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Abstract—Traditional fingerprint authentication requires the
acquisition of data through touch-based specialized sensors.
However, due to many hygienic concerns including the global
spread of the COVID virus through contact with a surface
has led to an increased interest in contactless fingerprint im-
age acquisition methods. Matching fingerprints acquired using
contactless imaging against contact-based images brings up the
problem of performing cross modal fingerprint matching for
identity verification. In this paper, we propose a cost-effective,
highly accurate and secure end-to-end contactless fingerprint
recognition solution. The proposed framework first segments the
finger region from an image scan of the hand using a mobile
phone camera. For this purpose, we developed a cross-platform
mobile application for fingerprint enrollment, verification, and
authentication keeping security, robustness, and accessibility
in mind. The segmented finger images go through fingerprint
enhancement to highlight discriminative ridge-based features. A
novel deep convolutional network is proposed to learn a repre-
sentation from the enhanced images based on the optimization
of various losses. The proposed algorithms for each stage are
evaluated on multiple publicly available contactless databases.
Our matching accuracy and the associated security employed
in the system establishes the strength of the proposed solution
framework.

I. INTRODUCTION

Fingerprints are the oldest and most widely used biomet-
ric modality and fingerprint based systems are typically the
most accurate biometric authentication systems. The two most
important downsides of using fingerprints are hygiene and
physical sensor disadvantage [1]. Using a contact-based sensor
at border crossings can elevate the risk of spreading infectious
bacteria and viruses. In particular, current COVID-19 pan-
demic has caused us to rethink users interaction with biomet-
rics devices. Moreover, the need for biometric authentication
in remote areas is increasing in various fields where expensive
fingerprint scanners are difficult to be deployed. It has been
reported that more than 1.1 billion vaccinated users in remote
areas of Asia and Africa that are not enrolled in any biometric
database [18]. Therefore, there is a need for portable, low-
cost, and easy-to-use fingerprint enrollment and verification
solutions that rely on commercial grade user owned devices
such as mobile phones or tablets. Additionally, smartphone-
based fingerprint enrollment can save users from the hassle of
going to a biometric enrollment agency and can also lead to
faster processing at airports and border crossings. Capturing
a user’s fingerprint using their smartphone’s camera and then
performing fingerprint matching at a secure server against a

Fig. 1: System architecture: (i) the client sends a transaction
request to the server (ii) the server responds with a stegano-
graphic challenge. (iii) application hides the steganographic
challenge within the captured image and sends the encrypted
packet back to the server. (iv) After verifying the challenge
data, the server segments the four-finger region and the distal
phalange from the image, enhances the fingerprint, extracts
the representation, matches the representation against the tem-
plate representation stored in the database, and if it matches
responds with the verification QR code. (v) User can scan the
QR code displayed on the screen at the access granting agency,
which can verify the QR code with the authentication server.

legacy contact-based or newly acquired touchless fingerprint
database could provide an effective alternative to overcome
these limitations of contact-based fingerprints. Other benefits
of contactless fingerprint image acquisisiton are the easy
availability of low-cost mobile sensors, improved hygiene, and
avoidance of sensor getting dirty due to continuous touch.

Designing a contactless matching system requires special
considerations to be given to security, ease-of-use, fingerprint
quality, and matching robustness. NIST [10] provides general
guidelines for contactless fingerprint acquisition and also lists
various challenges presented by image anomalies. Some of the
common challenges of a contactless fingerprint system are (i)
polarity conversion - depending upon the angle of illumination
a decision has to be made about which feature has to be
considered as a ridge or a furrow while grayscaling, (ii) poor
focus - portions of the fingerprint region which are out of the
depth of field of the camera are usually blurred causing loss
of important discriminative information, (iii) finger angle -
variations in the finger angle along the yaw, pitch, and roll
axes due to the unconstrained nature of contactless finger-
print acquisition, and (iv) skin irregularities - effects of skin
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irregularities such as grooves and scars could be intensified
when working with a contactless fingerprint. In addition to
overcoming these challenges, an important factor to keep in
mind while designing a contactless fingerprint system is cross-
sensor compatibility with existing contact-based fingerprints.

The key contributions of this research are:
1) An end-to-end system design capable of enrolling, ver-

ifying, and authenticating a user using contactless fin-
gerprints acquired using their smartphone.

2) A cross-platform mobile application that can be directly
operated by the user for acquiring photos of the four-
finger region.

