
EZEE
Epoch Parallel Zero Knowledge for ANSI C

Yibin Yang, yyang811@gatech.edu
David Heath, heath.davidanthony@gatech.edu
Vladimir Kolesnikov, kolesnikov@gatech.edu

David Devecsery, ddevec@fb.com

Abstract—Recent work has produced interactive Zero Knowl-
edge (ZK) proof systems that can express proofs as arbitrary C
programs (Heath et al., 2021, henceforth referred to as ZEE);
these programs can be executed by a simulated ZK processor
that runs in the 10KHz range.

In this work, we demonstrate that such proof systems are
amenable to high degrees of parallelism. Our epoch parallelism-
based approach allows the prover and verifier to divide the
ZK proof into pieces such that each piece can be executed on
a different machine. These proof snippets can then be glued
together, and the glued parallel proofs are equivalent to the
original sequential proof.

We implemented and we experimentally evaluate an epoch
parallel version of the ZEE proof system. By running the prover
and verifier each across 31 2-core machines, we achieve a ZK
processor that runs at up to 394KHz. This allowed us to run
a benchmark involving the Linux program bzip2, which would
have required at least 11 days with the former ZEE system, in
only 8.5 hours.

I. INTRODUCTION

Zero knowledge (ZK) proofs (ZKPs) allow a prover P
to demonstrate to a verifier V the truth of some statement,
while revealing nothing additional. In particular, P’s witness,
which might be sensitive, remains hidden from V . ZK is a
powerful cryptographic primitive that enables numerous useful
applications. As one simple example, prior work has shown
that ZK can be used to allow P to prove to V the existence of
a bug in a public program without leaking the source of the
bug [HK20b].

For some time, cryptographers have known techniques for
proving arbitrary statements in ZK. However, until relatively
recently such statements needed to be encoded as Boolean or
arithmetic circuits, and so it was difficult for non-experts to use
this powerful technology. Moreover, naı̈ve program-to-circuit
unrolling is inefficient for many programs.

Recent work shows that it is practical to construct efficient
ZK proof systems that operate over RAM programs rather
than circuits [HK20a], [HYDK21]. By choosing the RAM
program to be a general purpose CPU and by implementing a
compiler, it is now possible to encode arbitrary ZK proofs as
ordinary ANSI-C programs [HYDK21]. These works present
low-level Zero-Knowledge machine (ZKM) emulators, capable
of running a complete instruction set in zero knowledge.
Proof statements are input as C programs, compiled into the
instructions of the ZKM, and then run on the ZKM. With
these advances, implementing a ZK proof is as easy as writing

a C program, practically opening ZK proofs to many new
applications.

Despite advances in performance, state-of-the-art ZK pro-
cessors run millions of times slower than commodity pro-
cessors, executing instructions in only the low KHz range.
Furthermore, given the inherent cryptographic overhead of ZK,
it is unlikely that ZK machines will approach the performance
of modern CPUs in the foreseeable future. A program that may
modestly take a few seconds on a commodity processor may
not complete in months when run in ZK. This high latency
means that many ZK applications remain impractical.

In this work, we build a ZK system that greatly reduces
proof latency by introducing a high degree of parallelism
without needing to change the proof statement. Our epoch
parallelism technique splits a logically sequential proof into
different epochs. Each epoch, which can be thought of as a
subsequence of instructions run during the program execution,
can be handled by a pair of worker machines, one owned by P
and one by V . Because the epochs run in parallel, we decrease
the proof latency by a factor up to the degree of available
parallelism. The technique does incur a slightly larger proof,
since P must additionally prove that the epochs are consistent,
but this cost is low compared to the size of the overall proof.

A. Our Contributions

In this work we:
• Build on ‘ZK for Everything and Everyone’

(ZEE ) [HYDK21] by designing, implementing, and
evaluating Epoch ZEE (EZEE ), a secure epoch parallel
ZK proof system. We show that EZEE can execute
off-the-shelf ANSI C programs inside ZK while utilizing
epoch parallelism. We used EZEE to execute in ZK
the Linux programs sed (proving it has a bug) and
bzip2 (from the industry standard SPEC2006 benchmark
suite [Hen06], proving it terminates normally). In
our experiments, we show that EZEE runs at up to
394KHz. This clockrate is bounded by the available
parallelism, not by a limitation of the technique. With
more processors, we estimate that EZEE can run at up
to 1.8MHz (see Section VIII).

• Provide a template that explains how ZK protocols can be
transformed into epoch parallel ZK protocols. Formally,
we specify an interface that we call the PIM (proof inter-
face machine). We show that ZK machines that meet the



PIM interface allow a general program transformation
that introduces epoch parallelism. We believe PIM would
also be useful in future ZKP parallelization work.

II. RELATED WORK

a) Zero Knowledge Machines: We present a ZK proof
system in the RAM model of computation. This direction is
relatively unexplored; we review the few works in the area.

The first such works built on succinct non-interactive ZK
(NIZK) proof engines [BCTV14b], [BCTV14a], [BCG+13].
Although these works achieve highly desirable non-
interactivity, they do not scale to machines powerful enough to
handle large proofs. E.g., such machines only run in the 1Hz
range. Building substantially more powerful NIZK machines
remains an interesting research direction.

Recently, [HK20a] and subsequently [HYDK21] con-
structed far more efficient ZK RAM machines based on an
interactive proof system. While both P and V must be online
for the proof, the RAM machine runs thousands of times faster
and can support a main memory with megabytes of RAM.
Our work builds directly on the proof system of [HYDK21],
‘ZK for Everything and Everyone’, which we call ZEE , so we
discuss the details of their system as background in Section III.

By implementing epoch parallelism, we build a ZKP system
with lower proof latency than the above systems.

[FKL+21] proposed a new efficient constant-overhead
ZK RAM. It is concretely efficient and improves both in
speed and supported RAM size over [HK20a] and [HYDK21].
While our epoch-parallel system builds on ZEE and Bub-
bleRAM [HK20a], it should be possible to integrate their
improved RAM into our epoch parallel approach. We leave
this integration as future research; the focus of this work is
exploring ZK parallelization.

b) Fast Interactive ZK Protocols: A number of works
investigate gate-by-gate interactive ZK protocols. Such works
are interesting because they (1) achieve low proof latency and
(2) can scale to large proof statements.

Our work builds on the information theoretic MAC (IT-
MAC) based ZK proof system of [HK20a] and [HYDK21].
This proof system is based on the Garbled Circuit-based
ZK paradigm (GC-ZK) initiated by [JKO13] and continued
by [FNO15], [KP17], [HK20b]. We view GC-ZK and IT-
MACs as background to our work (see Section III). Note
that we favor the protocol of [HYDK21] over the following
discussed works because the authors provide a hand tuned
CPU. E.g., they provide an ALU that was specifically designed
with costs of the underlying ZK protocol in mind.

Mac’n’Cheese [BMRS20] is a recent ZK proof system that
builds gate-by-gate interactive proofs on top of vector oblivi-
ous linear evaluation (VOLE). Their work also incorporates the
recent stacked garbling technique [HK20b] to achieve efficient
disjunctive proof statements.

Like [HK20a], Wolverine [WYKW21a] also builds on IT-
MACs, but does so using a custom protocol rather than
using the GC-ZK protocol of [JKO13]. Wolverine, which

like Mac’n’Cheese is based on VOLE, is superceded by
Quicksilver [YSWW20] (discussed shortly).

Line-Point ZK [DIO20] greatly simplified the handling of
VOLE-based IT-MAC multiplication.

Quicksilver [YSWW20] combines Wolverine with Line-
Point ZK to achieve an extremely communication-efficient ZK
protocol. The authors argue that Quicksilver is communication
optimal for the gate-by-gate paradigm, since each of their field
multiplication gates requires only the transmission of one field
element and one VOLE correlation (of course, approaches
that do not operate gate-by-gate can achieve much lower
communication, i.e. sublinear ZK).

