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ABSTRACT
To enable trust in the IC supply chain, logic locking as an IP pro-
tection technique received signi�cant attention in recent years.
Over the years, by utilizing Boolean satis�ability (SAT) solver and
its derivations, many de-obfuscation attacks have undermined the
security of logic locking. Nonetheless, all these attacks receive
the inputs (locked circuits) in a very simpli�ed format (Bench or
remapped and translated Verilog) with many limitations. This
raises the bar for the usage of the existing attacks for modeling and
assessing new logic locking techniques, forcing the designers to
undergo many troublesome translations and simpli�cations. This
paper introduces the RANEAttack, an open-source CAD-based tool-
box for evaluating the security of logic locking mechanisms that
implement a unique interface to use formal veri�cation tools with-
out a need for any translation or simpli�cation. The RANE attack
not only performs better compared to the existing de-obfuscation
attacks, but it can also receive the library-dependent logic-locked
circuits with no limitation in written, elaborated, or synthesized
standard HDL, such as Verilog. We evaluated the capability/perfor-
mance of RANE on FOUR case studies, one is the �rst de-obfuscation
attack model on FSM locking solutions (e.g., HARPOON) in which
the key is not a static bit-vector but a sequence of input patterns.
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1 INTRODUCTION
To save the ever-increasing costs of maintaining an integrated
circuit (IC) supply chain facility, take advantage of cutting-edge
technology nodes, and meet the market demand, the manufacturing
supply chain of ICs is globally distributed [3]. However, in a horizon-
tal (globally distributed) IC supply chain, due to the lack of trust and
with no reliable monitoring, many security threats have emerged,
including IC overproduction, Trojan insertion, reverse engineering,
IP theft, and counterfeiting [34]. Amongst several design-for-trust
(DfTr) techniques, logic obfuscation, a.k.a. logic locking, received
signi�cant attention in recent years [4, 11, 12, 17, 18, 21, 35, 36, 53].
Logic locking is the mechanism of concealing the functionality of
the circuit using its secret. The correct functionality of the circuit
will be ensured whenever the correct secret value is provided to the
circuit. The secret could be provided by di�erent means. It could
be an explicit value statically loaded from tamper-proof memory
(TPM) to the circuit at power ON referred to as the key (key-based
logic locking) [41]. It also could be an implicit sequence of input
patterns from primary inputs (PIs), which make the transition in the
circuit’s FSM to its desired state (key-less logic locking) [2, 16, 44].

Over the recent years, many de-obfuscation attacks subvert the
trustworthiness of logic locking. In particular, Boolean satis�ability
(SAT)-based attack and its derivatives show how well-formulated
attack models could break the existing logic locking techniques [25]
with fast convergence. Depending on the assumptions of the threat
models used in de-obfuscation attacks, these attacks may be able to
target the combinational parts of the circuit, separately through the
design-for-test (DFT) infrastructure (i.e., scan chain pins) [6, 15, 20,
24, 27, 31, 40, 45, 52], or they have to target the sequential circuit
as a whole (through PI/PO) [22, 28, 32, 37]. Nevertheless, many of
these attacks have been developed over the basic capabilities of
di�erent solvers that have lots of limitations, making them less
practical on real applications. For instance, almost all open-source
de-obfuscation attack tools [22, 24, 40, 50] receive the locked circuit
in Bench or translated and remapped Verilog format, converted by
open-source synthesis tools like ABC and Yosys [5, 42]. So, many
real applications with complex macros require a heavy library-
dependent conversion and simpli�cation before exploiting these
attacks. In many cases, these attacks fail to evaluate the robustness
of existing logic locking techniques in such scenarios.

In this paper, we introduce a uni�ed Reverse Assessment of
Netlist Encryption (RANE), as an open-source CAD-based toolbox
for evaluating the security of di�erent logic locking techniques.
Unlike the existing open-source de-obfuscation tools on logic lock-
ing, RANE has been developed based on a uni�ed framework with
a unique interface to exploit the capability/scalability of formal
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veri�cation tools for di�erent stages of the attack. The RANE frame-
work allows the users to exploit any formal veri�cation tool, either
open-source or commercial, such as Cadence JasperGold, Synopsys
Formality, SymbiYosys, etc. The establishment of such formal veri-
�cation tools allows RANE to support circuits written, elaborated,
synthesized in standard HDL, like Verilog, with no limitation on
the technology library used for the design/implementation. The
�exibility and deployability of formal veri�cation tools also allow
us to model di�erent threat models in RANE. With more concentra-
tion on sequential-based attacks on logic locking, in this paper, we
will evaluate the capability/performance of RANE on FOUR di�er-
ent case studies: (1) an oracle-less attack on key-less (implicit key)
sequence-based logic locking (HARPOON), (2) An oracle-guided at-
tack on HARPOON, (3) An oracle-guided attack on sequential logic
locking (scan is BLOCKED), and (4) An oracle-guided attack on
combinational logic locking (scan is OPEN). We also demonstrate
how the RANE framework could be extended to support any form
of de-obfuscation attack that relied on formal veri�cation tools.

2 BACKGROUND ON LOGIC LOCKING AND
DE-OBFUSCATION ATTACKS

Logic locking is the process of hiding the functionality of a cir-
cuit by implementing post-manufacturing means of programma-
bility into the netlist. Logic locking has been widely studied in
the literature [4, 10–12, 17, 18, 21, 26, 35, 48, 53], in which, the
functionality of a circuit is locked using two major techniques. It
could be implemented as (1) a set of dedicated key inputs (mostly
driven from TPM) such that only when the correct key is ap-
plied, the circuit resumes its expected (correct) functionality [4, 10–
12, 17, 18, 21, 26, 35, 36, 46–48, 53], or (2) a set (sequence) of input
patterns through PIs that requires to be traversed to lead the state
of the circuit to the normal (correct) mode [2, 16, 44].

