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ABSTRACT
Modern semiconductor manufacturing often leverages a fabless
model in which design and fabrication are partitioned. This has led
to a large body of work attempting to secure designs sent to an
untrusted third party through obfuscation methods. On the other
hand, e�cient de-obfuscation attacks have been proposed, such
as Boolean Satis�ability attacks (SAT attacks). However, there is
a lack of frameworks to validate the security and functionality of
obfuscated designs. Additionally, unconventional obfuscated de-
sign �ows, which vary from one obfuscation to another, have been
key impending factors in realizing logic locking as a mainstream
approach for securing designs. In this work, we address these two
issues for Lookup Table-based obfuscation. We study both Volatile
and Non-volatile versions of LUT-based obfuscation and develop a
framework to validate SAT runtime using machine learning. We
can achieve unparallel SAT-resiliency using LUT-based obfuscation
while incurring 7% area and less than 1% power overheads. Follow-
ing this, we discuss and implement a validation �ow for obfuscated
designs. We then fabricate a chip consisting of several benchmark
designs and a RISC-V CPU in TSMC 65nm for post functionality
validation. We show that the design �ow and SAT-runtime valida-
tion can easily integrate LUT-based obfuscation into existing CAD
tools while adding minimal veri�cation overhead. Finally, we justify
SAT-resilient LUT-based obfuscation as a promising candidate for
securing designs.
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1 INTRODUCTION
Recent logic obfuscation schemes for digital circuits have focused
on making the design resilient to various security threats. The most
sophisticated and in�uential of these threats is the Boolean satis-
�ability (SAT) attack. However, the current practice for validating
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resiliency against SAT attacks consists of simulating the attack in-
de�nitely until the attack can de-obfuscate the design [9]. The time
for attack completion can be several days, weeks, or even months.
Given the uncertainty of de-obfuscation time using SAT attacks, the
simulation method for assessing and quantifying design security is
not practical as it can introduce an inde�nite delay in the IP design
�ow. To counter SAT attack, many obfuscation schemes have been
proposed. These schemes are often disruptive to the design �ow
and involve modi�cations to design RTL, gate-level netlist, tim-
ing characterization, and even layout. Ideally, IC designers would
perform obfuscation in a modular fashion as an additional stage
in the ASIC �ow that requires minimum alteration to the other
stages. The lack of methods to validate SAT-resiliency along with
unconventional physical design and validation �ows discourages
most IP designers from utilizing obfuscation primitives for securing
their design.

Given the dire need for quantifying and validating the security
against SAT-attack, a couple of challenges must be addressed: First,
many obfuscation techniques have been proposed with sophisti-
cated theories, rules, and heuristics, to name a few. The e�ect of
such obfuscations and netlist are highly-nonlinear for conventional
simple models (e.g., linear regression and support vector machine
[1]) to characterize. Second, The input for a design security analysis
tool could be of varying circuit size, and therefore, varying gate-
level netlist obfuscation criteria. Therefore, we must perform the
feature extraction methods that support varying-structured data
without signi�cant information loss and enables the model to learn
the e�ect of obfuscation.

To validate the security of the obfuscated IP and address the open
challenges of SAT runtime, this work proposes Design Security An-
alyzer. The Design Security Analyzer is based on the Conjunctive
Normal Form (CNF) graph representation of the obfuscated circuit,
where we train a graph neural network model on the obfuscated
circuit to capture the trend and e�ect of the obfuscation on the
design to be secured. This resulting model allows the IP owner to
sweep various obfuscation metrics (such as obfuscation coverage,
di�erent obfuscation methods, gate selection) and helps validate
the obfuscation’s security quickly.

Further, this work addresses the need for a simple, e�ective, and
modular obfuscation technique to thwart the SAT attack surface.
This technique inserts the proposed obfuscation primitives [6] af-
ter the completion of the synthesis stage. The proposed strategy
only requires predictable and straightforward modi�cations to the
design test methodology. Therefore, the obfuscated design can be
moved through the remaining stages of the physical design �ow
without any additional accommodations while allowing the abil-
ity to validate the functionality and security of the design. Most
obfuscation works have presented their results from experimental
results. However, this is the �rst work that validates the claims of
Lookup Table (LUT)-based obfuscation by fabricating the test IC.
While validating the claims of the LUT-based obfuscation [6], we
test both volatile and non-volatile versions of LUTs while sweeping
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the obfuscation key sizes. To sum up, this study provides a compre-
hensive study on the validation of security and functionality for
obfuscated IP for various con�gurations of LUT-based obfuscation.

