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In this paper, we shall present a weak virtual element method for the standard three field poroelasticity problem 
on polytopal meshes. The flux velocity and pressure are approximated by the low order H(div) virtual element 
and the piecewise constant, while the elastic displacement is discretized by the H(div) virtual element with some 
tangential polynomials on element boundaries. A fully discrete scheme is then given by choosing the backward 
Euler for the time discretization. With some assumptions on the exact solutions, we prove that the convergence 
order is of order 1 with respect to the meshsize and the time step, and the hidden constants are independent of 
the parameters of the problems. Some numerical experiments are given to verify the results.
1. Introduction

In the field of petroleum engineering, the interaction of the fluid 
flow and elastic porous medium is described by the Biot consolidation 
model, stated as

⎧⎪⎨⎪⎩
−div𝜎(𝒖) + 𝛼∇𝑝 = 𝒇𝒖, 𝑖𝑛 Ω× (0, 𝑇 ),
𝜅−1𝒘+∇𝑝 = 𝒇𝒘, 𝑖𝑛 Ω× (0, 𝑇 ),
𝑐0𝑝𝑡 + 𝛼 div𝒖𝑡 + div𝒘 = 𝑓𝑝, 𝑖𝑛 Ω× (0, 𝑇 ),

(1)

with the initial conditions 𝑝(⋅, 0) = 𝑝0, 𝒖(⋅, 0) = 𝒖0. The subscript 𝑡 stands 
for the derivative with respect to the time variable 𝑡. We impose the 
boundary conditions 𝒖 = 𝟎, 𝒘⋅𝒏 = 0 for ease of presentation. Here, 
Ω ⊂ ℝ𝑑 , 𝑑 = 2, 3, is assumed to be a polygonal or polyhedral domain. 
The variables 𝒖, 𝒘, 𝑝 stand for the displacement of the solid, velocity 
and pressure of the fluid respectively. We use 𝜎(𝒖) = 2𝜇𝜖(𝒖) + 𝜆 div𝒖𝕀 to 
denote the effective stress, where 𝜆 and 𝜇 are Lamé constants. The nota-

tion 𝜅 is the hydraulic conductivity and assumed to be a constant. The 
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coefficient 𝛼 is the Biot-Willis constant, which couples the elastic and 
Darcy’s equations and is usually close to unity. The parameter 𝑐0 ≥ 0
stands for the constrained specific storage coefficient.

This model is of increasing importance and of great interest due 
to its applications in various fields including biomechanics, soil me-

chanics, geophysics, physical chemistry and material sciences. There 
have been lots of literature on numerical methods for the poroelasticity 
problem, see, e.g., [26–28] for coupling the mixed finite element and 
the continuous/discontinuous Galerkin methods, [38,18] for combining 
the mixed and nonconforming finite element method, [34] for a weak 
Galerkin method coupled with the mixed finite element method. One 
can also refer to [22,3] and the references therein for iterative coupling 
methods.

In the numerical simulations of Biot’s model, there are mainly 
two difficulties people should overcome. One is to avoid nonphysical 
fluid pressure oscillations (see [16,29,31] and references therein) for 
a certain range of material parameters, e.g., 𝑐0 = 0, low permeabilities 
and/or small time steps. To this end, some stabilized methods were pro-
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posed in [32,6,30,33,24]. The other one is to deal with the notorious 
volume locking phenomenon when 𝜆 →∞. Oyarzúa and Ruiz-Baier [25]

introduced a pseudo total pressure and proposed a new three field for-

mulation to obtain a stable and robust method for a static problem. We 
refer to [20] for a similar formulation and its preconditioners. Feng et 
al. [15] presented a reformulation of the original model by introducing 
two pseudo-pressures and developed a robust full discrete finite element 
scheme. In [40], Yi studied the causes of Poisson locking and pressure 
oscillation, and proposed a new discrete mixed form by employing the 
method of reduced integration to the bilinear form of the displacement. 
Using specific parameter-dependent norms, Hong and Kraus [17] es-

tablished the full parameter-robust inf-sup stability of the three field 
continuous problem, and proposed a uniformly stable discretization 
method. Based on a four field formulation, Yi and Lee [39,19,2] also 
independently developed convergent finite element methods which are 
robust with respect to the parameters 𝑐0 and 𝜆.

In the last few years, due to the great flexibility for problems on 
complicated geometry (see, e.g., [11] for interface problems), numer-

ical methods on polytopal meshes have drawn increasingly attentions. 
Several methods have been proposed, such as, mimetic finite differ-

ence methods [21], virtual element methods (VEM) [4], weak Galerkin 
methods [37], hybrid high order methods [14], generalized barycentric 
coordinates method (e.g., [12]) and so on. There are only few work dis-

cussed the discretization of the Biot model based on polytopal meshes. 
In [7], Boffi et al. constructed a coupling of a discontinuous Galerkin 
and a hybrid high-order method on general polyhedral meshes. It was 
shown that the stability and error estimates hold when the specific stor-

age coefficient vanishes and depend mildly on the heterogeneity of the 
permeability coefficients. In [13], the authors combined the first-order 
VEM and the finite volume method for the poroelasticity. The first fully 
VEM discretization for the Biot model problem was given in [9]. Their 
robust scheme combines with the H1 conforming VEM proposed in [1]

for the displacement, piecewise constant approximations for total pres-

sure, and the enhanced 𝐻1 virtual element space for the pore pressure. 
Based on the displacement, fluid flux and pressure formulation, Tang 
et al. [36] combined a lowest H1-conforming VEM enriched with nor-

mal bubbles on edges and a pair of mixed VEM to obtain a locking-free 
scheme. They also discussed the virtual element approximate method 
of order 𝑘 ≥ 2.

In this paper, we shall present a new virtual element method on 
polygonal/polyhedral meshes for the problem (1). To approximate the 
flux and pressure variables, we apply the H(div) virtual element [5]

and the piecewise constant, which is the same as the ones used in [36]. 
For the displacement, instead of enriching the low-order 𝐻1 conform-

ing virtual element used in [36,9], we directly start with the H(div) 
virtual element [5] which is continuous along the normal direction of el-

ement boundaries and thus strongly mass-conservative. To compute the 
(weak) gradient, we additionally involve a tangential direction space 
on each element face, and define a weak symmetric gradient to ap-

proximate the symmetric gradient by a dual argument [37]. We use the 
backward Euler method for the time discretization and propose a fully 
discrete scheme. Error analysis is given to show the convergence order 
of the proposed method is optimal. Moreover, it is shown that the er-

ror bounds are independent of the Lamé constant 𝜆 and the constrained 
specific storage coefficient 𝑐0. Our method has a unified formulation for 
both two and three dimensional problems. Although, we only consider 
the low order space element, it can be extended to the 𝑘-th order space 
element [10] naturally.

The paper is organized as follows. In Section 2, we introduce the 
virtual element spaces and some notations. Section 3 concerns with the 
semidiscrete problem. The fully discrete method is given in Section 4. In 
Section 5, we report some numerical experiments to verify our results.

Throughout the paper, we use bold letters to denote vector variables, 
operators, and spaces. We use 𝑃𝑘 or 𝑷 𝑘 to indicate the polynomial space 
of the polynomials or vector polynomials up to order 𝑘. For any region 
𝐷, (⋅, ⋅)𝐷 (or ⟨⋅, ⋅⟩𝐷) denotes the 𝐿2 or 𝑳2 inner product. The norm and 
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seminorm for the functions in the scalar Sobolev space 𝐻𝑚(𝐷) or 𝑯𝑚(𝐷)
(𝑚 ≥ 0) are denoted by ‖ ⋅ ‖𝑚,𝐷 and | ⋅ |𝑚,𝐷 respectively. When 𝑚 = 0, we 
usually omit the subscript and use ‖ ⋅ ‖𝐷 to denote the 𝐿2 (or 𝑳2) norm. 
When 𝐷 stands for the whole domain Ω, we drop the subscript Ω in the 
norms and inner products. We also use 𝑯(div) and 𝑯(𝐜𝐮𝐫𝐥 ) to denote 
the Sobolev spaces, in which the functions and their divergence and 
𝐜𝐮𝐫𝐥 are in 𝐿2 and 𝑳2 spaces, respectively. Additionally, the notation 
≲ abbreviates an inequality ≤ up to a constant which is independent of 
the mesh size and the parameters 𝑐0, 𝜆.

2. H(div) virtual element spaces

Let ℎ be a partition of Ω into non-overlapping polygons/polyhe-

drons. In this paper, we assume that each element in ℎ is shape regular, 
that is, (i) each element 𝐸 ∈ ℎ and its edges/faces are star shaped, (ii) 
the diameters of the edges/faces and elements are equivalent ℎ𝑓 ≃ ℎ𝐸 . 
Furthermore, we suppose the diameters of all the elements are of com-

parable size denoted by ℎ, which means that the mesh is quasi-uniform. 
All the faces are denoted by ℎ.