Fig. 1 depicts how both key-based and key-less logic locking
techniques work. In key-based logic locking shown in Fig. 1(a)),
there exist two sets of inputs, i.e., primary inputs (PI) and key
inputs (KI). In key-based logic locking, the key values are stored and
initiated in TPM. However, after reverse-engineering, the content
of TPM will be wiped out, and the adversary has to evaluate them
as extra inputs to the circuit (KI). In key-less logic locking, on
the other hand, as depicted in Fig. 1(b), new state modes, such as
obfuscationmode and authenticationmode, are added in the circuit’s
FSM required to be traversed using a speci�c set of PI patterns. For
example, by applying patterns as pi1 ! pi7 to the PI of 1(b), the
circuit will reach its normal (correct) initial state. In this case, there
exists no extra (dedicated) wires/inputs as the KI, which makes the
attack formulation much harder for the adversary.
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(b) HARPOON: Key-less

Figure 1: Explicit Key-based vs. Implicit Sequence-based.
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Figure 2: Scan Availability in De-obfuscation Attacks.

Over the last decade, numerous studies have evaluated and chal-
lenged the validity and robustness of existing logic locking tech-
niques against di�erent forms of attacks, especially attacks on key-
based logic locking techniques [25]. Depending on the threatmodels
de�ned for the attacks, these attacks could be categorized into dif-
ferent groups. One central assumption in these threat models is
the availability of the DFT infrastructure (i.e., scan chain pins) for
the adversaries [13]. When the access to the scan infrastructure is
OPEN, as shown in Fig. 2(a), the adversary would be able to have
separate access to inputs/outputs of each combinational logic (CL),
separately. By controlling the scan enable (SE), this access could
be achieved through the scan in (SI) and the scan out (SO). Assum-
ing that the access to the scan pins is OPEN, Boolean satis�ability
(SAT)-based attack could break most forms of the logic locking
techniques in a matter of minutes [31, 40].

In the SAT attack, as illustrated in Fig. 3(a), the adversary �rst
transforms each CL of the reverse-engineered circuit to SAT circuit
(SATC). Then, by building themiter circuit (!" (#$, %1) " !" (#$, %2)),
the adversary revokes the SAT solver to �nd #$which distinguish
between two keys (di�erent outputs for %1, %2), called discrimi-
nating input pattern (DIP). Then, this DIP will be queried on the
oracle (through DFT), and the SI/SO constraint for the CL will be
stored back in the SAT solver, and the miter circuit would be solved
again in the next iteration. When the miter+constraints problem
no longer has a satisfying assignment in one iteration, the list of
added constraints is a complete set that uniquely characterizes a
correct key. Finding a correct key is then straightforward. Any key
that satis�es this set of constraints is correct, and it could be found
using a single query to the SAT solver. With access to the scan pins
and using this �ow, the adversary would target each CL separately
and apply the combinational de-obfuscation attack.

Since the validity and strength of most logic locking techniques
are undermined by combinational SAT attacks, numerous studies
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Figure 3: Combinational SAT vs. Sequential SAT Attack.
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show how the scan access could be limited to avoid the feasibility
of such attacks [13, 14, 23, 38, 39, 51]. When the scan chain access
is BLOCKED, as demonstrated in Fig. 2(b), the adversary’s access
is limited to PI/PO, and she cannot build the SATC for each CL.
However, even while the access to the circuit is limited to PI/PO,
the SAT solver could be used to model an attack on the sequential
circuits as a whole. The attack procedure on sequential circuits with
no scan access is shown in Fig. 3(b). Similar to the SAT attack, it has
an iterative structure for pruning the search space. However, due to
the restricted access to the internal registers, to formulate the inter-
nal state, unfolding could be merged with the combinational SAT
attack to extend it for sequential circuits [22, 28, 32]. Hence, rather
than �nding a DIP in each iteration, it �nds a sequence of inputs
denoted as discriminating input sequence (DIS) that can generate
two di�erent outputs for two di�erent keys. After �nding each
DIS, the miter+constraint will be updated with a new constraint
to ensure that the next onset of keys produces the same output for
previously found DIS. This process continues until no further DIS
is found within the given boundary.

Both combinational and sequential SAT-based de-obfuscation
attacks could be applied to key-based logic locking techniques, and
they are not directly applicable to key-less logic locking. The key-
less logic locking was �rst introduced in HARPOON [44]. HAR-
POON is a sequential logic locking technique that modi�es the
FSM of a circuit. In such key-less techniques, one or few extra sets
(modes) of state, such as obfuscation mode or authentication mode
as shown in Fig. 1(b), is merged with the original FSM of the circuit.
In such an FSM locking solution, a speci�c unlocking sequence is
required (and applied in multiple cycles) to drive the FSM from a
locked state to reach the active FSM’s original initial state [7, 44].
The target of an adversarial attack against such FSM locking solu-
tions is to �nd a sequence of input patterns in the result of which
the initial state of the original FSM is reached and IP is activated.

