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In this paper, we shall present a weak virtual element method for the standard three field poroelasticity problem
on polytopal meshes. The flux velocity and pressure are approximated by the low order H(div) virtual element
and the piecewise constant, while the elastic displacement is discretized by the H(div) virtual element with some
tangential polynomials on element boundaries. A fully discrete scheme is then given by choosing the backward

Euler for the time discretization. With some assumptions on the exact solutions, we prove that the convergence
order is of order 1 with respect to the meshsize and the time step, and the hidden constants are independent of
the parameters of the problems. Some numerical experiments are given to verify the results.

1. Introduction

In the field of petroleum engineering, the interaction of the fluid
flow and elastic porous medium is described by the Biot consolidation
model, stated as

—divew)+aVp=f,, inQx(0,T),
clw+Vp=f,, in Qx(0,T), @
copy tadivu, +divw = f,, inQx(0,T),

with the initial conditions p(-,0) = p, u(-,0) = u,. The subscript  stands
for the derivative with respect to the time variable 1. We impose the
boundary conditions u =0, w-n =0 for ease of presentation. Here,
QcR?,d=2,3, is assumed to be a polygonal or polyhedral domain.
The variables u, w, p stand for the displacement of the solid, velocity
and pressure of the fluid respectively. We use o(u) = 2ue(u) + Adivul to
denote the effective stress, where A and p are Lamé constants. The nota-
tion « is the hydraulic conductivity and assumed to be a constant. The
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coefficient « is the Biot-Willis constant, which couples the elastic and
Darcy’s equations and is usually close to unity. The parameter ¢, > 0
stands for the constrained specific storage coefficient.

This model is of increasing importance and of great interest due
to its applications in various fields including biomechanics, soil me-
chanics, geophysics, physical chemistry and material sciences. There
have been lots of literature on numerical methods for the poroelasticity
problem, see, e.g., [26-28] for coupling the mixed finite element and
the continuous/discontinuous Galerkin methods, [38,18] for combining
the mixed and nonconforming finite element method, [34] for a weak
Galerkin method coupled with the mixed finite element method. One
can also refer to [22,3] and the references therein for iterative coupling
methods.

In the numerical simulations of Biot’s model, there are mainly
two difficulties people should overcome. One is to avoid nonphysical
fluid pressure oscillations (see [16,29,31] and references therein) for
a certain range of material parameters, e.g., ¢, =0, low permeabilities
and/or small time steps. To this end, some stabilized methods were pro-
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posed in [32,6,30,33,24]. The other one is to deal with the notorious
volume locking phenomenon when 4 — . Oyarziia and Ruiz-Baier [25]
introduced a pseudo total pressure and proposed a new three field for-
mulation to obtain a stable and robust method for a static problem. We
refer to [20] for a similar formulation and its preconditioners. Feng et
al. [15] presented a reformulation of the original model by introducing
two pseudo-pressures and developed a robust full discrete finite element
scheme. In [40], Yi studied the causes of Poisson locking and pressure
oscillation, and proposed a new discrete mixed form by employing the
method of reduced integration to the bilinear form of the displacement.
Using specific parameter-dependent norms, Hong and Kraus [17] es-
tablished the full parameter-robust inf-sup stability of the three field
continuous problem, and proposed a uniformly stable discretization
method. Based on a four field formulation, Yi and Lee [39,19,2] also
independently developed convergent finite element methods which are
robust with respect to the parameters ¢, and A.

In the last few years, due to the great flexibility for problems on
complicated geometry (see, e.g., [11] for interface problems), numer-
ical methods on polytopal meshes have drawn increasingly attentions.
Several methods have been proposed, such as, mimetic finite differ-
ence methods [21], virtual element methods (VEM) [4], weak Galerkin
methods [37], hybrid high order methods [14], generalized barycentric
coordinates method (e.g., [12]) and so on. There are only few work dis-
cussed the discretization of the Biot model based on polytopal meshes.
In [7], Boffi et al. constructed a coupling of a discontinuous Galerkin
and a hybrid high-order method on general polyhedral meshes. It was
shown that the stability and error estimates hold when the specific stor-
age coefficient vanishes and depend mildly on the heterogeneity of the
permeability coefficients. In [13], the authors combined the first-order
VEM and the finite volume method for the poroelasticity. The first fully
VEM discretization for the Biot model problem was given in [9]. Their
robust scheme combines with the H' conforming VEM proposed in [1]
for the displacement, piecewise constant approximations for total pres-
sure, and the enhanced H'! virtual element space for the pore pressure.
Based on the displacement, fluid flux and pressure formulation, Tang
et al. [36] combined a lowest H!-conforming VEM enriched with nor-
mal bubbles on edges and a pair of mixed VEM to obtain a locking-free
scheme. They also discussed the virtual element approximate method
of order k > 2.

In this paper, we shall present a new virtual element method on
polygonal/polyhedral meshes for the problem (1). To approximate the
flux and pressure variables, we apply the H(div) virtual element [5]
and the piecewise constant, which is the same as the ones used in [36].
For the displacement, instead of enriching the low-order H'! conform-
ing virtual element used in [36,9], we directly start with the H(div)
virtual element [5] which is continuous along the normal direction of el-
ement boundaries and thus strongly mass-conservative. To compute the
(weak) gradient, we additionally involve a tangential direction space
on each element face, and define a weak symmetric gradient to ap-
proximate the symmetric gradient by a dual argument [37]. We use the
backward Euler method for the time discretization and propose a fully
discrete scheme. Error analysis is given to show the convergence order
of the proposed method is optimal. Moreover, it is shown that the er-
ror bounds are independent of the Lamé constant 4 and the constrained
specific storage coefficient c¢,. Our method has a unified formulation for
both two and three dimensional problems. Although, we only consider
the low order space element, it can be extended to the k-th order space
element [10] naturally.