Detailed comparison between Quicksilver and the proto-
col of [HYDK21] is not available. Nevertheless, Quicksil-
ver [YSWW20] now appears to be the state-of-the-art protocol
for gate-by-gate interactive ZK, particularly for low bandwidth
networks. However, the system has not yet been applied to
the RAM model of computation, so we favor the protocol of
[HYDK21] which comes with a hand tuned CPU. Also, it is
not clear that Quicksilver greatly outperforms the [HYDK21]
protocol on fast networks, because the latter is based on OT in-
stead of the more expensive VOLE. We view building a tuned
CPU for Quicksilver and then applying epoch parallelism as
important future work.

c) Non-interactive and Succinct ZK: Many recent
ZK works emphasize small proofs and/or non-interactivity,
e.g. [GKR08], [IKOS07], [GMO16], [CDG+17], [AHIV17],
[KKW18], [GGPR13], [PHGR13], [BCG+13], [CFH+15],
[Gro16], [BFH+20], [BCR+19]. NIZK parallelization (of
computation) has also been explored, e.g. [EFKP20],
[WZC+18]. While NIZK work has achieved very impressive
results in terms of non-interactive proofs of smaller statements,
such proof systems do not yet match the scale and low latency
of the above interactive proof systems.

d) Epoch Parallelism: Epoch parallelism is a technique
that predicts future states of an execution and then uses those
predicted states to parallelize that future execution. It has been
used previously, typically for speculative acceleration [ZS02],
[NVCF08], [VLW+12], [SKW+10], in which the system
predicts future behaviors of the system, and then speculatively
runs that future execution using those predictions. These
speculative executions are often run in parallel, in what is
known as an epoch-parallel phase. If the predictions are
correct, the system can remove bottlenecks such as I/O or
heavy-weight computation. However, if the predictions are
inaccurate, the system must roll-back and discard the work
done during epoch-parallel execution.

Others have also used this technique with deterministic
computation to help accelerate dynamic analyses [WDC+13],
[QDCF16]. Here the initial prediction step is on a deterministic
computation, so the epoch generation is not speculative and
will not roll-back. However, the predictor to generate the
epoch’s state is less expensive than the epoch execution,
allowing for parallelization of the analysis code.

Our work demonstrates the natural compatibility of ZK
proofs and epoch parallelism. By running the proof locally,



P can easily predict with perfect precision future program
states. Then, the slow-running portion of the ZK proof can be
parallelized to a very high degree.

III. PRELIMINARIES

Traditionally, cryptographers encoded ZK proofs as Boolean
or arithmetic circuits. While circuits are theoretically conve-
nient and are suitable for small proofs, it is difficult to express
complex systems as simple circuits. Recent work shows that
the state-of-the-art in ZK now suffices to support efficient
CPU-emulation based proof systems [HK20a], [HYDK21].
We build our epoch parallelism system on one such recent
work, that allows ZK proofs to be encoded as ANSI C
programs [HYDK21].

Thus, we briefly review their system and the cryptographic
foundations on which it lies. From here on, we refer to this
base system as ZEE .

A. Garbled Circuit Based ZK

[JKO13] were the first to achieve practical ZK proofs of
arbitrary statements. The [JKO13] protocol builds efficient
ZK on top of a simple semi-honest garbled circuit (GC)
protocol. Here, V instantiates the GC generator and constructs
a garbling of the proof statement encoded as a Boolean circuit.
V sends this garbling to P . Additionally, V conveys to P via
oblivious transfer (OT) GC input labels that together encode
P’s witness. P then evaluates the garbled circuit gate by gate
under encryption until finally obtaining a single output label; if
this label encodes a logical one, then the proof succeeds. The
authenticity property of GC ensures that even a malicious P
cannot forge a convincing output label unless she has a valid
witness. Thus, this technique elegantly and straightforwardly
ensures that P cannot forge a proof.

Protecting against a malicious V is harder: V can, in
particular, send an ill constructed circuit garbling that leaks
part of P’s witness and violates ZK security. [JKO13] guard
against this by adding a simple commitment step: once P
computes her GC output label, she does not directly send it
to V , but rather commits to it. Then, V sends to P a single
PRG seed that was used to derive all garbling randomness.
This seed allows P to replay V’s actions when garbling the
circuit and to check that all messages from V were properly
constructed. Only once this check succeeds does P open her
commitment.

While [JKO13] were the first to achieve efficient and arbi-
trary ZK, a cascade of research produced new ZK techniques,
particularly in the space of succinct non-interactive ZK. Even
so, the GC-ZK paradigm remains interesting because of its
attractive performance characteristics: its communication and
computation for both P and V scale linearly in the proof
statement size with low constants. Moreover, thanks to OT
extension [IKNP03], [YWL+20], a proof can be completed
using only a small number of public key operations1; the

1The number of required base oblivious transfers, which require public-key
cryptography, scale only with the security parameter.

remainder of the protocol requires only simple and highly effi-
cient symmetric key operations. Finally, the GC-ZK paradigm
places very low memory constraints on P , which for many
other protocols becomes a bottleneck (see e.g. discussion
in [YSWW20]).

Our construction can be categorized as a GC-ZK technique.
While we build on more recent arithmetic techniques (see
next), the ZEE arithmetic technique that we build on is
formalized in the GC-ZK framework proposed by [JKO13]
and updated by [FNO15]. Moreover, the top-level protocol
that hosts our implementation was formalized by [JKO13].

B. Arithmetic GC-ZK via IT-MACs

Earlier GC-ZK techniques, e.g. [JKO13], [HK20b], worked
directly with Boolean garbled circuits. These techniques were
based on the classic GC technique of encoding Boolean
functions as encrypted truth tables: given input labels, P
decrypts the corresponding output label. To protect against a
cheating P , these techniques needed long labels: label length
was proportional to the computational security parameter (e.g.
128 bits). Moreover, each label could only hold one semantic
bit.

More recently, [HK20a] updated the GC-ZK technique by
showing that it is possible to replace GC labels by simple in-
formation theoretic message authentication codes (IT-MACs).
These IT-MACs are both shorter (e.g. 40 bits), since they are
proportional only to the statistical security parameter, and also
can hold a semantic arithmetic value with length equal to the
length of the IT-MAC.

While our epoch parallelism technique is relatively agnostic
to the low level details of the underlying protocol, ultimately
we use the IT-MAC based ZEE protocol of [HYDK21]. Thus
we briefly review the IT-MAC technique.

In the protocol, P and V hold IT-MACs that each encode
a value in a field Zp for a suitably large prime p (we choose
p = 240 − 87, the largest 40 bit prime). An IT-MAC consists
of two shares, one held by V and one by P . We denote the
IT-MAC that encodes x ∈ Zp by writing JxK. This IT-MAC
is a pair of values:

JxK , 〈X,x∆−X〉 where X ∈$ Zp

where V holds the left hand element and P holds the right
hand element. Here, ∆ is a global uniform non-zero value
drawn by V at the start of the protocol and is unknown to P .

Crucially, an IT-MAC is unforgeable: given x∆ − X , P
cannot reliably construct y∆ − X for y 6= x. She can do so
only by guessing ∆, which succeeds with probability 1

p−1 .
At the same time, the parties can operate on IT-MACs. First,

IT-MACs are additively homomorphic, as JxK+ JyK = Jx+yK
(where the sum of two IT-MACs is defined to be the pointwise
sum of their two parts). Second, [HK20a] showed that it is easy
to multiply a vector of IT-MACs by a secret bit b ∈ {0, 1}
chosen by P via a single oblivious transfer. These two
operations suffice to implement arbitrary arithmetic circuits.
Thus these two operations, combined with the unforgeability



property of the IT-MACs, mean that these primitives can
implement arbitrary ZK proofs.

C. The ZEE Proof System

Based on IT-MAC ZK algebra (Section III-B), [HYDK21]
developed a full ZKP system, ZEE , that handles proofs
expressed as ANSI C programs. Our core contribution is that
we convert ZEE to an epoch parallel proof system that we call
EZEE (Epoch parallel ZEE ). We briefly explain the relevant
parts of the ZEE approach.

[HYDK21] breaks the problem of proving statements
written as C programs into two parts:
• The C program is compiled to a custom instruction

set architecture (ISA) via a custom compiler. The ISA
is relatively typical, with the notable inclusion of a
distinguished QED instruction; if the program executes
QED , then the proof accepts. The programmer writes
ordinary C code to express their proof, while placing
QED behind appropriate program conditions.

• The ZEE ISA is executed by a custom ZK implementa-
tion built on top of IT-MAC algebra. This implementation
handles programs instruction by instruction, and includes
many optimizations, such as an improved ZK RAM,
called BubbleCache. Each program instruction is handled
by an arithmetic circuit.

Following the notation of [HYDK21], we refer to the ISA
as the ZEE architecture and to the implementation as the
ZEE microarchitecture. Our approach uses the ZEE microar-
chitecture’s instruction circuit directly. However, rather than
running the entire program in sequence, we split the program
into epochs and run a smaller sequence of instructions on each
of a number of machines.

D. Notation and Security Model

• P is the prover. We refer to P by she/her.
• V is the verifier. We refer to V by he/him.
• [n] denotes the sequence of integers 0...n− 1.
• ρ is the statistical security parameter, e.g. 40.
• κ is the computational security parameter, e.g. 128.
• Zp is the field of integers modulo prime p.
We clarify our considered security model. Our protocol

involves an arbitrarily large number of communicating ma-
chines, some controlled by P and some by V . However, we
view all of P machines as part of the prover P (symmetrically
for V). That is, although there are a large number of machines
involved, there are still only two parties. Our protocol is secure
against a malicious adversary that corrupts one of the two
parties.