3) A novel amalgamation of grabcut and HSV thresholding
for fast and efficient segmentation of finger region.

4) A multi-step contactless fingerprint enhancement
pipeline that overcomes various challenges of extracting
ridge patterns from contactless fingerprint images
acquired using a smartphone.

5) A novel score level fusion of deep metric AdaCos Loss
with a Contrastive Loss network utilizing weak supervi-
sion from handcrafted minutiae features for contactless
fingerprint matching that achieves results on par or better
than existing deep networks.

Various steps in our proposed solution is shown in Fig. 1

II. RELATED WORK

Current methods of contact-based fingerprint acquisition
suffers from various limitations including latent fingerprints
left on sensor platen, distortions caused due to flattening of
the skin against the surface, and image differences caused due
to variations in moisture level and pressure at fingertip [9]. Fig.
2 shows some of the potential drawbacks of contact-based fin-
gerprint systems. Due to these reasons, fingerprint recognition
needs to focus on contactless methods over contact-based im-
ages.However, the image acquisition from user mobile device
based cameras need to address distortions such as motion blur,
resolution, and image quality. A typical fingerprint recognition
pipeline consists of the following steps: (i) segmentation, i.e.,
extraction of the region of interest, (ii) image enhancement to
overcome the distortions, and (iii) representation learning and
(iv) matching.

Given the large background area captured in finger-selfies
or contactless images, segmentation of the finger region is a
critical step. Malhotra et al. [14] proposed segmentation of the
finger region using a combination of masks obtained using the
saliency map and skin color. It is noted in the work that the
segmentation fails in the presence of complex backgrounds
and high illumination. To counter such limitations, Grosz et
al. [5] have proposed a U-Net autoencoder architecture. After
segmentation, image enhancement is an important step. Lin et
al. [13] and Grosz et al. [5] have applied adaptive histogram
equalization and contrast adjustment for image enhancement.
But contactless and contact-based images suffer from distor-
tions for different reasons. Hence, several distortion correction
methods have been proposed in the literature to improve
the quality of fingerprint images. Lin and Kumar [11] have

Fig. 2: Drawbacks of contact-based fingerprints. (i) Fingerprint
scanners at Airport Terminals, bank ATMs, etc increase the
risk of touch-based COVID infection. (ii) Latent fingerprints
from public fingerprint scanners can be used to recreate
fingerprint spoofs for presentation attacks.

proposed an algorithm to counter the non-linear deformations
present in a contact-based image. Li et al. [13] have proposed a
generalized distortion correction model based on a robust thin-
spline plate model. Once the region of interest is extracted
and modified for matching through enhancement, the final
step is to apply machine learning algorithms for matching.
The matching consists of two stages: (i) feature extraction
and (ii) classification. Fingerprint matching approaches in the
literature can be broadly categorized into two classes, those
based on minutiae or on deep learning features. Lin and Kumar
[12] have used the Siamese architecture [3] for contactless to
contact-based fingerprint matching. The authors have utilized
the ridge map and minutiae map computed from both sensor-
based and contactless-based fingerprint images. Malhotra et al.
[14] have extracted the features from a deep scattering network
[2] preserving multi-orientation and multi-scale information.
Fingerprint verification is performed using random decision
forests to classify the images as match or non-match. Grosz
et al. [5] have utilized the score fusion between DeepPrint
architecture trained on large public and private datasets [4]
and the Verifinger commercial-off-the-shelf (COTS) system.
The limitation of training on large privately available datasets
is increased difficulty in reproducibility and comparison of
results [19].

III. PROPOSED FINGERPRINT MATCHING SYSTEM

A. System Architecture
In this paper, we propose an end-to-end system for person

authentication using contactless fingerprints. Details of the
fingerprint acquisition app, the challenge-response method for
secure transfer, finger region segmentation algorithm, finger
print image enhancement, and representation learning are
presented in this section. Fig. 1 shows the various components
of the system and how data flows between them.

1) Cross-Platform Mobile Application: For acquiring fin-
gerprints using a smartphone, a cross-platform mobile appli-
cation has been developed using react-native 1. After a user
logs in to the application a bounded region is shown as a
guide to place their hand after which the application runs the

1https://reactnative.dev/
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continuous autofocus to search for the right depth of field. It
then captures a snapshot and records a 5-second continuous
video that could be used for best frame and liveness detection.
The same procedure is repeated for the other hand.