The paper is organized as follows. In Section 2, we introduce the
virtual element spaces and some notations. Section 3 concerns with the
semidiscrete problem. The fully discrete method is given in Section 4. In
Section 5, we report some numerical experiments to verify our results.

Throughout the paper, we use bold letters to denote vector variables,
operators, and spaces. We use P, or P, to indicate the polynomial space
of the polynomials or vector polynomials up to order k. For any region
D, (-,-)p (or (-,-yp) denotes the L? or L? inner product. The norm and
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seminorm for the functions in the scalar Sobolev space H" (D) or H"(D)
(m > 0) are denoted by | - ||,, p and | - |, p respectively. When m =0, we
usually omit the subscript and use || - || , to denote the L? (or L?) norm.
When D stands for the whole domain Q, we drop the subscript Q in the
norms and inner products. We also use H(div) and H(curl) to denote
the Sobolev spaces, in which the functions and their divergence and
curl are in L2 and L? spaces, respectively. Additionally, the notation
< abbreviates an inequality < up to a constant which is independent of
the mesh size and the parameters ¢, A.

2. H(div) virtual element spaces

Let 7, be a partition of Q into non-overlapping polygons/polyhe-
drons. In this paper, we assume that each element in 7, is shape regular,
that is, (i) each element E € 7, and its edges/faces are star shaped, (ii)
the diameters of the edges/faces and elements are equivalent A, ~ hp.
Furthermore, we suppose the diameters of all the elements are of com-
parable size denoted by s, which means that the mesh is quasi-uniform.
All the faces are denoted by F,.

We first introduce the H(div) virtual element proposed in [5]. For
ease of presentation, we only focus on the lowest order element. Given
a polyhedron E, define

WE:{UGH(div)nH(curl) rv-neP(f)VfCOE,
divv € Py(E), curlv € Py(E) }

It is obvious that W not only contains all the linear functions, but also
non-polynomial functions, which is the reason called virtual element
space. The degree of freedoms for functions in W are stated as

/v-nq VYqgeP(f) fCOE, (2)
f
/ v-q Vg€ P(E)\VPy(E). ®)
E

The unisolvence can be found in [5]. Although the functions in W
have no explicit expressions, their projections to the vector linear space
are computable via the definition of the degree of freedoms (see [5,
Section 3.5] for details), i.e., one can define an L? projection H‘E :
W — P,(E) as

/H"Evvq::/v-q Vq e P(E).

E E

Next, on each face f of E, we introduce a space V =Py +
RM(f), where RM(f) denotes the space of rigid motions on f. We note
that V 7 is the constant space in two dimensions. Let z;,i=1,---,d—1,
be the orthogonal unit tangential vectors on the face. Then, each vector
v in P;(f) can be expressed as the summation of the tangential compo-
nent, i.e,, v= Zj:ll v;T;, v; € P(f). The facewise L? projection to V,is
denoted by I} .v. It is easy to see

0, (v-rr) =10 (v)7;7;,, (jov)-n=0.

We also use I, to involve both of the normal and tangential compo-
nents, that is,

. — 1. T
gy i=v-nn+11 v

Then, a local weak virtual element space on E is defined as

Vi = {op= (o0l ol €W 0l €V f COE ).

This element is used to approximate the H' functions. To impose the
gradient operator on the functions in ¥ j, we introduce a weak gradient
proposed in [23,37]. For any v = {v'",v7} € V', define Vv € Py(E) as
a constant matrix satisfying
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d-1
(VEr, W) 1= (VW .n, Wn-ny,p; + Z(v’-ri,eri)aE

i=1

@
for all W in Py(E). Then the weak symmetric gradient is defined as

€(v) = (Vv + (VE0)")/2.

Let JB"E(v) and j;é(v) denote the differences of v € V and H"Ev in

normal and tangential directions respectively, that is,

TN ) := @ = p™)nn,  J@) =" - o) 71,

When the superscript is omitted, it indicates the whole jump on the
element boundary

Jop@) =T ) + T (),

where J7.(v) 1= ¥ T7i ().
By the L? projections and integration by parts, the definition (4) can
be stated as

(VEr,W)p = (VAL0), W) g + (T g Ty p(0), Wn), g,

which means that Vi is just the standard gradient vgv) plus con-
tributions from the boundary. Therefore, with the assumption of the
element, we obtain by the Schwarz inequality, the trace theorem, and
the inverse inequality, that

IVAIS0) — VE@)I% S hH Ty g Ty @)1 5)

We also need to define interpolations to the virtual element space.
For any ve H'(E), I 2’1} € W is defined by the degree of freedoms in
(2)-3), i.e,

/Ig’unq:/v.nq qE€P|(f).f COE,
7 7
/Ig’vq:/v-q g€ P,(E)\ VPy(E).

E E
The interpolation I, to the space V j; is defined as I',v := (I v, 1T} v}
By the scaling argument and the Bramble-Hilbert theorem, we have the
following estimates for the projection and interpolation.