IV. TECHNICAL OVERVIEW

In this section we present our approach with sufficient detail
to understand our contribution.

To reiterate, the core idea of the ZEE proof system (Sec-
tion III-C, [HYDK21]) is to handle a proof expressed as a ISA
program one instruction at a time. Each instruction is handled
by an arithmetic circuit expressed using the IT-MAC-based ZK

proof algebra of [HK20a]. ZEE then sequentially executes
each program instruction and, at the end of the execution,
outputs one if and only if the CPU is in a distinguished QED
state.

Our approach leverages this same idea, except that we
execute portions of the program in parallel across worker node
machines. Our EZEE proof system (Epoch parallel ZEE )
parallelizes the proof execution in three steps:

1) The EZEE prover P runs a non-cryptographic, cleartext
version of the ZEE architecture using her witness. This
cleartext version runs the ZEE instructions, but does not
provide any cryptographic guarantees or communicate
with the verifier V . As P runs this cleartext execution,
she periodically records snapshots of the simulated CPU
state. These snapshots include the state of RAM, regis-
ters, and the program counter. Although this cleartext
execution of the proof runs sequentially, it does not use
cryptography and hence completes quickly.

2) Once all snapshots are recorded, P distributes the snap-
shots amongst a number of worker nodes. V similarly
initializes corresponding worker nodes, and the two sets
of nodes are grouped into pairs. Each pair of nodes then
starts from the snapshot state and performs a ZK proof
that guarantees to V the correct execution of all proof
program instructions leading to the next snapshot. We
refer to this partial proof as an epoch.

3) The parties then glue the epochs together. Specifically,
P proves in ZK that for each epoch i, the ending CPU
state matches the starting snapshot for epoch i+ 1.

Once all epochs are completed and glued, the proof is finished.
We show that this proof succeeds if and only if the original, se-
quential proof would have succeeded. Crucially, all subproofs
in step (2) can be run in parallel, and hence the latency to
finish the overall proof is greatly decreased.

Our presentation proceeds as follows:

• Observe that the above high level strategy is relatively
agnostic of the details of the ZEE architecture: we simply
need that it is possible to execute an instruction and to
glue epochs together. Since these requirements are quite
general, Section V begins by capturing the requirements
formally through an abstraction we call a Proof Interface
Machine (PIM ). The simple yet key result is that, given a
PIM , it is possible to rewrite the execution of a program
into an equivalent epoch parallel version.

• With PIM defined, Section VI presents a system design
that describes how P and V can run a PIM -based ZK
protocol across a cluster of machines. This design focuses
on systems aspects of our parallelization of ZEE , and is
not yet crypto-formal, since we do not yet specify the
precise protocol run between the workers.

• In Section VII, we show that ZEE can be expressed as
a PIM and then plug the resulting definition into our
system design. We call the resulting proof system EZEE
(Epoch parallel ZEE ). We explain protocol-specific de-
tails that must be handled and give protocol-specific



improvements to the glue step of epoch parallelism.
• Finally, Section VIII describes our C/C++ implemen-

tation and evaluates its performance when running C
programs inside ZK.

V. PROOF INTERFACE MACHINE

ZKP protocols that handle arbitrary statements usually
encode such statements as circuits; at the lowest level, our
protocol (and the ZEE protocol we build on) is the same. To
achieve a high degree of parallelism, our goal is to take as
input a size O(n) circuit and transform it into e new circuits
of size O(n/e). Each of these e circuits proves correctness
of a portion (epoch) of the total proof execution. While we
must additionally prove that the initial and final states of the e
epochs are related, it is our intent that the epochs will be run
in parallel. Thus, the total proof latency is greatly decreased.

In this section, we introduce the necessary formalisms to fa-
cilitate and formally discuss this circuit transformation. Since
we focus on CPU emulation, we choose a CPU instruction as
a unit of proof progress. We find it convenient to represent the
process of proving as the execution of a state machine, whose
states correspond to proof states, and whose transition function
specifies how CPU instructions update the proof state.

Following [HYDK21], we separate the specification of the
state machine (architecture, including ISA spec, plaintext state,
etc.) from its implementation (microarchitecture, including
ISA and RAM implementation, encoded state, etc.). Thus our
state machine definition includes corresponding architectural
and microarchitectural parts. The microarchitecural compo-
nents, both functions and state, denoted by a bar, will be
operated on by the underlying ZK protocol.

Definition 1 (PIM ). A proof interface machine (PIM) con-
sists of a space of architectural states State , a space of
microarchitectural (encoded) states State , a space of inputs
Σ, and seven procedures (procedures annotated with a bar are
microarchitectural):

T : (Σ× State)→ State

accept : State → {0, 1}
extract : State → State

T : ((n ∈ N)× Σn × State)→ State

accept : State → {0, 1}
embed : State → State

match : (State × State)→ {0, 1}

subject to the following three requirements:

∀w ∈ Σn,

extract ◦ T (n,w, ·) ◦ embed = T n(w, ·)
∀ σ ∈ State,

accept(σ)⇔ accept(extract(σ))

∀ σ0, σ1 ∈ State,

match(σ0, σ1)⇔ extract(σ0) = extract(σ1)

where T n(w, ·) denotes the function that applies T n times
by passing the ith character from w to the ith call to T .

We explain this definition informally. First, the functions T
and accept specify the architecture: T specifies how the state
transitions (e.g., T might handle a single processor cycle),
while accept queries if the machine has reached an accepting
state. In the context of ZK, providing inputs to the PIM
such that accept outputs one means that the inputs together
constitute a convincing witness.

The functions T and accept specify the corresponding
microarchitecture. Note that, while T specifies only a single
step, T simultaneously captures n steps of the state machine.
This difference is needed because in ZK it is often useful for
P to look ahead at her witness to improve efficiency. Thus,
we group n steps together such that this lookahead is formally
possible in the microarchitecture.

To enforce that the architecture and microarchitecture appro-
priately correspond, we introduce extract and embed , which
map between the two kinds of states. The PIM coherence
conditions force correspondence: starting from corresponding
input states, then taking n steps in both the architecture
and microarchitecture results in corresponding output states.
Moreover, the microarchitecture accepts if and only if the
architecture accepts.

Note that we consider embed to be a microarchitectural
function, because embed is needed to set up initial proof states
inside the ZK protocol.

The procedure match is needed for epoch parallelism: we
need a procedure that allows V to check that the output state
of one epoch matches the input state to the subsequent epoch.
Note that this cannot be achieved by a simple equality check,
because the two states might be different; we only insist that
the two microarchitectural states correspond (via extract) to
the same architectural state.

Our epoch parallelism technique relies on the following
simple observation. Let k, e be two natural numbers and let
n , k · e. Here, e denotes a number of epochs and k denotes
the number of steps performed per epoch. Let w0, ..., we−1
denote e length-k strings that together concatenate to w and
let σ0 be an initial state. Note the following trivial fact:

accept(T n(w, σ0))⇔∧
i∈[e]

T k (wi, σi) = σi+1

 ∧ accept(σe)

 (1)

where each σi is the initial state of epoch i and σe is the
final state. That is, to compute the final state T n(σ0), we can
appropriately compute the T k transition e times.

By Equation (1) and Definition 1, the following simple yet
crucial lemma holds:

Lemma 1 (Epoch Parallelism). Let n, e, k be natural numbers
such that k ·e = n. For all PIM s, the following fact holds: Let
σ0 ∈ State be an initial PIM architectural state, let w ∈ Σn



be a witness, and let wi∈[e] ∈ Σk be e chunks of w (which
together concatenate to w). Then:

accept(T n(w, σ0))⇔∧
i∈[e]

match
(
T (k,wi, σi) , σi+1

) ∧ accept(σe)


where for each i < e, σi+1 , T k(wi, σi) and where for each
i < e σi , embed(σi).

In other words, during the proof we need not compute
the circuit T (n,w, σ0) but rather can compute e simpler
subcircuits T (k,wi, σi). Each of these subcircuits does not
depend on the output of any other, and so all e subcircuits can
be executed in parallel. We break dependencies between these
subcircuits by allowing the circuit to take as input intermediate
machine states (via calls to embed ). Once the subcircuits have
finished, we can complete the proof by demonstrating that
the intermediate states between epochs are related by calls to
match: this call ensures that a cheating P cannot substitute
some invalid state into the middle of the proof execution.

