence of 
sunlight and favorable temperature (Juszczak et al. 2012; 
Schäfer et al. 2014). During nighttime, net emission fluxes 

of CO2 result from ecosystem respiration, which is mainly 
driven by soil temperature (Lloyd and Taylor 1994; Qi et al. 
2002; Smith et al. 2019).

The NEE of CH4 is often dominated by CH4 emission as 
the outcome of soil microbial processes and gas transport 
(Conrad 1989). CH4 is produced by methanogenic bacte-
ria under anaerobic conditions, whereas CH4 is oxidized by 
methanotrophic bacteria mostly under aerobic conditions. 
These processes of CH4 production and oxidation are pri-
marily controlled by soil temperature and moisture content 
(or water table) in freshwater wetlands (Walter and Heimann 
2000; Nahlik and Mitsch 2011). However, subject to the reg-
ular cycles of tidal flooding, other soil characteristics such as 
porewater salinity can also impact the underlying processes 
of both CO2 and CH4 fluxes in coastal salt marshes (Poffen-
barger et al. 2011; Abdul-Aziz et al. 2018).

Subject to the complex biogeochemical processes and 
interactions, it has been challenging to predict the GHG 
fluxes and carbon storage in coastal wetlands (Oikawa et al. 
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2017; Abdul-Aziz et al. 2018). However, accurate modeling 
and prediction tools are essential to guide the restoration, 
monitoring, and maintenance activities of tidal salt marshes. 
Previous research (e.g., Walter and Heimann 2000; Zhang 
et al. 2002; St-Hilaire et al. 2010) attempted to develop 
process-based models of the GHG fluxes mainly for inland 
freshwater wetlands. In contrast, Abdul-Aziz et al. (2018) 
determined the environmental controls of CO2 and CH4 
fluxes in coastal salt marshes and developed emergent power 
law scaling models to acceptably predict the GHG fluxes. 
Their success inspires further developments into the empiri-
cal and data-driven predictive modeling of the GHG fluxes 
with the necessary mechanistic underpinnings.

Machine learning offers data-driven tools that could be 
utilized to develop models for accurate predictions of the 
GHG fluxes in coastal salt marshes. Relationships between 
the GHG fluxes and environmental drivers in salt marshes 
are highly non-linear (Moseman-Valtierra et al. 2016; Abdul-
Aziz et al. 2018). Machine learning techniques such as the 
artificial neural network (ANN) has a strong potential to 
represent highly non-linear relations and provide high qual-
ity predictions of ecosystem carbon fluxes (Kordowski and 
Kuttler 2010; Jammet et al. 2017; Tramontana et al. 2020). 
However, ANN has considerable variants, representing dif-
ferent levels of accuracy and uncertainty. Therefore, evalu-
ation of various ANNs is important for developing the most 
accurate and consistent models to predict the GHG fluxes in 
coastal salt marshes.

In general, ANNs are known as ‘black-box’ models that 
identify complex non-linear relationships between the pre-
dictors and response variable and reproduce the data of the 
response by flexibly adjusting assigned weights and biases 
for different predictors (Dengel et al. 2013). For the last 
several decades, scientists working with terrestrial carbon 
dynamics have been extensively utilizing ANN models to 
predict CO2 fluxes based on the environmental drivers such 
as radiation, temperature, soil water content, vapor pressure 
deficit, and vegetation indices. The most commonly-used 
ANN for this purpose has been the feed forward neural 
network (FFNN). For example, many studies (e.g., Moffat 
et al. 2010; Knox et al. 2018; Schäfer et al. 2019) developed 
FFNN models, often involving multiple hidden layers in the 
network structure, to predict the CO2 fluxes in forests, crop-
lands, and wetlands from the environmental drivers.

Apart from the FFNN models, the radial basis function 
neural network (RBNN) and the generalized regression 
neural network (GRNN) models have also been employed 
to predict ecosystem CO2 fluxes, especially for sites repre-
senting complex environmental settings. The RBNN model 
has mostly been utilized to predict CO2 fluxes of urban or 
peri-urban ecosystems, involving the aerodynamic varia-
bles (e.g., wind speed, wind direction) alongside the typical 
environmental drivers as the key predictors (Schmidt et al. 

2008; Kordowski and Kuttler 2010). Archibald et al. (2009) 
developed a GRNN model to predict CO2 fluxes in an Afri-
can savanna using climate variables, vegetation indices, and 
various water stress indicators. Zhu et al. (2013) employed 
GRNN to predict CO2 fluxes in high latitude wetlands using 
climatic variables, water table depth, soil organic carbon, 
and porosity. CO2 fluxes in rainfed croplands were predicted 
by Safa et al. (2021) with RBNN based on the amounts of 
irrigation and precipitation. Further, recent studies (e.g., 
Safa et al. 2019; Tramontana et al. 2020) employed a multi-
layer perceptron neural network (MLNN) to achieve strong 
predictions of CO2 fluxes in terrestrial ecosystems based on 
environmental and vegetation indices, with a coefficient of 
determination of up to 0.95.

Overall, the ANN models, particularly FFNN and MLNN, 
have been employed to predict the GHG fluxes for various 
wetland ecosystems, mostly focusing on the northern peat-
lands (e.g., Dengel et al. 2013), temperate and boreal fresh-
water wetlands (e.g., Goodrich et al. 2015; Rey-Sanchez 
et al. 2018; Delwiche et al. 2021; Irvin et al. 2021), and 
agricultural peatlands (e.g., Hatala et al. 2012; Knox et al. 
2015). However, the existing ANN-based studies did not 
focus much on predicting the GHG fluxes in coastal salt 
marshes.

The main objective of our study is to develop various 
types of ANN models and investigate their suitability to 
predict the major GHG fluxes (CO2 and CH4) in coastal salt 
marshes. Our hypothesis is that the GHG fluxes in coastal 
salt marshes are predominantly driven by a small set of 
environmental variables, which can be utilized to develop 
accurate predictive models. The dominant predictors of CO2 
and CH4 fluxes were first identified by developing univari-
ate (i.e., single-predictor) models with eight types of ANN. 
Optimal ANN models were then developed based on the 
dominant predictors through a forward selection modeling 
approach, and the most successful ANN models were identi-
fied to predict the major GHG fluxes in coastal salt marshes.

Materials and Methods

Study sites and dataset

The salt marshes of our study are located in Waquoit Bay, 
Cape Code, Massachusetts, USA, with opening into the 
North Atlantic Ocean (Fig. 1). The four salt marsh sites 
(Sage Lot Pond, Eel Pond, Great Pond, and Hamblin 
Pond) exhibited varying ranges of nitrogen (N) loading 
(~5 to 126 kg·ha-1·year-1), although no significant dif-
ferences in the measured GHG fluxes were observed 
with these variations in N loading (Abdul-Aziz et  al. 
2018). The salt marsh sites were dominated by Spartina 
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alterniflora, a C4 halophyte plant, which is prevalent in 
majority of the salt marshes along the Atlantic coast of 
USA (Boyd et al. 2017).

The dataset used in this study was originally published 
by Abdul-Aziz et al. (2018). The data included chamber-
based instantaneous measurements of the NEE of CO2 
and CH4, as well as the corresponding environmental 
variables during different days of May-October in 2013 
(Table S1 in the supplementary information). The envi-
ronmental variables included photosynthetically active 
radiation (PAR), soil temperature (ST), porewater salinity 
(SS), pH, water level relative to the soil surface (WL), and 
soil moisture content (SM). The NEE of CO2 represented 
the net uptake fluxes of CO2 in daytime (measured dur-
ing 8:00 a.m. to 4.30 p.m. Eastern Standard Time; sample 
size, n = 137) and NEE of CH4 represented the day and 
nighttime net emission fluxes of CH4 (n = 107). Nega-
tive and positive values of NEE indicated, respectively, 
the net uptake and emission fluxes. The different sample 
sizes between the datasets for the two GHG fluxes led to 
differences in the summary statistics (e.g., mean, standard 
deviation, minimum, maximum, and 25th to 75th percen-
tiles) of the associated environmental variables (Table 1 
and Table S1). Further details into the data collections 
and processing can be found in Abdul-Aziz et al. (2018). 
The complete dataset is available online at no-cost in the 
figshare data repository (Abdul-Aziz et al., 2021).

Framework for modeling and analysis

Eight types of conventional ANN models were developed to 
predict the GHG fluxes in the coastal salt marshes. We first 
employed the linear layer neural network (LLNN), which 
uses a linear function (Fig. 2a) and is arguably the simplest 
ANN model (Zhang et al. 2008). Then, we developed mod-
els with the feed forward neural network (FFNN), followed 
by its two variants: multi-layer perceptron neural network 
(MLNN) and cascade forward neural network (CFNN). The 
three models are unidirectional (i.e., involve no feedback 
loops) and utilize a sigmoid (e.g., hyperbolic tangent-sig-
moid, and log-sigmoid) or piecewise-linear (e.g., rectified 
linear unit, and saturated linear) transfer function in hidden 
layer(s) for non-linear transformations of data (Fig. 2b-d; 
also see Wang et al. 2019; Stursa and Dolezel 2019). MLNN 
utilizes multiple hidden layers to compensate for the lost 
efficiency of predictions typically seen in FFNN (Stathakis 
2009). CFNN uses weighted connections from the input to 
both hidden and linear layers to learn the underlying rela-
tionships quicker than FFNN (Saeedi et al. 2016). Then, we 
developed models with the layer-recurrent neural network 
(LRNN) and the non-linear autoregressive neural network 
with exogenous inputs (NARX). These models use a sigmoid 
or piecewise-linear function in their hidden layers, similar 
to the FFNN (Kun et al. 2018; Korprasertsak and Leephak-
preeda 2019). However, both models further involve a single 

Fig. 1   Locations of the four salt 
marsh sites used for evaluation 
of the different types of ANN 
models to predict GHG fluxes
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Table 1:   Summary of the predictive modeling data of the GHG fluxes and the environmental predictors collected during May-October of 2013 
across the four tidal salt marshes of Waquoit Bay, Massachusetts, USA.