Lemma 2.1. Assume that E € T;, is shape regular. Then for all v € H*(E),
it is true that

lo=IYvllg <A™l p. m=1,2, (6)
llo - .0l + AV @ — T0)| S A" [l g m=1,2, %
llo =101 ol . + AIV@ =TT 0)ll S Al g0 m=1,2, ®)
IS, 75, (1Y)l + o = LY vl < AT 10l g ©

The virtual element space for the flux is stated as

W, ={ve H(div),v|p e W, VEE€T,,v-n=0on dQ},

while for the displacement, we use the weak virtual element space
V,:= {vh = {vziv,v;},vfj" S Wh,v;llf S V/-,vT =0on 09}.

We also use a discontinuous piecewise constant element space Q, C
Lg(Q) to discretize the pressure, and use IhQ to denote the L? projection
to Q.

When the subscript E is replaced by the mesh size A, the operators
introduced above are element-wise defined on the whole domain, i.e.,
(€C)lp=€8(), M| g =M, IV | =T, I} |z =1}. We also use ¢,(v)
and V,v to stand for the element-wise symmetric gradient and gradient
of vin V.
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3. The semidiscrete problem

In this section, we first present the semidiscrete problem, and then
show the error estimates.

Given u,(0)=1 ;l'uo, pp(0) = IhQ Py, the corresponding discrete varia-
tional formulation for the problem (1) is to seek u, € V;,, w, € W, and

P € O, satisfying

ap Wy, vp) = by Wy, pp) = (f . M vp) Vv, €Vp,
ah,z(wh,zh)—bz(zh,ph)=(fw,HZzh) Vz,eW,,
by ps, qp) + by(Wp. qp) + ap 3Py Gp) = (fpsqp) Y qn € Ops

(10)

where

ap (U, vy) 1= ue; (up), €, (p) + Adivuy,, divey,) +2 ps; (u,, v,),
ap,(wy,zp) 1= (K_IHth,HZzh) + x5y (wy, 2p),

ap3(Pp,apn) 1= (CoPp>qpn)s
bi(y,pp) =aldivey, py), by (2, pp) i=(divzy, pp),

with the stabilization term defined as

sy (uy,vp) 1= Z h_l<HgEJaE(uh),HaE-.7,)E(Uh)> ,

EeTy, oF
sy(wy, zp) :=DE(I - T)w,,, (I —T09)z,,),

where DF is corresponding to the identity operator with respect to the
local basis determined by the degrees of freedom (2)-(3), see [8] for
details. It is shown that (see [8])

ah,z(zh,zh):(lc"lzh,zh). a1

By the bilinear forms, we define norms (semi-norms) for any v, € V,
and ze W, as

loplla, = v/ an1@n.vp). 124lla, =1/ an2(Z0: Z1)-

Let p be a positive constant. Then a weighted norm is defined as
1

Pllmy = llp2 @l ¥YPEH™ or H",m=0,1.

On each element E, we introduce a seminorm for v, € V  as

1
2. 2 -1 2
lonlly g = IVIGULllE + 1A 2T T @)l 3

and thus, a mesh dependent seminorm for all v, € V, is stated as

2 . 2
loal?, = Y Mogllt, -

EeT),

(12)

It can be shown that, on V', ||- ||, , and || - ||, , are norms and the bilinear
form ay, ;(-,-) is coercive, see [10, Lemma 3.7] for details.

Lemma 3.1. Provided the element E is shape regular, we have for all v €
V i that
llo =00l S AT @) - a3

Proof. This inequality follows from the definition of I1%, the scaling
arguments and the assumption of the mesh regularity. []

Lemma 3.2. Assume the mesh T}, is quasi-uniform. For any p, € Q,, there
exists a z, € W, and a v, = {v}",v7} € V,, such that

divz, =divv, =py, Izpllo S pallos  and  lwpllyn S Npallo-

Proof. We refer to [8, Theorem 5.4] and [10, Lemma 12] for the
proof. [
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Theorem 3.3. There exists a unique solution to the problem (10).

Proof. Our proof follows the idea in [26]. For completeness, we present
the outline. First, we introduce some operators associated with the bi-
linear forms, that is, A; : V), > V), A, : W, > W, A3 : 0, = O},
B, :V,—Q), B, : W, - Q) satisfying

(Ayup,vp) = ah’l(uh, vy), (Agwy,z) = ah,z(wh,zh),

(A3pp-qn) = ah,3(l7h, qn)s (B1Upsqn) =b1(Vy,qy), (Bazp,qn) = by(2zy,qp)-

Then the problem (10) can be rewritten as

Ayu, — Bl p, = Fy,

Ayw;, - BY p, = F,,
Buy, + Bywy, + Aypy, = F3,
where F,, F,, F; are the operators corresponding to the right hand side.
Note that A; and A, are symmetric and positive definite. Taking the

derivate with respect to 7 in the first equation, and using direct calcula-
tion, we have

(A3 + B AT BD)pyy + By A Bl py = F; — ByAS'F, — B AT Fy,.

From the theory of ODE, there is a unique p,, satisfying the above equa-
tion, provided that the operator Ay + B;A7'BT is invertible and the
other operators are bounded. []

Lemma 3.4. If u € H*(E) and E is shape regular, we have

1
le@) — €2 w)l g + hlle@w) — e} wlly g+ h™ 2 My T} wlloe

S hllully -

Proof. In view of (5), (7), and (9), we obtain the desired inequal-

ity. O

Lemma 3.5. On each shape regular element E € T, we have for any p €
P(E) that

1
lp =T pllag S h2 @)l &

Proof. This inequality follows from the Korn inequality up to rigid mo-
tions contained in the face spaces, see, e.g., [10]. [

Lemma 3.6. Assume the mesh is quasi-uniform. It is true for any v, =
(V). v7} € V), that

175 @I5 5 S Mg Top @155 + Rlle@v)lly < Allvgl7 - (14)

Proof. By the triangle inequality and Lemma 3.5, we have the first
inequality, and then the second one. []

We next give the error analysis for the semidiscrete problem (10).
Let (u,w,p) and (u;,w), p;,) be the solutions to problems (1) and (10)
respectively. We define the errors as

O, =1 u—uy.0, :=Iw-w,.0,=1%p—p,.