Note that PIM does not guarantee security properties of the
resulting parallelized system; this must be proven separately.
For simplicity of notation, in Equation (1) and Lemma 1,
we divide the computation into equal sized epochs; our for-
malisms trivially generalize to epochs of different sizes.

Applicability of PIM . PIM is not an attempt to build
a general compiler that transforms an arbitrary ZK proof
system into an epoch parallel ZK proof system. Instead, PIM
formalizes a program transformation that introduces paral-
lelism to proof statements; the underlying ZK protocol must
leverage the introduced parallelism to improve performance.
Proof systems that allow for parallel proofs of conjunctive
statements can take advantage of the PIM. The ZEE proof
system [HYDK21] implements PIM interface and can take
advantage of conjunctive statements; we prove that the EZEE ,
an epoch-parallel version of ZEE , is a secure ZKP system. A
general “parallelizing ZKP compiler” would require designing
a crypto API, which underlying ZKP systems would need to
satisfy. We believe this is a well-motivated significant separate
undertaking.

VI. SYSTEM DESIGN

In Section V, we described a class of state machines that
can be used to encode ZK proof statements and, crucially,
we gave Lemma 1 which proves that such state machines can
be parallelized. In this section, we use the PIM definition
(Definition 1) to design a high level system on which parallel
interactive ZK proofs can execute. Our design allows us to
scale interactive ZK to clusters of machines.

Note that the given design is not yet crypto-formal, since
we do not at this point give a particular ZK protocol. In
Section VII we plug the ZEE IT-MAC-based ZK protocol into
our design, resulting in a secure ZKP system. While we do not
prove a general statement for plugging in different interactive

P0 P1 P2

V0 V1 V2

Pmain

Vmain

σ0, w0 σ1, w1 σ2, w2

σ0 σ1 σ2 σ3

T T T

σ1 σ2

match(σ′
1, σ1)

σ1 σ2

match(σ′
2, σ2) accept(σ′

3)
σ0 σ′

1

T
σ1 σ′

2

T
σ2 σ′

3

T

Fig. 1: Our epoch parallel system design for three epochs.
Pmain first runs the proof locally by repeatedly calling T ; as
she runs, Pmain records snapshots of the proof state σi and
of portions of her witness wi. Pmain sends σi and parts of her
witness wi to the prover workers Pi. The prover worker Pi and
verifier worker Vi then execute a ZK proof that demonstrates
that (1) embedding σi to σi via a call to embed , then running T
results in an embedded state σ′i+1 and (2) the embedded state
σi+1 (shares of which are sent back from the next workers)
matches the ending state σ′i+1 via a call to match . The final
pair of workers instead call accept to check if the final proof
state is accepting. Each Vi messages Vmain, indicating if its
epoch succeeded or not. If all epochs succeed, Vmain accepts
the proof.

ZK protocols, we view the PIM and our system design as a
template for design of parallel interactive ZK protocols.

In our design, both P and V instantiate one distinguished
main node and a number of worker nodes. We refer to the P
main node as Pmain and to the V main node as Vmain. We refer
to the ith P worker node (resp. V worker node) as Pi (resp.
Vi). Figure 1 depicts the high level interaction between these
nodes. The roles of these components are as follows:
• Pmain uses the PIM definition’s transition function T

to compute in cleartext the entire proof. As it runs,
it periodically takes snapshots of the current state σi.
Additionally, it records portions of its witness wi. Note
that, in general, taking a snapshot or recording the witness
in a real system such as ours, is intricate; for example,
recording the witness may involve capturing arbitrary
interactions between a C program and the surrounding op-
erating system. In general, recording the witness involves
building a full non-determinism log (i.e. the extended
witness) for the execution of the proof program. Pmain
sends σi and wi to a worker node Pi.

• Workers Pi and Vi together run an epoch of the program.



Specifically, they consider a circuit that they together run
inside the ZK protocol. The circuit performs the following
actions: (1) take as input an intermediate state σi via a
call to embed , yielding encoded state σi, (2) apply the
transition function T to map σi to a new state σ′i+1,
(3) if the considered epoch is not the last one, check
match(σ

′

i+1, σi+1) = 1 indicating that the ending state
is equal to the starting state sent back from the next pair
of workers, and (4) if the considered epoch is the last
one, check accept(σ

′

i+1) = 1 indicating that the final
proof state is accepting.

• Vmain waits to receive an accepting message from each
worker Vi. If each verifier worker accepts, Vmain accepts
the overall proof statement as true.

We note that when plugging in a specific ZK protocol, Pmain
and Vmain can be leveraged to help coordinate the workers.
This coordination can help deal with protocol-specific details.
Looking forward, when we instantiate our system design in
Section VII with the protocol of [JKO13] (see Section III-A),
we use the main nodes to coordinate the required commitments
and transmission of V randomness.

The execution of this system can be broken down into
three stages: epoch generation, epoch parallel computation,
and epoch verification. We next discuss these three stages
in detail and explain the informal ZK protocol requirements
needed to support each stage, with respect to both correctness
and efficiency.

A. Epoch Generation

Recall that Pmain first generates epochs by repeatedly calling
T . We refer to this process as epoch generation. To guarantee
a correct and efficient system, epoch generation should meet
several informal requirements:

• Cheap To Generate - Epoch generation occurs before
any parallelization, running sequentially through the en-
tire proof program. Thus, it is crucial that epoch gen-
eration completes quickly. I.e., running T in cleartext
should be much (preferably orders of magnitude) faster
than running T inside the ZK protocol. Otherwise, proof
latency will be constrained by the epoch generation step.

• Deterministic - Epochs must be deterministic. The sys-
tem requires that, upon re-execution in the epoch par-
allel phase, each epoch reaches its predicted final state.
This allows epochs to be glued together in the epoch
verification phase. Therefore, the PIM microarchitecture
must perfectly implement its corresponding architecture.
Any deviation between the two will cause proofs to
erroneously fail.
To ensure epochs are deterministic, the system can record
an epoch as a tuple of (1) a starting state, and (2) a non-
determinism log. This requires the system to identify all
non-determinism. I.e., the PIM must formalize all non-
determinism as part of the witness w.

• Equal Sized - Epochs should be of roughly equal size.
The entire proof cannot complete until each epoch fin-

ishes. If epochs are not of similar size, then any long-
running epoch will become the bottleneck.
For security, too, it is crucial that the size and other
attributes of epochs (e.g., precisely the work performed)
are independent of the witness, and hence of the proof
execution flow. This is needed for simulation of the view
of V in proving the ZK property. See Section VII-D1
for discussion how using BubbleCache, the ZEE ORAM
implementation, which allows cache misses, may be
insecure in EZEE , and our resolution.

B. Epoch Parallel Computation

Once epochs have been generated, the system uses the ZKP
protocol to ensure that each epoch is valid. This stage is the
most computationally intensive portion of the system, as it
executes the heavy work of actually performing the majority
of the ZK computation: T . However, as the system has divided
the computation into independent epochs, this work can be
done in an embarrassingly parallel fashion. Namely, the system
distributes epochs to arbitrarily large numbers of processors,
even up to a cluster scale.

C. Epoch Verification

Once the system has proven that each epoch is valid, it
then proves that, when combined, the epochs form a complete
proof. This composition is achieved by calls to match . Note
that even these calls to match can be parallelized, since
pairs of workers Pi and Vi calls match , not Pmain and Vmain.
After calling embed , a pair of workers immediately sends the
encoded state back to their predecessors; thus match can be
called as soon as the call to T is completed.

VII. THE EZEE EPOCH PARALLEL PROOF SYSTEM

Section V introduced a formal framework for expressing
epoch parallel ZK proofs, and Section VI sketched a systems
level design for running such ZK proofs across clusters of
machines. However, as argued in Section VI, we could not
directly prove the security of this design with respect to
an arbitrary protocol. In this section, we formally instantiate
our design with the ZEE protocol (see Section III-C) and
clarify interesting points that arise. We call the instantiated
ZK protocol EZEE . Figure 2 illustrates many details of the
EZEE protocol.

We begin by formally defining the ZEE PIM and the
instantiated epoch parallel ZK protocol EZEE . The remainder
of this section is dedicated explaining these constructions;
Appendix A sketches a proof that EZEE is a secure ZKP
system.

Recall from Section V that, to use our system, we must
define seven procedures corresponding to the PIM definition.
For ZEE , most of these definitions are inherited directly
from [HYDK21], but embed and match remain to be defined.
ZEE did not directly define these two procedures because they
were not needed for a “single epoch” proof execution.