3 PROPOSED ATTACK FRAMEWORK: RANE
The existing attack frameworks on logic locking with available

source codes are developed by exploiting pre-compiled Binary and
modulo theory solvers that accept the netlists in Bench, which is a

1 INPUT(a[0])

2 INPUT(a[1])

3 INPUT(b[0])

4 INPUT(b[1])

5 INPUT(cin)

6
7 OUTPUT(s[0])

8 OUTPUT(s[1])

9
10 OUTPUT(cout)

7 s[0] = XOR(a[0], b[0], cin)

8 cout_01 = AND(a[0], b[0])

9 cout_02 = AND(a[0], cin)

10 cout_03 = AND(b[0], cin)

11 cout_0 = OR(cout_01 , cout_02 , cout_03)

12 s[1] = XOR(a[1], b[1], cout_0)

13 cout_11 = AND(a[1], b[1])

14 cout_12 = AND(a[1], cout_0)

15 cout_13 = AND(b[1], cout_0)

16 cout = OR(cout_11 , cout_12 , cout_13)

Figure 4: Acceptable BENCHformat in Existing and Available SAT and Sequen-
tial SAT Attacks’ Source Codes [22, 40] for a 2-bit FA.

1 ! timescale 1ns / 1ps

2 ///////////////////////

3 // Lib.v

4 ///////////////////////

5 module FA_1bit (

6 input a,

7 input b,

8 input cin ,

9 output s,

10 output cout );

11
12 assign {cout ,s} = a + b

13 + cin;

14 endmodule

1 ! timescale 1ns / 1ps

2 ///////////////////////

3 // Top.v

4 ///////////////////////

5 module FA_2bit(

6 input [1:0] a, b,

7 input cin ,

8 output [1:0] sum ,

9 output carry );

10 FA_1bit s0(a[0], b[0], cin ,

11 sum[0], cr0 ) );

12 FA_1bit s1(a[1], b[1], cr0 ,

13 sum[1], carry ) );

14 endmodule

Figure 5: Standard Verilog format Acceptable by RANE for a 2-bit FA.

minimal language for the description of hardware [22, 24, 40]. This
requirement introduces a burden for modeling and assessing logic
locking as all complex structures have to be re-synthesized and ex-
pressed in the simplest logic structures compatible by the solver. For
instance, a 2-bit Full Adder (FA) in acceptable Bench format is de-
picted in Fig. 4 and its corresponding Verilog format demonstrated
in Fig. 5. As illustrated, the FAs, although available in the standard
cell library, cannot be interpreted by the solver’s native macros and
have to be translated to basic logic gates/macros. Problems become
more complicated when complex standard syntax declarations such
as vectors, inouts, and aliasing are used. More precisely, the limita-
tions faced during the modeling of a complex netlist in simpli�ed
Bench format include (1) limited availability of available macros
with inherent support only for the description of basic gates, (2)
static syntax declaration for available macros with no possibility of
extension, (3) requirement for having/writing a dedicated parser for
such format that is library- and language-dependent, (4) incompati-
bility with many standard syntax declarations, like vector, inout,
aliasing, etc. The complexity involved in building a translator and
having to model and account for these complexities signi�cantly
raises the bar for the application of the existing attacks.

To overcome this shortcoming, we propose RANE as a CAD-
based toolbox for evaluating the security of logic locking that ap-
plies to amuch broader set of applications and circuits. By exploiting
open-source toolkits for design analysis and code generation of
RTL designs written in standard HDLs, RANE supports parsing and
analyzing circuits written, elaborated, or synthesized in standard
HDL, such as Verilog. This also allows us to use formal veri�cation
tools for the de-obfuscation modeling instead of using pre-compiled
solvers as the core of de-obfuscation. The usage of formal veri�-
cation tools allows RANE to be extended based on the inherent
features of these formal tools. Besides, the RANE applicability is
seamlessly improved as formal tools are revised and upgraded to
parse and interact with new libraries and complex macros without
having to do any additional translation or modeling.

3.1 RANE Framework
Fig. 6(a) shows the overview of the RANE framework. In the RANE
framework, we provide two di�erent solutions: (1) a formal-based
interface through Pyverilog generator, and (2) a pre-compiled static-
model tool using PySMT generator. In the �rst solution, we use
Pyverilog [49] as the open-source HDL analyzer for code pars-
ing, static analysis, and code translation. Pyverilog framework is
captured in Fig. 6(b). The parser, data�ow analyzer, control-�ow
analyzer, and Verilog code generator are the four major features
in Pyverilog. Pyverilog also provides a data�ow and control-�ow
graph visualizer for interpreting the hardware. In RANE, we im-
plement and integrate di�erent interfaces to support di�erent veri-
�cation and solver tools. As demonstrated in Fig. 6(a), by getting
the bene�t of Pyverilog, Cadence JasperGold and SymbiYosys are
integrated as the formal tools. Also, using Pyverilog, any model
like miter circuit, equivalency check, etc., could be generated us-
ing behavioral Verilog code, making the model generation for
de-obfuscation much easier. RANE also supports features like ex-
porting/importing constraints, automated cycle pre-processing, and
Verilog-based attack model generation.

For the second solution, we implement and integrate an inter-
face for embedding PySMT into the RANE framework. PySMT
is a solver-agnostic library for fast prototyping of satis�ability
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Figure 6: RANE Overall Framework.

modulo theory (SMT)-based algorithms. As demonstrated in Fig.
6(c), by using di�erent APIs, PySMT provides the possibility of
invoking well-known SMT solvers, such as Z3 [30], Yices[29], and
Boolector[43]. By integrating the PySMT framework, similar to the
existing de-obfuscation attack tools, it could be engaged on Bench

and remapped Verilog �les over pre-compiled solvers.