*PAR, ST, and SS refer to photosynthetically active radiation, soil temperature, and porewater salinity. n represents sample sizes of the modeling 
datasets. The different sample sizes (n) between the datasets for the two GHG fluxes (n = 137 for CO2 and 107 for CH4) led to the differences in 
summary statistics (e.g., mean, standard deviation, minimum, maximum, and 25th to 75th percentiles) of the associated environmental variables.

Dataset Variables Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

Modeling of 
daytime net 
CO2 uptake

(n = 137)

Net CO2 uptake 
(μmolCO2·m-2·s-1)

-5.33 4.72 -17.10 -9.27 -3.47 -1.04 -0.05

PAR
(μmol·m-2·s-1)

1395.53 519.73 303.70 1053.18 1514.95 1867.03 2093.08

ST
(°C)

17.57 4.15 8.89 14.79 17.22 20.59 26.10

SS
(ppt)

30.50 4.70 10.00 28.00 32.00 33.00 40.00

Modeling of day 
and nighttime 
net CH4 emis-
sion

(n = 107)

Net CH4 emission 
(nmolCH4·m-2·s-1)

0.62 0.55 0.10 0.24 0.35 0.94 2.35

ST
(°C)

17.21 4.39 8.75 14.75 16.92 20.40 26.35

SS
(ppt)

31.22 3.97 20.00 29.00 32.00 34.00 40.00

(a) LLNN (b) FFNN

(c) MLNN (d) CFNN

(e) LRNN (f) NARX

(g) RBNN (h) GRNN

Input Output

Linear Layer

Input Output

Linear LayerHidden Layer

Output

Hidden Layer 1 Hidden Layer 2 Linear Layer

Input Output

Hidden Layer
Linear Layer

Input Output

Hidden Layer
Linear Layer

Input

Output

Hidden Layer
Linear Layer

Input

Hidden Layer Linear Layer

Output Input

Hidden Layer
Linear Layer

Output

: = Log-sigmoid or = Tangent-sigmoid or = Rectified linear unit or = Saturating linear transfer function
= Biases

= Weights

= Linear transfer function = Radial basis transfer function
= Single delay input through 

the feedback loop

Fig. 2   Configurations of the eight ANN models developed to predict 
the GHG fluxes in coastal salt marshes based on MATLAB2020a. 
LLNN = linear layer neural network, FFNN = feed forward neural 
network, MLNN = multi-layer perceptron neural network, CFNN = 

cascade forward neural network, LRNN = layer-recurrent neural net-
work, NARX = nonlinear autoregressive neural network with exog-
enous inputs, RBNN = radial basis function neural network, and 
GRNN = generalized regression neural network
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delay feedback loop to also incorporate latent structures 
from the previous time-step and improve the network for 
the current time (Hussain et al. 2015). In LRNN, the feed-
back loop is designed to work within the non-linear hidden 
layer, whereas in NARX the feedback loop is implemented 
between the non-linear hidden layer and the linear output 
layer (Fig. 2e-f).

Finally, we employed the radial basis function neural net-
work (RBNN) and its variant called the generalized regres-
sion neural network (GRNN). Instead of using a sigmoid or 
piecewise linear function for data transformations, RBNN 
and GRNN involves locally-tuned networks, which helps 
overcome the issue of obtaining a suboptimal solution (e.g., 
a local minima) in the learning process (Fig. 2g-h; also see 
Zirkohi et al. 2010). Each hidden neuron adjusts the weights 
of predictors using Euclidean distances and then transfers 
their summation to a radial basis transfer function within 
the hidden layer. Results of the hidden neurons for all ANNs 
using either the sigmoid or the piecewise linear or the radial 
basis function are transferred to the output layer, which 
involves a linear transfer function. However, contrary to the 
rest of the ANNs, the output layer in GRNN utilizes a linear 
transfer function without the bias term to facilitate a rapid 
training of the model (Fig. 2h; also see Ozyildirim and Avci 
2013). Further details into the eight types of ANN with the 
necessary mathematical formulations are given in the sup-
plementary information (Text S1).

We used MATLAB2020a for all coding, analysis, and 
visualization related to the model developments and evalu-
ations. Built-in MATLAB functions were utilized to develop 
the eight ANN models (Text S1 in the supplementary infor-
mation). Prior to model development, data for all variables 
were standardized via a Z-transformation (i.e., 
Z =

(

X − X

)

∕S
X
 , where X = original variable, X = mean of 

X, and SX = standard deviation of X). This standardization 
of the data brings different units and magnitudes of variables 
to a comparable range and improves performance of the 
ANN models (Ladlani et al., 2012; Irvin et al. 2021). We 
estimated each ANN model 100 times by randomly resam-
pling data (maintaining the original sample size in each 
iteration) for the GHG fluxes and the concurrent environ-
mental variables using a boot-strap method. This helped 
achieve robust estimations of the ANN models and quantify 
the uncertainty associated with the predictions. For each 
iteration of model estimations, cross-validation was per-
formed by randomly splitting the resampled dataset into the 
training, validation, and testing ratios of 80:10:10 (respec-
tively), 70:15:15, 60:20:20, 50:25:25, 40:30:30, 30:35:35, 
and 20:40:40. These ratios represented the most desirable to 
the least desirable data-splits, given the sample sizes (n = 
107 to 137) in the study. Our approach helped incorporations 
of prediction performance from the various combinations of 

data-splitting for model training, validation, and testing. Fol-
lowing previous studies (e.g., Kawamoto and Kabashima 
2017; Willard et al., 2020), we reported the average predic-
tion performance along with associated uncertainty from the 
100 sets of cross-validations.

The quality of predictions from an ANN model may 
depend on the underlying training algorithm. We evaluated 
four algorithms to train the eight ANN models: Levenberg-
Marquardt (LM) backpropagation, Bayesian regularization 
(BR) backpropagation, Broyden-Fletcher-Goldfarb-Shannon 
(BFGS) quasi-Newton backpropagation, and scaled conju-
gate gradient (SCG) backpropagation (see Text S2 in the 
supplementary information for details). During the learn-
ing procedure in the MATLAB platform, each algorithm 
iteratively updated the network weights and biases using 
the training dataset until (1) the best possible performance 
with the validation dataset was achieved or (2) algorithm’s 
requirements to avoid getting stuck at local minima was met 
or (3) 1000 epochs were completed. The testing dataset was 
then used to independently evaluate the performance of the 
final ANN models.

An essential part of developing ANN models is opti-
mizing the training dataset for network hyper-parameters. 
Important hyper-parameters for ANNs are typically the 
number of hidden neurons, selection of transfer function, 
learning rate, and the number of training epochs (Smithson 
et al. 2016; Jo et al. 2019). Neurons are the basic units of 
an ANN, whereas the transfer functions perform a non-
linear transformation of the input data. The learning rate 
controls how slowly or quickly the network updates the 
weights and biases, and the training epochs refer to the 
number of network updates towards obtaining the final 
models. The FFNN, MLNN, CFNN, LRNN, and NARX 
models were optimized for 1 to 20 hidden neurons, four 
transfer functions (hyperbolic tangent-sigmoid, log-sig-
moid, rectified linear unit, saturating linear function; see 
Text S1 in the supplementary information for details), and 
four learning rates (0.1, 0.01, 0.001, and 0.0001). We opti-
mized the LLNN model only for the learning rates as it 
utilizes one hidden neuron and a linear transfer function 
to train the input data. For RBNN and GRNN models, the 
incorporated number of hidden neurons are the same as the 
length (i.e., sample size) of the input data (Sudheer and 
Jain 2003). However, the spread parameter, which repre-
sents the distribution density of the radial basis function in 
both models, has to be optimized (Benoudjit and Verley-
sen 2003). The RBNN and GRNN models were optimized 
for a spread of 1 to 20 and the four learning rates. We 
evaluated all possible combinations of the hyper-param-
eters following a grid search approach and selected the 
combination with the best cross-validation performance 
by minimizing the root-mean-square error (RMSE) as the 

Wetlands (2022) 42: 37 Page 5 of 16 37



1 3

objective function and as a prediction error metric (Text 
S3 in the supplementary information; also see Chittaragi 
et al. 2019; Lorencin et al. 2021). The training epochs for 
all ANNs were optimized in the MATLAB environment 
through the convergence of training and validation errors 
(RMSE).

We initially developed univariate (single predictor) mod-
els to determine the strength of individual environmental 
variables (PAR, ST, SS, pH, WL, and SM) to predict the 
net fluxes of CO2 uptake and CH4 emission (Table S1 in 
the supplementary information). The prediction efficiency 
of the ANN models was assessed by computing the Nash-
Sutcliffe efficiency (NSE), which can range from negative 
infinity (– ∞) to unity (1.0). The square of Pearson’s correla-
tion coefficient (r2, which can range from 0 to 1.0) was also 
computed as an indicator of linear correspondence between 
the observed and predicted values of the GHG fluxes. The 
model prediction accuracy was measured by computing 
the RMSE and the ratio of RMSE to the standard devia-
tion of observations (RSR). RMSE (range: 0 to ∞) presents 
the overall error in model predictions in actual units (e.g., 
μmolCO2·m2·s-1 and nmolCH4·m2·s-1), which is easy to 
understand but can widely vary based on the magnitude or 
scale of the response variable (i.e., CO2 or CH4 fluxes). RSR 
(range: 0 to ∞) provides a normalized index of model accu-
racy, which is helpful for comparison of prediction errors 
across the various scales of the response variables.

The variables exhibiting the strongest predictions were 
used to obtain the optimum set of predictors for the corre-
sponding GHG fluxes through a forward selection approach. 
The Akaike information criterion (AIC; Akaike 1974) was 
used to obtain the sets of optimum predictors for the CO2 and 
CH4 fluxes, alongside the prediction efficiency (NSE), corre-
spondence (r2), and accuracy (RMSE and RSR) metrics (Text 
S3 in the supplementary information). The optimal predictor 
sets were then used to predict the respective GHG fluxes by 
developing multivariate ANN models and utilizing all avail-
able data of the selected environmental predictors (Table 1).