Pmain

P0 P1

V0 V1

Vmain

Cleartext

∆ ∆

I0 I1

(a)

Pmain

P0 P1

V0 V1

Vmain

Jσ1K

Jσ1K

∗ ∗

(b)

Checkpoint 0

Pmain

P0 P1

V0 V1

Vmain

C0 C1

∗ ∗

∗ ∗

(c)

Checkpoint 1

Pmain

P0 P1

V0 V1

Vmain

∆ ∆

Check Check

Check

∗ ∗

(d)

Checkpoint 2

Pmain

P0 P1

V0 V1

Vmain

∗ ∗

Open Open

Check Check

(e)

Fig. 2: A two epoch EZEE execution. (a) Pmain first executes the program in cleartext and collects the initial information I0
and I1 for both epochs. This information is sent to the prover workers Pi. Vmain generates the global IT-MAC secret ∆ and
distributes it to each verifier worker Vi. (b) Each pair of workers Pi and Vi begin a ZK proof starting from Pi’s initial state
Ii. P1/V1 transmit their encoded initial state Jσ1K to P0/V0. Both pairs of workers execute their epoch in ZK until reaching
the shared final states Jσ′1K and Jσ′2K . While the epoch 1 workers prove that the pc terminated at QED (i.e. accept(σ′2) = 1),
the epoch 0 workers prove in ZK that match(σ′1, σ1) = 1. After computing its output value, each Pi sends a signal to Pmain
and waits. (c) Once each Pi has indicated it has finished computing its part of the circuit (Checkpoint 0, Section VII-A), Pmain
instructs each worker Pi to commit to her proof output value. Each worker Pi sends a commitment Ci to Vi. After receiving
the commitment, each Vi sends a signal to Vmain and waits. (c) After each Vi receives a commitment from Pi (Checkpoint 1),
Vmain instructs each Vi to share its randomness, including the global secret ∆i, with Pi. Pi then checks Vi did not cheat by
replaying all of Vi’s actions and checking that Vi’s messages were well-formed. Pi forwards the result of this check and ∆i to
Pmain, then waits. Pmain ensures that no Vi cheated. (Checkpoint 2) (c) Finally, Pmain instructs each Pi to open its commitment.
If each Vi successfully verifies the commitment, V is convinced that the overall proof is valid.

Construction 1 (ZEE PIM ). The ZEE construc-
tion [HYDK21] implements the PIM interface (Definition 1)
as follows:
• State is the space of ZEE architectural states. It includes

a program counter, a program memory, a small registry,
and a large main memory. Each memory is represented
as a simple array of 32-bit values.

• State is the space of ZEE microarchitecural states. It
contains the same elements as the architectural states,
but the representation is different. First, all values are
elements in Zp for prime p rather than 32-bit values.
Second, each memory is represented by a construction
called BubbleRAM2 [HK20a] which maintains the mem-
ory in a permuted order (in practice, the permutation
order is known to P and unknown to V).

• T is defined by the ZEE ISA and handles the execution
of a single ZEE instruction as defined in [HYDK21].
I.e., T reads an instruction from memory and performs
the corresponding state update, e.g. reading/writing to
main memory, performing arithmetic, or jumping to a
new program location. Note, if the architecture is in
the distinguished QED state, then T is a no-op: the
architecture waits in this state until accept is called.

• accept is defined with respect to ZEE ’s distinguished
QED instruction: accept reads a final instruction from
memory and checks if its op-code is QED . If so, accept
outputs one; else it outputs zero.

2Technically, ZEE , as presented in [HYDK21], uses an improvement
to BubbleRAM called BubbleCache. However, for our purposes we use
BubbleRAM. We discuss this point at greater length in Section VII-D1.

• T and accept are the corresponding microarchitectural
implementations of T and accept . This handling is de-
fined in [HYDK21].

• embed and match are defined in Section VII-B.
• extract maps a ZEE microarchitectural state to a cor-

responding architectural state by reading entries from
the microarchitectural memories and writing these values
into a fresh architectural state. The key detail is that
extract removes the permutation implied by BubbleRAM
and writes the values into a simple array.

The fact that these definitions satisfy the PIM coherence
conditions follows from the completeness of the ZEE mi-
croarchitecture and from discussion about embed and match
in Section VII-B.

We use Construction 1 to instantiate an epoch parallel ZK
protocol:

Construction 2 (EZEE Proof System). The EZEE proof
system is the GC-ZK protocol [JKO13] instantiated with the
ZEE PIM (Construction 1). The EZEE proof system takes
as input a ZEE program. It applies Lemma 1 to transform
the input program into an epoch parallel program. In the
protocol, both P and V dispatch epochs to a set of workers.
These workers pairwise execute their epoch as described in
Section VII-A. Crucially, the workers execute their epochs in
parallel. EZEE also dispatches more than one epoch to each
worker (see Section VII-D2); in this case, the workers execute
their epochs sequentially. At certain steps of the protocol, P
and V implement proof checkpoints (Section VII-A): i.e., they
ensure that no worker proceeds to the next protocol step until



each worker finishes the current step.

We prove the following theorem, which proves that Con-
struction 1 is a secure ZKP system, in Appendix A.

Theorem 1 (EZEE Security). Assuming a collision resistant
hash function, that the prime modulus p > 237, and that
blog pc ≥ ρ, Construction 2 is a sound (with soundness error
2−ρ) and complete malicious-verifier Zero Knowledge proof
system that proves arbitrary ZK relations expressed as ZEE
programs [HYDK21] in the OT-hybrid model.

A. EZEE Protocol Checkpoints

Recall from Section III that the ZEE protocol of [HYDK21]
is a GC-ZK-based protocol [JKO13]. We plug this protocol
into the system design described in Section VI. We approach
parallelism carefully, as subtle issues can emerge with parallel
composition of standalone-secure protocols.

Our basic technique for ensuring security is to synchronize
the workers’ messages by introducing checkpoints: once a
worker finishes a protocol step, it waits for its peers to catch
up before proceeding. This ensures that we adhere to the
ZEE message flow and the [JKO13] framework, as discussed
next and in our proof of security. Serializing message flow
allows for a trivial security reduction to [JKO13]. Indeed,
the only step of the protocol that is run in parallel is the OT
execution. We handle the security issues arising from paral-
lelization by using a UC-secure [Can01] OT protocol (Ferret
OT [YWL+20] was proved UC-secure by [WYKW21b]).

There are three checkpoints in EZEE .
Checkpoint 0: OT checkpoint. In GC-ZK, after performing

all OTs, the prover commits to her GC output label. Our first
checkpoint preserves the ordering of messages in the GC-ZK
protocol by ensuring that all (concurrently executed) OTs are
completed before any worker commits to its output label.

Here and in other checkpoints Pmain orchestrates the syn-
chronization. In our presentation, workers Pi send the com-
mitments (resp. other messages) directly to Vi. One can think
about them as being routed through Pmain for even more
explicit view of serialization.

Checkpoint 1: commitment checkpoint. In GC-ZK, V sends
to P all garbling randomness after P commits her GC output
label. Similarly, in EZEE , each verifier worker send its
randomness to its corresponding prover worker. Crucially, no
verifier worker sends its randomness until all prover commit-
ments are received. Without enforcing this, P learns V’s global
secret ∆ for IT-MACs in advance, allowing P to forge proof
values.

Checkpoint 2: replay checkpoint. In GC-ZK, P must re-
play V’s actions to ensure that all messages were properly
constructed. Only once this check succeeds does P open
her commitment. Similarly, in EZEE , a prover worker can
only open its commitment once every prover worker finishes
checking its epoch. As an additional detail, our P must make
sure that each prover worker receives the same global IT-MAC
secret ∆. This ensures that V cannot cheat during the match
step of the proof.

B. EZEE ’s embed and match Procedures

EZEE ’s embed procedure is straightforward: it takes as in-
put an architectural state σ and constructs a microarchitectural
state σ by choosing BubbleRAM permutations in any arbitrary
manner; we later refine this choice of permutation.
match(σ, σ′) checks that, if we account for the BubbleRAM

permutations π and π′ applied to the states, then the resulting
values are equal. That is, match is defined as follows:

match(σ, σ′) , (π′ ◦ π−1)(σ)
?
= σ′

where π is the BubbleRAM permutation of σ and π′ is the
BubbleRAM permutation of σ′.

In order to build our protocol, P and V workers must
implement both embed and match as part of a secure ZK pro-
tocol. For example, embed uses OTs to allow P to select IT-
MACs corresponding a particular input state under a particular
permutation. Thus, the implementation of these procedures is
potentially expensive. We introduce a simple trick that makes
the implementation of match more efficient.