2 BACKGROUND
2.1 Logic Obfuscation & SAT Attack
In logic obfuscation, the insertion of additional logic helps to con-
ceal the functionality of a target design. The addition of extra logic
serves to introduce ambiguity in the design to avoid netlist extrac-
tion after de-layering, or other reverse engineering techniques [12].
The SAT attack [12] is used to �nd the correct key of the obfus-
cated or logic-locked circuit without brute-forcing through all key
combinations. The SAT solver input is a Boolean formula in CNF
obtained from the transformation of the obfuscated netlist. [12].

As aforementioned, most research work claims the resiliency of
their proposed obfuscation against the SAT attacks and the variants
of SAT-attack by the method of simulation. However, features such
as circuit’s topology, obfuscationmethod, and key size play a pivotal
role in determining the SAT resiliency, and their e�ect cannot be
justi�ed through limited SAT simulations.

For the estimation of SAT-solver runtime, we investigated the
SatZilla [10] framework, which is a portfolio-based SAT selection
algorithm that chooses the best SAT-solver given a problem. The se-
lection algorithm predicts the performance of di�erent solvers, and
this idea of predicting performance can be expanded to predict the
runtime. However, in hardware security, the obfuscation strategies
have been tailored based on the experiences and rules hand-crafted
by domain experts. Therefore, the features extracted are heuristics
in nature and extracted on a case-by-case obfuscation, making it
hard to generalize the model. In this work, we use features used in
SatZilla along with the determinant features extracted and learned
by the Graph Convolutional Network (GCN) from the raw CNF
input to predict the runtime. The following section introduces the
Graph Neural networks and how we deploy and adapt them for
SAT runtime prediction.

2.2 Graph Neural Networks
Recently, there has been an increasing interest in applying deep
learning for various graph data [11], such as social networks, molec-
ular structure, road networks, and brain connectivity. The spectral
convolution methods [5, 8] are the mainstream algorithms devel-
oped as the graph convolution methods. The graph convolution
methods are based on the graph Fourier analysis [4]. [3] proposed
the polynomial approximation. Inspired by this, Graph Convolu-
tional Neural Networks (GCNNs) [5] were able to leverage the
idea of Convolutional Neural Networks (CNN) in dealing with
the Euclidean data for modeling graph-structured data. Kipf and
Welling proposed GCNs [8], which naturally integrates the con-
nectivity patterns and feature attributes of graph-structured data
and outperforms many state-of-the-art methods such as GCNN.
By utilizing graph topology, attributes of the surrounding nodes,
the graph convolutional networks can learn the features related
to security validation of obfuscated IP against SAT-attack in the
hardware security domain.

While validating the security solves one of the obfuscation is-
sues, we need to validate the functionality to prove that they do
not induce unintended timing or functional failures while making
minimal modi�cations to the conventional design �ow.

2.3 Validating Obfuscation in Silicon
A holistic veri�cation approach is required to validate the function-
ality of the design when the design is received from the foundry.
Ideally, the strategy would be similar to the convention Silicon
Validation, but additionally, we must con�gure the obfuscation
primitives and run the initial design tests.

Figure 1: Security Oriented Design Flow for LUT-based Obfuscation

3 VALIDATION METHODOLOGY AND SECURE
DESIGN FLOW FOR SAT-RESILIENT IPS

Figure 1 shows the Security Oriented Design Flow. Due to the
addition of obfuscation primitives in the design, the physical design
�ow di�ers from the traditional Physical Design. This work studies
the LUT-based obfuscation, as it requires minimalist changes to the
design �ow while being resilient to SAT-attack. While obfuscating
with LUT, the Logic Synthesis stage now comes with the iterative
security-driven �ow, using the Design Security Analyzer. The gate
selection, replacement, and security validation process is repeated
until security constraints are met. Additionally, to avoid critical
paths, the gate selection process can be adjusted in this stage.