The means of NSE, r2, RMSE, and RSR obtained from 
the 100 resampled estimates were used to assess the overall 
prediction efficiency, correspondence, and accuracy of the 
ANN models. Similar to r2, NSE = 1.0 refers to a perfectly 
predictive model. However, unlike r2 (which cannot be nega-
tive), NSE < 0 (i.e., negative) suggests that the average of 
observations represents a better model than the proposed 
model (Nash and Sutcliffe 1970). In contrast, a perfect 
model has an RSR of 0; an RSR between 0 and 0.50 (and an 
NSE between 0.75 and 1.00) indicates a very good model, 
whereas a satisfactory model has an RSR between 0.50 and 
0.70 (and an NSE between 0.50 and 0.75) (Moriasi et al. 
2007). Although these criteria were originally developed for 
watershed hydrologic models and may appear stringent for 
ecological models, we still set the thresholds as reference 

metrics to achieve good quality predictions of the GHG 
fluxes in coastal salt marshes.

Results and Discussion

Dominant predictors of the GHG fluxes based 
on univariate ANN models

The univariate ANN models suggested PAR, ST, and SS 
as moderate to strong predictors (as indicated by NSE, r2, 
RMSE, and RSR) of the GHG fluxes in the coastal salt 
marshes, whereas pH, WL, and SM were weak predictors 
(Fig. 3, 4; Fig. S1-S6 in the supplementary information). 
The predictive control of PAR on the net uptake fluxes of 
CO2 mainly reflected the photosynthetic activities of the salt 
marsh plants during the daytime. However, the mechanistic 
link of PAR to CH4 fluxes through primary productivity is 
confounding and unclear (Gomez-Casanovas et al. 2020). In 
fact, by using the dataset of the current study, Abdul-Aziz 
et al. (2018) found PAR to be a statistically insignificant 
predictor (p value = 0.54) of the CH4 emission fluxes. They 
further demonstrated that the apparent control of PAR on 
the emission fluxes of CH4 in coastal salt marshes had been 
spurious, representing mostly a surrogate effect of ST on 
methanogenesis. However, weakened relationship between 
ST and CH4 emission in deep freshwater wetlands (Zhu 
et al. 2021) possibly might indicate PAR as a predictor that 
indirectly influences emission of CH4 by triggering plant-
mediated transport (Koebsch et al. 2015).

The strong linkage of ST on the net CO2 uptake reiterated 
the strong influence of high temperature on the photosynthe-
sis in coastal wetlands (Guo et al. 2009; Inglett et al. 2012). 
Specifically, temperature controls the activation process of 
the primary photosynthetic enzyme (RuBisCO) in the plants 
(C4) of salt marshes (Sage and Kubien 2007). The link of 
SS indicated the adverse impacts of high salinity on the pro-
ductivity of halophytic plants in salt marshes (Vasquez et al. 
2006; Mateos-Naranjo et al. 2010; Pierfelice et al. 2017). 
High salinity leads to the production and accumulation of 
phytotoxic substances (e.g., hydrogen sulfide) in the anaer-
obic marsh sediments (Bradley and Morris 1990; Lamers 
et al. 2013). The phytotoxins impact leaf chlorophyll con-
tent, protein synthesis, and lipid metabolism of marsh plants 
― leading to a reduced primary productivity (Mateos-
Naranjo et al. 2010; Pierfelice et al. 2017).

The strong linkage of ST with the net CH4 emission fluxes 
indicated temperature as the dominant driver of methano-
genesis in the presence of adequate organic substrate in the 
wetland soil (Martin and Moseman-Valtierra 2017; Abdul-
Aziz et al. 2018). ST drives the microbial activities involving 
both methanogenesis (CH4 production) and methanotrophy 
(CH4 oxidation). However, methanogenesis can be more 
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sensitive to high ST than that of methanotrophy ― which 
ultimately results in increased emission of CH4 to the atmos-
phere (Walter and Heimann 2000). The control of SS on the 
net CH4 emission can be attributed to the highly sulfate-rich 
soil in salt marshes (Poffenbarger et al. 2011; Vivanco et al. 
2015; Abdul-Aziz et al. 2018). Total anaerobic decomposi-
tion in sediments is typically dominated by sulfate reduction, 
which can hinder methanogenesis by outcompeting metha-
nogens (Bartlett et al. 1987; Poffenbarger et al. 2011; Weston 
et al. 2014). Further, CH4 can also be oxidized by sulfate-
reducers (Bartlett et al. 1987; Segers 1998). Together, these 

processes limit CH4 production (while enhancing oxidation) 
and reduce emission to the atmosphere in highly saline 
coastal salt marshes.

Previous studies (e.g., Wilson and Morris 2012; Abdul-
Aziz et al. 2018) reported higher fluxes of both CO2 uptake 
and CH4 emission during high tides than low tides, subject 
to the higher flushing of salt accumulated in the marsh soil 
by the high tides. However, we found a weak relationship 
of WL with the GHG fluxes; this might have been caused 
by the inherent time-lag between the well (where water lev-
els were measured) and tidal water levels. In contrast, the 

Fig. 3   Average Nash–Sut-
cliffe efficiency (NSE) of the 
univariate models of net CO2 
uptake fluxes for the eight ANN 
models. PAR, ST, SS, WL, and 
SM refer to photosynthetically 
active radiation, soil tempera-
ture, porewater salinity, water 
level with respect to soil sur-
face, and soil moisture content.
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weak relation of SM with the GHG fluxes may be attributed 
to the predominant soil saturation in our study area, which 
represented low marshes (Table S1 in the supplementary 
information). Further, the near neutral pH of soil porewater 
in our salt marshes (mean ~7 and standard deviation ~ 0.30; 
Table S1 in the supplementary information) resulted in its 
weak relationships with the GHG fluxes. However, given 
that tidal hydrology contributes to the variation of soil tem-
perature and porewater salinity (Wang et al. 2007), the con-
trols of ST and SS might have reflected the overall effects of 
tidal hydrology on the GHG fluxes (Abdul-Aziz et al. 2018).

Optimal multivariate ANN models to predict 
the GHG fluxes

The AIC plots for model training suggested that the net 
uptake fluxes of CO2 were optimally predicted by using up 
to three predictors (i.e., ST, SS, and PAR) for most ANNs, 
whereas two variables (ST and SS) represented the optimal 
predictor set for net CH4 emission (Fig. S7 in the supple-
mentary information). However, some ANNs (e.g., RBNN 
and GRNN) exhibited potential for including additional pre-
dictors to predict the GHG fluxes. This could be attributed 

Fig. 4   Average Nash–Sut-
cliffe efficiency (NSE) of the 
univariate models of net CH4 
emission fluxes for the eight 
ANN models. PAR, ST, SS, 
WL, and SM refer to photosyn-
thetically active radiation, soil 
temperature, porewater salinity, 
water level with respect to 
soil surface, and soil moisture 
content.
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to the over-fitting tendency of the RBF-based ANNs consid-
ering that they use the same number of hidden neurons as 
the sample size of the input data (Skolthanarat et al. 2014). 
The NSE, r2, RMSE, and RSR of the corresponding models 
provided complementary results to that for AIC (Fig. S8-S11 
in the supplementary information).

Based on the identified dominant predictors of the GHG 
fluxes, we developed eight multivariate ANN models to 
predict the daytime net uptake fluxes of CO2 as a function 
of PAR, ST, and SS. The net emission fluxes of CH4 were 
predicted as a function of ST and SS. All models were opti-
mized for network hyper-parameters to obtain the maximum 
accuracy in cross-validations (minimum RMSE) with the 
predicted GHG fluxes using the best performing train-
ing algorithm. Although the different training algorithms 
(LM, BR, BFGS, SCG) provided similar performance in 
predictions, the LM algorithm provided the most accurate 
predictions from the various ANN models across the train-
ing, validation, and testing phases (Table S2 and S3 in the 
supplementary information). In cross-validations with the 
LM algorithm, prediction performance metrics were nearly 
robust with various amounts of data-splitting among the 
model training, validation, and independent testing phases 
(Table S4 and S5 in the supplementary information).

The optimal models with FFNN, MLNN, CFNN, LRNN, 
and NARX mostly utilized the sigmoid transfer functions 

for the non-linear transformations of data (Table S6 in 
the supplementary information). The optimal FFNN and 
MLNN models did not require more than 10 hidden neu-
rons, whereas CFNN, LRNN, and NARX typically used up 
to 15 hidden neurons. The value of spread parameter for the 
optimal models of RBNN were between 10 and 15, whereas 
the spread values ranged from 5 to 15 for GRNN. The dif-
ferent learning rates (0.1, 0.01, 0.001, and 0.0001) did not 
have much effect during optimization of the ANN models. 
Further, the optimal models for the different ANNs were 
typically achieved within 50 epochs of model estimations. 
The low standard deviations of the performance metrics 
(NSE, r2, RSR, and RMSE) in predicting the GHG fluxes 
further indicated robust estimations of the final models for 
all eight ANNs (Table S7 in the supplementary information).

Among the multivariate ANN models of net CO2 uptake, 
RBNN provided the most accurate and least biased pre-
dictions across training, validation, and testing (NSE = 
0.98, r2 = 0.99, RSR = 0.11 to 0.12, RMSE = 0.53 to 0.59 
μmolCO2·m2·s-1) (Table 2 and Fig. 5). The FFNN, MLNN, 
CFNN, LRNN, NARX, and GRNN models provided very 
good predictions (NSE = 0.86 to 0.97, r2 = 0.92 to 0.99, 
RSR = 0.14 to 0.33, RMSE = 0.67 to 1.55 μmolCO2·m2·s-1), 
although the associated uncertainties were quite high, spe-
cifically in model validation and testing. However, LLNN 
produced a biased model that yielded the least successful 

Table 2:   Average performance of the optimal ANN models in predicting the GHG fluxes in the coastal salt marshes.

*LLNN = linear layer neural network, FFNN = feed forward neural network, MLNN = multi-layer perceptron neural network, CFNN = cascade 
forward neural network, LRNN = layer-recurrent neural network, NARX = nonlinear autoregressive neural network with exogenous inputs, 
RBNN = radial basis function neural network, and GRNN = generalized regression neural network. n represents sample size of the modeling 
dataset. NSE = Nash–Sutcliffe efficiency, r2 = Pearson’s correlation coefficient, RMSE = root-mean-square error, and RSR = ratio of RMSE to 
the standard deviation of observations.
†units of RMSE is μmolCO2·m-2·s-1 for CO2 fluxes and nmolCH4·m-2·s-1 for CH4 fluxes.