We first introduce the 𝑯(div) virtual element proposed in [5]. For 
ease of presentation, we only focus on the lowest order element. Given 
a polyhedron 𝐸, define

𝑾 𝐸 =
{
𝒗 ∈𝑯(div) ∩𝑯(𝐜𝐮𝐫𝐥 ) ∶ 𝒗⋅𝒏 ∈ 𝑃1(𝑓 ) ∀𝑓 ⊂ 𝜕𝐸,

div𝒗 ∈ 𝑃0(𝐸), 𝐜𝐮𝐫𝐥𝒗 ∈ 𝑷 0(𝐸)
}
.

It is obvious that 𝑾 𝐸 not only contains all the linear functions, but also 
non-polynomial functions, which is the reason called virtual element 
space. The degree of freedoms for functions in 𝑾 𝐸 are stated as

∫
𝑓

𝒗⋅𝒏𝑞 ∀ 𝑞 ∈ 𝑃1(𝑓 ), 𝑓 ⊂ 𝜕𝐸, (2)

∫
𝐸

𝒗⋅𝒒 ∀ 𝒒 ∈ 𝑷 1(𝐸) ⧵∇𝑃2(𝐸). (3)

The unisolvence can be found in [5]. Although the functions in 𝑾 𝐸

have no explicit expressions, their projections to the vector linear space 
are computable via the definition of the degree of freedoms (see [5, 
Section 3.5] for details), i.e., one can define an 𝑳2 projection 𝚷𝑜

𝐸
∶

𝑾 𝐸 → 𝑷 1(𝐸) as

∫
𝐸

𝚷𝑜
𝐸
𝒗 ⋅ 𝒒 ∶= ∫

𝐸

𝒗 ⋅ 𝒒 ∀𝒒 ∈ 𝑷 1(𝐸).

Next, on each face 𝑓 of 𝐸, we introduce a space 𝑽 𝑓 ∶= 𝑷 0(𝑓 ) +
𝐑𝐌(𝑓 ), where 𝐑𝐌(𝑓 ) denotes the space of rigid motions on 𝑓 . We note 
that 𝑽 𝑓 is the constant space in two dimensions. Let 𝝉𝑖, 𝑖 = 1, ⋯ , 𝑑−1, 
be the orthogonal unit tangential vectors on the face. Then, each vector 
𝒗 in 𝑷 1(𝑓 ) can be expressed as the summation of the tangential compo-

nent, i.e., 𝒗=
∑𝑑−1
𝑖=1 𝑣𝑖𝝉 𝑖, 𝑣𝑖 ∈ 𝑃1(𝑓 ). The facewise 𝑳2 projection to 𝑽 𝑓 is 

denoted by 𝚷𝝉
𝜕𝐸

𝒗. It is easy to see

𝚷𝝉
𝜕𝐸

(𝒗⋅𝝉 𝑖𝝉 𝑖) =𝚷𝝉
𝜕𝐸

(𝒗)⋅𝝉 𝑖𝝉 𝑖, (𝚷𝝉
𝜕𝐸

𝒗) ⋅ 𝒏 = 0.

We also use 𝚷𝜕𝐸 to involve both of the normal and tangential compo-

nents, that is,

𝚷𝜕𝐸𝒗 ∶= 𝒗⋅𝒏𝒏+𝚷𝝉
𝜕𝐸

𝒗.

Then, a local weak virtual element space on 𝐸 is defined as

𝑽 𝐸 ∶=
{
𝒗𝐸 = {𝒗div

𝐸
,𝒗𝑡
𝑒
},𝒗div

𝐸
∈𝑾 𝐸,𝒗

𝑡
𝑒
|𝑓 ∈ 𝑽 𝑓 , 𝑓 ⊂ 𝜕𝐸

}
.

This element is used to approximate the 𝑯1 functions. To impose the 
gradient operator on the functions in 𝑽 𝐸 , we introduce a weak gradient 
proposed in [23,37]. For any 𝒗= {𝒗div, 𝒗𝝉} ∈ 𝑽 𝐸 , define ∇𝑤

𝐸
𝒗 ∈ ℙ0(𝐸) as 

a constant matrix satisfying
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(∇𝑤
𝐸
𝒗,𝕎)𝐸 ∶= ⟨𝒗div⋅𝒏,𝕎𝒏⋅𝒏⟩𝜕𝐸 +

𝑑−1∑
𝑖=1

⟨𝒗𝝉 ⋅𝝉 𝑖,𝕎𝒏⋅𝝉 𝑖⟩𝜕𝐸 (4)

for all 𝕎 in ℙ0(𝐸). Then the weak symmetric gradient is defined as

𝝐𝑤
𝐸
(𝒗) = (∇𝑤

𝐸
𝒗+ (∇𝑤

𝐸
𝒗)𝝉 )∕2.

Let  𝒏
𝜕𝐸

(𝒗) and  𝝉 𝑖
𝜕𝐸

(𝒗) denote the differences of 𝒗 ∈ 𝑽 𝐸 and 𝚷𝑜
𝐸
𝒗 in 

normal and tangential directions respectively, that is,

 𝒏
𝜕𝐸

(𝒗) ∶= (𝒗div −𝚷𝑜
𝐸
𝒗div)⋅𝒏𝒏,  𝝉 𝑖

𝜕𝐸
(𝒗) ∶= (𝒗𝝉 −𝚷𝑜

𝐸
𝒗div)⋅𝝉 𝑖𝝉 𝑖.

When the superscript is omitted, it indicates the whole jump on the 
element boundary

𝜕𝐸 (𝒗) ∶=  𝒏
𝜕𝐸

(𝒗) +  𝝉
𝜕𝐸

(𝒗),

where  𝝉
𝜕𝐸

(𝒗) ∶=∑𝑑−1
𝑖=1  𝝉 𝑖

𝜕𝐸
(𝒗).

By the 𝑳2 projections and integration by parts, the definition (4) can 
be stated as

(∇𝑤
𝐸
𝒗,𝕎)𝐸 = (∇(𝚷𝑜

𝐸
𝒗),𝕎)𝐸 + ⟨𝚷𝜕𝐸𝜕𝐸 (𝒗),𝕎𝒏⟩𝜕𝐸 ,

which means that ∇𝑤
𝐸
𝒗 is just the standard gradient ∇(𝚷𝑜

𝐸
𝒗) plus con-

tributions from the boundary. Therefore, with the assumption of the 
element, we obtain by the Schwarz inequality, the trace theorem, and 
the inverse inequality, that

‖∇(𝚷𝑜
𝐸
𝒗) − ∇𝑤

𝐸
(𝒗)‖2

𝐸
≲ ℎ−1‖𝚷𝜕𝐸𝜕𝐸 (𝒗)‖2𝜕𝐸 . (5)

We also need to define interpolations to the virtual element space. 
For any 𝒗 ∈𝑯1(𝐸), 𝑰𝑾

𝐸
𝒗 ∈𝑾 𝐸 is defined by the degree of freedoms in 

(2)-(3), i.e.,

∫
𝑓

𝑰𝑾
𝐸
𝒗⋅𝒏𝑞 = ∫

𝑓

𝒗⋅𝒏𝑞 𝑞 ∈ 𝑃1(𝑓 ), 𝑓 ⊂ 𝜕𝐸,

∫
𝐸

𝑰𝑾
𝐸
𝒗⋅𝒒 = ∫

𝐸

𝒗⋅𝒒 𝒒 ∈ 𝑷 1(𝐸) ⧵∇𝑃2(𝐸).

The interpolation 𝑰𝑽
𝐸

to the space 𝑽 𝐸 is defined as 𝑰𝑽
𝐸
𝒗 ∶= {𝑰𝑾

𝐸
𝒗, 𝚷𝝉

𝜕𝐸
𝒗}. 

By the scaling argument and the Bramble-Hilbert theorem, we have the 
following estimates for the projection and interpolation.

Lemma 2.1. Assume that 𝐸 ∈ ℎ is shape regular. Then for all 𝒗∈𝑯2(𝐸), 
it is true that

‖𝒗− 𝑰𝑾
𝐸
𝒗‖𝐸 ≲ ℎ𝑚‖𝒗‖𝑚,𝐸 , 𝑚 = 1,2, (6)

‖𝒗−𝚷𝑜
𝐸
𝒗‖𝐸 + ℎ‖∇(𝒗−𝚷𝑜

𝐸
𝒗)‖𝐸 ≲ ℎ𝑚‖𝒗‖𝑚,𝐸 , 𝑚 = 1,2, (7)

‖𝒗−𝚷𝑜
𝐸
𝑰𝑾
𝐸
𝒗‖𝐸 + ℎ‖∇(𝒗−𝚷𝑜

𝐸
𝑰𝑾
𝐸
𝒗)‖𝐸 ≲ ℎ𝑚‖𝒗‖𝑚,𝐸 , 𝑚 = 1,2, (8)

‖𝚷𝝉
𝜕𝐸

 𝝉
𝜕𝐸

(𝑰𝑽
𝐸
𝒗)‖𝜕𝐸 + ‖𝒗−𝚷𝑜

𝐸
𝑰𝑽
𝐸
𝒗‖𝜕𝐸 ≲ ℎ 3

2 ‖𝒗‖2,𝐸 . (9)

The virtual element space for the flux is stated as

𝑾 ℎ ∶= {𝒗 ∈𝑯(div),𝒗|𝐸 ∈𝑾 𝐸,∀𝐸 ∈ ℎ,𝒗⋅𝒏 = 0 on 𝜕Ω},

while for the displacement, we use the weak virtual element space

𝑽 ℎ ∶=
{
𝒗ℎ = {𝒗div

ℎ
,𝒗𝝉
ℎ
},𝒗div

ℎ
∈𝑾 ℎ,𝒗

𝝉
ℎ
|𝑓 ∈ 𝑽 𝑓 ,𝒗

𝝉 = 𝟎 on 𝜕Ω
}
.