3.1 LUT Unit Obfuscation Cell
To replace arbitrary logic gates, we implement the LUT with in-
put obfuscation unit cell shown in Figure 2a. This cell includes a
“logical" LUT con�gured to perform the same logical function of
replacing the cell. Additionally, preceding “input" LUTs are con-
�gured to forward the proper inputs to the logical LUT. This cell
allows the functionality of any n-input logic gate to be mapped to
any m-input LUT through the programming of 2= logical con�gura-
tion bits (CBs) and n by 2

<
= input con�guration bits [6]. The proper

inputs to the LUT are selected from the pool of valid input options
via loading a con�guration that allows the small input LUTs to
bu�er the selected input to the input of the larger logical LUT. The
con�gured cell allows for a combination of interconnect and logical
obfuscation resulting in a substantially longer SAT run time [6].

Another critical consideration of the unit obfuscation cell is
CB management. CBs must not be accessible to the attacker and
cannot be exposed to a system bus when the device is initialized.
One approach to protect the CBs is to store them in a protected
manner and load them via the scan chain externally in case of
volatile LUT. Alternatively, the CBs themselves can take a non-
volatile (NV) form. For example, CBs can be replaced with the non-
volatile emerging devices that are becoming available on the market
and o�ers a promising low overhead, secure and re-programmable
solution [7].

After adding the LUT-based obfuscation primitive, we must ver-
ify the SAT resiliency. In the following discussion, we elaborate on
Design Security Analyzer, which facilitates instantaneous design
security validation.

3.2 Netlist Modelling
We propose to use the Machine Learning algorithm to predict the
non-linear SAT runtime of an obfuscated IC. Before leveraging the
ML to predict the SAT runtime, we must overcome the di�culty in
representing the obfuscated netlist in an intact and structured way
for anMLmodel representation. CNF used in SATmodeling, though
typically written as a sequence, is mathematically not a sequence
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(a)

(b)

Figure 2: Shown in (a) is The generic LUT unit cell used in this work,
while (b) shows an LUT unit cell con�gured as a 2-input AND gate
with 4 input options.

as the order among di�erent clauses is meaningless. Moreover, one
literal can appear in multiple clauses with or without their negation
forms, further complicating its representation. Moreover, unlike
conventional inputs of machine learning models, CNF inherently
endorses logical operators (typically discrete) instead of numerical
operators. Thus it is challenging to automatically learn the deter-
minant features that decide how “time-consuming” deobfuscating
a CNF is.

3.3 Design Security Analyzer Overview
To address the challenges in validating the resiliency of obfuscated
IP against SAT-attack, in this section, we elaborate our Design
Security Analyzer shown in Figure 3.

Figure 3: Architecture of SAT-runtime estimator

First, the converted CNF of an obfuscated circuit is modeled
as an undirected and signed bipartite graph that uses one node
type for clauses and the other for literals. This CNF bipartite graph
is exempli�ed in Figure 4 and de�ned as G(⇢,+ ;8C4A0; ,+ 2;0DB4 ),
where + ;8C4A0; ,+ 2;0DB4 indicate the set of literal and clause nodes,
respectively. The sign of an edge between a literal ; and a clause
2 denotes whether ; is negated or not in 2 . That means, the edge
value is: (1) (positively connected), if ; is in 2 , and ; is positive; (2)
-1 (negatively connected), if ; is in 2 , and ; is negative i.e., ; ; (3) 0
(disconnected), if ; is not in 2 .

Figure 4: Example showing conversion fromCNF to 1BC order graph.

The proposed CNF bipartite graph provides a comprehensive
representation of the CNF without information loss. Moreover, we
�nd that the CNF bipartite graph is a powerful representation such
that its multi-order version can also capture additional meanings of
a CNF. Representation in the CNF bipartite graph allows us to study

the e�ect of previous stages’/logical gate(s) on a given gate. Multi-
order expands the number of stages to be considered to represent
the circuit e�ectively.