Response ANN Training  Validation  Testing
NSE r2 RMSE† RSR NSE r2 RMSE† RSR NSE r2 RMSE† RSR

Daytime net 
uptake fluxes 
of CO2

(n = 137)

LLNN 0.80 0.90 2.08 0.44 0.80 0.90 2.07 0.44 0.79 0.90 2.10 0.45
FFNN 0.92 0.96 1.25 0.26 0.91 0.96 1.31 0.28 0.89 0.95 1.50 0.32
MLNN 0.89 0.95 1.45 0.31 0.86 0.96 1.38 0.29 0.88 0.92 1.55 0.33
CFNN 0.95 0.97 1.03 0.22 0.91 0.97 1.23 0.26 0.90 0.95 1.49 0.32
LRNN 0.94 0.97 1.08 0.23 0.92 0.97 1.20 0.25 0.90 0.95 1.45 0.31
NARX 0.94 0.97 1.07 0.23 0.92 0.96 1.26 0.27 0.89 0.95 1.50 0.32
RBNN 0.98 0.99 0.58 0.12 0.98 0.99 0.53 0.11 0.98 0.99 0.59 0.12
GRNN 0.97 0.99 0.67 0.14 0.93 0.97 1.15 0.24 0.92 0.96 1.34 0.28

Day and night-
time net emis-
sion fluxes of 
CH4

(n = 107)

LLNN 0.66 0.82 0.32 0.58 0.59 0.83 0.32 0.58 0.48 0.82 0.34 0.61
FFNN 0.80 0.90 0.22 0.41 0.78 0.93 0.21 0.39 0.77 0.90 0.25 0.46
MLNN 0.82 0.91 0.22 0.40 0.77 0.92 0.22 0.40 0.79 0.91 0.24 0.45
CFNN 0.86 0.93 0.20 0.36 0.78 0.93 0.21 0.39 0.76 0.89 0.26 0.48
LRNN 0.84 0.93 0.21 0.38 0.82 0.93 0.21 0.38 0.78 0.90 0.25 0.45
NARX 0.86 0.93 0.20 0.36 0.84 0.93 0.21 0.38 0.73 0.88 0.27 0.49
RBNN 0.91 0.96 0.15 0.28 0.92 0.97 0.14 0.26 0.90 0.96 0.16 0.29
GRNN 0.89 0.95 0.17 0.31 0.84 0.93 0.21 0.37 0.77 0.90 0.26 0.47
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predictions (NSE = 0.79 to 0.80, r2 = 0.90, RSR = 0.44 to 
0.45, RMSE = 2.07 to 2.10 μmolCO2·m2·s-1). It provided 
under-predictions of the high fluxes and over-predictions in 
the medium range (Fig. 5).

For the net emission fluxes of CH4, the multivariate 
RBNN model provided the strongest predictions (NSE = 
0.90 to 0.92, r2 = 0.96 to 0.97, RSR = 0.26 to 0.29, RMSE = 
0.14 to 0.16 nmolCH4·m2·s-1) across the training, validation, 
and testing phases (Table 2 and Fig. 6). The LLNN model 
was biased and generated the least successful predictions 
(NSE = 0.48 to 0.66, r2 = 0.82 to 0.83, RSR = 0.58 to 0.61, 
RMSE = 0.32 to 0.34 nmolCH4·m2·s-1), with remarkable 
under-predictions in the higher fluxes of CH4 emission. The 
remaining ANN models (FFNN, MLNN, CFNN, LRNN, 
NARX, and GRNN) performed stronger (NSE = 0.73 to 

0.89, r2 = 0.88 to 0.95, RSR = 0.31 to 0.49, RMSE = 0.17 to 
0.27 nmolCH4·m2·s-1) than LLNN, but weaker than RBNN. 
These models also under-predicted the higher fluxes of net 
CH4 emission and had in general higher uncertainties in pre-
dictions (Fig. 6).

Insights into the varying prediction performance 
of different ANNs

To investigate the different quality of predictions from the 
various ANNs, we explored the relationships of the GHG 
fluxes with the environmental drivers through scatter-plots 
(Fig. S12 and S13 in the supplementary information). As 
apparent, the expected mechanistic trends of the fluxes with 
the predictors were associated with a remarkable noise. For 

Fig. 5   Observed versus pre-
dicted net uptake fluxes of CO2 
from the eight ANN models for 
training, validation, and testing 
phases. Circles referred to the 
mean, and error bars denoted 
the standard deviations of the 
predicted net CO2 fluxes. The 
red hashed line represented the 
1:1 line.
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example, a seasonal hysteresis was apparent in the plot of 
PAR versus net CO2 uptake ― with lower fluxes during 
September-October than June-August at the similar PAR 
values, which could be attributed to the lower temperatures 
in the fall than in the summer. Although no hysteresis was 
visible in the plots of net CO2 uptake with ST, SS or other 
environmental drivers, the underlying signals (e.g., increas-
ing uptake with increasing ST or decreasing uptake with 
increasing SS) were masked with much noise (Fig. S12 in 
the supplementary information).

We posit that the radial basis transfer function (RBF) 
in the hidden layers of RBNN, in concert with a bias term 
in the output layer (Fig. 2g), learnt signals from the noisy 

patterns in the data more efficiently and accurately than the 
remaining ANN models (Sudheer and Jain 2003; Xie et al. 
2011). This resulted in the strongest predictions of the 
GHG fluxes by RBNN among all ANNs. Although RBNN 
and GRNN used the same network structure in the hid-
den layer (Fig. 2g-h), the lack of a bias term in the output 
layer of GRNN contributed to its weaker predictions and 
higher uncertainties. In contrast, the least successful and 
biased predictions of the net CO2 uptake and CH4 emission 
fluxes from LLNN suggested that the model with a simple 
linear network structure had not been successful to learn 
the non-linear and noisy relationships in the respective 
datasets (Fig. 2a).

Fig. 6   Observed versus pre-
dicted net emission fluxes of 
CH4 from the eight ANN mod-
els for training, validation, and 
testing phases. Circles referred 
to the mean, and error bars 
denoted the standard deviations 
of the predicted net CH4 fluxes. 
The red hashed line represented 
the 1:1 line.
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Comparison with the previously developed 
emergent scaling models

The emergent power law scaling models of Abdul-Aziz et al. 
(2018) successfully predicted the salt marsh GHG fluxes 
using the datasets of the current study: net uptake fluxes 
of CO2 (NSE = 0.90 to 0.91, RSR = 0.30 to 0.31) and net 
emission fluxes of CH4 (NSE = 0.80 to 0.83, RSR = 0.42 to 
0.49). The emergent scaling models had a simple structure 
and explicit mathematical formulations, reflecting the ubiq-
uitous power law in nature (Enquist et al. 2003; Schwefel 
et al. 2017). A comparison of the overall performance (with 
average NSE and RSR across training, validation, and test-
ing; see Table 2) of the ANN models in the current study 
with the emergent scaling models led to interesting observa-
tions. The emergent scaling models provided much better 
predictions than the LLNN models for both GHG fluxes. In 
contrast, the RBNN models provided more accurate predic-
tions of the GHG fluxes than the emergent scaling models. 
However, based on the averaged metrics, the emergent scal-
ing models predicted the GHG fluxes as well as that from 
the remaining ANN models (FFNN, MLNN, CFNN, LRNN, 
NARX, and GRNN). This is remarkable given that the scal-
ing models were parametric in type with a simple explicit 
structure (emergent power law) and few parameters.

Limitations, challenges, and recommendations

The prevalence of noise and uncertainty in ecological and 
environmental measurements can often lead to challenges 
such as overfitting (specifically for small datasets) in the 
training phase of an ANN model (Choi and Park 2001). 
Over-training of ANNs can contribute to a decreased gen-
eralization, resulting in large inaccuracies of model predic-
tions at variable time and space (Maher and Eyre 2011). We 
employed ANN algorithms (on MATLAB 2020a platform) 
that were equipped with a stopping criterion as soon as the 
optimal (i.e., most accurate) model was estimated in the 
training phase (see Materials and methods). This stopping 
criterion helped avoid a substantial over-training of our mod-
els for the net uptake fluxes of CO2 and the emission fluxes 
of CH4. However, an important recommendation from the 
current study would be to collect more data over longer peri-
ods in coastal salt marshes to develop more reliable ANN 
models.

In general, most ANN-based studies of ecosystem carbon 
fluxes developed models by employing FFNN with multiple 
hidden layers to enhance accuracy in predictions (e.g., Safa 
et al. 2019; Tramontana et al. 2020). In contrast, our final 
ANN models involved a single hidden layer ― except for 
MLNN that had two hidden layers by default and LLNN that 
did not accommodate any hidden layer (Fig. 2). Our RBNN 
and GRNN models used RBF for non-linear transformation 

and strictly required one hidden layer for a global conver-
gence (Park and Sandberg 1991; Mahato and Paul 2019). 
However, we explored the performance of multivariate 
FFNN, CFNN, LRNN, and NARX models for the GHG 
fluxes in salt marshes by involving multiple hidden layers 
(up to five). No consistent improvement in predictions of 
the GHG fluxes was apparent across model training, valida-
tion, and testing with the increasing number of hidden layers 
(Fig. S14-S15 in the supplementary information). Further, 
the simulation time required on a Dell workstation (Proces-
sor: Intel Xeon E5 @2.40GHz, RAM: 32GB, and operat-
ing system: 64-bit Windows 10) increased in an exponen-
tial manner due to the inclusion of additional hidden layers 
in the model structure (Fig. S14-S15 in the supplementary 
information). Overall, the analysis indicated that one hidden 
layer was adequate to obtain an optimal prediction of the 
GHG fluxes in salt marshes from the FFNN, CFNN, LRNN, 
and NARX models.