We also use a discontinuous piecewise constant element space 𝑄ℎ ⊂
𝐿2
0(Ω) to discretize the pressure, and use 𝐼𝑄

ℎ
to denote the 𝐿2 projection 

to 𝑄ℎ.
When the subscript 𝐸 is replaced by the mesh size ℎ, the operators 

introduced above are element-wise defined on the whole domain, i.e., 
(𝝐𝑤
ℎ
(⋅))|𝐸 = 𝝐𝑤

𝐸
(⋅), 𝚷𝑜

ℎ
|𝐸 =𝚷𝑜

𝐸
, 𝑰𝑾
ℎ
|𝐸 = 𝑰𝑾

𝐸
, 𝑰𝑽
ℎ
|𝐸 = 𝑰𝑽

𝐸
. We also use 𝝐ℎ(𝒗)

and ∇ℎ𝒗 to stand for the element-wise symmetric gradient and gradient 
of 𝒗 in 𝑽 ℎ.
33
3. The semidiscrete problem

In this section, we first present the semidiscrete problem, and then 
show the error estimates.

Given 𝒖ℎ(0) = 𝑰𝑽
ℎ
𝒖0, 𝑝ℎ(0) = 𝐼𝑄ℎ 𝑝0, the corresponding discrete varia-

tional formulation for the problem (1) is to seek 𝒖ℎ ∈ 𝑽 ℎ, 𝒘ℎ ∈𝑾 ℎ, and 
𝑝ℎ ∈𝑄ℎ satisfying

⎧⎪⎨⎪⎩
𝑎ℎ,1(𝒖ℎ,𝒗ℎ) − 𝑏1(𝒗ℎ, 𝑝ℎ) = (𝒇𝒖,𝚷𝑜ℎ𝒗ℎ) ∀ 𝒗ℎ ∈ 𝑽 ℎ,

𝑎ℎ,2(𝒘ℎ,𝒛ℎ) − 𝑏2(𝒛ℎ, 𝑝ℎ) = (𝒇𝒘,𝚷𝑜ℎ𝒛ℎ) ∀ 𝒛ℎ ∈𝑾 ℎ,

𝑏1(𝒖ℎ𝑡, 𝑞ℎ) + 𝑏2(𝒘ℎ, 𝑞ℎ) + 𝑎ℎ,3(𝑝ℎ𝑡, 𝑞ℎ) = (𝑓𝑝, 𝑞ℎ) ∀ 𝑞ℎ ∈𝑄ℎ,
(10)

where

𝑎ℎ,1(𝒖ℎ,𝒗ℎ) ∶= (2𝜇𝝐𝑤
ℎ
(𝒖ℎ),𝝐𝑤ℎ (𝒗ℎ)) + 𝜆(div𝒖ℎ,div𝒗ℎ) + 2 μs1(𝒖ℎ,𝒗ℎ),

𝑎ℎ,2(𝒘ℎ,𝒛ℎ) ∶= (𝜅−1𝚷𝑜
ℎ
𝒘ℎ,𝚷𝑜ℎ𝒛ℎ) + 𝜅

−1𝑠2(𝒘ℎ,𝒛ℎ),

𝑎ℎ,3(𝑝ℎ, 𝑞ℎ) ∶= (𝑐0𝑝ℎ, 𝑞ℎ),

𝑏1(𝒗ℎ, 𝑝ℎ) ∶= 𝛼(div𝒗ℎ, 𝑝ℎ), 𝑏2(𝒛ℎ, 𝑝ℎ) ∶= (div𝒛ℎ, 𝑝ℎ),

with the stabilization term defined as

𝑠1(𝒖ℎ,𝒗ℎ) ∶=
∑
𝐸∈ℎ

ℎ−1
⟨
𝚷𝜕𝐸𝜕𝐸 (𝒖ℎ),𝚷𝜕𝐸𝜕𝐸 (𝒗ℎ)

⟩
𝜕𝐸
,

𝑠2(𝒘ℎ,𝒛ℎ) ∶=𝐸 ((𝐼 −𝚷𝑜
ℎ
)𝒘ℎ, (𝐼 −𝚷𝑜

ℎ
)𝒛ℎ),

where 𝐸 is corresponding to the identity operator with respect to the 
local basis determined by the degrees of freedom (2)-(3), see [8] for 
details. It is shown that (see [8])

𝑎ℎ,2(𝒛ℎ,𝒛ℎ) ≃ (𝜅−1𝒛ℎ,𝒛ℎ). (11)

By the bilinear forms, we define norms (semi-norms) for any 𝒗ℎ ∈ 𝑽 ℎ
and 𝒛 ∈𝑾 ℎ as

‖𝒗ℎ‖𝑎1 =√
𝑎ℎ,1(𝒗ℎ,𝒗ℎ), ‖𝒛ℎ‖𝑎2 =√

𝑎ℎ,2(𝒛ℎ,𝒛ℎ).

Let 𝜌 be a positive constant. Then a weighted norm is defined as

‖𝜙‖𝑚,𝜌 ∶= ‖𝜌 1
2 𝜙‖𝑚 ∀ 𝜙 ∈𝐻𝑚 or 𝑯𝑚,𝑚 = 0,1.

On each element 𝐸, we introduce a seminorm for 𝒗ℎ ∈ 𝑽 𝐸 as

‖𝒗ℎ‖21,ℎ,𝐸 ∶= ‖∇𝚷𝑜
𝐸
𝒗ℎ‖2𝐸 + ‖ℎ− 1

2 𝚷𝜕𝐸𝜕𝐸 (𝒗ℎ)‖2𝜕𝐸 ,
and thus, a mesh dependent seminorm for all 𝒗ℎ ∈ 𝑽 ℎ is stated as

‖𝒗ℎ‖21,ℎ ∶= ∑
𝐸∈ℎ

‖𝒗ℎ‖21,ℎ,𝐸 . (12)

It can be shown that, on 𝑽 ℎ, ‖ ⋅‖1,ℎ and ‖ ⋅‖𝑎1 are norms and the bilinear 
form 𝑎ℎ,1(⋅, ⋅) is coercive, see [10, Lemma 3.7] for details.

Lemma 3.1. Provided the element 𝐸 is shape regular, we have for all 𝒗 ∈
𝑽 𝐸 that

‖𝒗−𝚷𝑜
𝐸
𝒗‖2
𝐸
≲ ℎ‖ 𝒏

𝜕𝐸
(𝒗)‖2

𝜕𝐸
. (13)

Proof. This inequality follows from the definition of 𝚷𝑜
𝐸

, the scaling 
arguments and the assumption of the mesh regularity. □

Lemma 3.2. Assume the mesh ℎ is quasi-uniform. For any 𝑝ℎ ∈𝑄ℎ, there 
exists a 𝒛ℎ ∈𝑾 ℎ and a 𝒗ℎ = {𝒗div

ℎ
, 𝒗𝝉
ℎ
} ∈ 𝑽 ℎ such that

div𝒛ℎ = div𝒗ℎ = 𝑝ℎ, ‖𝒛ℎ‖0 ≲ ‖𝑝ℎ‖0, and ‖𝒗ℎ‖1,ℎ ≲ ‖𝑝ℎ‖0.
Proof. We refer to [8, Theorem 5.4] and [10, Lemma 12] for the 
proof. □
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Theorem 3.3. There exists a unique solution to the problem (10).

Proof. Our proof follows the idea in [26]. For completeness, we present 
the outline. First, we introduce some operators associated with the bi-

linear forms, that is, 𝐴1 ∶ 𝑽 ℎ → 𝑽 ′
ℎ
, 𝐴2 ∶ 𝑾 ℎ → 𝑾 ′

ℎ
, 𝐴3 ∶ 𝑄ℎ → 𝑄′

ℎ
, 

𝐵1 ∶ 𝑽 ℎ →𝑄′
ℎ
, 𝐵2 ∶𝑾 ℎ →𝑄′

ℎ
satisfying

(𝐴1𝒖ℎ,𝒗ℎ) = 𝑎ℎ,1(𝒖ℎ,𝒗ℎ), (𝐴2𝒘ℎ,𝒛ℎ) = 𝑎ℎ,2(𝒘ℎ,𝒛ℎ),

(𝐴3𝑝ℎ, 𝑞ℎ) = 𝑎ℎ,3(𝑝ℎ, 𝑞ℎ), (𝐵1𝒗ℎ, 𝑞ℎ) = 𝑏1(𝒗ℎ, 𝑞ℎ), (𝐵2𝒛ℎ, 𝑞ℎ) = 𝑏2(𝒛ℎ, 𝑞ℎ).