3.4 Energy-based Operators for CNF Graph
The energy model is used to encode the CNF bipartite graph such
that the representation of varying-size CNF bipartite graphs can
have a uni�ed dimension for the machine learning technique. This
task cannot be e�ectively handled by existing graph classi�cation
or regression models because of the unique properties of both the
input and output. Unlike the conventional graphs, the correlation
among the neighboring logical nodes in the CNF bipartite graph
does not indicate “proximity” or “similarity”. Instead, it indicates the
logical relation with signed edges in a variable-size bipartite graph.
A novel graph encoder layer has been proposed by leveraging and
extending the energy of the Restricted Boltzmann Machine
(RBM) to address this unique issue.

By innovatively treating the literals and clauses as visible and
hidden units, the CNF bipartite graph can be modeled by RBM. The
energy of the original RBM is de�ned as:

⇢ (v,⌘) = � a>v|{z}
visible

� b>h|{z}
hidden

� v>Wh| {z }
interaction

, (1)

Where v and h are the values of visible and hidden nodes, respec-
tively, and a, b, W are weights to learn. The �rst term in equation
(1) is the energy of visible nodes, the second term is the energy of
hidden nodes, and the last terms is the interaction energy between
visible and hidden nodes. Inspired by the two group modeling, v
and h are the representations of a literal and a clause in the CNF
bipartite graph, respectively. Similarly, an energy form is de�ned
for characterizing a CNF:
⇢ = �U ·⇢;8C4A0; �V ·⇢2;0DB4�W ·⇢8=C4A02C8>= , where ⇢;8C4A0; , ⇢2;0DB4
and ⇢8=C4A02C8>= are the energies of literals, clauses, and their con-
nections, while U, V,W are the weights of them, respectively. Since
SAT runtime estimation over CNF is a highly nonlinear process,
the traditional linear function has been generalized into a new
nonlinear version:

⇢ = 5� (⇢;8C4A0; , ⇢2;0DB4 , ⇢8=C4A02C8>=), (2)

where 5� is a neural network function controlled by parameter �.
In the following, we study bipartite connection energy ⇢8=C4A02C8>=
�rst and then ⇢;8C4A0; , ⇢2;0DB4 in turn. Based on RBM, ⇢8=C4A02C8>=
is de�ned as linear function of literals:

⇢8=C4A02C8>= =
’
<

’
=

E<F<,=⌘=, (3)

where E< is a literal and ⌘= is a clause in one single CNF bipartite
graph G8 . However, ⇢8=C4A02C8>= is not necessarily a sum function.
Therefore, we generalize ⇢8=C4A02C8>= by generalizing convolutional
graph layers into bipartite graphs. However, most existing graph
deep learning operators focus on graphs with �xed topology. How-
ever, in our case. the size and topologies of the CNF bipartite graph
vary across di�erent instances dramatically. To solve this problem,
we design a kernel for aggregating interaction information in one
graph. Speci�cally, a 3-dimensional vector of pseudo-coordinates
is associated with [v,h]. We also de�ne a weighting kernel /⇥ (·, ·),
so that for one CNF bipartite graph G8 , we have:

⇢8=C4A02C8>= =
’
<

’
=

/⇥ (E(v<,h=)) · E(v<,h=), (4)

where /⇥ (·) projects the [v,h] into a new value as the weight
of [v,h], and E(v<,h=) represents the interaction or edge value
between v< and h= which can be 1, -1 or 0. Similarly, we further
generalize ⇢;8C4A0; , ⇢2;0DB4 as:

⇢;8C4A0; =
’
<

⇢=C (v<) · v<, and ⇢2;0DB4 =
’
=

⇢=C (h=) · h=, (5)
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where v and h indicate attributes of literal and clause respectively.
While ⇢=C denotes entropy function. Therefore, the �nal model for
CNF is:

⇢ = 5� (
’
<

⇢=C (v<) · v<,
’
=

⇢=C (h=) · h=,
’
<

’
=

⇢=C (E(v<,h=)) · E(v<,h=)),
(6)

Equation (6) above does not consider the sign of the edges be-
tween literals and clauses. Hence, positive and negative information
is encoded separately. Further, as an additional feature for learning,
we count positive and negative edges for each clause and normalize
both positive and negative counts.