Our trick is based on the fact that for epoch parallelism
(Lemma 1), we only call match in the case where one of
the inputs is a freshly embedded input state. Thus, we adjust
the definition of embed such that the permutation used to
initialize BubbleRAM is chosen uniformly. This, in particular,
ensures that in all cases where we call match , the composed
permutation π′◦π−1 is also uniform. Because of this, we need
not compute the permutation π′ ◦ π−1 inside the ZK circuit.
Rather, P can securely reveal this uniform permutation to V
without leaking any information. The two parties now locally
permute their IT-MAC shares, achieving the permutation with
essentially no cryptographic overhead. This saves significantly,
since permuting inside a circuit requires a Waksman permu-
tation network [Wak68], which, to permute n values, requires
O(n log n) gates (and hence O(n log n) OTs in the ZEE
protocol).

C. EZEE ’s Main Nodes

As discussed in Section VI, EZEE must fully specify the
four types of nodes. While prover worker and verifier worker
essentially execute the ZEE PIM (with adjustments mentioned
throughout this section), Pmain and Vmain must be specified.

1) EZEE ’s Pmain: Recall from Section VI that the epochs
should be cheap to generate, deterministic and equal sized.
Pmain achieves these goals as follows.

Per our system design, Pmain executes in cleartext the
entire proof. This cleartext emulator does not model any
cryptographic primitives used by ZEE , such as BubbleRAM.
This fact is important, since the cleartext execution should
finish as quickly as possible. A simple experiment shows
that a more complex cleartext emulator that also models
BubbleRAM is about 300× slower than our faster emulator
that does not model BubbleRAM. This emulator can be seen
as a traditional CPU. As it runs, the emulator takes snapshots
of intermediate states σi and calculates the number of needed
program instructions.



Recall that Pmain must also send to each worker Pi its
partial witness wi. In ZEE , P’s entire witness is captured via
calls to a distinguished INPUT instruction. As Pmain’s cleartext
emulator runs, it captures the witness by recording a log of
all INPUT instruction results. Note that the INPUT instruction
is the only non-deterministic instruction in ZEE ’s ISA. The
partial witness wi can be viewed as a non-determinism log,
ensuring that each epoch is deterministic.

Once each epoch is generated, Pmain passes the required
information Ii to the corresponding prover worker Pi. Besides
σi and wi, Ii also includes the number of instructions to be
executed in this epoch, and includes two random seeds used to
generate two uniform BubbleRAM permutations πi and πi+1

as discussed in Section VII-B. Once Pi receives Ii, the worker
pair can immediately begin executing its epoch.
Pmain is also responsible for enforcing Checkpoints 0 and

2. This is simple; e.g, for Checkpoint 2, each prover worker
Pi sends a bit indicating whether all messages from Vi
were properly constructed. It also sends the global secret ∆i

provided by Vi. Pmain then checks that all received bits are
one, and checks that all values ∆i are equal. If so, it instructs
every prover worker Pi to open its commitment to Vi.

2) EZEE ’s Vmain: EZEE ’s Vmain is responsible for ensur-
ing that each verifier worker Vi is convinced of the validity of
epoch i such that all subproofs can be stitched into a complete
proof. Vmain also distributes the global secret ∆ to each verifier
worker Vi.
Vmain is responsible for enforcing Checkpoint 1. That is,

each verifier worker Vi sends a signal to Vmain once it
receives a commitment from Pi. Only once all such signals are
received, does Vmain instruct each Vi to send its randomness
to Pi. This ensures that all commitments are received before
revealing any of V’s secret randomness.

D. Additional Modifications

1) Potential Leakage due to BubbleCache: By default,
ZEE uses BubbleCache [HYDK21] as its ZK RAM. Bub-
bleCache improves RAM performance by allowing for cache
misses. Whenever a cache miss occurs, ZEE simply executes
no-op instructions, allowing BubbleCache to catch up. Thus, in
ZEE equipped with BubbleCache, it is likely that the number
of instructions will differ from the number of needed processor
cycles.

In EZEE , Pmain runs its cleartext emulator without mod-
elling the ZK RAM (see Section VII-C1), and epochs gener-
ated by Pmain contain equal numbers of instructions. However,
because of the cache miss feature of BubbleCache, two
epochs with same number of instructions may require different
numbers of cycles. In other words, if EZEE ’s workers use
ZEE with BubbleCache and each worker executes the same
number of instructions, V is able to learn the cache miss
rate distribution across epochs, which is not possible in ZEE
without epoch parallelism, cannot be simulated and is not
secure.

Therefore, we replace BubbleCache by its predecessor
BubbleRAM. BubbleRAM does not allow cache misses, so

the number of instructions matches precisely the number of
needed processor cycles. Even in extreme scenarios Bub-
bleRAM, as compared to BubbleCache, reduces ZEE cycle
performance by at most around 30% [HYDK21]. Moreover,
any such overhead is fully parallelized in our system.

2) Reducing Memory Consumption: The ZEE implemen-
tation consumes physical memory proportional to the number
of executed instructions. Thus, for very long running proofs,
physical memory becomes a serious concern. Our experiments
show that ZEE ’s P and V each require over 22GB of physical
memory when executing 1 million instructions using a 222

word ZK RAM. Therefore, naı̈vely dividing a large execution
into epochs might still exhaust the available hardware resource.

Fortunately, our epoch parallelism technique solves this
problem without needing to significantly re-engineer ZEE .
Our idea is to allocate more than one epoch to a single
hardware device. This device executes each of its epochs in
sequence. More specifically, given d devices, we execute on
the ith device epochs i, i + d, i + 2d, etc. Since each epoch
runs only a portion of the program, the workers only need
enough memory for that portion. By increasing the number of
epochs, we decrease the size of program portions and reduce
per-epoch memory consumption.

This does not yet completely resolve the issue, since no
epoch can proceed past Checkpoint 1 until all epochs reach
Checkpoint 1 (Section VII-A). However, we ensure that the
per-epoch amount of memory that must be stored across
Checkpoint 1 is small. Thus, each device runs each of its
epochs up to Checkpoint 1; when the checkpoint is reached,
the device simply reuses its physical memory to handle its
next epoch.

Achieving constant storage across Checkpoint 1 is non-
trivial. Specifically, after Checkpoint 1, Pi must check that
all messages received from Vi were properly constructed (Sec-
tion III-A). Thus, naı̈vely, Pi must store all messages received
from Vi, which are together very large. This can be easily
resolved by computing a hash digest of all messages received
from Vi. Upon receiving Vi’s randomness, Pi reconstructs the
messages, computes a new hash digest, and checks it is equal
to the stored constant size digest.

A more difficult problem is in ensuring that Vi’s randomness
can be compactly represented. ZEE uses the recent Ferret
correlated OT protocol [YWL+20]. For each of her input bits
b, correlated OT ensures that P receives either a uniform value
X ∈ {0, 1}κ or X ⊕ R where R is a fixed global value.
Crucially, each value X is chosen by the OT protocol. Hence,
P cannot locally expand each value X starting from a compact
PRG seed without replaying the OT protocol in her head. We
do not do this because the bottleneck in Ferret performance is
computation. We instead alter the OT protocol such that each
value X can be simply derived from a PRG seed. Specifically,
when Ferret OT sends to P Y ⊕bR, V also sends X⊕Y such
that P can compute X ⊕ bR. Thus, P can reconstruct all OT
values, and hence all messages, by expanding a constant sized
PRG seed. The technique does require added communication,
but is needed to allow for long running proofs.



By the above adjustments, each worker needs to store only
a small constant amount of information (specifically, digests
and PRG seeds) across Checkpoint 1.

VIII. EVALUATION

In this section, we describe our EZEE implementation and
then we evaluate its performance. Our evaluation focuses on
EZEE ’s proof latency, i.e. the total end-to-end proof runtime.
We compare EZEE to the non-parallel ZEE proof system, and
we give cost breakdowns of the different EZEE components.

A. Implementation

We implemented EZEE in C/C++ based on ZEE . Prover
and verifier workers are implemented on top of ZEE ’s back-
end cryptographic ZK protocol. We added around 800LOC
to account for EZEE specific concerns, such as gluing and
checkpointing. Pmain and Vmain are implemented in around
1400LOC. We used ZEE ’s frontend compiler and standard
library to compile our benchmarks.

Data Availability. We plan to open-source this project to
the community.

B. Environment and Benchmarks

We evaluated EZEE on Cloudlab [DRM+19]. We used
a network of c6525-25g machines: 16-core AMD 7302P
at 3.00GHz, 128GB ECC Memory, two dual-port Mellanox
ConnectX-5 25Gbps NIC, connected via a central Dell Z9332
switch and multiple Dell S5296F switches to form a star net-
work. See [CLO] for precise server and network specification.

Due to large number of Cloudlab users, we were only able
to allocate 62 of these nodes. These nodes were arranged
as follows: 1 for Pmain, 1 for Vmain, 30 for prover workers
Pi, and 30 for verifier workers Vi. Since one EZEE worker
requires significant physical memory, we used only two cores
per machine. Thus we can allocate a maximum of 60 worker
cores such that each core has 64GB of physical memory.