3.2 RANE Application
Using this framework, RANE can model di�erent threat models
on logic locking and formulate various attacks with much less ef-
fort than the existing de-obfuscation attack tools. In the following
section, we will evaluate the application of RANE on FOUR di�er-
ent case studies: (1) oracle-less attack on HARPOON, in which
HARPOON is the key-less FSM logic locking, (2) oracle-guided
attack on HARPOON, (3) oracle-guided attack on sequential
logic locking, in which random-based logic locking is engaged,
and as an assumption of the threat model, the scan chain accessibil-
ity is BLOCKED, and (4) oracle-guided attack on combinational
logic locking, in which random-based logic locking is engaged,
and the scan chain accessibility is OPEN.

3.2.1 Case Study 1: Oracle-less A!ack on HARPOON . In this
case study, we assume that the adversary might have only a single
working copy of the chip. They can �rst apply a sequence of input
patterns, and by observing the outputs, they can build a database
of such I/O pairs. Alternatively, the I/O pair also could be obtained
by the adversary at the foundry from the pre-generated functional
test patterns or post-layout veri�cation test1. Then, by reverse-
engineering the chip or having access to the layout at the foundry,

1Since HARPOON is a key-less logic locking, functional test patterns or post-
layout veri�cation tests could be used to build and extend the database of I/O pair.
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Figure 7: Oracle-Less Attack Model on HARPOON.

Algorithm 1 Oracle-less Attack Model on HARPOON using RANE
—————– Formulating of Secret 1 (init state) —————–

1: Get an I/O sequence ( {!"# 0, $!"# 0 }, ...,{!"# $#1, $!"#$ #1 }) from%%&'()%*+ ;
2: &'()* $ %+(!"# 0, ,̂ ,",- , $!"# 0, ,̂ 1) %|! / . |

, =1 %+(!"# , , ,̂ , , $!"#, , ,̂ , +1) ;
———— Formulating of Secret 2 (unlocking sequence) ————

3: &'()* %= %+0/ (- , 0, , 01-, $2 3 0, , 2 3 1) ;
4: . $ 1;

———— Invoking the Formal Tool: Finding Secret 1, 2 ————
5: while / '012* (&'()* % (, 2 3, = ,̂ ,",- )) ! /2.* do
6: &'()* %= %+,

/ (- , , , , 2 3, , $, , , 2 3, +1) ;
7: . $ . + 1;
8: end while
9: return / '012* (&'()* % (, 2 3, = ,̂ ,",- )) ! {init state, unlocking sequence}

the netlist could be extracted. We refer to this attack model as
bronze model. The adversary in this model does not have access
to the scan chain. By using this threat model, the de-obfuscation
attack on HARPOON could be accomplished in two main steps:
(1) Finding the initial value of FFs (init state), e.g., &0 in Fig. 1(b),
such that if the init state initializes the circuit, it would produce
the same output if the input patterns are applied to the oracle; (2)
Formulating the formal veri�cation problem to �nd the correct
sequence of input patterns, allowing us to reach the previously
found init state, referred to as unlocking sequence. For example, in
Fig. 1(b), pi1 ! pi7 is the unlocking sequence to reach the init state.

Fig. 7 shows the oracle-less attack model on HARPOON based
on the bronze threat model. For the �rst step of the attack, i.e.,
formulating secret 1 of Fig. 7, the init state is considered as the key.
Then, by applying the I/O sequences from the pre-built database to
the (unrolled) combinational equivalent (CE) netlist2, i.e. InP0 !
(CE0), InP1 ! (CE1), etc., constraining that the output values (Y!"# 0,
Y!"# 1, etc.) must match with oracle outputs, the init state could
be found by formal tool. After formulating the secret 1, then the
second step will be formulated for �nding the unlocking sequence,
i.e. �nding secret 2 of Fig. 7. In this step, unlocking sequence is the
key, i.e., US0:1 #1, and with constraining that state of the circuit that
must reach the valid init state, the formal tool integrated with the
RANE framework could �nd the unlocking sequence. Algorithm 1
also illustrates the �ow of this case study in the RANE framework.
It consists of three steps: (1) formulating of secret 1, (2) formulating
of secret 2, and (3) invoking the formal tool for �nding both secrets.
Note that all unrolling steps are implicitly done by the formal tool.

It is worth mentioning that if the adversary aims toONLY reverse
engineer the chip, formulating and performing part 1 and part 3 of
the Algorithm 1 would be enough. After �nding the init state, the
adversary could then insert their own scan chain into the reverse-
engineered netlist to provide the possibility of loading the proper
init state to the FFs, bypassing the need to go through the second
step for �nding the unlocking sequence. Furthermore, assuming

2all CE, s/CE,
/ s are the same each represents the combinational equivalent of the

locked netlist. Each CE, s/CE,
/ s is implicitly generated for one cycle by the formal tool.
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Figure 8: Oracle-Guided Attack Model on HARPOON.

Algorithm 2 Oracle-guided Attack Model on HARPOON using RANE
—————– Finding Secret 1 (init state) —————–

1: &'()* $ %145 (3, , ,",- 1, $1) %%145 (3 ,, ,",- 2, $2) ;
2: while !UC(&'()* ) %!CE(&'()* ) %!UMC(&'()* ) do
3: 4!, , $ / '012* (&'()* % ($1 ! $2)) ;
4: $, $ %%&'()%*+ (4!, , ) ;
5: &'()* %= %145 (4!, , , , ,",- 1, $, ) %%145 (4!, , , , ,",- 2, $, ) ;
6: end while

—————– Finding Secret 2 (unlocking sequence) —————–
7: &'()* %= %+0/ (- , 0, , 01-, $2 3 0, , 2 3 1) ;
8: . $ 1;
9: while / '012* (&'()* % (, 2 3, = ,̂ ,",- )) ! /2.* do
10: &'()* %= %+,