In the backdrop of insufficient data and decreasing 
resources for environmental management (Wenger and 
Olden 2012; Yates et al. 2018), transferability of ecologi-
cal models across various scales in space (e.g., regional, 
global), time (e.g., diurnal, seasonal, annual), and ecological 
units (e.g., ecosystem, species) is of paramount importance. 
Although some ANN models could be employed as powerful 
tools to obtain highly accurate predictions of ecological vari-
ables and indicators, it is quite difficult to interpret how dif-
ferent predictors are used through the hyper-parameterized 
structure of neural networks to simulate a response vari-
able (Zhang et al. 2018). Being such a ‘black-box’ model, 
ANNs trained for a particular species, site or ecosystem are 
often not transferable to their counterparts. However, the 
lack of transferability is not unique with ANN-based mod-
eling; it is also prevalent (although potentially at a reduced 
level) in process-based and simple empirical models. Future 
research should investigate ways to make the presented ANN 
models of GHG fluxes (particularly RBNN) generalizable 
using appropriately selected dominant predictors across salt 
marshes representing gradients in time, space, species, and 
associated processes. We further recommend evaluations of 
these ANNs in predicting the lateral carbon fluxes (e.g., dis-
solved organic and inorganic carbon) alongside the vertical 
fluxes (i.e., GHG fluxes) in the future research. This could 
help obtain an accurate and complete estimations of carbon 
budget in coastal salt marshes (Bogard et al. 2020).

Conclusions

We evaluated the hypothesis that the GHG fluxes in coastal 
salt marshes are predominantly driven by a small set of 
environmental variables, which can be utilized to develop 
accurate predictive models. The eight different ANN models 
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indicated sunlight (PAR), soil temperature (ST), and pore-
water salinity (SS) as the dominant predictors for the day-
time fluxes of net CO2 uptake in coastal salt marshes. ST 
and SS were the strongest predictors for the net emission 
fluxes of CH4. Our overall finding is that the neural net-
work-based machine learning models can be useful tools 
to accurately predict the major GHG fluxes in coastal salt 
marshes. However, transferability of these models should 
be evaluated with additional data from other salt marshes 
representing diverse hydroclimatic, vegetation, and salin-
ity regimes. Another key finding is that use of a machine 
learning technique does not inherently guarantee a highly 
accurate prediction. The quality of predictions depends on 
the algorithms of individual ANNs to represent the nonlinear 
patterns in data. For example, our models with the radial 
basis function neural network (RBNN) provided the most 
accurate and least-biased predictions of the net CO2 uptake 
(NSE = 0.98) and CH4 emission (NSE = 0.90-0.92). In con-
trast, the linear layer neural network (LLNN) resulted in the 
least successful and most biased predictions of the GHG 
fluxes (NSE = 0.48-0.80). Other ANNs, including the feed 
forward neural network (FFNN), provided less accurate and 
more biased predictions of the CO2 (NSE = 0.86-0.97) and 
CH4 (NSE = 0.73-0.89) fluxes than RBNN. We, therefore, 
recommend using RBNN as the first choice and FFNN (or 
any of its variants) as the second choice for predicting the 
GHG fluxes in coastal salt marshes with a high accuracy 
and consistency. The models (except for LLNNs) would be 
useful tools to derive plausible scenarios and guidelines for 
restoration, monitoring, and maintenance of salt marshes 
(dominated by Spartina alterniflora) along the U.S. Atlantic 
coast and around the world.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13157-​022-​01558-2.

Acknowledgements  This research was funded by a grant from the 
U.S. National Science Foundation (NSF) awarded to Abdul-Aziz 
(NSF CBET Environmental Sustainability Award No. 1705941). The 
datasets used in this study were collected through a project from the 
National Oceanic and Estuarine Administration (NOAA)’s National 
Estuarine Research Reserve Science Collaborative (NOAA Project No. 
NA09NOS4190153), awarded to Abdul-Aziz. All data were adequately 
described in the main text, figures, tables, and in the supporting infor-
mation. The complete dataset is available in the figshare data repository 
at https://​doi.​org/​10.​6084/​m9.​figsh​are.​15125​148.​v1.

Availability of data and material  The dataset was deposited in figshare 
under the following reference: Abdul-Aziz, Omar I.; Tang, Jianwu; 
Moseman-Valtierra, Serena (2021): GHG flux dataset of Waquoit Bay, 
MA, USA saltmarshes (May-October 2013). figshare. Dataset. https://​
doi.​org/​10.​6084/​m9.​figsh​are.​15125​148.​v1.

Code availability  Built-in functions of MATLAB2020a were used for 
all coding, analysis, and visualization related to the model develop-
ments and evaluations. The MATLAB functions used in this study are 
described in Text S1 in supplementary information.

Author contributions  Abdul-Aziz conceptualized the research idea. 
Abdul-Aziz and Zaki designed the methodology, conducted the analy-
ses, and summarized the results. Both authors contributed to the writ-
ing. Abdul-Aziz administered the projects funding the research and 
supervised Zaki. All authors have read and agreed to the published 
version of the manuscript.

Funding  U.S. National Science Foundation (NSF) (NSF CBET 
Environmental Sustainability Award No. 1705941) and National 
Oceanic and Estuarine Administration (NOAA)’s National Estua-
rine Research Reserve Science Collaborative (NOAA Project No. 
NA09NOS4190153), awarded to Abdul-Aziz.

Declarations 

Competing interests  The authors declare that they have no known 
competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

References

Abdul-Aziz OI, Ishtiaq KS, Tang J, Moseman-Valtierra S, Kroeger KD, 
Gonneea ME, Mora J, Morkeski K (2018) Environmental controls, 
emergent scaling, and predictions of greenhouse gas (GHG) fluxes 
in coastal salt marshes. J Geophys Res-Biogeo 123:2234–2256. 
https://​doi.​org/​10.​1029/​2018J​G0045​56

Abdul-Aziz OI, Tang J, Moseman-Valtierra S (2021): GHG flux dataset 
of Waquoit Bay, MA, USA saltmarshes (May-October 2013). fig-
share. Dataset. https://​doi.​org/​10.​6084/​m9.​figsh​are.​15125​148.​v1

Akaike H (1974) A new look at the statistical model identification. 
IEEE T Automat Contr 19:716–723. https://​doi.​org/​10.​1109/​TAC.​
1974.​11007​05

Archibald SA, Kirton A, Van der Merwe MR, Scholes RJ, Williams 
CA, Hanan N (2009) Drivers of inter-annual variability in Net 
Ecosystem Exchange in a semi-arid savanna ecosystem, South 
Africa. Biogeosciences 6:251–266. https://​doi.​org/​10.​5194/​
bg-6-​251-​2009

Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane 
emissions along a salt marsh salinity gradient. Biogeochemistry 
4:183–202. https://​doi.​org/​10.​1007/​BF021​87365

Benoudjit N, Verleysen M (2003) On the kernel widths in radial-basis 
function networks. Neural Process Lett 18:139–154. https://​doi.​
org/​10.​1023/A:​10262​89910​256

Bogard MJ, Bergamaschi BA, Butman DE, Anderson F, Knox SH, 
Windham-Myers L (2020) Hydrologic export is a major com-
ponent of coastal wetland carbon budgets. Global Biogeochem 
Cy 34:e2019GB006430. https://​doi.​org/​10.​1029/​2019G​B0064​30

Boyd BM, Sommerfield CK, Elsey-Quirk T (2017) Hydrogeomorphic 
influences on salt marsh sediment accumulation and accretion in 
two estuaries of the US Mid-Atlantic coast. Mar Geol 383:132–
145. https://​doi.​org/​10.​1016/j.​margeo.​2016.​11.​008

Bradley PM, Morris JT (1990) Influence of oxygen and sulfide con-
centration on nitrogen uptake kinetics in Spartina alterniflora. 
Ecology 71:282–287. https://​doi.​org/​10.​2307/​19402​67

Chittaragi NB, Limaye A, Chandana NT, Annappa B, Koolagudi 
SG (2019) Automatic Text-Independent Kannada Dialect 

Wetlands (2022) 42: 37 Page 13 of 16 37

https://doi.org/10.1007/s13157-022-01558-2
https://doi.org/10.6084/m9.figshare.15125148.v1
https://doi.org/10.6084/m9.figshare.15125148.v1
https://doi.org/10.6084/m9.figshare.15125148.v1
https://doi.org/10.1029/2018JG004556
https://doi.org/10.6084/m9.figshare.15125148.v1
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.5194/bg-6-251-2009
https://doi.org/10.5194/bg-6-251-2009
https://doi.org/10.1007/BF02187365
https://doi.org/10.1023/A:1026289910256
https://doi.org/10.1023/A:1026289910256
https://doi.org/10.1029/2019GB006430
https://doi.org/10.1016/j.margeo.2016.11.008
https://doi.org/10.2307/1940267


1 3

Identification System. In: Satapathy S, Bhateja V, Somanah R, 
Yang XS, Senkerik R (eds) Adv Intell Syst. Springer, Singapore, 
pp 79–87. https://​doi.​org/​10.​1007/​978-​981-​13-​3338-5_8

Choi DJ, Park H (2001) A hybrid artificial neural network as a soft-
ware sensor for optimal control of a wastewater treatment pro-
cess. Water Res 35:3959–3967. https://​doi.​org/​10.​1016/​S0043-​
1354(01)​00134-8

Conrad R (1989) Control of methane production in terrestrial eco-
systems. In: Andreae MO, Schimel DS (eds) Exchange of trace 
gases between terrestrial ecosystems and the atmosphere. Dahlem 
Workshop Reports, Wiley Chichester, UK, pp 39–58

Delwiche KB, Knox SH, Malhotra A, Fluet-Chouinard E, McNicol 
G, Feron S, Ouyang Z, Papale D, Trotta C, Canfora E, Cheah 
YW (2021) FLUXNET-CH4: a global, multi-ecosystem dataset 
and analysis of methane seasonality from freshwater wetlands. 
Earth Syst Sci Data 13:3607–3689. https://​doi.​org/​10.​5194/​
essd-​13-​3607-​2021

Dengel S, Zona D, Sachs T, Aurela M, Jammet M, Parmentier FJ, 
Oechel W, Vesala T (2013) Testing the applicability of neural 
networks as a gap-filling method using CH4 flux data from high 
latitude wetlands. Biogeosciences 10:8185–8200. https://​doi.​org/​
10.​5194/​bg-​10-​8185-​2013