Then the problem (10) can be rewritten as

𝐴1𝒖ℎ −𝐵𝑇1 𝑝ℎ = 𝐹1,

𝐴2𝒘ℎ −𝐵𝑇2 𝑝ℎ = 𝐹2,

𝐵1𝒖ℎ𝑡 +𝐵2𝒘ℎ +𝐴3𝑝ℎ𝑡 = 𝐹3,

where 𝐹1, 𝐹2, 𝐹3 are the operators corresponding to the right hand side. 
Note that 𝐴1 and 𝐴2 are symmetric and positive definite. Taking the 
derivate with respect to 𝑡 in the first equation, and using direct calcula-

tion, we have

(𝐴3 +𝐵1𝐴
−1
1 𝐵

𝑇
1 )𝑝ℎ𝑡 +𝐵2𝐴

−1
2 𝐵

𝑇
2 𝑝ℎ = 𝐹3 −𝐵2𝐴

−1
2 𝐹2 −𝐵1𝐴

−1
1 𝐹1𝑡.

From the theory of ODE, there is a unique 𝑝ℎ satisfying the above equa-

tion, provided that the operator 𝐴3 + 𝐵1𝐴
−1
1 𝐵

𝑇
1 is invertible and the 

other operators are bounded. □

Lemma 3.4. If 𝒖 ∈𝑯2(𝐸) and 𝐸 is shape regular, we have

‖𝝐(𝒖) − 𝝐𝑤
𝐸
(𝑰𝑽
ℎ
𝒖)‖𝐸 + ℎ‖𝝐(𝒖) − 𝝐𝑤

𝐸
(𝑰𝑽
ℎ
𝒖)‖1,𝐸 + ℎ−

1
2 ‖𝚷𝜕𝐸𝜕𝐸 (𝑰𝑽

ℎ
𝒖)‖𝜕𝐸

≲ ℎ‖𝒖‖2,𝐸 .
Proof. In view of (5), (7), and (9), we obtain the desired inequal-

ity. □

Lemma 3.5. On each shape regular element 𝐸 ∈ ℎ, we have for any 𝒑 ∈
𝑷 𝑘(𝐸) that

‖𝒑−𝚷𝝉
𝜕𝐸

𝒑‖𝜕𝐸 ≲ ℎ 1
2 ‖𝜖(𝒑)‖𝐸.

Proof. This inequality follows from the Korn inequality up to rigid mo-

tions contained in the face spaces, see, e.g., [10]. □

Lemma 3.6. Assume the mesh is quasi-uniform. It is true for any 𝒗ℎ =
{𝒗div
ℎ
, 𝒗𝝉
ℎ
} ∈ 𝑽 ℎ that

‖𝜕𝐸 (𝒗ℎ)‖2𝜕𝐸 ≲ ‖𝚷𝜕𝐸𝜕𝐸 (𝒗ℎ)‖2𝜕𝐸 + ℎ‖𝜖(𝚷𝑜
𝐸
𝒗ℎ)‖2𝐸 ≤ ℎ‖𝒗ℎ‖21,ℎ. (14)

Proof. By the triangle inequality and Lemma 3.5, we have the first 
inequality, and then the second one. □

We next give the error analysis for the semidiscrete problem (10). 
Let (𝒖, 𝒘, 𝑝) and (𝒖ℎ, 𝒘ℎ, 𝑝ℎ) be the solutions to problems (1) and (10)

respectively. We define the errors as

𝜃𝒖 ∶= 𝑰𝑽
ℎ
𝒖− 𝒖ℎ, 𝜃𝒘 ∶= 𝑰𝑾

ℎ
𝒘−𝒘ℎ, 𝜃𝑝 = 𝐼

𝑄

ℎ
𝑝− 𝑝ℎ.

It is obvious that the initial error 𝜃𝒖(⋅, 0) = 𝟎 and 𝜃𝑝(⋅, 0) = 0. By the 
definition of the virtual element spaces and projection 𝐼𝑄

ℎ
, we have 

𝑏1(𝒗ℎ, 𝑝 − 𝐼𝑄ℎ 𝑝) = 𝑏1(𝒗ℎ, 𝑝 − 𝐼
𝑄

ℎ
𝑝) = 0. Then we have the following error 

equations.
34
Lemma 3.7. It is true for the errors that

𝑎ℎ,1(𝜃𝒖,𝒗ℎ) − 𝑏1(𝒗ℎ, 𝜃𝑝) =1(𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (15)

𝑎ℎ,2(𝜃𝒘,𝒛ℎ) − 𝑏2(𝒛ℎ, 𝜃𝑝) =2(𝒛ℎ) ∀𝒛ℎ ∈𝑾 ℎ, (16)

𝑏1(𝜃𝒖𝑡 , 𝑞ℎ) + 𝑏2(𝜃𝒘, 𝑞ℎ) + 𝑎ℎ,3(𝜃𝑝𝑡 , 𝑞ℎ) = 0 ∀𝑞ℎ ∈𝑄ℎ, (17)

where

1(𝒗ℎ) ∶= (𝒇𝒖,𝒗ℎ −𝚷𝑜
ℎ
𝒗ℎ) + 2 μs1(𝑰𝑽

ℎ
𝒖,𝒗ℎ)

+ 2𝜇(𝝐𝑤
ℎ
(𝑰𝑽
ℎ
𝒖),𝝐𝑤

ℎ
(𝒗ℎ)) + 2𝜇(div(𝜖(𝒖)),𝒗ℎ),

2(𝒛ℎ) ∶= (𝒇𝒘,𝒛ℎ −𝚷𝑜
ℎ
𝒛ℎ) + 𝑎ℎ,2(𝑰𝑾

ℎ
𝒘,𝒛ℎ) − (𝜅−1𝒘,𝒛ℎ).

Moreover, taking time derivative of (15) and (16) leads to

𝑎ℎ,1(𝜃𝒖𝑡 ,𝒗ℎ) − 𝑏1(𝒗ℎ, 𝜃𝑝𝑡 ) = 1𝑡(𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (18)

𝑎ℎ,2(𝜃𝒘𝑡 ,𝒛ℎ) − 𝑏2(𝒛ℎ, 𝜃𝑝𝑡 ) = 2𝑡(𝒛ℎ) ∀𝒛ℎ ∈𝑾 ℎ, (19)

where

1𝑡(𝒗ℎ) ∶= (𝒇𝒖𝑡,𝒗ℎ −𝚷𝑜
ℎ
𝒗ℎ) + 2 μs1(𝑰𝑽

ℎ
𝒖𝑡,𝒗ℎ)

+ 2𝜇(𝝐𝑤
ℎ
(𝑰𝑽
ℎ
𝒖𝑡),𝝐𝑤ℎ (𝒗ℎ)) + 2𝜇(div(𝜖(𝒖𝑡)),𝒗ℎ),

2𝑡(𝒛ℎ) ∶= (𝒇𝒘𝑡,𝒛ℎ −𝚷𝑜
ℎ
𝒛ℎ) + 𝑎ℎ,2(𝑰𝑾

ℎ
𝒘𝑡,𝒛ℎ) − (𝜅−1𝒘𝑡,𝒛ℎ).

Here 𝒇𝒖𝑡 ∶=
d𝒇𝒖

dt , 𝒇𝒘𝑡 ∶=
d𝒇𝒘

dt .

Lemma 3.8. If the mesh is quasi-uniform, and 𝒇𝒖 ∈𝑳2, 𝒘 ∈𝑯1, 𝒖 ∈𝑯2, 
𝒇𝒘 ∈ 𝑯1

ℎ
, which denotes the piecewise 𝑯1 space, we have the following 

consistency errors:

1(𝒗ℎ) ≲ ℎ𝜇
1
2𝑀

1
2
𝒖 ‖𝒗ℎ‖1,ℎ ≤ ℎ𝑀 1

2
𝒖 ‖𝒗ℎ‖𝑎1 ∀𝒗ℎ ∈ 𝑽 ℎ, (20)

2(𝒛ℎ) ≲ ℎ𝑀
1
2
𝒘‖𝒛ℎ‖𝑎2 ∀𝒛ℎ ∈𝑾 ℎ, (21)

where 𝑀𝒖 ∶= ‖𝒇𝒖‖0,𝜇−1 +‖𝒖‖2,𝜇 , 𝑀𝒘 ∶= ‖𝜅 1
2 𝒇𝒘‖ℎ,1+‖𝒘‖1,𝜅−1 , and ‖ ⋅‖ℎ,1

denotes the broken 𝑯1 norm with respect to the partition ℎ. Similarly, 
provided 𝒇𝒖𝑡 ∈𝑳2, 𝒘𝑡 ∈𝑯1, 𝒖𝑡 ∈𝑯2, 𝒇𝒘𝑡 ∈𝑯1

ℎ
, it holds that

1𝑡(𝒗ℎ) ≲ ℎ𝑀
1
2
𝒖𝑡
‖𝒗ℎ‖𝑎1 , 2𝑡(𝒛ℎ) ≲ ℎ𝑀

1
2
𝒘𝑡
‖𝒛ℎ‖𝑎2 (22)

with the constant defined as 𝑀𝒖𝑡 = ‖𝒇𝒖𝑡‖0,𝜇−1 + ‖𝒖𝑡‖2,𝜇 and 𝑀𝒘𝑡 =‖𝜅 1
2 𝒇𝒘𝑡‖ℎ,1 + ‖𝒘𝑡‖1,𝜅−1 .