/ (- , , , , 2 3, , $, , , 2 3, +1) ;
11: . $ . + 1;
12: end while
13: return / '012* (&'()* % (, 2 3, = ,̂ ,",- )) ! {init state, unlocking sequence}

that for the pre-built I/O pairs, there exists multiple init states
satisfying the formal mode, and each init state could be reached via
a unique unlocking sequence, formulating and solving both steps
together will automatically constrain �nding the valid init state
whose unlocking sequence is the shortest one. This case study in
RANE is the �rst of its kind in de-obfuscation attacks that target
key-less logic locking techniques like HARPOON with no need
for oracle. In our experimental results, we show how the success
rate of this model depends on the length/size of I/O pairs available
in the pre-built database and the size of the unlocking sequence
(numbers of obfuscation/authentication FSMs). Note that since the
adversary’s capability is limited to only using the available and pre-
built sequence of I/O pairs, the existing combinational/sequential
SAT can not be used for this attack. This is because the solver can
no longer constrain the input patterns freely. But this attack could
be easily modeled and carried by RANE.

3.2.2 Case Study 2: Oracle-guided A!ack on HARPOON . In
this case study, we target the same logic locking technique evaluated
in case study 1, i.e., HARPOON. We assume that the adversary has
access to the reverse-engineered netlist and the functional chip
(oracle). Other assumptions are the same as the threat model of case
study 1. Fig. 8 illustrates this attack model on HARPOON. Similar
to case study 1, it could be done in two steps, i.e., �nding init state
(secret 1) and �nding the unlocking sequence (secret 2). However,
these two steps will be accomplished in sequence. Regarding the
�rst step (secret 1), since the oracle is available for the adversary,
the generation of the sequence for �nding the init state will be
done by the formal tool. Similarly, all unrolling operations will be
done implicitly in this case study. The availability of the oracle
also allows us to expand the number of sequences from one to

Algorithm 3 Oracle-guided Attack Model on Logic Locking with
BLOCKED scan chain (Sequential Logic Locking) using RANE
1: &'()* = %145 (3, 5 1, $1) %%145 (3, 5 2, $2) ;
2: while !UC(&'()* ) %!CE(&'()* ) %!UMC(&'()* ) do
3: 3 6,1 $ /'012* (&'()* % ($1 ! $2)) ;
4: $7 $ %%&'()%*+ (3 6,1 ) ;
5: &'()* %= %145 (3 6,1 , 51, $7 ) %%145 (3 6,1 , 52, $7 ) ;
6: end while
7: return / '012* (&'()* ) ! Return Correct Key

many (InP11:2 , InP21:6 , ..., InPN1:7). Unlike the attack model in case
study 1, since the adversary’s capability is not limited to a �xed
I/O pair database, this model’s success rate does not depend on the
length/size of the sequences. Algorithm 2 depicts the �ow of case
study 2. Note that unlike case study 1 that �nds both secrets at once,
in this case, multiple formal tool invocation will be accomplished
for �nding secret 1 followed by �nding secret 2.

Since formal tool is employed for �nding the DISes, the termina-
tion condition would be adopted from conventional sequential SAT
attack [32]: (1) Unique Completion (UC): This criterion checks
for the uniqueness of the secret. If there is only a single secret
that satisfying the de�ned constraints, the attack is terminated.
(2) Combinational Equivalence (CE): If there is more than one
secret that agrees with the constraints, the attack checks the com-
binational equivalency of the remaining secrets. In this step, the
input/output of FFs is considered as pseudo primary outputs/inputs
allowing the attacker to treat the circuit as combinational. The
resulting circuit is subjected to an SAT attack. If the SAT solver
fails to �nd a di�erent output or next state for two di�erent secrets,
it concludes that all remaining secrets are correct, and the attack
terminates. (3) Unbounded Model Check (UMC): If UC and CE
fail, the attack checks the existence of a satisfying assignment for
the remaining secrets using an unbounded model checker. This is
an exhaustive search with no limitation on bound.

3.2.3 Case Study 3: Oracle-guided A!ack on Sequential Logic
Locking . RANE attack could also be used for breaking conven-
tional key-based logic locking solutions, such as random logic lock-
ing (RLL) [18], or strong logic locking (SLL) [17] applied on the
sequential circuit, where access to the scan chain is BLOCKED. In
this case study, we target to model the conventional SAT-based
sequential de-obfuscation attack, shown in Fig. 3(b). The adversary
has access to the PI/PO of the oracle and reverse-engineered locked
netlist. Unlike the existing sequential de-obfuscation attacks [22, 32]
that handle the unrolling explicitly by the framework, RANE could
accomplish it both implicitly handled by the formal veri�cation tool
encapsulated in the RANE framework or explicitly by the de�ned
attack model. Also, supporting Verilog in the RANE framework
allows us to get the bene�t of behavioral Verilog helping to build
any model with much less e�ort.