Dunfield P, Dumont R, Moore TR (1993) Methane production and 
consumption in temperate and subarctic peat soils: response to 
temperature and pH. Soil Biol Biochem 25:321–326. https://​doi.​
org/​10.​1016/​0038-​0717(93)​90130-4

Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillo-
oly JF (2003) Scaling metabolism from organisms to ecosystems. 
Nature 423:639–642. https://​doi.​org/​10.​1038/​natur​e01671

Goodrich JP, Campbell DI, Roulet NT, Clearwater MJ, Schipper LA 
(2015) Overriding control of methane flux temporal variability 
by water table dynamics in a Southern Hemisphere, raised bog. J 
Geophys Res-Biogeo 120:819–831. https://​doi.​org/​10.​1002/​2014J​
G0028​44

Gomez-Casanovas N, DeLucia NJ, DeLucia EH, Blanc-Betes E, 
Boughton EH, Sparks J, Bernacchi CJ (2020) Seasonal controls 
of CO2 and CH4 dynamics in a temporarily flooded subtropical 
wetland. J Geophys Res-Biogeo 125:e2019JG005257. https://​doi.​
org/​10.​1029/​2019J​G0052​57

Guo H, Noormets A, Zhao B, Chen J, Sun G, Gu Y, Li B, Chen J (2009) 
Tidal effects on net ecosystem exchange of carbon in an estuarine 
wetland. Agr Forest Meteorol 149:1820–1828. https://​doi.​org/​10.​
1016/j.​agrfo​rmet.​2009.​06.​010

Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi 
DD (2012) Greenhouse gas (CO2, CH4, H2O) fluxes from drained 
and flooded agricultural peatlands in the Sacramento-San Joaquin 
Delta. Agr Ecosyst Environ 150:1–18. https://​doi.​org/​10.​1016/j.​
agee.​2012.​01.​009

Hussain AJ, Fergus P, Al-Jumeily D, Alaskar H, Radi N (2015) The 
Utilisation of Dynamic Neural Networks for Medical Data Clas-
sifications-Survey with Case Study. In: Huang DS, Han K (ed) 
Proceedings of the 2015 International Conference on Intelligent 
Computing, Springer, Fuzhou, China, pp 752-758. https://​doi.​org/​
10.​1007/​978-3-​319-​22053-6_​80

Inglett KS, Inglett PW, Reddy KR, Osborne TZ (2012) Temperature 
sensitivity of greenhouse gas production in wetland soils of dif-
ferent vegetation. Biogeochemistry 108:77–90. https://​doi.​org/​10.​
1007/​s10533-​011-​9573-3

Irvin J, Zhou S, McNicol G, Lu F, Liu V, Fluet-Chouinard E, Ouyang 
Z, Knox SH, Lucas-Moffat A, Trotta C, Papale D (2021) Gap-
filling eddy covariance methane fluxes: Comparison of machine 
learning model predictions and uncertainties at FLUXNET-CH4 
wetlands. Agr Forest Meteorol 308:108528. https://​doi.​org/​10.​
1016/j.​agrfo​rmet.​2021.​108528

Jo Y, Min K, Jung D, Sunwoo M, Han M (2019) Comparative study 
of the artificial neural network with three hyper-parameter 

optimization methods for the precise LP-EGR estimation using 
in-cylinder pressure in a turbocharged GDI engine. Appl Therm 
Eng 149:1324–1334. https://​doi.​org/​10.​1016/j.​applt​herma​leng.​
2018.​12.​139

Juszczak R, Acosta M, Olejnik J (2012) Comparison of Daytime and 
Nighttime Ecosystem Respiration Measured by the Closed Cham-
ber Technique on a Temperate Mire in Poland. Pol J Environ Stud 
21:643–658

Kavaklioglu K, Ceylan H, Ozturk HK, Canyurt OE (2009) Modeling 
and prediction of Turkey’s electricity consumption using artificial 
neural networks. Energ Convers Manage 50:2719–2727. https://​
doi.​org/​10.​1016/j.​encon​man.​2009.​06.​016

Kawamoto T, Kabashima Y (2017) Cross-validation estimate of the 
number of clusters in a network. Sci. Rep. 7:1–17. https://​doi.​org/​
10.​1038/​s41598-​017-​03623-x

Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi 
D (2015) Agricultural peatland restoration: effects of land-use 
change on greenhouse gas (CO2 and CH4) fluxes in the Sacra-
mento-San Joaquin Delta. Glob Change Biol 21:750–765. https://​
doi.​org/​10.​1111/​gcb.​12745

Knox SH, Windham-Myers L, Anderson F, Sturtevant C, Bergamaschi 
B (2018) Direct and indirect effects of tides on ecosystem-scale 
CO2 exchange in a brackish tidal marsh in Northern California. J 
Geophys Res-Biogeo 123:787–806. https://​doi.​org/​10.​1002/​2017J​
G0040​48

Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015) Con-
trols for multi-scale temporal variation in ecosystem methane 
exchange during the growing season of a permanently inundated 
fen. Agr Forest Meteorol 204:94–105. https://​doi.​org/​10.​1016/j.​
agrfo​rmet.​2015.​02.​002

Kordowski K, Kuttler W (2010) Carbon dioxide fluxes over an urban 
park area. Atmos Environ 44:2722–2730. https://​doi.​org/​10.​
1016/j.​atmos​env.​2010.​04.​039

Korprasertsak N, Leephakpreeda T (2019) Robust short-term predic-
tion of wind power generation under uncertainty via statistical 
interpretation of multiple forecasting models. Energy 180:387–
397. https://​doi.​org/​10.​1016/j.​energy.​2019.​05.​101

Kun C, Zhiwei M, Yuehua L, Zhinong J, Jinjie Z (2018) Lithium-ion 
battery state of charge estimation based on dynamic neural net-
work and Kalman filter. In: 2018 IEEE International Conference 
on Prognostics and Health Management (ICPHM). IEEE, Seattle, 
Washington, USA, pp 1-6. https://​doi.​org/​10.​1109/​ICPHM.​2018.​
84487​34

Ladlani I, Houichi L, Djemili L, Heddam S, Belouz K (2012) Modeling 
daily reference evapotranspiration (ET0) in the north of Algeria 
using generalized regression neural networks (GRNN) and radial 
basis function neural networks (RBFNN): a comparative study. 
Meteorol Atmos Phys 118:163–178. https://​doi.​org/​10.​1007/​
s00703-​012-​0205-9

Lamers LP, Govers LL, Janssen IC, Geurts JJ, Van der Welle ME, Van 
Katwijk MM, Van der Heide T, Roelofs JG (2013) Sulfide as a 
soil phytotoxin—a review. Front Plant Sci 4:268. https://​doi.​org/​
10.​3389/​fpls.​2013.​00268

Lloyd J, Taylor JA (1994) On the temperature dependence of soil res-
piration. Funct Ecol 8:315–323. https://​doi.​org/​10.​2307/​23898​24

Lorencin I, Anđelić N, Šegota SB, Musulin J, Štifanić D, Mrzljak V, 
Španjol J, Car Z (2021) Edge detector-based hybrid artificial neu-
ral network models for urinary bladder cancer diagnosis. In: Has-
sanien AE, Taha MHN, Khalifa NEM (eds) Enabling AI Applica-
tions in Data Science. Springer, Cham, pp 225–245. https://​doi.​
org/​10.​1007/​978-3-​030-​52067-0_​10

Mahato S, Paul S (2019) Detection of major depressive disorder using 
linear and non-linear features from EEG signals. Microsyst Tech-
nol 25:1065–1076. https://​doi.​org/​10.​1007/​s00542-​018-​4075-z

Maher D, Eyre BD (2011) Benthic carbon metabolism in southeast 
Australian estuaries: Habitat importance, driving forces, and 

Wetlands (2022) 42: 37Page 14 of 1637

https://doi.org/10.1007/978-981-13-3338-5_8
https://doi.org/10.1016/S0043-1354(01)00134-8
https://doi.org/10.1016/S0043-1354(01)00134-8
https://doi.org/10.5194/essd-13-3607-2021
https://doi.org/10.5194/essd-13-3607-2021
https://doi.org/10.5194/bg-10-8185-2013
https://doi.org/10.5194/bg-10-8185-2013
https://doi.org/10.1016/0038-0717(93)90130-4
https://doi.org/10.1016/0038-0717(93)90130-4
https://doi.org/10.1038/nature01671
https://doi.org/10.1002/2014JG002844
https://doi.org/10.1002/2014JG002844
https://doi.org/10.1029/2019JG005257
https://doi.org/10.1029/2019JG005257
https://doi.org/10.1016/j.agrformet.2009.06.010
https://doi.org/10.1016/j.agrformet.2009.06.010
https://doi.org/10.1016/j.agee.2012.01.009
https://doi.org/10.1016/j.agee.2012.01.009
https://doi.org/10.1007/978-3-319-22053-6_80
https://doi.org/10.1007/978-3-319-22053-6_80
https://doi.org/10.1007/s10533-011-9573-3
https://doi.org/10.1007/s10533-011-9573-3
https://doi.org/10.1016/j.agrformet.2021.108528
https://doi.org/10.1016/j.agrformet.2021.108528
https://doi.org/10.1016/j.applthermaleng.2018.12.139
https://doi.org/10.1016/j.applthermaleng.2018.12.139
https://doi.org/10.1016/j.enconman.2009.06.016
https://doi.org/10.1016/j.enconman.2009.06.016
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1038/s41598-017-03623-x
https://doi.org/10.1111/gcb.12745
https://doi.org/10.1111/gcb.12745
https://doi.org/10.1002/2017JG004048
https://doi.org/10.1002/2017JG004048
https://doi.org/10.1016/j.agrformet.2015.02.002
https://doi.org/10.1016/j.agrformet.2015.02.002
https://doi.org/10.1016/j.atmosenv.2010.04.039
https://doi.org/10.1016/j.atmosenv.2010.04.039
https://doi.org/10.1016/j.energy.2019.05.101
https://doi.org/10.1109/ICPHM.2018.8448734
https://doi.org/10.1109/ICPHM.2018.8448734
https://doi.org/10.1007/s00703-012-0205-9
https://doi.org/10.1007/s00703-012-0205-9
https://doi.org/10.3389/fpls.2013.00268
https://doi.org/10.3389/fpls.2013.00268
https://doi.org/10.2307/2389824
https://doi.org/10.1007/978-3-030-52067-0_10
https://doi.org/10.1007/978-3-030-52067-0_10
https://doi.org/10.1007/s00542-018-4075-z