3.5 Evaluation of Design Security Analyzer
The input to the framework is the obfuscated netlist and label (de-
obfuscation time using SAT-attack). In this work, we considered
the SAT attack proposed in [12] for security validation. However,
any other derivatives of SAT attack(s) for de-obfuscation runtime
evaluation could be used. We collect the data for initial training of
the model by collecting obfuscated netlist and time taken by the
SAT-attack to reverse engineer them. For generating obfuscated
netlist, we used various benchmarks shown in Table 2, and we
obfuscated them with LUT-based obfuscation [6] with varying
sizes of LUT and obfuscation coverage. The total dataset consists
of roughly 21000 obfuscated instances. Before this data is fed to the
model, it requires pre-processing, which involves transformation
to CNF and creating the adjacency matrix. The data is sampled and
divided into 80% training and 20% testing sets.

From the data, we represent the obfuscated circuit as an adja-
cency matrix. The intermediate output of this operation is the CNF
bipartite graph. Following this, multiple order information is ex-
tracted from the CNF bipartite graph. The �rst two orders of the
CNF bipartite graph are considered in this model, and it is easy to
extend to any order. After extracting the raw features of the CNF
bipartite graph, an energy-based [2] kernel is used to model the
dynamic-size data. This new kernel calculates the energy, which
identi�es the complexity of the corresponding CNF bipartite graph.
To handle the dynamic size of CNF, the energy concept from RBMs
is employed to aggregate literal and clause distribution into the
�xed dimension. The aggregation of energy is treated as a feature of
the targeted obfuscated IC. For modeling the runtime variance for
di�erent instances, a distribution kernel is applied in the last layer.
In our model, we use an exponential distribution and �nally use
Adam as an optimizer. The �nal model generated using this process
can be deployed to predict the runtime for the newly generated
netlist.

Figure 5: Prediction performance of Design Security Analyzer

To demonstrate the e�ectiveness of the Design Security Analyzer
for security validation, we use the Pearson and Spearman coe�-
cients. Positive scores of 1 indicate the capacity of the network in
predicting the trend of runtime. While another metric, i.e.,Mean
Squared Error (MSE), shows the prediction error. For calculating

the MSE scores, we take the log of the runtime. It is evident that the
MSE doesn’t go beyond ⇠3, meaning that the reported runtime has
at max the delta of +/- 1000 seconds (15 minutes) while predicting
for larger benchmarks. From table 1, it is evident that for all the
benchmarks, MSE is low, and Pearson and Spearman have a positive
correlation. Figure 5 shows the visual representation of runtime
estimation. In this manner, Design Security Analyzer can be used to
validate the security quickly. We used RISC-V as the benchmark for
runtime prediction in Figure 5. For all the experiments, LUT of size
8 was used for obfuscation along with obfuscation methodology
used in [6]. The X-axis denotes obfuscation percentage, and Y-axis
denotes the de-obfuscation time.

Table 1: Performance of Design Security Analyzer
Benchmarks MSE Pearson Spearman Benchmarks MSE Pearson Spearman
B01 1.241 0.95 0.97 DES Area 2.81 0.93 0.91
B02 1.26 0.91 0.89 DES Perf 2.38 0.92 0.92
B04 1.30 0.93 0.90 SHA-3 2.54 0.94 0.91
B12 1.8 0.95 0.93 8-bit CPU 3.1 0.91 0.90
AES 2.76 0.94 0.88 32-bit RISC-V 3.30 0.90 0.89

3.6 Con�guring the LUT Unit Obfuscation Cell
The LUT unit obfuscation cell con�guration depends on the logical
function the cell is replacing and the input selection. Figure 2b
shows a LUT unit obfuscation cell con�gured to perform a 2 to 1
AND function. In this example, both logical and input LUTs have
identical topologies. Programming the con�guration to the cell
unlocks the desired cell function. To program the cell, two methods
may be used. If CBs are to be loaded in externally, a dedicated scan
chain is used. Alternatively, CBs may be driven internally from a
non-volatile macro cell to bolster security. In this con�guration, CBs
may be directly driven to their respective LUTs, and programming
is performed in the manner required by the non-volatile macro cell.
A Python script converts the netlist to a graph of module objects,
determines uncorrelated dummy input options, then randomly se-
lects a number of them depending on the obfuscation needs. Then
the script replaces the target cells with LUT unit obfuscation cells
and connects them to the input list. Synopsys VCS logic simulator
is used to generate logical CBs, and the Python script combines
them with Python-generated input obfuscation CBs to create the
con�guration bit-stream.