It is obvious that the initial error 6,(-,0) = 0 and 6,(-,0) = 0. By the

o
Ih ,
bi(wy,p— thp) =b(vy,,p— thp) =0. Then we have the following error
equations.

definition of the virtual element spaces and projection we have
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Lemma 3.7. It is true for the errors that

a10,.03) = by (V4. 0,) =R (V) Vv, €V, ¢))
ap 0y, 2p) — by(24,0,) =Ry (2z,) Yz, €W, (16)
b1(6y,:41) + 0204, an) + a4 3(0,,.4,) =0 Va, €0y, 17)
where
Ri@y) := (v ~ W) +2 sy (T u,vy)

+ 2y(€f(15u), €y (V) + 2u(divie)), vy),
Ro(zp) i= (F iz —~Mo2p) + 0y, (W w, 2p) — (k7 w, z3).
Moreover, taking time derivative of (15) and (16) leads to
10, v) = b,©4.0,) =Ry (1)) Vv, €V, 18)
a0y, 2) — by (21, 0,) = Ro(zy) Vz, €Wy, (19)

where
Ry@p) 1= (furs v = Ty wy) +2 sy (1) wy,0)
+2u(el () u). € (vy) + 2u(dive(,)). v,),
Roy(zp) :=(F 2 —M02)) + ap (I wy,2;) — (k7 w,, z)).
dfu _ Y
Here f,; 1= e, f,, 1= e,
Lemma 3.8. If the mesh is quasi-uniform, and f, € L>, we H', u e H?,

fweH }l, which denotes the piecewise H' space, we have the following
consistency errors:

1L 1
R @p) S hu2 M wpllyp <M Nvylly, Yo, €V,

(20)
1
Ro(zy) ShMZ|Z4ll,, Yz, € W), 39}
1
where My, := 1| fllg -1 +1ully s My, := 1162 £l +llwlly o1, and |-l

denotes the broken H' norm with respect to the partition T,. Similarly,
provided f,, € L*>, w,e H', u, € H%, f,, € H}l, it holds that

1 1
Ry ) ShM g llvplla s Rol(zp) ShM 12,10, (22)
with the constant defined as M, = ||fyllo,~1 + lull,, and M,, =
1
12 fuprllpg + Nlwelly -1

Proof. We estimate the error term by term. It follows from the property
of the L2 projection (13) that

(Fuvn —wp) <N f ol =G wullo S RILFullolvgll g
For the stabilized term s, it follows from the Cauchy-Schwarz inequal-

ity and Lemma 3.4 that

Sl(IZuv V)= Z h! <H6EJ¢3E(I;‘,/u)9H0EJaE(vh)>

EET), oF

< Z h! ||HoEJ()E(IhVu)||aE||H,)EJoE(Vh)||oE
EE€T,

Shllulizlivlly 5.

Integration by parts and the definition of €} gives

€IV ), e (wy)) + [div(ew)), v))

= (I =T dive@), (AT, — Dy ) + Y ((e() = el (T} wIn, Ty @)
EeT),

which, together with Lemmas 3.4 and 3.6, yields

(€(IY w), € (vy) + (div(e@)), vy) S hllully oyl e
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The inequality (20) follows directly from the above three inequalities.
For the inequality (21), we derive by the inequalities (6)-(8) that

fwr2n —152,) <(fip =18 £ 1. 23) S Aol 125110
IV w,z) S =TDIF wllglld =)z, llg < Allwll llzlo-

and
MY w), 0 z,) — (w,z,) = (w - w, Iz, — z,)
+AL Y w) - w1 z))
Shllwlllizgllo-
Thus, we have

1
Ro(zp) S k<2 fopllpg + 1wl -0l Z4 L, -

The proof of (22) is similar, and we omit it here. The proof is com-
pleted. [

Lemma 3.9. Under the assumption in Lemma 3.8, we have

10,115 S ua > (N6,II3, +h*M,). (23)
Similarly, it also holds that
10,115 5 &7 015, +h* My). 24

Proof. It follows from Lemma 3.2 that there exists a v, € V;, such that

. -1 -1
divo,=a"0,, vyl pSa™ 116,llo-

Then, we deduce that

16,113 = (adivey.0,) = a, 1 (6,.v,) — Ry ()

1 1
S ull8ullyplloplly p + hu? MG oyl g
1 1
1 1
Sa” pu2 (16, lla, +AMOOII6,llo-

We note that, in the first inequality, we have used the fact that
(div(I} u — u),divwy) = 0. The proof is completed. []

Theorem 3.10. Let (u, w, p) and (u,,, wy, p,) be the unique solutions to (1)
and (10) respectively. Additionally, assume that u € L®(H?), u, € L'(H?),

fu€L®W?), f,eL'I?, we L' (H", f, € L'(H}). We have
sup ||IVu uh||2 < h%e'| sup Mu+/M1 dr|, (25)
0<t<T 0<t<T
/||IWw wh||2 dt SH*(1+Te")| sup M, +/Ml de, (26)
0<t<T
sup ||IQp ph||2<h2;m’2eT sup Mu+/M1 dr|, 27)
0<t<T

where the constant M| stands for M,,  + M, . Furthermore, if w e L*(H"),
fw€L®H)), w, e L'(HY), f,, € L (H)), it is true that

Osup MY w- whll ||9w(0)||§2+h2/M,dr , (28)
<t<

T
sup [112p—pyllg, S €| 16, Ol +h* sup M, + 1 / M di|, (29)
0<t<T 0<t<T

where M, := M, + M,
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Proof. Setting v, =0,,, z, =0, and g, =0, in Lemma 3.7, we derive
that

a1 04.0,) + 320 0,) + (c0B,,.6,)
516y, 6,) + 120 0,) = b3(6,.6,)

+b1(0y,.6,) + b2(0y,.0,) + (cf)

u Yy,

= ah.l(eu’eu,) -

P’ 1’)
=R,(6,) + Ry (0,).