The support of implicit unrolling provides the RANE framework
to use any of the available either open-source or commercial veri-
�cation tools. Hence, RANE can get the bene�t of the scalability,
stability, and adaptability of these tools to handle a much richer set
of input formats, handle a wider range of gates3. This is the main
aim of the RANE framework that be easily adaptable in any �ow,

3Formal tools could support any type of macros de�ned in the standard cell library,
as opposed to very limited basic gates available in Bench format (used in the existing
sequential de-obfuscation attack, i.e., KC2).
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Algorithm 4 Oracle-guided Attack Model on Logic Locking with OPEN
scan chain (Combinational Logic Locking) using RANE
1: &'()* = %(*8$ _&*() (3, 5 1, $1) %%(*8$ _&*() (3, 5 2, $2) ;
2: while / '012* (&'()* % ($1 ! $2)) do
3: 3 6,9 $ /'012* (&'()* ) ;
4: $7 $ %%&'()%*+ (3 6,9 ) ;
5: &'()* %= %(*8$ _&*() (3 6,9 , 51, $7 ) %%(*8$ _&*() (3 6,9 , 52, $7 ) ;
6: end while
7: return / '012* (&'()* ) ! Return Correct Key

without the need for input format translation, remapping, Decod-
ing, re-synthesis. Algorithm 3 shows the �ow of case study 3 in the
RANE framework with implicit unrolling. As demonstrated, the
attack formulation is �rst initiated using the miter circuit (XORed
double-circuit). Then, per each iteration, the formal tool looks for a
DIS and two keys that produce di�erent outputs for that DIS. In the
next iterations, the previously found DISes must match with the
oracle, and the attack model termination conditions will be checked
when no more DIS is found. As shown, unrolling operations for
�nding DISes are not formulated in the model (implicit unrolling),
and it will be handled automatically by the formal tool.

3.2.4 Case Study 4: Oracle-guided A!ack on Combinational
Logic Locking . In this case study, RANE emulates the most well
known SAT-based attack on logic locking proposed by Subramanyan
et al. [40], which is oracle-guided on logic lockings with OPEN scan
chain access, referred to as SAT-based combinational de-obfuscation
attack. As demonstrated in Algorithm 4, in the SAT-based combina-
tional de-obfuscation attack, a (distinguishing)miter circuit needs to
be built as '$()* & ! 8'16 _*'89 (+, %1) ! ! 8'16 _*'89 (+, %2) for any
arbitrary locked combinational logic ! 8'16 _*'89 . Based on the miter
circuit, the formal tool will be invoked and will return a DIP that
produces di�erent outputs for two di�erent keys. Then, this DIP is
queried on the oracle, ! :*289:'; , ),-. $ ! :*289:'; (+(.< ) and the
I/O-constraint for the equivalency check, ! 8'16 _*'89 (+(.< , %1) =
! 8'16 _*'89 (+(.< , %2) = ),-. will be added as a new constraint to
the formal tool, and after this update, the '$()* circuit would be
solved again. When the '$()* + /012(*-$1(2problem has no satis-
fying assignment (no more DIP), it could identify the correct key.

From the formal tool perspective in RANE, the formulation of
both key-based oracle-guided combinational and sequential de-
obfuscation attacks are very similar. The only di�erence is that for
the attack model on the sequential circuits, the formal tool looks for
DIS (with implicit unrolling), but in the model on the combinational
circuit, �nding DIP is the main objective of the formal tool.

4 EXPERIMENTAL RESULTS
With exploiting packages like PySMT [33] and Pyverilog [49], the
proposed RANE framework has been implemented in Python3.
The current version of the RANE framework, available in [8], has
been built over di�erent formal veri�cation tools con�gurable by
the users, including Cadence JasperGold as the commercial formal
veri�cation tool and SymbiYosys as a formal open-source tool. The
formal tools are responsible formajor operations of attackmodeling,
such as unrolling, buildingmiter, �nding sequences, DIPs, andDISes.
In this paper, the experiments are accomplished using the open-
source SymbiYosys formal veri�cation engine4. We evaluate and

4To facilitate re-producing the results by the community and remove the depen-
dency on commercial tools, the results are generated on available open-source tools.
Our preliminary investigation shows that the results could improve signi�cantly (in

verify the feasibility/performance of the RANE framework, based
on all FOUR case studies previously discussed in Section 3.2, on a
set of ISCAS-{85/89} benchmark circuits, as listed in Table 1. For
sequential-based experiments, i.e., case studies 1, 2, and 3, since
the circuits have a sequential depth of fewer than 100 cycles, with
skipping UMC check, the boundary/depth is set to 100 cycles. The
integration of PySMT and SymbiYosys allows RANE to get the
bene�t of di�erent solvers. In the experiments, and based on our
observation to get the most bene�t, we use Yices for case studies 1
and 2, and the best performance achieved by Boolector, MathSAT, or
Yices for case studies 3 and 4. All experiments are carried on ARGO
cluster computing [9] as a computing cluster equipped with Intel
Xeon E5-2670, with 16 core CPUs and 512GB of RAM.

Table 2 demonstrates the performance of the RANE framework
when it is con�gured for case study 1, in which the circuits are
locked with HARPOON [44]. When the circuit’s state is in obfusca-
tion/authenticationmodes, randomPOs are selected to be corrupted.
We also used random input patterns to build the database of I/O
pairs for this case study. In this experiment, the number of authen-
tication/obfuscation FSMs (unlocking sequence size) is swept. As
shown, for di�erent circuits, with a di�erent number of obfuscation
FSMs (di�erent unlocking sequence sizes), the threat model de�ned
in case study 1 can retrieve the secrets with a small number of I/Os.

Since the output of this model is based on a limited set of pre-
built I/O pairs, this threat model cannot guarantee the uniqueness
of the init state (secret 1) generated by the framework. However,
increasing the size of I/O pairs, or applying di�erent sets of ran-
dom I/O pairs, results in restricting the di�erent {secret 1, secret
2} possibilities that match with the oracle pre-generated I/O pairs.
In this experiment, we limit the size of the pre-built I/O database
to 3,000 cycles and by using this size, our observation shows that,
on average, for 73.4% of the cases in Table 2, the extracted secrets
are the correct expected ones. Note that, since this model generates
the attack model once (without iterative structure)5, increasing the
number of I/O pairs does not a�ect the execution time signi�cantly
(almost linearly w.r.t. the number of I/O pairs).