2) Challenge-response: To securely transfer the image to
the server and to ensure that the image has not been tampered
with, we implement a steganographic challenge-response
mechanism. Upon receiving the request from the client, the
server generates a random number N � (Seed Initializer)
and a challenge message M of length n that will be sent back
to the client in an asymmetrically encrypted packet. Then, both
the server and the client use N to generate seed S using the
following equation:

S = N �K

Where � denotes XOR operation and K is the shared key
between the server and the client. Using the seed S and
a pseudo-random number generator R both the server and
the client generate a sequence of length n that denotes the
locations of pixels on the image. Then the client performs
LSB-based steganography over the n pixels in the image by
hiding the message M . LSB steganography is performed by
manipulating the least significant bit of each pixel value with
the respective bit in the binary message. This steganographic
image is sent back to the server, where the server uses the
seed initializer, the shared key, and the pseudo-random number
generator to get pixel locations. By matching the message
retrieved from the image against the challenge message M ,
the server can ensure image integrity.
B. Segmentation

To extract the finger region, an image is downsampled
to 6% of its original size. This helps in speeding up the
segmentation process. For the initial foreground mask required
by the segmentation algorithm, we use the downscaled version
of the guiding box presented in the app. Grabcut algorithm
[16] is applied over the downscaled image to get the first
mask Mg . This mask is applied over the captured image to get
the segmented image. The segmented image is then converted
from RGB to HSV for skin color thresholding using hue values
in the range (0, 50) and saturation values in the range (0.23,
0.68) [15]. Morphological closing is then applied over the
resultant skin mask to fill out small holes and aberrations.
Next, we upscale both the skin segmented mask Ms and the
grab cut mask Mg to the original size. Connected components
search is performed over the two binary masks to get the
largest components within the masks assuming that the hand
region will be the largest component. After this, the two
masks are multiplied to get the final mask M and we apply
median blur on it to smoothen the pixelated edges caused by
upscaling. Finally, we apply the mask over the original image
I to segment the finger region. Throughout these steps, only
masks are up-scaled thereby ensuring no loss in image quality.

Fig. 32 shows the comparison of the proposed approach over
just using the skin segmentation or grabcut. To extract the dis-

2Illustrations in Fig. 3 and 4 use sample images captured using our new
contactless image acquisition app.

Fig. 3: Effects of using either HSV color space skin segmen-
tation or GrabCut alone against our proposed method.

tal phalanges from the finger region we train a MaskRCNN [7]
on 380 manually labeled images from the IIIT-D Smartphone
Finger-selfie Database v2 [17].

Fig. 4: Various steps involved in extracting the ridge patterns
from the contactless fingerprint image.

C. Fingerprint Image Enhancement

There is a significant domain gap between the contactless
and contact-based images and also between contactless images
acquired in different lighting conditions or with different
sensors. To compensate for this domain gap and extract a better
quality ridge pattern from the contactless images, we perform
various enhancement steps on the segmented images of the
existing databases. The segmented region is first preprocessed
by applying the adaptive histogram equalization to improve
the local contrast and redistribute the lightness values of the
image. Later, image sharpening is applied by subtracting the
Gaussian blurred image from it. In the end, adaptive mean
thresholding is adopted to binarize the image.

Once we have the ridges extracted from an enhanced image,
directional median filtering [21] is utilized to further improve
the image quality. In this method, an image is first convolved
with an anisotropic kernel and then filtered using a directional
median filter. The anisotropic filter uses a kernel with a
shape adapted specifically for local intensity orientation in a
fingerprint image. The generalized form of an anisotropic filter
is given as:

H(x0, x) = V + S⇢(x� x0)exp (N)
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N = �

((x� x0) · n)2

�
2
1(x0)

+
((x� x0) · n?)2

�
2
2(x0)

�

Here V and S control the phase intensity and impact of the
neighborhood and �

2
1(x0) and �

2
2(x0) control the shape of the

filter kernel. As described in the paper we use V = -2 and
S = 10 in the implementation. n is the unit vector along the
direction of the ridge line. Fig. 4 shows the various stages of
image preprocessing and fingerprint enhancement.

Fig. 5: Deep network trained using adaptive scaling cosine
loss.