We evaluated our system with two Linux programs:
bzip2 is a benchmark in SPEC2006 [Hen06], an industry-

standard, CPU-intensive benchmark suite. We used bzip2 to
compress three different-sized images. Two are taken from the
SPEC2006 input data set. We prove in ZK that the program
terminates normally. This benchmark, in part, demonstrates
that EZEE can achieve long running proofs that were previ-
ously impossible with the unmodified ZEE system. For this
benchmark, we instantiate a 222 word ZK RAM.

sed 1.17 contains a segmentation fault bug listed in the
Software-artifact Infrastructure Repository (SIR) [DER05].
Specific inputs cause this version of sed to invoke the standard
function memmove to attempt to move −1 bytes of memory,
leading to a segmentation fault. [HYDK21] showed that ZEE
can prove the existence of this bug in ZK. We used EZEE
to achieve the same proof with lower proof latency. As per
[HYDK21], we run this benchmark with a 213 word ZK RAM.

Figure 3 summarizes information about our benchmarks.

C. Baseline Evaluation

Ideally, we would use off-the-shelf ZEE as a point of com-
parison for our benchmarks. Unfortunately, this is not possible
because ZEE consumes physical memory proportional to the
proof runtime. Thus, when we tried to use ZEE to execute
our long running bzip2 benchmarks, we exhausted all available
physical memory and were unable to complete the proof. We
were able to fully execute the much shorter sed benchmark.
Figure 3 tabulates ZEE ’s sed performance and uses this value
to extrapolate bzip2 performance.

However, we still wish to have a point of comparison
that is not based on extrapolation. In Section VII-D2, we
explained that epochs can be used to help reduce memory
consumption. We build a non-parallel baseline system by
instantiating EZEE using only one worker pair. These two
workers sequentially execute each epoch and thus emulate an
unmodified ZEE system that can handle much longer proofs.
To more closely capture the performance of the unmodified
ZEE system, we instantiate this baseline using BubbleCache
rather than BubbleRAM. Technically, this is not secure (see
discussion in Section VII-D1), but ZEE can securely use Bub-
bleCache, and we only want a performance estimate for ZEE .
Note, our parallel EZEE implementation uses BubbleRAM
and is secure.

We tabulate the performance of this adjusted baseline
system in Figure 4. Note that the adjusted baseline system
incurs the glue overhead of EZEE (i.e. calls to match , embed ,
and a cleartext emulator). Nevertheless and surprisingly, the
adjusted baseline outperforms the extrapolated performance
of ZEE . Performance is improved because ZEE performance
was extrapolated from the very short sed proof. Each epoch
run by our adjusted baseline is significantly longer than the
entire sed proof (around six million instructions per epoch).
As proofs run longer, the ZEE architecture amortizes some
costs, e.g. accesses to BubbleCache.

D. End-to-end Proof Latency

We first evaluate our end-to-end proof latency when using
the available 60 cores. End-to-end latency is measured starting
from Pmain’s initialization and ending when Vmain accepts
the proof. Figure 4 tabulates these experimental results. As
compared to our adjusted baseline, EZEE accelerates bzip2 by
approximately 28×. The resulting CPU runs at up to 394KHz.
Our improvement to sed is less impressive, since this proof is
very short. Hence, the non-parallelizable costs of our system
begin to dominate and reduce our improvement. Nevertheless,
we still accelerate sed by about 11.4×.

We next evaluate how EZEE performance scales with the
number of cores. We ran the bzip2 benchmark to compress
an 8.1KB image while varying the number of utilized cores.
Figure 7 plots performance. Recall that, as discussed in Sec-
tion VII-D2, we use epochs to reduce memory consumption.
For this bzip2 benchmark, we require 60 epochs to complete
the proof without exhausting memory. Thus, as we reduce the
number of cores, we must assign more epochs to each core.



Benchmark # ZEE Instrs. Mem. Words ZEE Latency
sed bug 344,051 213 31.8s
bzip2, 8.1KB image 169,353,341 222 4h 20m*
bzip2, 278.5KB image 5,000,578,992 222 5d 8h 15m*
bzip2, 652.3KB image 11,859,715,862 222 12d 16h 12m*

Fig. 3: Benchmark summary. Proof latency for the sed bug experiment were obtained by running ZEE without epoch parallelism;
proof latency for the bzip2 experiments (i.e. those marked with *) were estimated based on sed’s execution speed because
ZEE cannot run these long experiments.

Benchmark ZEE Adjusted Baseline EZEE Speedup EZEE CPU
Latency Latency Latency Clock Rate

sed bug 31.8s N/A 2.8s 11.4× 122.9KHz
bzip2, 8.1KB image 4h 20m* 3h 33m 28s 8m 20s 25.6× 338.4KHz
bzip2, 278.5KB image 5d 8h 15m* 4d 9h 58m 52s 3h 31m 15s 30.1× 394.5KHz
bzip2, 652.3KB image 12d 16h 12m* 10d 4h 46m 16s 8h 37m 9s 28.4× 382.2KHz

Fig. 4: Experimental results. ZEE proof latency is explained in Figure 3. Measurements for ZEE (i.e. those marked with *)
were estimated based on sed performance. The adjusted baseline system is explained in Section VIII-C. We list EZEE ’s total
proof latency, its speedup over the adjusted baseline (except for sed, which is instead compared to ZEE directly), and its clock
rate.

0

200

400

600

800

1000

1200

1400

1600

1800

15× 4 30× 2 60× 1

R
un

tim
e

(S
ec

on
ds

)

Number of Cores × Epochs/Core

Execution
RAM Setup

Glue
Cleartext

Fig. 5: EZEE proof latency decomposition for the bzip2
benchmark when compressing an 8.1KB image. Note that
because this proof requires large numbers of instructions,
as we decrease the number of cores, each core is respon-
sible for more epochs (see Section VII-D2).

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 60

R
un

tim
e

(S
ec

on
ds

)

Number of Cores

Execution
RAM Setup

Glue
Cleartext

Fig. 6: EZEE proof latency decomposition for the sed
benchmark. Each core is responsible for only one epoch.

Some proof overhead increases proportionally with number of
epochs per core (see next).

E. Proof Latency Breakdown

Next, we break down the costs of our system to identify
the proof latency bottlenecks and the maximum possible
performance. Although EZEE parallelizes the most expensive
proof steps, there are still sequential components that cannot
be avoided. We decompose proof latency into three major
parts:
• Execution: Each pair of cores must finish its proof

execution, i.e., T . The incurred latency is proportional to

the number of instructions that each core pair executes.
• Glue (and RAM setup): Every worker pair must

run embed and match in ZK. Crucially, the call to
embed involves initializing BubbleRAM with a uniformly
permuted RAM state (see Section VII-B), the most ex-
pensive portion of the glue step. The incurred latency
is proportional to the number of epochs that each core
executes.

• Cleartext: EZEE ’s Pmain must finish epoch generation
before the parallel parts of the protocol begin. The
incurred latency scales with the total proof runtime and
with the number of epochs.



0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

R
un

tim
e

(S
ec

on
ds

)

Number of Cores

bzip2
ideal runtime

Fig. 7: We used bzip2 to compress an 8.1KB image inside ZK
and measured proof latency as a function of the number of
cores. For n cores, each core runs 60

n epochs. Ideal runtime is
derived from the adjusted baseline runtime (Section VIII-C).

Figures 5 and 6 depict breakdowns of the above latency
costs for different numbers of cores and for (1) bzip2 with
an 8.1KB image and (2) sed. Our plots separate the cost to
initialize BubbleRAM from other glue step costs.

These plots show how EZEE ’s latency decreases as more
cores are added. The expensive execution step is made fast
with large numbers of cores. Indeed for sed with 60 cores,
glue, not execution, dominates in terms of latency. Given
more cores, we could further accelerate EZEE for the bzip2
benchmark: based on the cost of glue, we calculate that the
maximum possible clock rate for this benchmark is≈ 1.8MHz.

F. Network Traffic

Our cores communicate with one another through TCP/IP
channels as implemented by [WMK16]. Specifically, each
prover worker Pi maintains channels with Pmain, Pi+1 and Vi
(and symmetrically for verifier worker Vi). We measured net-
work traffic on these channels. Figure 8 tabulates the results.
Unsurprisingly, traffic is light except between pairs of worker
nodes. These workers communicate via large numbers of
oblivious transfers and hence consume significant bandwidth.