3.7 Validating Obfuscated Designs
A target design is considered in a “locked" state so long as the
proper con�guration has not been applied. After con�guration, the
target design will return to its speci�ed functionality. To validate
that an obfuscated design is functional, a short programming task
is completed, followed by the original design testbench. This task
may be appended to the initial block of a Hardware Veri�cation
Language (HVL) testbench for pre-silicon validation. In the case of
a scan chain, this task drives the input signals to the CB scan chain,
as shown in Figure 6. If a non-volatile cell macro is used, the task
drives the con�guration logic of the macro cell, and upon con�gu-
ration, the CB contents are driven directly to the CB input of the
respective LUTs. To select the appropriate benchmark, 033A4BB_0
and 033A4BB_1 is set to 00, 01, 10 or 11 for selecting original,low,
medium, and high obfuscated versions of the test chip.

4 DESIGN AND IMPLEMENTATION OF TEST
CHIP

After validating both the security and the functionality of the ob-
fuscated design, we must perform the post-fabrication functional
veri�cation. Through this experiment, we want to demonstrate the
process of validating the functionality of the obfuscated design
while verifying the claims of LUT-based obfuscation [6] on the data
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Figure 6: Synopsys VCS pre-silicon simulation for veri�cation of obfuscated IP. The simulations include validation of a) original design, b)
low, c) medium, and d) high obfuscated versions.

obtained post-fabrication rather than relying on the simulated re-
sults. The functionality test conducted here ensures that the design
performs functional when the correct key is applied and enters
obfuscated state when the wrong key is used.

To validate the LUT-based logic locking method, two test chips,
as shown in Figure 8, were implemented and fabricated in TSMC
65nm technology. Chip1 contains three popular encryption engines
(AES, DES, and SHA-3), a custom ALU, and other benchmarks.
Chip2 contains three designs: a logic-locked 32-bit RISC-V micro-
processor core, and its original counterpart. All benchmarks incor-
porated in both chips are shown in Table 2.We evaluated LUT-based
obfuscation by implementing the LUTs in volatile and non-volatile
form while sweeping the length of obfuscation key to provide read-
ers with qualitative and quantitative results. Figure 7a shows the
architecture of chip1, which contains 10 di�erent benchmarks, each
of which has four versions - original, low obfuscated, medium ob-
fuscated, and high obfuscated. The key length in the low, medium,
and high obfuscated designs is 288, 576, and 3168 bits, respectively.
In low obfuscation we add single LUT8 + 8⇥LUT2, while medium
obfuscation contains 2, and high obfuscation contains 11 LUT8 +
8⇥LUT2. LUT8 + 8⇥LUT2 refers to the Large LUT of size 8 whose
8 inputs are driven by the small LUT of size 2 as described in [6].
We evaluate these three levels to explore the solution’s scalability
and demonstrate the performance impact of obfuscation.

A General-Purpose IO (GPIO) block selects one of the designs
connected to the top-level IO pins for testing. To demonstrate dif-
ferent key storage methods, the key bits for low and medium obfus-
cated designs are stored in non-volatile e-fuse registers, whereas
those of the high obfuscated designs are stored in volatile SRAM
registers. E-fuse was chosen as it was the only embedded non-
volatile memory available in the target fabrication technology;
however, non-volatile LUTs can be made of any embedded non-
volatile technology and preferable with enhanced security against
reverse engineering. In this study, we also studied SRAM storage
as it is a low-cost option that is readily available in standard CMOS,
but it requires an external and secure non-volatile key storage.