Table 3 depicts the performance of the RANE framework on the
same logic locking technique, i.e., HARPOON6, but in this case
(case study 2), we assumed that the oracle is available. In this case,
the formal tool can generate di�erent DISes for �nding init state.
Unlike case study 1, �nding the unlocking sequence (secret 2) will
be started when the init state (secret 1) is found. Hence, in this

Table 1: Description of ISCAS-85/89* circuits.

Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs Circuit #Gates #PIs #POs

c432 160 36 7 c1355 546 41 32 c3540 1,669 50 22
c499 202 41 32 c1908 880 33 25 c5315 2,307 178 123
c880 383 60 26 c2670 1,269 233 140 c7552 3,513 207 108

Circuit #FFs #PIs #POs Circuit #FFs #PIs #POs Circuit #FFs #PIs #POs

s344 15 9 11 s832 5 18 19 s5378 179 35 49
s382 21 3 6 s838 32 34 1 s13207 638 62 152
s386 6 7 7 s1196 18 14 14 s15850 534 77 150
s526 21 3 6 s1423 74 17 5 s35932 1,728 35 320
s713 19 35 23 s1494 6 8 19 s38584 1,426 38 304
*s9234 MUST be ignored since it has some FFs that have no path to POs.

terms of runtime and memory) when a commercial tool, such as Cadence JasperGold,
is con�gured as the utilized formal method tool.

5The model de�ned in Fig. 7 will be generated at once. The attack process will be
accomplished for two secrets simultaneously. It will �nd the init state (secret 1) and
the unlocking sequence (secret 2) at once.

6The same locked circuits are used for the experiments on case studies 1 and 2.
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Table 2: RANE performance in Case Study 1 - Oracle-less on HARPOON.

Circuit {3, 18}' {5, 30} {10, 60} {20, 120}

time #I/O time #I/O time #I/O time #I/O

s344 4 20 4 30 5 60 22 120
s382 1 20 - - 4 60 172 120
s386 4 20 5 30 7 60 22 120
s526 -+ - - - - - - -
s713 5 20 6 30 8 60 23 120
s832 5 20 5 30 - - - -
s838 - - 3 30 6 60 22 120
s1169 6 50 20 230 8 60 - -
s1423 4 30 10 110 11 100 65 120
s1494 224 20 226 30 249 60 1,468 120
s5378 6 20 7 30 15 60 76 120
s13207 15 20 22 30 56 60 246 120
s15850 - - 18 30 40 60 - -
s35932 - - 53 30 111 60 - -
s38417 72 50 - - - - - -
s38584 49 20 108 60 - - 1,117 120

' {number of obfuscation/authentication FSMs, The length of unlocking sequence}
time: in Seconds #I/O: number of input/output patterns
+Failed to �nd the correct init state by using 3,000 I/O pairs.

experiment, the execution time of the RANE framework is divided
into two parts, (1 + (2, in which (1 is the RANE execution time for
�nding the secret 1, and (2 is the time required to �nd secret 2.
The size indicates the attack model size in terms of {#DISes/Depth}.
This experiment reveals one of the biggest limitations of unrolling-
based attacks. The problem size will be grown in two dimensions: (1)
increasing the number of DISes, (2) increasing the depth of unrolling.
Thus, for larger circuits, this model faces a larger execution time.
For cases with the memory bound, switching to commercial formal
tools, e.g. Cadence JasperGold, will resolve the issue.

Table 4 shows the performance of the RANE framework in case
study 3. In this case, we assume the (XOR-based) key gates are
inserted at random places, the access to the scan chain is BLOCKED,
and the attack model evaluates the circuit as a whole. To provide
comparative results, we engage the PySMT generator for building
the model for this case study. The unrolling has been accomplished
statically/explicitly, and similar to KC2 (neos), the locked circuits are
in Bench format. In this experiment, the best performance achieved
by Boolector, MathSAT, and Yices has been reported [43]. As demon-
strated, with outperforming KC2 (neos) [22] for larger circuits, the
RANE framework promises better scalability. Note that, since KC2
(neos) is a pre-compiled C++ platform, it outperforms RANE for
the smaller circuits7.

Table 3: RANE performance in Case Study 2 - Oracle-guided on HARPOON.

Circuit {3, 18}' {5, 30} {10, 60} {20, 120}

time size time size time size time size

s344 3+1 1/2 5+2 3/4 11+9 4/4 20+98 7/4
s382 8,484+107 107/44 8,101+218 93/44 4,449+398 65/67 to to
s386 3+1 3/3 12+3 11/4 30+9 12/4 100+195 15/4
s526 1,644+28 59/44 17,749+275 129/44 2,677+275 48/50 6,4441+to 48/49
s713 102+3 7/8 144+6 9/10 496+17 9/10 1,322+619 43/6
s832 10+2 7/10 6+2 4/5 59+23 17/11 34+113 12/13
s838 3,175+82 45/66 293+29 43/4 701+140 63/6 4,319+3,742 112/18
s1196 67+10 13/15 45+4 10/11 79+42 14/15 79+148 11/13
s1423 26,300+556 157/16 to - to - to -
s1494 11+3 9/6 12+5 7/8 41+36 13/18 26+99 9/5
s5378 323+8 26/9 532+67 34/10 722+148 32/9 1,840+829 34/9
s13207 68,817+2,839 74/29 77,102+3,772 73/29 to - mem -
s15850 to - to - to - to -
s35932 1,167+1,189 21/7 1,234+1,815 22/7 mem - mem -
s38417 mem - mem - mem - mem -
s38584 mem - mem - mem - mem -
' {number of obfuscation/authentication FSMs, The length of unlocking sequence}
time: in Seconds timeout (to): 24 hours size: #DISes/Depth
mem: Out of memory

7compared to RANE, KC2 provides faster parsing/solving on the small circuits.