Benchmark Pmain and Pi and Pi and Vi and Vmain and
Pi Pi+1 Vi Vi+1 Vi

sed 33.5KB 129KB 181MB 129KB 608B
bzip2 16.2MB 64.1MB 37.2GB 64.1MB 608B

Fig. 8: Bandwidth consumption of different pairs of nodes.

ACKNOWLEDGMENT

This work was supported in part by NSF award #1909769,
by a Cisco research award, by Georgia Tech’s IISP cyberse-
curity seed funding (CSF) award. This material is also based
upon work supported in part by DARPA under Contract No.
HR001120C0087. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

REFERENCES

[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko,
Krzysztof Pietrzak, and Leonid Reyzin. Beyond hell-
man’s time-memory trade-offs with applications to proofs
of space. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 357–
379. Springer, Heidelberg, December 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakr-
ishnan Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2087–2104. ACM Press, October / November
2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran
Tromer, and Madars Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 90–108. Springer, Heidelberg, August
2013.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora:
Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 103–128. Springer, Heidelberg, May
2019.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer,
Heidelberg, August 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von
neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association,
August 2014.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthura-
makrishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng
Zhang. Ligero++: A new optimized sublinear IOP. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 20, pages 2025–2038. ACM Press, November 2020.

[BMRS20] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter
Scholl. Mac’n’cheese: Zero-knowledge proofs for arithmetic
circuits with nested disjunctions. Cryptology ePrint Archive,
Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[Can01] R. Canetti. Universally composable security: a new paradigm
for cryptographic protocols. Proceedings 42nd IEEE Sympo-
sium on Foundations of Computer Science, 2001.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, and Greg Zaverucha. Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1825–1842. ACM Press, Oc-
tober / November 2017.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf
Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno,
and Samee Zahur. Geppetto: Versatile verifiable computation.
In 2015 IEEE Symposium on Security and Privacy, pages 253–
270. IEEE Computer Society Press, May 2015.

[CLO] CloudLab Documentation. http://docs.cloudlab.us/hardware.
html. Retrieved Sept. 20, 2021.

[DER05] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Sup-
porting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

[DIO20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-
point zero knowledge and its applications. Cryptology ePrint
Archive, Report 2020/1446, 2020. https://eprint.iacr.org/2020/
1446.



[DRM+19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary
Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang,
Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,
Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra.
The design and operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1–14, July
2019.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael
Pass. Sparks: succinct parallelizable arguments of knowledge.
In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 707–737. Springer,
2020.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky,
Xiao Wang, and Chenkai Weng. Constant-overhead zero-
knowledge for ram programs. Cryptology ePrint Archive,
Report 2021/979, 2021. https://ia.cr/2021/979.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio
Orlandi. Privacy-free garbled circuits with applications to
efficient zero-knowledge. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 191–219. Springer, Heidelberg, April 2015.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs with-
out PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645.
Springer, Heidelberg, May 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 113–122. ACM Press, May 2008.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZK-
Boo: Faster zero-knowledge for Boolean circuits. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016, pages
1069–1083. USENIX Association, August 2016.

[Gro16] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–
326. Springer, Heidelberg, May 2016.

[Hen06] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-
knowledge processor with BubbleRAM. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 20, pages 2055–2074. ACM Press, November 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for
disjunctive zero-knowledge proofs. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 569–598. Springer, Heidelberg, May
2020.

[HYDK21] David Heath, Yibin Yang, David Devecsery, and Vladimir
Kolesnikov. Zero knowledge for everything and everyone: Fast
ZK processor with cached ORAM for ANSI C programs. In
2021 IEEE Symposium on Security and Privacy (SP), pages
1538–1556. IEEE, 2021.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Zero-knowledge from secure multiparty computation.
In David S. Johnson and Uriel Feige, editors, 39th ACM STOC,
pages 21–30. ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 955–966. ACM Press, November 2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved non-interactive zero knowledge with applications to
post-quantum signatures. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 525–537. ACM Press, October 2018.

[KP17] Yashvanth Kondi and Arpita Patra. Privacy-free garbled circuits
for formulas: Size zero and information-theoretic. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 188–222. Springer, Heidelberg,
August 2017.

[NVCF08] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M
Chen, and Jason Flinn. Rethink the sync. ACM Transactions
on Computer Systems (TOCS), 26(3):1–26, 2008.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013
IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[QDCF16] Andrew Quinn, David Devecsery, Peter M Chen, and Jason
Flinn. Jetstream: Cluster-scale parallelization of information
flow queries. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 451–
466, 2016.

[SKW+10] Martin Süßkraut, Thomas Knauth, Stefan Weigert, Ute Schif-
fel, Martin Meinhold, and Christof Fetzer. Prospect: A com-
piler framework for speculative parallelization. In Proceedings
of the 8th Annual IEEE/ACM International Symposium on
Code generation and Optimization, pages 131–140, 2010.

[VLW+12] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,
Jessica Ouyang, Peter M Chen, Jason Flinn, and Satish
Narayanasamy. Doubleplay: Parallelizing sequential logging
and replay. ACM Transactions on Computer Systems (TOCS),
30(1):1–24, 2012.

[Wak68] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, January 1968.

[WDC+13] Benjamin Wester, David Devecsery, Peter M Chen, Jason Flinn,
and Satish Narayanasamy. Parallelizing data race detection.
ACM SIGARCH computer architecture news, 41(1):27–38,
2013.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://github.
com/emp-toolkit, 2016.

[WYKW21a] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, 2021.

[WYKW21b] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. 2021
IEEE Symposium on Security and Privacy (SP), 2021.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada
Popa, and Ion Stoica. DIZK: A distributed zero knowledge
proof system. In 27th USENIX Security Symposium (USENIX
Security 18), pages 675–692, 2018.

[YSWW20] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang.
Quicksilver: Efficient and affordable zero-knowledge proofs
for circuits and polynomials over any field. Cryptology ePrint
Archive, Report 2021/076, 2020.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small
communication. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 20, pages 1607–1626.
ACM Press, November 2020.

[ZS02] Craig Zilles and Gurindar Sohi. Master/slave speculative paral-
lelization. In 35th Annual IEEE/ACM International Symposium
on Microarchitecture, 2002.(MICRO-35). Proceedings., pages
85–96. IEEE, 2002.

APPENDIX

We sketch a proof of Theorem 1:

Proof Sketch. Note, the assumption of a collision resistant
hash function and the requirement that p > 237 are inherited
from ZEE security proof.

At a high level, our system simply implements a GC-ZK
proof system, as proved secure by [JKO13]. However, our



system does introduce concurrent OTs which must be properly
handled.

We argue six main points:
First, we argue that we can apply our PIM circuit trans-

formation to the ZEE proof system. This fact follows directly
from Lemma 1.

Second, note that our explicit checkpoints (Section VII-A)
precisely preserve the message ordering of the original ZEE
protocol, except that the OTs are executed concurrently by
Pi−Vi pairs. Therefore, for now ignoring the parallel execu-
tion of OTs, our protocol is clearly secure under the [JKO13]
framework: we simply run the ZEE protocol on a different –
but equivalent – circuit.

Third, we show that it is safe to execute OTs concurrently
in our protocol. This follows from two points:

1) All OT inputs from both P and V are defined before the
first OT is issued.

2) The chosen Ferret OT protocol [YWL+20], [AAC+17]
is UC-secure [Can01].

Fourth, notice that P can now see the output of some
OTs (i.e. those OT outputs corresponding to one epoch)
before choosing her input for other OTs (i.e. those OT inputs
corresponding to another epoch). This does not help a corrupt
P in our protocol, since the received labels are all uniformly
random and independent from each other. (Recall that in the
[JKO13] protocol, V does open all such randomness, but this
step is not done until all OTs are finished – cf Checkpoints 0
and 1). We stress that for general protocols, e.g., where V’s OT
inputs may be related to each other, this may not be secure.

Fifth, note that interleaved with these OTs, P sends to
V uniform permutations per our implementation of match
(Section VII-B). That is, before performing the OTs for a
given epoch, Pi sends to Vi the permutation πi+1 ◦ π−1i .
Similarly to the above point, this extra message preserves ZK
because the starting permutation for epoch i+1 πi+1 is chosen
uniformly, so the composed permutation is also uniform and
conveys no useful information to a corrupt V; it is easily
simulatable by a ZK simulator. Alternatively, we can view
these uniform permutations as part of the proved statement,
established before the execution of the protocol, and hence
treated as public knowledge.

Sixth, we note that our breakdown of the computation into
epochs is independent of P’s witness, and hence can be
easily simulated given the program runtime. We recall that,
as discussed in Section VII-D1, this prevents us from using
BubbleCache [HYDK21].

Therefore, our EZEE protocol is secure by reduction to
the [JKO13] proof system.

EZEE is a secure ZKP protocol.