1 3

application of artificial neural network models. Mar Ecol Prog 
Ser 439:97–115. https://​doi.​org/​10.​3354/​meps0​9336

Martin RM, Moseman-Valtierra S (2017) Different short-term 
responses of greenhouse gas fluxes from salt marsh mesocosms 
to simulated global change drivers. Hydrobiologia 802:71–83. 
https://​doi.​org/​10.​1007/​s10750-​017-​3240-1

Mateos-Naranjo E, Redondo-Gómez S, Álvarez R, Cambrollé J, Gan-
dullo J, Figueroa ME (2010) Synergic effect of salinity and CO2 
enrichment on growth and photosynthetic responses of the inva-
sive cordgrass Spartina densiflora. J Exp Bot 61:1643–1654. 
https://​doi.​org/​10.​1093/​jxb/​erq029

Moffat AM, Beckstein C, Churkina G, Mund M, Heimann M (2010) 
Characterization of ecosystem responses to climatic controls 
using artificial neural networks. Glob Change Biol 16:2737–
2749. https://​doi.​org/​10.​1111/j.​1365-​2486.​2010.​02171.x

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, 
Veith TL (2007) Model evaluation guidelines for systematic 
quantification of accuracy in watershed simulations. T ASABE 
50:885–900. https://​doi.​org/​10.​13031/​2013.​23153

Moseman-Valtierra S, Abdul-Aziz OI, Tang J, Ishtiaq KS, Morkeski 
K, Mora J, Quinn RK, Martin RM, Egan K, Brannon EQ, Carey 
J (2016) Carbon dioxide fluxes reflect plant zonation and below-
ground biomass in a coastal marsh. Ecosphere 7:e01560. https://​
doi.​org/​10.​1002/​ecs2.​1560

Mozdzer TJ, Megonigal JP (2013) Increased methane emissions 
by an introduced Phragmite australis lineage under global 
change. Wetlands 33:609–615. https://​doi.​org/​10.​1007/​
s13157-​013-​0417-x

Nahlik AM, Mitsch WJ (2011) Methane emissions from tropical fresh-
water wetlands located in different climatic zones of Costa Rica. 
Glob Change Biol 17:1321–1334. https://​doi.​org/​10.​1111/j.​1365-​
2486.​2010.​02190.x

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual 
models part I—A discussion of principles. J Hydrol 10:282–290. 
https://​doi.​org/​10.​1016/​0022-​1694(70)​90255-6

Oikawa PY, Jenerette GD, Knox SH, Sturtevant C, Verfaillie J, Dronova 
I, Poindexter CM, Eichelmann E, Baldocchi DD (2017) Evalu-
ation of a hierarchy of models reveals importance of substrate 
limitation for predicting carbon dioxide and methane exchange in 
restored wetlands. J Geophys Res-Biogeo 122:145–167. https://​
doi.​org/​10.​1002/​2016J​G0034​38

Ouyang X, Lee SY (2014) Updated estimates of carbon accumulation 
rates in coastal marsh sediments. Biogeosciences 11:5057–5071. 
https://​doi.​org/​10.​5194/​bg-​11-​5057-​2014

Ozyildirim BM, Avci M (2013) Generalized classifier neural network. 
Neural Networks 39:8–26. https://​doi.​org/​10.​1016/j.​neunet.​2012.​
12.​001

Park J, Sandberg IW (1991) Universal approximation using radial-
basis-function networks. Neural Comput 3:246–257. https://​doi.​
org/​10.​1162/​neco.​1991.3.​2.​246

Pierfelice KN, Graeme Lockaby B, Krauss KW, Conner WH, Noe GB, 
Ricker MC (2017) Salinity influences on aboveground and below-
ground net primary productivity in tidal wetlands. J Hydrol Eng 
22:D5015002. https://​doi.​org/​10.​1061/​(ASCE)​HE.​1943-​5584.​
00012​23

Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influ-
ence on methane emissions from tidal marshes. Wetlands 31:831–
842. https://​doi.​org/​10.​1007/​s13157-​011-​0197-0

Qi Y, Xu M, Wu J (2002) Temperature sensitivity of soil respiration 
and its effects on ecosystem carbon budget: nonlinearity begets 
surprises. Ecol Model 153:131–142. https://​doi.​org/​10.​1016/​
S0304-​3800(01)​00506-3

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, 
Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T 
(2005) On the separation of net ecosystem exchange into assimila-
tion and ecosystem respiration: review and improved algorithm. 

Glob Change Biol 11:1424–1439. https://​doi.​org/​10.​1111/j.​1365-​
2486.​2005.​001002.x

Rey-Sanchez AC, Morin TH, Stefanik KC, Wrighton K, Bohrer G 
(2018) Determining total emissions and environmental drivers of 
methane flux in a Lake Erie estuarine marsh. Ecol Eng 114:7–15. 
https://​doi.​org/​10.​1016/j.​ecole​ng.​2017.​06.​042

Riegel JB, Bernhardt E, Swenson J (2013) Estimating above-ground 
carbon biomass in a newly restored coastal plain wetland using 
remote sensing. Plos one 8:e68251. https://​doi.​org/​10.​1371/​journ​
al.​pone.​00682​51

Saeedi E, Hossain MS, Kong Y (2016) Side-channel information char-
acterisation based on cascade-forward back-propagation neural 
network. J Electron Test 32:345–356. https://​doi.​org/​10.​1007/​
s10836-​016-​5590-4

Safa B, Arkebauer TJ, Zhu Q, Suyker A, Irmak S (2019) Net Ecosys-
tem Exchange (NEE) simulation in maize using artificial neural 
networks. IFAC J Syst Contr 7:100036. https://​doi.​org/​10.​1016/j.​
ifacsc.​2019.​100036

Safa B, Arkebauer TJ, Zhu Q, Suyker A, Irmak S (2021) Gap Filling 
of Net Ecosystem CO2 Exchange (NEE) above Rain-Fed Maize 
Using Artificial Neural Networks (ANNs). J Softw Eng Appl 
14:150–171. https://​doi.​org/​10.​4236/​jsea.​2021.​145010

Sage RF, Kubien DS (2007) The temperature response of C3 and C4 
photosynthesis. Plant Cell Environ 30:1086–1106. https://​doi.​org/​
10.​1111/j.​1365-​3040.​2007.​01682.x

Schäfer KV, Duman T, Tomasicchio K, Tripathee R, Sturtevant C 
(2019) Carbon dioxide fluxes of temperate urban wetlands with 
different restoration history. Agr Forest Meteorol 275:223–232. 
https://​doi.​org/​10.​1111/j.​1365-​3040.​2007.​01682.x

Schäfer KV, Tripathee R, Artigas F, Morin TH, Bohrer G (2014) Car-
bon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan 
estuary. J Geophys Res-Biogeo 119:2065–2081. https://​doi.​org/​
10.​1002/​2014J​G0027​03

Schmidt A, Wrzesinsky T, Klemm O (2008) Gap filling and quality 
assessment of CO2 and water vapour fluxes above an urban area 
with radial basis function neural networks. Bound-Lay Meteorol 
126:389–413. https://​doi.​org/​10.​1007/​s10546-​007-​9249-7

Schwefel R, Hondzo M, Wüest A, Bouffard D (2017) Scaling oxygen 
microprofiles at the sediment interface of deep stratified waters. 
Geophys Res Lett 44:1340–1349. https://​doi.​org/​10.​1002/​2016G​
L0720​79

Segers R (1998) Methane production and methane consumption: a 
review of processes underlying wetland methane fluxes. Biogeo-
chemistry 41:23–51. https://​doi.​org/​10.​1023/A:​10059​29032​764

Skolthanarat S, Lewlomphaisarl U, Tungpimolrut K (2014) Short-term 
load forecasting algorithm and optimization in smart grid opera-
tions and planning. In: 2014 IEEE Conference on Technologies for 
Sustainability (SusTech), IEEE, Portland, OR, USA, pp 165-171. 
https://​doi.​org/​10.​1109/​SusTe​ch.​2014.​70462​38

Smith IA, Hutyra LR, Reinmann AB, Thompson JR, Allen DW (2019) 
Evidence for edge enhancements of soil respiration in temperate 
forests. Geophys Res Lett 46:4278–4287. https://​doi.​org/​10.​1029/​
2019G​L0824​59

Smithson SC, Yang G, Gross WJ, Meyer BH (2016) Neural networks 
designing neural networks: multi-objective hyper-parameter opti-
mization. In: Frank L (ed) Proceedings of the 35th International 
Conference on Computer-Aided Design, Austin, Texas, USA, pp 
1-8. https://​doi.​org/​10.​1145/​29669​86.​29670​58

Stathakis D (2009) How many hidden layers and nodes? Int J Remote 
Sens 30:2133–2147. https://​doi.​org/​10.​1080/​01431​16080​25492​78

St-Hilaire F, Wu J, Roulet NT, Frolking S, Lafleur PM, Humphreys 
ER, Arora V (2010) McGill wetland model: evaluation of a peat-
land carbon simulator developed for global assessments. Biogeo-
sciences 7:3517–3530. https://​doi.​org/​10.​5194/​bg-7-​3517-​2010

Stursa D, Dolezel P (2019) Comparison of ReLU and linear satu-
rated activation functions in neural network for universal 