Integration in time from O to 7 gives

t t t
1 1
E||9,,||§1 +5c0||9p||g+/||0w||§2dt=/R1(9ul)dt+/R2(9w)dt. (30)
0 0 0

t

We first consider the term / R(6,,)dr. Using integration by parts and

Lemma 3.8, we derive that

t t
/Rl(eur)dt:RI —/Rl,(e,,)dz
0 0

1 1
<CHM 10,1, + 1 [ MG 101, o
0

<Ch’M, +—||9 2 +Ch2/M dt+/||9 ||2 dr.  (31)

t
For the term / R,(8,,)dt, it follows from Lemma 3.8 and the Cauchy-

0
Schwarz inequality that

t

/ Ry (0,)d < Ch / ME 101,

<Ch2/M dt+ = /||0 I, dr. (32)
Plugging the above two inequalities into (30), we obtain
Z10I2, + Seollo, I + /ue 12, dr
/||.9 ||2 dt + Ch?| M, +/M1dt ,
which, together with the Gronwall inequality, gives
10,115, S h*e'| M, +/M1dt , (33)

and then, we arrive at the other two inequalities (26) and (27) from
(33) and (23).

We next set v, = Ou,> 2h = Oy and ¢, = 0,, in (18), (19), and (17), to
have

ap, l(0ur,0u!) +ay, z(Gw,,Gw) +(co0,,-0,,) = R1,(0y,) + Ry, (0y)

SHMZ 10, Il + M ||9,,,||a2

il

1
< CI My + M)+ 210, 12, + 210,12,

Thereby, we obtain
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L dl6, 12,
2 dt
Integration in time from O to ¢ gives

= a2 (0, 00) < CH* (M + M) + 10,15,

t

1
10,117, <116, OII7, +Ch? / (My; + M) di + / 10,113, dr.
0 0

Then the inequality (28) follows from the Gronwall inequality, and
the inequality (29) is obtained directly from (24). The proof is com-
pleted. [J

Remark 3.11. From the inequality (26), we take T — 0 and obtain

LY w(0) — w, O, S (M, (0)+ M, (0)),
and thus the inequalities (28) and (29) can be rewritten as
T

sup [[I) w—wy|2 < he” Mu(O)+M](0)+/M,dt ,
0

2
0<t<T “

sup [112p = pyll}, S h%e [ M, (0) + M, (0) +
0<t<T 0<t<T

T
sup Mw+/M,dt .
0

4. Fully discrete scheme

Let At=T/N be a uniform time step size, and " =nA7,0 <n < N be
the discrete times. The notation &, stands for the backward Euler time
discretization, i.e.,

n _ n—1 n_ =1
o WWT s PP
At At
where u" = u(-,1"), p" = p(-,t"). We always use superscript n to denote
the functions at the time #".

Then, given uf) =T Vg, = IthO, the corresponding fully discrete

scheme is to seek u} € V,, wj € W, and p} € O, satisfying

o.u

>

s @) = by @) = (1T 0,) Vo,ev,,
apo(Wh, zp) = by(zy, ) = (f 3, 1} z) Vz, €Wy,
bi(:uy. qp) + bW, qp) + ap 3(6,0}, ap) = (f;'JIh) Vg, €0y

(34)

In view of the quasi-uniform assumption of the mesh, there exists a
unique pair of solution at each time.
At each discrete time ", we denote the errors as

On =Ty u" —up, 00 =1 w" —w), 0" :=12p" — pl.

Similarly as Lemma 3.7, the error equations at each discrete time are
stated as follows.

ahyl(HZ,vh)—bl(vh,Hl']’)=R'l‘(vh) Vv, eV, (35)
ah,z(H,'L,zh)—bz(zh,H;'):R;(zh) Vz, e W, (36)
by (8,0, q,) + by, q) + ah,3(5,9:, qn) = R;(qh) Vg, € O, (37)

where
Ri@y) 1= (f .05 = Mwy) +2 psy (I u",vy)

+2uEL Y u"), €F(wy)) + 2u(diview), vy),
Ri(zp) i=(f1 2y —Moz) + ay AV W', 2)) — (T ", 2),
R;(qh) i=by(6u" —ul,qp) + ap3(8,0" — Py, qp)

Lemma 4.1. Assume u, € L*(H?), f,, € L*(L*) and the mesh is quasi-
uniform, it is true that

p
_ At
R'Z<v2>—R7 l(vZ)schz/Mmdt+ ?””2”21 Yo, €V

m=1

(38)
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Proof. By the definitions of R] and R,, we observe that
t”

-1
RIWH-RIT@W = [ Ry,whdi

-1

,
1
sh/M;,uv;’,ual a

,n—l

"
At
gch2/Mu,dz+§||u;||§l,
-1

where we have used the inequality (22), the Cauchy-Schwarz inequal-
ity, and the fact v} is constant with respect to the time ¢. The proof is
completed. [