Table 2: Benchmarks included in test chip

Source Benchmark Description Total # of cells

OpenCore

DES_area DES optimized for area 2,085
DES_perf DES optimized for performance 15,851
AES AES cipher 10,787
SHA-3 SHA-3 Encryption core (Keccak 512) 13,702

ITC’99

B01 FSM that compares serial �ows 34
B02 FSM that recognizes BCD numbers 26
B04 Compute min and max 310
B12 1-player game (guess a sequence) 2656

Custom ALU Multiplier/Adder/AND 136
OpenCores CPU 8-bit microprocessor 1620
PicoRV32 CPU 32-bit RISC-V microprocessor 6892

(a) Chip1 architecture (b) Chip2 architecture
Figure 7: Overall Architecture for chip1 (a) and chip2 in (b)

(a) GDSII of chip1 (left) and chip2 (right)

(b) Die photo of chip1 (left) and chip2 (right)
Figure 8: (a) GDSII and (b) Die of chip1 and chip2

5 POST-SILICON VALIDATION OF LUT-BASED
LOGIC-LOCKED CORES

5.1 Post-silicon Test Fixture
After fabrication, we perform post-silicon functional validation
on each benchmark using an Intel Aria 10 development kit as a
test instrument. We also develop a Printed Circuit Board (PCB)
with a socket for the chip to allow simple interfacing between the
Field Programmable Gate Array (FPGA) and the test IC. The
test structure is con�gured in the manner shown in Figure 10. This
con�guration is deployed to hardware as shown in Figure 11.

For testing, the test vector input/response patterns are cached
inside the FPGA and are selected via an address line from the
controller. After a test vector is applied, the response is checkedwith
the expected result. Test vectors are derived from the original test
benches used to validate the individual benchmarks. Both SRAM
and e-fuse-based LUTs are validated, and the controller module on
the FPGA performs all con�guration programming before applying
test patterns in the same manner as pre-silicon validation. Through
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Figure 9: Study of (a) Standby power and (b) area for various obfuscation levels and benchmark for LUT-based obfuscation.
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Figure 10: Diagram of FPGA-based Silicon validation setup for
validating the functionality of obfuscated IP post fabrication.

this small-scale experiment, we show how post-silicon validation
can be achieved.

Figure 11: Test setup using the Intel Aria 10 development kit.

5.2 Post-silicon validation results
All benchmarks are tested using test vectors generated from the
original test bench of each design. To select the benchmark variant,
control signals are added. Keys are loaded upon pressing a push-
button switch. The LEDs have been assigned on the FPGA test
setup to identify failure or the success of the testing process. To
show that the test bench properly stimulates the obfuscated cells,
incorrect keys are also programmed for each benchmark, and failure
is observed for improperly programmed design.

Following the functionality validation results, we also validated
the claim of LUT-based obfuscation [6]. Figure 9 shows the standby
power and area footprint of the fabricated designs. All 3 variants, i.e.
(Low,Medium, and high), result in SAT-timeout. These SAT-resilient
benchmarks have an average of 7% area overhead for low obfuscated
con�guration while 14% and 262% for medium and high obfuscation.
Standby power scales dramatically as the security level is improved
with 33.93%, 45.93%, and 903.92% in the low, medium, and high cases,
respectively. On the other hand, the LUT-based obfuscation incurs
only 0.03%, 3.53%, and 17.82% average active power overheads for

low, medium, and high obfuscations, respectively. These results
validate that standby power and area dominate PPA cost as LUT
unit cell size is increased. We do not include timing results as all
designs maintained their original target frequency of 200 MHz for
the RISC-V core and 100MHz for all other benchmarks.

6 CONCLUSION
In this work, we show, for the �rst time, a low overhead digital IC
design obfuscation �ow that is compatible with existing EDA tools
and proven in silicon. We present actual area, performance, and
power overheads of LUT-based obfuscation from fabricated silicon.
These measurements validate the claim that LUT-based obfuscation
allows for low design overheads while maintaining unparalleled
SAT resiliency. We propose and characterize a security analysis
technique for rapidly evaluating SAT run-time of an obfuscated
design pre-fabrication. We demonstrate both nonvolatile internal (e-
fuse) and volatile external (SRAM) LUT key con�guration to show
the solution’s �exibility. Additionally, we evaluate several levels of
security (low, high medium) and show that the SAT attack may be
thwarted in the low obfuscation case at minimum overhead, and in
the medium obfuscation case, with a maximum of 14% overhead
allowing for a large SAT run time margin. Moreover, we discuss
The security oriented design �ow and the methodology to perform
the validation of the obfuscated designs pre- and post-silicon which
requires no modi�cations beyond a simple con�guration stage. In
conclusion, this study successfully shows that LUT-based obfusca-
tion methods can be easily veri�ed for security and functionality
and can protect the design against various attacks.
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