Table 4: RANE performance comparison with KC2 [22] in Case Study 3 -
Oracle-guided on Random-based Sequential Logic Locking.

Circuit RANE KC2 (neos) [22]

key size 100 150 200 250 300 100 150 200 250 300

s344 5 7 n/a n/a n/a 1 5 n/a n/a n/a
s386 6 30 n/a n/a n/a 3 27 n/a n/a n/a
s832 11 40 196 504 n/a 3 50 644 5,771 n/a
s1196 4 14 9 15 70 1 5 4 10 82
s1494 20 31 69 310 511 3 10 18 63 144

key size 10 20 30 40 50 10 20 30 40 50

s382 6 183 to to to 68 246 to to to
s526 15 4,932 to to to to to to to to
s713 2 2 1 2 3 0 0 0 0 1
s838 12 211 to 16 to 53 to to to to
s1423 7 21 921 to to 10 77 9,041 to to
s5378 16 14 62 25 28 8 10 40 7 9

s13207 779 817 784 820 839 2,840 3,686 2,881 2,790 2,414
s15850 772 738 767 735 921 688 490 507 703 795
s35932 895 660 985 850 811 777 882 3,576 1,095 8,056
s38417 5,571 6,036 6,287 to to to to to to to
s38584 to to to to to to to to to to
time: in Seconds timeout (to): 4 hrs n/a: Circuits are too small for that key size
KC2 is executed with di�erent con�gurations, and the best performance is reported.

Table 5: RANE performance comparison with SAT attack [40] in Case Study
4 - Oracle-guided on Combinational Logic Locking.

Circuit RANE SAT (sld) [40]

overhead %5 %10 %25 %50 %5 %10 %25 %50

c432 1 1 1 1 0 0 0 0
c499 0 1 1 2 0 2 2 12
c880 0 1 2 7 0 0 1 4
c1355 1 2 8 107 0 1 7 169
c1908 1 2 20 689 1 2 21 377
c2670 1 to to to to to to to
c3540 2 4 9 201 4 2 6 122
c5315 7 45 to 9,804 5 20 to to
c7552 44 2,227 to to 43 to to to

time: in Seconds timeout (to): 4 hrs

Table 5 compares the performance of the RANE framework, once
it models case study 4 using PySMT generator, with the conven-
tional SAT attack on combinational logic locking by Subramanyan
et al. [40]. Similarly, since the conventional SAT attack has been
deployed using a compiled binary �le and uses a pre-compiled
SAT solver, it outperforms the RANE framework in some parts of
the experiment. However, for larger circuits, we observe that the
RANE framework can outperform the conventional SAT attack by
recon�guring it to use the most suitable SAT solver for each circuit.

5 LOOKING INTO FUTURE
RANE integrates CAD formal veri�cation tools with packages like
Pyverilog and PySMT to provide rich extensibility, deployability,
scalability, and performance in the RANE framework, especially
compared to the existing pre-compiled and optimized but static
de-obfuscation attacks:
(1) Almost all attacks with much more capabilities and assumptions
can be modeled using the RANE framework. For instance, the un-
common usage of latches for latch-based or clock-gated logic lock-
ing techniques [19] requires a troublesome and hard-to-be-achieved
transition to be acceptable by the existing attacks. However, RANE
can support a much more comprehensive range of digital building
blocks and macros with full support on standard library cells.
(2) The futuristic support of di�erent features/capabilities in formal
tools could be easily engaged in the RANE framework. For instance,
the support of range equivalent circuits in the formal tools will
allow us to formulate a much more scalable attack model on se-
quential logic locking. Range equivalent circuits are compressed
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circuits representing the circuit’s 3=>unroll, accepting inputs and
generating outputs in the range of the 3=>unroll circuit. Although
the concept of range equivalent circuits is an open research prob-
lem, the RANE framework can support and engage such features
once the formal tools support it.
(3) Parallelism could be engaged much more appropriately when
CAD formal tools are in place. For instance, the joint Cadence and
AWS proof-of-concept for utilizing various degrees of parallelism
using JasperGold on AWS (JAWS) show how veri�cation could
achieve huge speed-up on parallel computing systems [1].

6 CONCLUSION
In this paper, we introduced the Reversal Assessment of Netlist
Encryption (RANE) Attack, an open-source framework for evaluat-
ing the security of logic locking techniques. The RANE framework
integrates packages like Pyverilog and PySMT with formal veri�ca-
tion tools to support circuits described in standard languages, like
Verilog. We evaluated the e�ectiveness of the RANE framework
on FOUR di�erent case studies. We illustrated how the RANE at-
tack could model di�erent de-obfuscation attacks with much less
e�ort. We also demonstrated how the RANE attack could use either
a golden chip as a reference or a set of pre-recorded I/Os for the
unlocking process. Moreover, we also illustrated how the RANE
framework could formulate the �rst attack model on key-less FSM
obfuscation solutions. Our experimental results show that the high
scalability of formal tools allows RANE to outperform the exist-
ing de-obfuscation attacks on larger circuits while eliminating the
shortcomings of prior art de-obfuscation solutions for dealing with
translation and modeling of complex structures.
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