Lemma 4.2. If u,, € L>(H(div)) and p,, € L*>(L?), we have
,n

R < /

-1

(all divuyllollgpllo + collpillollgy llo) dr. (39)

Moreover, by setting q, = At 8}, we obtain
p
At Atc,
Ri(A167) < C /((A1)2M,, +hEM,)dr + T o1z + Tne;;ng, (40)
=1

where M., := (u|l divu,||3 + ol p,|I})-
Proof. It follows from the definition of R} and Taylor’s theorem that

RE(q),) =b,(6,u" —uy,qp) +co(5,0" — by, qy)
=a (divw" —u"" = Arul),(AD™ ' q)
+eo(p" = p"t = ArplL (AN )
o

/ " = 1) (aldivu, (1), (AN g + co(p, (), (AN~ g})) dt
1

i

o
< [ (alldivu,®llollgyllo + collpllollay llo) dz.
=1
To obtain the inequality (40), we use Lemma 3.9, and thus have

,fl
L 1
RAt07) <At [ (uzlldivayllo®lOglle, +h(M7)2) + cqllpylloll0; llo) dr.
=1

Then the desired inequality is from the Cauchy-Schwarz inequality and
the fact 67, 0;’ are constants with respect to the time 7. []

Theorem 4.3. Let (u,w, p) and (uy. w). py) be the unique solutions to (1)
and (34) respectively. Assuming quasi-uniform of the mesh and sufficient
regularity for the true solution, we have the following estimate:

T
N
2 2 2 2. T
max (10712 + <oll oy ) AR [

- 0

T
2,T
h-e 1rsr},eg%vMS+/(Mm+Mu+Mw)dt .

0

Proof. Setting v, =4,07, z, =0}, and g, = 9; in (35)-(37), we have

ay, (O, 8,00) + @y, 5 (00, 00) + @y, 5(5,0%,07) = RI(S,00) + R(01,) + RO,

u
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which, together with the definition §, and the Cauchy-Schwarz inequal-
ity, yields

02, + Dz + are 12, < g IR, + Lyt

+ R'{(AI 5,0) + R;(At 0,)+ R;’(At 0;),
and therefore,

LioMz + 2N + imne" I

P A “ w'llay

N
< X RGO + RS (00 + RAED).

n=1

(42)

where we have used the fact 60 =0, 02 =0.

For the first term in the right hand side of (42), we derive by directly
calculation, the inequalities (20) and (38), and the Cauchy-Schwarz in-
equality, that

N N
Y RiAs,00=RY 0N - Y Ri@H - RN 6)
n=1 n=2
| N
ShMM)Z (0N 1, = Y RI@ - R @ah)
n=2

T
N
At _ 1
<cn?| My +/Mu,dt +3 lopnz + Z||ev;V||§l.
0 n=2
For the second term in (42), we have from the inequality (21) that

N N N N

i At
Y RAAL0L)S D ACA(M)Z (10, SC YL Ath* M), + > Y o112,
n=1 n=1 n=1 n=1

T N
At
gch2/ My di+ UYL 12,
0 n=1

For the last term in the right hand side of (42), Lemma 4.2 implies

T
N N
1 c
ZR;(AIHZ) < C/((At)zM,, + thu)dt+Atz (gll%llil + 5°||9;;||g).
n=1 n=1
0

Plugging the above three inequalities into (42), we have

coAt

N
L_ ANz o S N2, A n 2
(3= NN IG, + (5 = =l I+ = Zlnewnaz

T T
<cr*|{my +/(Mu, + M, + M,,)dt +CA12/M,, dr
0 0

N-1
At
+ 5 2 UG, +2¢l16515).
n=1

Therefore, the discrete Gronwall inequality leads to the inequality
“4n. 04

5. Numerical experiments

In this section, we shall present some numerical experiments to ver-
ify our theoretical results.

5.1. Example 1
In this first numerical test, we consider the poroelastic equations in

Q =0, 1]?> with the time interval [0, 1]. The source terms f,, f,,, and f »
are chosen so that the exact solution (u,w, p) is

37
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NN

KR
N

Fig. 1. Illustrations of meshes 7', 72, 73, T4,

).

sin(zx) sin(zy)

utx. =t ( x(1 = x)y(1 — y)

0
e 'sin(ry) )’
p(x,1)=e"(1 + cos(xy)).

w(x,t)=1<<

Let all the parameters in the equation (1) be unit. The tests are carried
out on four types of meshes, that is, polygonal mesh 7! generated by
the dual of the uniform triangle mesh, distorted polygonal mesh 72 by
perturbing the interior nodes of 7!, centroidal Voronoi mesh 73 using
ten Lloyd’s iterations [35], and non-convex mesh 74, respectively (see
Fig. 1 for an illustration). The time step size is set to be equal to the
meshsize.

In Tables 1-4, we list the errors in the displacement ¥ measured
by the discrete L? norm || - llo,, and the energy norm || - lla, the errors
in the velocity 6 with respect to || - ll,, and ||div-|ly, and the errors
in the pressure 8V and ¢V under the L? norm, at the final time on
progressively “refined meshes”. Here,

N ._qV, N
0, :==1,u

N gN ._qyW N _ N
4 —uh,aw ._Ihw w,

oy :=12pN = p). e :=p(T)-p).

and the discrete L? norm is defined for allv € V, as

. 1
2 . div 12 3 2
vl , == Z I g + A2 Ty Ty @) -

EeT,

We also plot (in log-log scale) the errors with respect to the mesh
sizes for different types of meshes in Figs. 2-3. We observe that the
errors ||e11]" llp and [|6) |l,, are of the order O(h), while the errors ||t91’;’ llo»
||0£}’ lla,» ||€,f’ llo,» are of the order O(h?). Superconvergence for the error
|| div Hl"‘f Ilp is observed on the three types of meshes except the centroidal
Voronoi meshes.