Proof. We estimate the error term by term. It follows from the property 
of the 𝑳2 projection (13) that

(𝒇𝒖,𝒗ℎ −𝚷𝑜
ℎ
𝒗ℎ) ≤ ‖𝒇𝒖‖0‖𝒗ℎ −𝚷𝑜

ℎ
𝒗ℎ‖0 ≲ ℎ‖𝒇𝒖‖0‖𝒗ℎ‖1,ℎ.

For the stabilized term 𝑠1, it follows from the Cauchy-Schwarz inequal-

ity and Lemma 3.4 that

𝑠1(𝑰𝑽
ℎ
𝒖,𝒗ℎ) =

∑
𝐸∈ℎ

ℎ−1
⟨
𝚷𝜕𝐸𝜕𝐸 (𝑰𝑽

ℎ
𝒖),𝚷𝜕𝐸𝜕𝐸 (𝒗ℎ)

⟩
𝜕𝐸

≤ ∑
𝐸∈ℎ

ℎ−1‖𝚷𝜕𝐸𝜕𝐸 (𝑰𝑽
ℎ
𝒖)‖𝜕𝐸‖𝚷𝜕𝐸𝜕𝐸 (𝒗ℎ)‖𝜕𝐸

≲ℎ‖𝒖‖2‖𝒗‖1,ℎ.
Integration by parts and the definition of 𝝐𝑤

ℎ
gives

(𝝐𝑤
ℎ
(𝑰𝑽
ℎ
𝒖),𝝐𝑤

ℎ
(𝒗ℎ)) + (div(𝜖(𝒖)),𝒗ℎ)

=
(
(𝐼 −𝚷𝑜

ℎ
) div 𝜖(𝒖), (𝚷𝑜

ℎ
− 𝐼)𝒗ℎ

)
+

∑
𝐸∈ℎ

⟨(𝜖(𝒖) − 𝜖𝑤
ℎ
(𝑰𝑽
ℎ
𝒖))𝒏,𝜕𝐸 (𝒗ℎ)⟩𝜕𝐸 ,

which, together with Lemmas 3.4 and 3.6, yields

(𝝐𝑤
ℎ
(𝑰𝑽
ℎ
𝒖),𝝐𝑤

ℎ
(𝒗ℎ)) + (div(𝜖(𝒖)),𝒗ℎ) ≲ ℎ‖𝒖‖2‖𝒗ℎ‖1,ℎ.
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The inequality (20) follows directly from the above three inequalities.

For the inequality (21), we derive by the inequalities (6)-(8) that

(𝒇𝒘,𝒛ℎ −𝚷𝑜
ℎ
𝒛ℎ) ≤ (𝒇𝒘 −𝚷𝑜

ℎ
𝒇𝒘,𝒛ℎ) ≲ ℎ‖𝒇𝒘‖ℎ,1‖𝒛ℎ‖0,

𝑠2(𝑰𝑾
ℎ
𝒘,𝒛ℎ) ≲ ‖(𝐼 −𝚷𝑜

ℎ
)𝑰𝑾
ℎ
𝒘‖0‖(𝐼 −𝚷𝑜

ℎ
)𝒛ℎ‖0 ≲ ℎ‖𝒘‖1‖𝒛ℎ‖0,

and

(𝚷𝑜
ℎ
(𝑰𝑾
ℎ
𝒘),𝚷𝑜

ℎ
𝒛ℎ) − (𝒘,𝒛ℎ) = (𝒘−𝚷𝑜

ℎ
𝒘,𝚷𝑜

ℎ
𝒛ℎ − 𝒛ℎ)

+ (𝚷𝑜
ℎ
(𝑰𝑾
ℎ
𝒘) −𝒘,𝚷𝑜

ℎ
𝒛ℎ)

≲ ℎ‖𝒘‖1‖𝒛ℎ‖0.
Thus, we have

2(𝒛ℎ) ≲ ℎ(‖𝜅 1
2 𝒇𝒘‖ℎ,1 + ‖𝒘‖1,𝜅−1 )‖𝒛ℎ‖𝑎2 .

The proof of (22) is similar, and we omit it here. The proof is com-

pleted. □

Lemma 3.9. Under the assumption in Lemma 3.8, we have

‖𝜃𝑝‖20 ≲ 𝜇𝛼−2(‖𝜃𝒖‖2𝑎1 + ℎ2𝑀𝒖). (23)

Similarly, it also holds that

‖𝜃𝑝‖20 ≲ 𝜅−1(‖𝜃𝒘‖2𝑎2 + ℎ2𝑀𝒘). (24)

Proof. It follows from Lemma 3.2 that there exists a 𝒗ℎ ∈ 𝑽 ℎ such that

div𝒗ℎ = 𝛼−1𝜃𝑝, ‖𝒗ℎ‖1,ℎ ≲ 𝛼−1‖𝜃𝑝‖0.
Then, we deduce that

‖𝜃𝑝‖20 = (𝛼 div𝒗ℎ, 𝜃𝑝) = 𝑎ℎ,1(𝜃𝒖,𝒗ℎ) −1(𝒗ℎ)

≲ 𝜇‖𝜃𝒖‖1,ℎ‖𝒗ℎ‖1,ℎ + ℎ𝜇 1
2𝑀

1
2
𝒖 ‖𝒗ℎ‖1,ℎ

≲ 𝛼−1𝜇
1
2 (‖𝜃𝒖‖𝑎1 + ℎ𝑀 1

2
𝒖 )‖𝜃𝑝‖0.

We note that, in the first inequality, we have used the fact that 
(div(𝑰𝑽

ℎ
𝒖− 𝒖), div𝒗ℎ) = 0. The proof is completed. □

Theorem 3.10. Let (𝒖, 𝒘, 𝑝) and (𝒖ℎ, 𝒘ℎ, 𝑝ℎ) be the unique solutions to (1)

and (10) respectively. Additionally, assume that 𝒖 ∈𝐿∞(𝑯2), 𝒖𝑡 ∈𝐿1(𝑯2), 
𝒇𝒖 ∈𝐿∞(𝑳2), 𝒇𝒖𝑡 ∈𝐿1(𝑳2), 𝒘 ∈𝐿1(𝑯1), 𝒇𝒘 ∈𝐿1(𝑯1

ℎ
). We have

sup
0≤𝑡≤𝑇

‖𝑰𝑽
ℎ
𝒖− 𝒖ℎ‖2𝑎1 ≲ ℎ2𝑒𝑡

⎛⎜⎜⎝ sup
0≤𝑡≤𝑇

𝑀𝒖 +

𝑇

∫
0

𝑀1 d𝑡
⎞⎟⎟⎠ , (25)

𝑡

∫
0

‖𝑰𝑾
ℎ
𝒘−𝒘ℎ‖2𝑎2 d𝑡 ≲ ℎ2(1 + 𝑇 𝑒𝑇 )

⎛⎜⎜⎝ sup
0≤𝑡≤𝑇

𝑀𝒖 +

𝑇

∫
0

𝑀1 d𝑡
⎞⎟⎟⎠ , (26)

sup
0≤𝑡≤𝑇

‖𝐼𝑄
ℎ
𝑝− 𝒑ℎ‖20 ≲ ℎ2𝜇𝛼−2𝑒𝑇 ⎛⎜⎜⎝ sup

0≤𝑡≤𝑇
𝑀𝒖 +

𝑇

∫
0

𝑀1 d𝑡
⎞⎟⎟⎠ , (27)

where the constant 𝑀1 stands for 𝑀𝒖𝑡
+𝑀𝒘. Furthermore, if 𝒘∈𝐿∞(𝑯1), 

𝒇𝒘 ∈𝐿∞(𝑯1
ℎ
), 𝒘𝑡 ∈𝐿1(𝑯1), 𝒇𝒘𝑡 ∈𝐿1(𝑯1

ℎ
), it is true that

sup
0≤𝑡≤𝑇

‖𝑰𝑾
ℎ
𝒘−𝒘ℎ‖2𝑎2 ≲ 𝑒𝑇

⎛⎜⎜⎝‖𝜃𝒘(0)‖
2
𝑎2

+ ℎ2
𝑇

∫
0

𝑀𝑡 d𝑡
⎞⎟⎟⎠ , (28)

sup
0≤𝑡≤𝑇

‖𝐼𝑄
ℎ
𝑝− 𝒑ℎ‖20,𝜅 ≲ 𝑒𝑇 ⎛⎜⎜⎝‖𝜃𝒘(0)‖

2
𝑎2

+ ℎ2 sup
0≤𝑡≤𝑇

𝑀𝒘 + ℎ2
𝑇

∫
0

𝑀𝑡 d𝑡
⎞⎟⎟⎠ , (29)

where 𝑀𝑡 ∶=𝑀𝒖𝑡 +𝑀𝒘𝑡.
35
Proof. Setting 𝒗ℎ = 𝜃𝒖𝑡 , 𝒛ℎ = 𝜃𝒘, and 𝑞ℎ = 𝜃𝑝 in Lemma 3.7, we derive 
that

𝑎ℎ,1(𝜃𝒖, 𝜃𝒖𝑡 ) + 𝑎ℎ,2(𝜃𝒘, 𝜃𝒘) + (𝑐0𝜃𝑝𝑡 , 𝜃𝑝)

= 𝑎ℎ,1(𝜃𝒖, 𝜃𝒖𝑡 ) − 𝑏1(𝜃𝒖𝑡 , 𝜃𝑝) + 𝑎ℎ,2(𝜃𝒘, 𝜃𝒘) − 𝑏2(𝜃𝒘, 𝜃𝑝)

+ 𝑏1(𝜃𝒖𝑡 , 𝜃𝑝) + 𝑏2(𝜃𝒘, 𝜃𝑝) + (𝑐0𝜃𝑝𝑡 , 𝜃𝑝)

=1(𝜃𝒖𝑡 ) +2(𝜃𝒘).