D. Representation Learning
Learning a fixed-length embedding is a well-studied prob-

lem in the domain of deep metric learning and has shown
success in applications such as face recognition and person re-
identification. Due to the various challenges described earlier,
extracting a good minutiae map from a contactless fingerprint
is difficult. Therefore, we propose two different network
architectures, one that minimizes a deep metric loss to learn
discriminative features and another that uses a contrastive loss
between pairs of images along with a minutiae loss branch to
reconstruct minutiae maps.

Angular margin losses or cosine margin losses have shown
success in tasks such as face recognition. With this motivation,
we employ an Adaptive cosine scaling loss (AdaCos) [22] to
learn fixed-length embeddings from the enhanced fingerprint
images. Fig. 5 shows the architecture of the AdaCos pipeline.
One of the challenges of earlier cosine margin losses is
difficulty in hyperparameter tuning. AdaCos solves this by
setting the initial hypersphere scale parameter as:

s =
p
2 ⇤ log(N � 1)

where N is the number of classes in the training set. We set
the margin empirically as 0.53. Embeddings and the weights
are normalized before computing AdaCos scaled features. The
scale parameter is recomputed in each step using the following
equation:

s
(t)
d =

logB(t)
avg

cos(min(⇡4 , ✓
(t)
med))

[22]

where B
(t)
avg is the dynamic scale parameter computed using

the scale from the previous iteration. The distance metric used
to compare the embeddings in the AdaCos network is the
cosine similarity. In our experiments, we found that training
angular margin losses is difficult with a small amount of

data as it leads to overfitting and lower generalization. To
overcome this challenge, we pre-train our AdaCos network on
0.1M synthetically generated fingerprint images created using
the Anguli Fingerprint generator 3. Further data augmentation
is performed using on-the-fly strategies that include random
perspective distortion, random gaussian blurring, and resized
cropping. Then we fine-tune the pre-trained network on the
PolyU dataset and ISPFD v1 and v2 datasets for the respective
experiments.

In addition to the AdaCos Network, we train a contrastive
network with minutiae reconstruction loss. Fig. 6 shows the
pipeline for learning contrastive representation for the contact-
less to contact-based matching task. The network is trained
in Siamese setting with shared weights, taking as input two
enhanced fingerprint images resized to (224, 224), and passing
them through a spatial transformer network (STN) [8] which
uses a thin plate spline transformation. Fingerprint images
transformed using STN are then passed through the convo-
lutional layers of a DenseNet 161 feature extractor (initial-
ized with pre-trained ImageNet weights) to learn downscaled
tensors. From here the network divides into three parts: (i)
Minutiae branch for the contactless image (ii) Minutiae branch
for the contact-based image (iii) Contrastive branch to learn
discriminative features from the images.

For the contrastive branch, we first perform 2D average
pooling on the two downscaled tensors and flatten them to
get one-dimensional representations. Then we pass these 1D
representations through fully connected layers to learn fixed-
length embeddings of size 512. Next, we calculate the eu-
clidean distance between these two embeddings and compute
the double margin contrastive loss [6]. The formulation for
double margin contrastive loss is given as:

Lcon(Icl, Icb) =
1

2

⇥
y · (d� ↵1)

2 + (1� y)max(↵2 � d, 0)2
⇤

Here, ↵1 and ↵2 denote the margins for the positive and
negative pairs respectively. d is the distance metric which
in this case is euclidean distance. After empirically experi-
menting with the two margins and observing the histogram
of the distance between positive and negative pairs, we select
↵1 as 0.92 and ↵2 as 3.20. Using just the contrastive loss
leads to slower training and overfitting. To overcome this, we
compute the minutiae loss for the two images which helps
the network learn minutiae-like features and generalize to the
unseen images where minutiae might not be available. For
this, we upscale the output tensors from the DenseNet161
backbone to the original size using deconvolutional layers.
Then we compute the pixel-wise cross-entropy loss between
the upscaled tensors and the ground truth minutiae maps
extracted from NIST’s mindtct minutiae extractor. Let LCB

and LCL be the minutiae loss for the contactless and contact-
based images, then the final loss function is given by the
weighted sum of the three losses:

L = � · LCB + � · LCL + Lcon

3https://dsl.cds.iisc.ac.in/projects/Anguli/
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Fig. 6: Contrastive learning network with minutiae reconstruction loss
.