5.2. Example 2

In the second example, we do the tests to show the dependence of
our method with respect to the Lamé constant 4 and the constrained
specific storage coefficient c,. On the square [0, 1]? and the time interval
[0, 1], the test solution reads as
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Errors

L | == lIp-p,ll

llu-uylly
15009
ch
—— lurull,
oos30
— — o
e
_ _ opeme
— o v,y
1174
——cp

19213
— —Ch

—o—lppyly
fs
_— Csh

log(1/h)

Errors

[E——

[T
o2
Cih
——he
oo

— — gt
o ldivtn )l
— — o
=l ll,
— — g

—o— llp-p,ll,
035585
Ch

EyETN/]

Fig.

log(1/h)

2. The loglog plots of errors w.r.t the mesh sizes for the dual meshes 7' (left), for the distorted dual meshes 72 (right).
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Errors

4

Errors

14745l
2269
o,
——Y
098669
— — Cf
o,
— o
—— [diviw,-w, )l
1.2801
— —Cch
L = llp-p, l,
1.9744
cn

[ | —o—lie-p,l,
059646
Cﬁh

T

log(1/h)

Ll

945l

19523
ch

——luruly,
098498

— — c

— el

_ ot

i [diviw,-w,)ll,
1672

——ch

= llIp-p,l,

log(1/h)

Fig. 3. The loglog plots of errors w.r.t the mesh sizes for the centroidal Voronoi meshes 73 (left), for the non-convex meshes 7* (right).
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Table 1
The errors on the dual mesh 7.
h 162 o4 1611, 163114, [1divey|ly 161l e Mo
2.50e-01 4.87e-02 9.35e-01 1.95e-01 3.64e-01 4.75e-03 1.63e-01
1.25e-01 1.45e-02 5.19e-01 4.45e-02 8.02e-02 1.79e-03 8.33e-02
6.25e-02 3.95e-03 2.71e-01 1.07e-02 1.97e-02 5.05e-04 4.20e-02
3.12e-02 1.03e-03 1.38e-01 2.64e-03 5.69e-03 1.31e-04 2.11e-02
1.56e-02 2.63e-04 6.95e-02 6.56e-04 1.82e-03 3.31e-05 1.05e-02
Table 2
The errors on the distorted dual mesh 72.
h 162 o4 121 1165 110 [1divel) Il 1o)X 1l e Mo
2.50e-01 5.14e-02 9.63e-01 2.08e-01 3.91e-01 4.82e-03 1.67e-01
1.25e-01 1.94e-02 6.20e-01 6.74e-02 1.97e-01 2.37e-03 9.36e-02
6.25e-02 6.24e-03 3.58e-01 1.79e-02 4.84e-02 8.47e-04 5.00e-02
3.12e-02 1.72e-03 1.88e-01 4.53e-03 1.12e-02 2.37e-04 2.55e-02
1.56e-02 4.46e-04 9.57e-02 1.14e-03 3.35e-03 6.12e-05 1.29e-02
Table 3
The errors on the centroidal Voronoi mesh 773.
h 162 10,4 16N 11, 16 1lo [1divey |l 16 1l lley'1lo
2.50e-01 4.77e-02 9.12e-01 1.87e-01 5.45e-01 4.84e-03 1.61e-01
1.25e-01 1.30e-02 4.76e-01 4.58e-02 2.17e-01 1.38e-03 8.03e-02
6.25e-02 3.27e-03 2.41e-01 1.14e-02 7.14e-02 3.97e-04 4.12e-02
3.12e-02 8.28e-04 1.24e-01 2.84e-03 3.47e-02 9.78e-05 2.04e-02
1.56e-02 1.90e-04 6.07e-02 6.83e-04 1.44e-02 2.30e-05 1.01e-02
Table 4
The errors on the non-convex polygonal mesh (74).
h 1O o4 HoMll,, 16 1lo [1divey Il eyl ey llo
2.50e-01 5.84e-02 1.12e+00 2.3%-01 2.24e-01 5.85e-03 1.65e-01
1.25e-01 1.71e-02 5.99¢e-01 6.06e-02 5.98e-02 1.66e-03 8.25e-02
6.25e-02 4.56e-03 3.06e-01 1.55e-02 1.82e-02 4.48e-04 4.13e-02
3.12e-02 1.17e-03 1.54e-01 3.91e-03 5.71e-03 1.15e-04 2.07e-02
1.56e-02 2.96e-04 7.73e-02 9.83e-04 1.85e-03 2.90e-05 1.03e-02
Table 5
The errors for different Lamé constant 4 on the dual mesh (7).
A h 162 1lo. ol e, [Idiv ey llo 161l lley llo
le2 2.50e-01 3.96e-02 1.96e+00 4.28e-01 1.39e-01 7.80e-02 3.67e-01
1.25e-01 9.32e-03 1.15e+00 1.21e-01 6.68e-02 2.80e-02 2.08e-01
6.25e-02 2.55e-03 6.08e-01 3.24e-02 2.95e-02 7.67e-03 1.10e-01
3.13e-02 7.05e-04 3.11e-01 8.48e-03 1.35e-02 1.85e-03 5.61e-02
1e8 2.50e-01 3.96e-02 1.96e+00 4.28e-01 1.37e-01 7.81e-02 3.67e-01
1.25e-01 9.32e-03 1.15e+00 1.21e-01 6.61e-02 2.80e-02 2.08e-01
6.25e-02 2.55e-03 6.08e-01 3.23e-02 2.93e-02 7.70e-03 1.10e-01
3.12e-02 7.05e-04 3.11e-01 8.47e-03 1.34e-02 1.87e-03 5.61e-02
si S ! 2 . . . .
ue,n) = < sin(zx) co.s(zry) > + & < x2 > i depend on ¢,. If P2-RT0-PO element is used for the discretization, it
—cos(zx)sin(zy) 22\ seems the decay of the error ||91’,V llo is of O(h%7) from Table 8.
w=—«kVp, p(x,t)=e(sin(zrx)sin(ry) —4/7°).