Integration in time from 0 to 𝑡 gives

1
2
‖𝜃𝒖‖2𝑎1 + 1

2
𝑐0‖𝜃𝑝‖20 +

𝑡

∫
0

‖𝜃𝒘‖2𝑎2 d𝑡 =
𝑡

∫
0

1(𝜃𝒖𝑡 ) d𝑡+

𝑡

∫
0

2(𝜃𝒘) d𝑡. (30)

We first consider the term 
𝑡

∫
0

1(𝜃𝒖𝑡 ) d𝑡. Using integration by parts and 

Lemma 3.8, we derive that

𝑡

∫
0

1(𝜃𝒖𝑡 ) d𝑡 =1(𝜃𝒖)
||||
𝑡

0
−

𝑡

∫
0

1𝑡(𝜃𝒖) d𝑡

≤ 𝐶ℎ𝑀 1
2
𝒖 ‖𝜃𝒖‖𝑎1 + ℎ

𝑡

∫
0

𝑀
1
2
𝒖𝑡
‖𝜃𝒖‖𝑎1 d𝑡

≤ 𝐶ℎ2𝑀𝒖 +
1
4
‖𝜃𝒖‖2𝑎1 +𝐶ℎ2

𝑡

∫
0

𝑀𝒖𝑡 d𝑡+

𝑡

∫
0

‖𝜃𝒖‖2𝑎1 d𝑡. (31)

For the term 
𝑡

∫
0

2(𝜃𝒘) d𝑡, it follows from Lemma 3.8 and the Cauchy-

Schwarz inequality that

𝑡

∫
0

2(𝜃𝒘) d𝑡 ≤ 𝐶ℎ
𝑡

∫
0

𝑀
1
2
𝒘‖𝜃𝒘‖𝑎2 d𝑡

≤ 𝐶ℎ2
𝑡

∫
0

𝑀𝒘 d𝑡+ 1
2

𝑡

∫
0

‖𝜃𝒘‖2𝑎2 d𝑡. (32)

Plugging the above two inequalities into (30), we obtain

1
4
‖𝜃𝒖‖2𝑎1 + 1

2
𝑐0‖𝜃𝑝‖2 + 1

2

𝑡

∫
0

‖𝜃𝒘‖2𝑎2 d𝑡

≤
𝑡

∫
0

‖𝜃𝒖‖2𝑎1 d𝑡+𝐶ℎ2
⎛⎜⎜⎝𝑀𝒖 +

𝑡

∫
0

𝑀1 d𝑡
⎞⎟⎟⎠ ,

which, together with the Gronwall inequality, gives

‖𝜃𝒖‖2𝑎1 ≲ ℎ2𝑒𝑡
⎛⎜⎜⎝𝑀𝒖 +

𝑡

∫
0

𝑀1 d𝑡
⎞⎟⎟⎠ , (33)

and then, we arrive at the other two inequalities (26) and (27) from 
(33) and (23).

We next set 𝒗ℎ = 𝜃𝒖𝑡 , 𝒛ℎ = 𝜃𝒘 and 𝑞ℎ = 𝜃𝑝𝑡 in (18), (19), and (17), to 
have

𝑎ℎ,1(𝜃𝒖𝑡 , 𝜃𝒖𝑡 ) + 𝑎ℎ,2(𝜃𝒘𝑡 , 𝜃𝒘) + (𝑐0𝜃𝑝𝑡 , 𝜃𝑝𝑡 ) =1𝑡(𝜃𝒖𝑡 ) +2𝑡(𝜃𝒘)

≲ ℎ𝑀
1
2
𝒖𝑡
‖𝜃𝒖𝑡‖𝑎1 + ℎ𝑀 1

2
𝒘𝑡
‖𝜃𝒘‖𝑎2

≤ 𝐶ℎ2(𝑀𝒖𝑡 +𝑀𝒘𝑡) +
1
2
‖𝜃𝒖𝑡‖2𝑎1 + 1

2
‖𝜃𝒘‖2𝑎2 .

Thereby, we obtain
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1
2

d‖𝜃𝒘‖2𝑎2
d𝑡

= 𝑎ℎ,2(𝜃𝒘𝑡 , 𝜃𝒘) ≤ 𝐶ℎ2(𝑀𝒖𝑡 +𝑀𝒘𝑡) + ‖𝜃𝒘‖2𝑎2 .
Integration in time from 0 to 𝑡 gives

‖𝜃𝒘‖2𝑎2 ≤ ‖𝜃𝒘(0)‖2𝑎2 +𝐶ℎ2
𝑡

∫
0

(𝑀𝒖𝑡 +𝑀𝒘𝑡) d𝑡+

𝑡

∫
0

‖𝜃𝒘‖2𝑎2 d𝑡.
Then the inequality (28) follows from the Gronwall inequality, and 
the inequality (29) is obtained directly from (24). The proof is com-

pleted. □

Remark 3.11. From the inequality (26), we take 𝑇 → 0 and obtain

‖𝑰𝑾
ℎ
𝒘(0) −𝒘ℎ(0)‖2𝑎2 ≲ ℎ2(𝑀𝒖(0) +𝑀1(0)),

and thus the inequalities (28) and (29) can be rewritten as

sup
0≤𝑡≤𝑇

‖𝑰𝑾
ℎ
𝒘−𝒘ℎ‖2𝑎2 ≲ ℎ2𝑒𝑇

⎛⎜⎜⎝𝑀𝒖(0) +𝑀1(0) +

𝑇

∫
0

𝑀𝑡 d𝑡
⎞⎟⎟⎠ ,

sup
0≤𝑡≤𝑇

‖𝐼𝑄
ℎ
𝑝− 𝒑ℎ‖20,𝜅 ≲ ℎ2𝑒𝑇 ⎛⎜⎜⎝𝑀𝒖(0) +𝑀1(0) + sup

0≤𝑡≤𝑇
𝑀𝒘 +

𝑇

∫
0

𝑀𝑡 d𝑡
⎞⎟⎟⎠ .

4. Fully discrete scheme

Let Δ𝑡 = 𝑇 ∕𝑁 be a uniform time step size, and 𝑡𝑛 = 𝑛Δ𝑡, 0 ≤ 𝑛 ≤𝑁 be 
the discrete times. The notation 𝛿𝑡 stands for the backward Euler time 
discretization, i.e.,

𝛿𝑡𝒖
𝑛 ∶= 𝒖𝑛 − 𝒖𝑛−1

Δ𝑡
, 𝛿𝑡𝑝

𝑛 ∶= 𝑝
𝑛 − 𝑝𝑛−1

Δ𝑡
,

where 𝒖𝑛 = 𝒖(⋅, 𝑡𝑛), 𝑝𝑛 = 𝑝(⋅, 𝑡𝑛). We always use superscript 𝑛 to denote 
the functions at the time 𝑡𝑛.

Then, given 𝒖0
ℎ
= 𝑰𝑽

ℎ
𝒖0, 𝑝0ℎ = 𝐼

𝑄

ℎ
𝑝0, the corresponding fully discrete 

scheme is to seek 𝒖𝑛
ℎ
∈ 𝑽 ℎ, 𝒘𝑛ℎ ∈𝑾 ℎ, and 𝑝𝑛

ℎ
∈𝑄ℎ satisfying

⎧⎪⎨⎪⎩
𝑎ℎ,1(𝒖𝑛ℎ,𝒗ℎ) − 𝑏1(𝒗ℎ, 𝑝

𝑛
ℎ
) = (𝒇 𝑛

𝒖
,𝚷𝑜
ℎ
𝒗ℎ) ∀ 𝒗ℎ ∈ 𝑽 ℎ,

𝑎ℎ,2(𝒘𝑛ℎ,𝒛ℎ) − 𝑏2(𝒛ℎ, 𝑝
𝑛
ℎ
) = (𝒇 𝑛

𝒘
,𝚷𝑜
ℎ
𝒛ℎ) ∀ 𝒛ℎ ∈𝑾 ℎ,

𝑏1(𝛿𝑡𝒖𝑛ℎ, 𝑞ℎ) + 𝑏2(𝒘
𝑛
ℎ
, 𝑞ℎ) + 𝑎ℎ,3(𝛿𝑡𝑝𝑛ℎ, 𝑞ℎ) = (𝑓𝑛

𝑝
, 𝑞ℎ) ∀ 𝑞ℎ ∈𝑄ℎ.