TABLE I: Comparison with COTS, Multi-Siamese [12], and Minutiae Attention Network (MANet) [20] on the PolyU dataset

Metric COTS MANet Multi-Siamese Proposed
Minutiae + Contrastive AdaCos Fusion

EER (%) 6.10 4.13 7.11 4.18 5.28 4.07
TAR (%) @FAR=10�3 82.5 68.5 44.0 70.2 61.5 72.3
TAR (%) @FAR=10�2 89.3 85.0 68.0 92.5 88.5 94.4

TABLE II: EER (%) comparison of proposed network with
COTS, DSN-RDF [14] on the ISPFDv2, ISPFDv1

Dataset COTS DSN-RDF Proposed
ISPFDv1 39.52⇤ 5.53-7.07 [17] 3.12
ISPFDv2 12.03⇤ 3.41 [14] 4.20

⇤We observed that for more than 50% of the images, Ver-
ifinger couldn’t enroll due to zero minutiae count. A similar
observation has been made by [14] for NFIS

TABLE III: Ablation Study on our proposed method.
Ablation Setting Metric

Ep Ec Ts Ml A EER (%)D 18.4D D 7.98D D D 6.43D D D D 5.01D D D D D 4.18

Ep - Preprocessing, Ec - Chaohong et.al Enhancement
Method, Ts - Spatial Transformer Network, Ml - Minutiae
Loss Branch, A - On the fly augmentations

Here weight � was set empirically. To compensate for
the small dataset, training was done using on-the-fly image
transformations which included random rotations and resized
random cropping. Each training batch (size 32) consisted of an
equal number of randomly mined positive and negative pairs.

IV. RESULTS AND ANALYSIS

The model is evaluated on the PolyU dataset [13] and
ISPFD v1 and v2 datasets [14], [17]. Table I shows the
comparison of our representation learning architecture with
the directly reported results in the respective papers. For
contactless to contact-based comparison on ISPFD dataset,

Fig. 7: ROC curve for the proposed method with different
conv-net backbones.

we compute results on White Indoor Vs Live Scan with
50% test-train split. We also compare our results against a
COTS fingerprint matcher (Verifinger SDK 12.0). It can be
observed that using contrastive loss with minutiae branch alone
gives a substantial improvement of 3% EER over the Multi-
Siamese CNN [12] and performs on par with MANet [20].
We observed that even though the AdaCos Network does
not have a minutiae reconstruction branch, it is still able to
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Fig. 8: ROC curve of the proposed method, Multi-Siamese
CNN (Lin et.al [12]) and Minutiae Attention Network [20].

learn discriminative features and has a lower equal error rate
(EER) than the Multi-Siamese CNN [12]. Finally, performing
a score level fusion by normalizing the similarity scores from
the two networks further lowers the EER and increases the
TAR. Fig. 8 shows the ROC comparison of different matching
algorithms. It can be observed that the proposed algorithm
outperforms the existing deep learning methods, and achieves
results close to the COTS Verifinger matcher. Table II shows
the evaluation of the proposed pipeline on the ISPFD dataset.
The proposed algorithm surpasses the commercial system by
a significant margin. The proposed algorithm outperforms
the current state-of-the-art algorithm [17] on the ISPFDv1
database, and performs comparably [14] on ISPFDv2.

Table III shows the ablation study of the various components
of the representation learning pipeline. As can be observed,
just using the enhancement procedure results in a significant
drop in equal error rate without even using minutiae loss or
transforming images using a spatial transformer network. Us-
ing the STN-TPS block along with the minutiae branch further
boosts the matching performance. Fig. 7 shows the comparison
of different backbone architectures for the contrastive network
with minutiae loss.

V. CONCLUSION

In this research, we have proposed effective algorithms for
contactless fingerprint matching covering region extraction,
image enhancement, and matching. A grab cut algorithm
is proposed for the segmentation of fingerprint regions to
improve the performance compared to existing algorithms.
For matching, a two-way architecture is proposed based on
the minimization of the various loss functions. The proposed
multi-branch network surpasses existing algorithms including

commercial systems on multiple challenging databases such as
PolyU and ISPFD. We have developed a mobile application
with an end-to-end pipeline ranging from data acquisition to
fingerprint matching for contactless person authentication. We
strongly believe that our end-to-end system design will help
promote widespread adoption of smartphone-based contactless
fingerprint authentication. In turn, this can help alleviate the
risk of virus transmission and other drawbacks of traditional
contact-based fingerprint biometric enrollment.
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