5.2.1. Tests for the Lamé constant A

To test the robustness with respect to 4, we set all the parameters to
be 1 except the Lamé constant 4. In Table 5, we list the errors on the
dual mesh 7! with respect two different A. It is shown that the errors
are almost the same on the same mesh and will not be deteriorated
when A becomes larger.

We also do the tests using the P2-RT0-PO finite element approxi-
mation for A =10? and 4= 10® respectively. The errors are reported in
Table 6. It is viewed that the error [|0Y ll,, depends on A.

5.2.2. Tests for the parameter c
We then fix y = 1=a =k =1 and do tests for ¢, = le—2 and ¢; = le—6
respectively. By comparing the results in Table 7, the errors do not

40

5.3. Example 3

In order to show the performance of nonphysical pressure oscil-
lations, we test the cantilever bracket problem (see, e.g., [38]). The
problem is defined on a unit square [0, 1]2. The boundary conditions are
imposed as follows. The displacement is set to be zero at the left side
x =0, and a traction boundary condition is used at the other sides, i.e.,
(o(u) —apl)n=[0,—-1]" for y=1, and (c(u) — apl)n = [0,—1]7 for the sides
y=0 and x = 1. The outer normal component of the flow velocity is as-
sumed to be zero on the entire boundary. The material parameters is
setas « =0.93, ¢y =0, k = 1077, E=10%, v =0.4. All the other datas, in-
cluding the loads and the initial conditions, are assumed to be zeros. In
Fig. 4, we plot the numerical pressure at the first step (A7 =0.001). It is
observed that there is no spurious oscillations.
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Table 6
The errors for different Lamé constant 4 using the P2-RT0-PO element.
A h 16, 1o, 6N N, 6,y 1l I dive,y il 16" 1lo lley'llo
le2 2.50e-01 1.13e-02 3.60e-01 2.52e-02 5.20e-04 2.86e-03 2.57e-03
1.25e-01 1.74e-03 7.62e-02 6.45e-03 7.18e-05 6.63e-04 6.59¢-04
6.25e-02 1.79e-04 1.29e-02 1.68e-03 9.31e-06 1.22e-04 1.66e-04
3.12e-02 1.37e-05 1.94e-03 4.77e-04 1.18e-06 2.11e-05 4.15e-05
1e8 2.50e-01 1.48e-02 4.01e+02 2.52e-02 5.25e-04 2.88e-03 2.57e-03
1.25e-01 3.57e-03 1.04e+02 6.45e-03 7.20e-05 6.72e-04 6.59¢-04
6.25e-02 8.83e-04 2.63e+01 1.68e-03 9.31e-06 1.26e-04 1.66e-04
3.12e-02 2.20e-04 6.58e+00 4.72e-04 1.18e-06 2.09e-05 4.15e-05
Table 7
The errors for different ¢, on the dual mesh (7).
60 h 16, 1o, 6N N, 6 1l I divey il 16 1lo lley'llo
le=2 2.50e-01 5.74e-03 2.75e-01 5.87e-02 5.76e-02 9.40e-03 4.94e-02
1.25e-01 1.41e-03 1.60e-01 1.70e-02 2.68e-02 3.22e-03 2.81e-02
6.25e-02 3.84e-04 8.47e-02 4.88e-03 1.29e-02 7.25e-04 1.48e-02
3.12e-02 1.04e-04 4.33e-02 1.58e-03 6.34e-03 9.29e-05 7.59e-03
le—6 2.50e-01 5.74e-03 2.75e-01 5.87e-02 5.76e-02 9.40e-03 4.94e-02
1.25e-01 1.41e-03 1.60e-01 1.70e-02 2.69e-02 3.22e-03 2.81e-02
6.25e-02 3.84e-04 8.47e-02 4.87e-03 1.29e-02 7.26e-04 1.48e-02
3.12e-02 1.04e-04 4.33e-02 1.57e-03 6.34e-03 9.33e-05 7.59e-03
Table 8
The errors for ¢, = le—6 using the P2-RT0-P0 element.
h 16, . 16,1l 16,3 1l IIdive,y Il 6,1l lley llo
1.25e-01 3.03e-04 1.44e-02 7.91e-03 2.86e-04 4.05e-04 6.5%-04
6.25e-02 6.5%-05 6.93e-03 2.79e-03 3.50e-05 3.10e-04 1.66e-04
3.12e-02 1.47e-05 3.47e-03 1.20e-03 4.33e-06 1.96e-04 4.15e-05
1.56e-02 3.21e-06 1.74e-03 5.69e-04 5.39e-07 1.09e-04 1.04e-05

Fig. 4. The numerical pressure at T =0.001 for the cantilever bracket problem.
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Data availability
Data will be made available on request.
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