(34)

In view of the quasi-uniform assumption of the mesh, there exists a 
unique pair of solution at each time.

At each discrete time 𝑡𝑛, we denote the errors as

𝜃𝑛
𝒖
∶= 𝑰𝑽

ℎ
𝒖𝑛 − 𝒖𝑛

ℎ
, 𝜃𝑛

𝒘
∶= 𝑰𝑾

ℎ
𝒘𝑛 −𝒘𝑛

ℎ
, 𝜃𝑛
𝑝
∶= 𝐼𝑄

ℎ
𝑝𝑛 − 𝑝𝑛

ℎ
.

Similarly as Lemma 3.7, the error equations at each discrete time are 
stated as follows.

𝑎ℎ,1(𝜃𝑛𝒖 ,𝒗ℎ) − 𝑏1(𝒗ℎ, 𝜃
𝑛
𝑝
) =𝑛1(𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (35)

𝑎ℎ,2(𝜃𝑛𝒘,𝒛ℎ) − 𝑏2(𝒛ℎ, 𝜃
𝑛
𝑝
) =𝑛2(𝒛ℎ) ∀𝒛ℎ ∈𝑾 ℎ, (36)

𝑏1(𝛿𝑡𝜃𝑛𝒖 , 𝑞ℎ) + 𝑏2(𝜃
𝑛
𝒘
, 𝑞ℎ) + 𝑎ℎ,3(𝛿𝑡𝜃𝑛𝑝 , 𝑞ℎ) =𝑛3(𝑞ℎ) ∀𝑞ℎ ∈𝑄ℎ, (37)

where

𝑛1(𝒗ℎ) ∶= (𝒇 𝑛
𝒖
,𝒗ℎ −𝚷𝑜

ℎ
𝒗ℎ) + 2 μs1(𝑰𝑽

ℎ
𝒖𝑛,𝒗ℎ)

+ 2𝜇(𝝐𝑤
ℎ
(𝑰𝑽
ℎ
𝒖𝑛),𝝐𝑤

ℎ
(𝒗ℎ)) + 2𝜇(div(𝜖(𝒖𝑛)),𝒗ℎ),

𝑛2(𝒛ℎ) ∶= (𝒇 𝑛
𝒘
,𝒛ℎ −𝚷𝑜

ℎ
𝒛ℎ) + 𝑎ℎ,2(𝑰𝑾

ℎ
𝒘𝑛,𝒛ℎ) − (𝜅−1𝒘𝑛,𝒛ℎ),

𝑛3(𝑞ℎ) ∶= 𝑏1(𝛿𝑡𝒖𝑛 − 𝒖𝑛
𝑡
, 𝑞ℎ) + 𝑎ℎ,3(𝛿𝑡𝑝𝑛 − 𝑝𝑛𝑡 , 𝑞ℎ).

Lemma 4.1. Assume 𝒖𝑡 ∈ 𝐿2(𝑯2), 𝒇𝒖𝑡 ∈ 𝐿2(𝑳2) and the mesh is quasi-

uniform, it is true that

𝑛1(𝒗𝑛ℎ) −𝑛−11 (𝒗𝑛
ℎ
) ≲ 𝐶ℎ2

𝑡𝑛

∫ 𝑀𝒖𝑡 d𝑡+
Δ𝑡
8
‖𝒗𝑛
ℎ
‖2
𝑎1

∀𝒗𝑛
ℎ
∈ 𝑽 ℎ. (38)
𝑡𝑛−1

36
Proof. By the definitions of 𝑛1 and 1𝑡, we observe that

𝑛1(𝒗𝑛ℎ) −𝑛−11 (𝒗𝑛
ℎ
) =

𝑡𝑛

∫
𝑡𝑛−1

1𝑡(𝒗𝑛ℎ) d𝑡

≲ ℎ

𝑡𝑛

∫
𝑡𝑛−1

𝑀
1
2
𝒖𝑡
‖𝒗𝑛
ℎ
‖𝑎1 d𝑡

≤ 𝐶ℎ2
𝑡𝑛

∫
𝑡𝑛−1

𝑀𝒖𝑡 d𝑡+
Δ𝑡
8
‖𝒗𝑛
ℎ
‖2
𝑎1
,

where we have used the inequality (22), the Cauchy-Schwarz inequal-

ity, and the fact 𝒗𝑛
ℎ

is constant with respect to the time 𝑡. The proof is 
completed. □

Lemma 4.2. If 𝒖𝑡𝑡 ∈𝐿2(𝑯(div)) and 𝑝𝑡𝑡 ∈𝐿2(𝐿2), we have

𝑛3(𝑞𝑛ℎ) ≤
𝑡𝑛

∫
𝑡𝑛−1

(𝛼‖div𝒖𝑡𝑡‖0‖𝑞𝑛ℎ‖0 + 𝑐0‖𝑝𝑡𝑡‖0‖𝑞𝑛ℎ‖0) d𝑡. (39)

Moreover, by setting 𝑞𝑛
ℎ
=Δ𝑡 𝜃𝑛

𝑝
, we obtain

𝑛3(Δ𝑡 𝜃𝑛𝑝 ) ≤ 𝐶
𝑡𝑛

∫
𝑡𝑛−1

((Δ𝑡)2𝑀𝑡𝑡 + ℎ2𝑀𝒖) d𝑡+
Δ𝑡
8
‖𝜃𝑛

𝒖
‖2
𝑎1

+
Δ𝑡 𝑐0
2

‖𝜃𝑛
𝑝
‖20, (40)

where 𝑀𝑡𝑡 ∶= (𝜇‖ div𝒖𝑡𝑡‖20 + 𝑐0‖𝑝𝑡𝑡‖20).
Proof. It follows from the definition of 𝑛3 and Taylor’s theorem that

𝑛3(𝑞𝑛ℎ) =𝑏1(𝛿𝑡𝒖𝑛 − 𝒖𝑛
𝑡
, 𝑞𝑛
ℎ
) + 𝑐0(𝛿𝑡𝑝𝑛 − 𝑝𝑛𝑡 , 𝑞

𝑛
ℎ
)

=𝛼
(
div(𝒖𝑛 − 𝒖𝑛−1 − Δ𝑡𝒖𝑛

𝑡
), (Δ𝑡)−1𝑞𝑛

ℎ

)
+ 𝑐0(𝑝𝑛 − 𝑝𝑛−1 − Δ𝑡 𝑝𝑛

𝑡
, (Δ𝑡)−1𝑞𝑛

ℎ
)

=

𝑡𝑛

∫
𝑡𝑛−1

(𝑡𝑛−1 − 𝑡)
(
𝛼(div𝒖𝑡𝑡(𝑡), (Δ𝑡)−1𝑞𝑛ℎ) + 𝑐0(𝑝𝑡𝑡(𝑡), (Δ𝑡)

−1𝑞𝑛
ℎ
)
)
d𝑡

≤
𝑡𝑛

∫
𝑡𝑛−1

(𝛼‖div𝒖𝑡𝑡(𝑡)‖0‖𝑞𝑛ℎ‖0 + 𝑐0‖𝑝𝑡𝑡(𝑡)‖0‖𝑞𝑛ℎ‖0) d𝑡.
To obtain the inequality (40), we use Lemma 3.9, and thus have

𝑛3(Δ𝑡 𝜃𝑛𝑝 ) ≤Δ𝑡
𝑡𝑛

∫
𝑡𝑛−1

(𝜇
1
2 ‖div𝒖𝑡𝑡‖0(‖𝜃𝑛𝒖‖𝑎1 + ℎ(𝑀𝑛

𝒖
)
1
2 ) + 𝑐0‖𝑝𝑡𝑡‖0‖𝜃𝑛𝑝‖0) d𝑡.

Then the desired inequality is from the Cauchy-Schwarz inequality and 
the fact 𝜃𝑛

𝒖
, 𝜃𝑛
𝑝

are constants with respect to the time 𝑡. □

Theorem 4.3. Let (𝒖, 𝒘, 𝑝) and (𝒖𝑛
ℎ
, 𝒘𝑛

ℎ
, 𝑝𝑛
ℎ
) be the unique solutions to (1)

and (34) respectively. Assuming quasi-uniform of the mesh and sufficient 
regularity for the true solution, we have the following estimate:

max
1≤𝑛≤𝑁

(‖𝜃𝑛
𝒖
‖2
𝑎1

+ 𝑐0‖𝜃𝑛𝑝‖20)+Δ𝑡
𝑁∑
𝑛=1

‖𝜃𝑛
𝒘
‖2
𝑎2
≲ (Δ𝑡)2𝑒𝑇

𝑇

∫
0

𝑀𝑡𝑡 d𝑡+ (41)

ℎ2𝑒𝑇
⎛⎜⎜⎝ max
1≤𝑛≤𝑁𝑀

𝑛
𝒖
+

𝑇

∫
0

(𝑀𝒖𝑡 +𝑀𝒖 +𝑀𝒘) d𝑡
⎞⎟⎟⎠ .