Wetlands (2022) 42: 37 Page 15 of 16 37

https://doi.org/10.3354/meps09336
https://doi.org/10.1007/s10750-017-3240-1
https://doi.org/10.1093/jxb/erq029
https://doi.org/10.1111/j.1365-2486.2010.02171.x
https://doi.org/10.13031/2013.23153
https://doi.org/10.1002/ecs2.1560
https://doi.org/10.1002/ecs2.1560
https://doi.org/10.1007/s13157-013-0417-x
https://doi.org/10.1007/s13157-013-0417-x
https://doi.org/10.1111/j.1365-2486.2010.02190.x
https://doi.org/10.1111/j.1365-2486.2010.02190.x
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1002/2016JG003438
https://doi.org/10.1002/2016JG003438
https://doi.org/10.5194/bg-11-5057-2014
https://doi.org/10.1016/j.neunet.2012.12.001
https://doi.org/10.1016/j.neunet.2012.12.001
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001223
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001223
https://doi.org/10.1007/s13157-011-0197-0
https://doi.org/10.1016/S0304-3800(01)00506-3
https://doi.org/10.1016/S0304-3800(01)00506-3
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1016/j.ecoleng.2017.06.042
https://doi.org/10.1371/journal.pone.0068251
https://doi.org/10.1371/journal.pone.0068251
https://doi.org/10.1007/s10836-016-5590-4
https://doi.org/10.1007/s10836-016-5590-4
https://doi.org/10.1016/j.ifacsc.2019.100036
https://doi.org/10.1016/j.ifacsc.2019.100036
https://doi.org/10.4236/jsea.2021.145010
https://doi.org/10.1111/j.1365-3040.2007.01682.x
https://doi.org/10.1111/j.1365-3040.2007.01682.x
https://doi.org/10.1111/j.1365-3040.2007.01682.x
https://doi.org/10.1002/2014JG002703
https://doi.org/10.1002/2014JG002703
https://doi.org/10.1007/s10546-007-9249-7
https://doi.org/10.1002/2016GL072079
https://doi.org/10.1002/2016GL072079
https://doi.org/10.1023/A:1005929032764
https://doi.org/10.1109/SusTech.2014.7046238
https://doi.org/10.1029/2019GL082459
https://doi.org/10.1029/2019GL082459
https://doi.org/10.1145/2966986.2967058
https://doi.org/10.1080/01431160802549278
https://doi.org/10.5194/bg-7-3517-2010


1 3

approximation. In 22nd International Conference on Process Con-
trol (PC19). IEEE, Strbske Pleso, Slovakia, pp 146-151. https://​
doi.​org/​10.​1109/​PC.​2019.​88150​57

Sudheer KP, Jain SK (2003) Radial basis function neural network for 
modeling rating curves. J Hydrol Eng 8:161–164. https://​doi.​org/​
10.​1061/​(ASCE)​1084-​0699(2003)8:​3(161)

Theuerkauf EJ, Stephens JD, Ridge JT, Fodrie FJ, Rodriguez AB 
(2015) Carbon export from fringing saltmarsh shoreline erosion 
overwhelms carbon storage across a critical width threshold. 
Estuar Coast Shelf S 164:367–378. https://​doi.​org/​10.​1016/j.​ecss.​
2015.​08.​001

Tramontana G, Migliavacca M, Jung M, Reichstein M, Keenan TF, 
Camps-Valls G, Ogee J, Verrelst J, Papale D (2020) Partitioning 
net carbon dioxide fluxes into photosynthesis and respiration using 
neural networks. Glob Change Biol 26:5235–5253. https://​doi.​org/​
10.​1111/​gcb.​15203

Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG 
(2006) Salt tolerance and osmotic adjustment of Spartina alterni-
flora (Poaceae) and the invasive M haplotype of Phragmites aus-
tralis (Poaceae) along a salinity gradient. Am J Bot 93:1784–
1790. https://​doi.​org/​10.​3732/​ajb.​93.​12.​1784

Vivanco L, Irvine IC, Martiny JB (2015) Nonlinear responses in 
salt marsh functioning to increased nitrogen addition. Ecology 
96:936–947. https://​doi.​org/​10.​1890/​13-​1983.1

Walter BP, Heimann M (2000) A process-based, climate-sensitive 
model to derive methane emissions from natural wetlands: Appli-
cation to five wetland sites, sensitivity to model parameters, and 
climate. Global Biogeochem Cy 14:745–765. https://​doi.​org/​10.​
1029/​1999G​B0012​04

Wang H, Hsieh YP, Harwell MA, Huang W (2007) Modeling soil salin-
ity distribution along topographic gradients in tidal salt marshes 
in Atlantic and Gulf coastal regions. Ecol Model 201:429–439. 
https://​doi.​org/​10.​1016/j.​ecolm​odel.​2006.​10.​013

Wang X, Qin Y, Wang Y, Xiang S, Chen H (2019) ReLTanh: An acti-
vation function with vanishing gradient resistance for SAE-based 
DNNs and its application to rotating machinery fault diagnosis. 
Neurocomputing 363:88–98. https://​doi.​org/​10.​1016/j.​neucom.​
2019.​07.​017

Wenger SJ, Olden JD (2012) Assessing transferability of ecological 
models: an underappreciated aspect of statistical validation. Meth-
ods Ecol Evol 3:260–267. https://​doi.​org/​10.​1111/j.​2041-​210X.​
2011.​00170.x

Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net eco-
system carbon exchange and the greenhouse gas balance of tidal 
marshes along an estuarine salinity gradient. Biogeochemistry 
120:163–189. https://​doi.​org/​10.​1007/​s10533-​014-​9989-7

Willard JD, Read JS, Appling AP, Oliver SK, Jia X, Kumar V (2020) 
Predicting water temperature dynamics of unmonitored lakes with 

meta transfer learning. Water Resour Res 57:e2021WR029579. 
https://​doi.​org/​10.​1029/​2021W​R0295​79

Wilson AM, Morris JT (2012) The influence of tidal forcing on ground-
water flow and nutrient exchange in a salt marsh-dominated 
estuary. Biogeochemistry 108:27–38. https://​doi.​org/​10.​1007/​
s10533-​010-​9570-y

Xie T, Yu H, Wilamowski B (2011) Comparison between traditional 
neural networks and radial basis function networks. In Proceed-
ings of the 2011 IEEE International Symposium on Industrial 
Electronics, IEEE, Gdansk, Poland, pp 1194-1199. https://​doi.​
org/​10.​1109/​ISIE.​2011.​59843​28

Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell 
S, Fielding AH, Bamford AJ, Ban S, Barbosa AM, Dormann CF 
(2018) Outstanding challenges in the transferability of ecological 
models. Trends Ecol Evol 33:790–802. https://​doi.​org/​10.​1016/j.​
tree.​2018.​08.​001

Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H 
(2018) Opening the black box of neural networks: methods for 
interpreting neural network models in clinical applications. Ann 
Transl Med 6:216. https://​doi.​org/​10.​21037/​atm.​2018.​05.​32

Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model 
of soil, hydrology, and vegetation for carbon dynamics in wetland 
ecosystems. Global Biogeochem Cy 16:9. https://​doi.​org/​10.​1029/​
2001G​B0018​38

Zhang W, Zhong X, Liu G (2008) Recognizing spatial distribu-
tion patterns of grassland insects: neural network approaches. 
Stoch Env Res Risk A 22:207–216. https://​doi.​org/​10.​1007/​
s00477-​007-​0108-3

Zhu D, Wu N, Bhattarai N, Oli KP, Chen H, Rawat GS, Rashid I, 
Dhakal M, Joshi S, Tian J, Zhu QA (2021) Methane emissions 
respond to soil temperature in convergent patterns but divergent 
sensitivities across wetlands along altitude. Glob Change Biol 
27:941–955. https://​doi.​org/​10.​1111/​gcb.​15454

Zhu X, Zhuang Q, Qin Z, Glagolev M, Song L (2013) Estimating wet-
land methane emissions from the northern high latitudes from 
1990 to 2009 using artificial neural networks. Global Biogeochem 
Cy 27:592–604. https://​doi.​org/​10.​1002/​gbc.​20052

Zirkohi MM, Fateh MM, Akbarzade A (2010) Design of Radial Basis 
Function Network Using Adaptive Particle Swarm Optimization 
and Orthogonal Least Squares. J Softw Engineer Appl 3:704–708. 
https://​doi.​org/​10.​4236/​jsea.​2010.​37080

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Wetlands (2022) 42: 37Page 16 of 1637

https://doi.org/10.1109/PC.2019.8815057
https://doi.org/10.1109/PC.2019.8815057
https://doi.org/10.1061/(ASCE)1084-0699(2003)8:3(161)
https://doi.org/10.1061/(ASCE)1084-0699(2003)8:3(161)
https://doi.org/10.1016/j.ecss.2015.08.001
https://doi.org/10.1016/j.ecss.2015.08.001
https://doi.org/10.1111/gcb.15203
https://doi.org/10.1111/gcb.15203
https://doi.org/10.3732/ajb.93.12.1784
https://doi.org/10.1890/13-1983.1
https://doi.org/10.1029/1999GB001204
https://doi.org/10.1029/1999GB001204
https://doi.org/10.1016/j.ecolmodel.2006.10.013
https://doi.org/10.1016/j.neucom.2019.07.017
https://doi.org/10.1016/j.neucom.2019.07.017
https://doi.org/10.1111/j.2041-210X.2011.00170.x
https://doi.org/10.1111/j.2041-210X.2011.00170.x
https://doi.org/10.1007/s10533-014-9989-7
https://doi.org/10.1029/2021WR029579
https://doi.org/10.1007/s10533-010-9570-y
https://doi.org/10.1007/s10533-010-9570-y
https://doi.org/10.1109/ISIE.2011.5984328
https://doi.org/10.1109/ISIE.2011.5984328
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.21037/atm.2018.05.32
https://doi.org/10.1029/2001GB001838
https://doi.org/10.1029/2001GB001838
https://doi.org/10.1007/s00477-007-0108-3
https://doi.org/10.1007/s00477-007-0108-3
https://doi.org/10.1111/gcb.15454
https://doi.org/10.1002/gbc.20052
https://doi.org/10.4236/jsea.2010.37080

	Predicting greenhouse gas fluxes in coastal salt marshes using artificial neural networks
	Abstract
	Introduction
	Materials and Methods
	Study sites and dataset
	Framework for modeling and analysis

	Results and Discussion
	Dominant predictors of the GHG fluxes based on univariate ANN models
	Optimal multivariate ANN models to predict the GHG fluxes
	Insights into the varying prediction performance of different ANNs
	Comparison with the previously developed emergent scaling models
	Limitations, challenges, and recommendations

	Conclusions
	Acknowledgements 
	References