Proof. Setting 𝒗ℎ = 𝛿𝑡𝜃𝑛𝒖 , 𝒛ℎ = 𝜃𝑛𝒘, and 𝑞ℎ = 𝜃𝑛𝑝 in (35)-(37), we have

𝑎ℎ,1(𝜃𝑛𝒖 , 𝛿𝑡𝜃
𝑛
𝒖
) + 𝑎ℎ,2(𝜃𝑛𝒘, 𝜃

𝑛
𝒘
) + 𝑎ℎ,3(𝛿𝑡𝜃𝑛𝑝 , 𝜃

𝑛
𝑝
) =𝑛1(𝛿𝑡𝜃𝑛𝒖) +𝑛2(𝜃𝑛𝒘) +𝑛3(𝜃𝑛𝑝 ),
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which, together with the definition 𝛿𝑡 and the Cauchy-Schwarz inequal-

ity, yields

1
2
‖𝜃𝑛

𝒖
‖2
𝑎1

+
𝑐0
2
‖𝜃𝑛
𝑝
‖20 + Δ𝑡‖𝜃𝑛

𝒘
‖2
𝑎2

≤ 1
2
‖𝜃𝑛−1

𝒖
‖2
𝑎1

+
𝑐0
2
‖𝜃𝑛−1
𝑝

‖2
+𝑛1(Δ𝑡 𝛿𝑡𝜃𝑛𝒖) +𝑛2(Δ𝑡 𝜃𝑛𝒘) +𝑛3(Δ𝑡 𝜃𝑛𝑝 ),

and therefore,

1
2
‖𝜃𝑁

𝒖
‖2
𝑎1

+
𝑐0
2
‖𝜃𝑁
𝑝
‖2 + 𝑁∑

𝑛=1
Δ𝑡‖𝜃𝑛

𝒘
‖2
𝑎2

≤
𝑁∑
𝑛=1

Δ𝑡(𝑛1(𝛿𝑡𝜃𝑛𝒖) +𝑛2
(
𝜃𝑛
𝒘
) +𝑛3(𝜃𝑛𝑝 )

)
, (42)

where we have used the fact 𝜃0
𝒖
= 𝟎, 𝜃0

𝑝
= 0.

For the first term in the right hand side of (42), we derive by directly 
calculation, the inequalities (20) and (38), and the Cauchy-Schwarz in-

equality, that

𝑁∑
𝑛=1

𝑛1(Δ𝑡 𝛿𝑡𝜃𝑛𝒖) =𝑁1 (𝜃𝑁
𝒖
) −

𝑁∑
𝑛=2

(𝑛1(𝜃𝑛−1𝒖
) −𝑛−11 (𝜃𝑛−1

𝒖
))

≲ ℎ(𝑀𝑁
𝒖
)
1
2 ‖𝜃𝑁

𝒖
‖𝑎1 −

𝑁∑
𝑛=2

(𝑛1(𝜃𝑛−1𝒖
) −𝑛−11 (𝜃𝑛−1

𝒖
))

≤ 𝐶ℎ2
⎛⎜⎜⎝𝑀

𝑁
𝒖

+

𝑇

∫
0

𝑀𝒖𝑡 d𝑡
⎞⎟⎟⎠+

Δ𝑡
8

𝑁∑
𝑛=2

‖𝜃𝑛−1
𝒖

‖2
𝑎1

+ 1
4
‖𝜃𝑁

𝒖
‖2
𝑎1
.

For the second term in (42), we have from the inequality (21) that

𝑁∑
𝑛=1

𝑛2(Δ𝑡 𝜃𝑛𝒘) ≲
𝑁∑
𝑛=1

Δ𝑡 ℎ(𝑀𝑛
𝒘
)
1
2 ‖𝜃𝑛

𝒘
‖𝑎2 ≤ 𝐶

𝑁∑
𝑛=1

Δ𝑡 ℎ2𝑀𝑛
𝒘
+ Δ𝑡

2

𝑁∑
𝑛=1

‖𝜃𝑛
𝒘
‖2
𝑎2

≤ 𝐶ℎ2
𝑇

∫
0

𝑀𝒘 d𝑡+ Δ𝑡
2

𝑁∑
𝑛=1

‖𝜃𝑛
𝒘
‖2
𝑎2
.

For the last term in the right hand side of (42), Lemma 4.2 implies

𝑁∑
𝑛=1

𝑛3(Δ𝑡 𝜃𝑛𝑝 ) ≤ 𝐶
𝑇

∫
0

((Δ𝑡)2𝑀𝑡𝑡 + ℎ2𝑀𝒖) d𝑡+Δ𝑡
𝑁∑
𝑛=1

(1
8
‖𝜃𝑛

𝒖
‖2
𝑎1

+
𝑐0
2
‖𝜃𝑛
𝑝
‖20) .

Plugging the above three inequalities into (42), we have

( 1
4
− Δ𝑡

8
)‖𝜃𝑁

𝒖
‖2
𝑎1

+ (
𝑐0
2

−
𝑐0Δ𝑡
4

)‖𝜃𝑁
𝑝
‖20 + Δ𝑡

2

𝑁∑
𝑛=1

‖𝜃𝑛
𝒘
‖2
𝑎2

≤ 𝐶ℎ2
⎛⎜⎜⎝𝑀

𝑁
𝒖

+

𝑇

∫
0

(𝑀𝒖𝑡 +𝑀𝒖 +𝑀𝒘) d𝑡
⎞⎟⎟⎠+𝐶Δ𝑡

2

𝑇

∫
0

𝑀𝑡𝑡 d𝑡

+ Δ𝑡
4

𝑁−1∑
𝑛=1

(‖𝜃𝑛
𝒖
‖2
𝑎1

+ 2𝑐0‖𝜃𝑛𝑝‖20).
Therefore, the discrete Gronwall inequality leads to the inequality 
(41). □

5. Numerical experiments

In this section, we shall present some numerical experiments to ver-

ify our theoretical results.

5.1. Example 1

In this first numerical test, we consider the poroelastic equations in 
Ω = [0, 1]2 with the time interval [0, 1]. The source terms 𝒇𝒖, 𝒇𝒘, and 𝑓𝑝
are chosen so that the exact solution (𝒖, 𝒘, 𝑝) is

𝒖(

𝒘

𝑝(

Le

ou

th

pe
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Vo
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Fig. 1. Illustrations of meshes  1,  2 ,  3,  4 .

𝒙, 𝑡) = 𝑡
(

sin(𝜋𝑥) sin(𝜋𝑦)
𝑥(1 − 𝑥)𝑦(1 − 𝑦)

)
,

(𝒙, 𝑡) = 𝜅
(

0
𝜋𝑒−𝑡 sin(𝜋𝑦)

)
,

𝒙, 𝑡) = 𝑒−𝑡(1 + cos(𝜋𝑦)).

t all the parameters in the equation (1) be unit. The tests are carried 
t on four types of meshes, that is, polygonal mesh  1 generated by 
e dual of the uniform triangle mesh, distorted polygonal mesh  2 by 
rturbing the interior nodes of  1, centroidal Voronoi mesh  3 using 
n Lloyd’s iterations [35], and non-convex mesh  4, respectively (see 
g. 1 for an illustration). The time step size is set to be equal to the 
eshsize.

In Tables 1–4, we list the errors in the displacement 𝜃𝑁
𝒖

measured 
 the discrete 𝐿2 norm ‖ ⋅ ‖0,ℎ and the energy norm ‖ ⋅ ‖𝑎1 , the errors 
 the velocity 𝜃𝑁

𝒘
with respect to ‖ ⋅ ‖𝑎2 and ‖ div ⋅‖0, and the errors 

 the pressure 𝜃𝑁
𝑝

and 𝑒𝑁
𝑝

under the 𝐿2 norm, at the final time on 
ogressively “refined meshes”. Here,

∶= 𝑰𝑽
ℎ
𝒖𝑁 − 𝒖𝑁

ℎ
, 𝜃𝑁

𝒘
∶= 𝑰𝑾

ℎ
𝒘𝑁 −𝒘𝑁

ℎ

𝜃𝑁
𝑝

∶= 𝐼𝑄
ℎ
𝑝𝑁 − 𝑝𝑁

ℎ
, 𝑒𝑁

𝑝
∶= 𝑝(𝑇 ) − 𝑝𝑁

ℎ
,

d the discrete 𝐿2 norm is defined for all 𝒗 ∈ 𝑽 ℎ as

‖20,ℎ ∶= ∑
𝐸∈ℎ

‖𝚷𝑜
𝐸
𝒗div‖2

𝐸
+ ‖ℎ 1

2 𝚷𝜕𝐸𝜕𝐸 (𝒗)‖2𝜕𝐸 .
e also plot (in log-log scale) the errors with respect to the mesh 
es for different types of meshes in Figs. 2-3. We observe that the 
rors ‖𝑒𝑁

𝑝
‖0 and ‖𝜃𝑁

𝒖
‖𝑎1 are of the order 𝑂(ℎ), while the errors ‖𝜃𝑁

𝑝
‖0, 

𝑁
𝒘
‖𝑎2 , ‖𝜃𝑁

𝒖
‖0,ℎ are of the order 𝑂(ℎ2). Superconvergence for the error 

iv𝜃𝑁
𝒘
‖0 is observed on the three types of meshes except the centroidal 

ronoi meshes.

2. Example 2

In the second example, we do the tests to show the dependence of 
r method with respect to the Lamé constant 𝜆 and the constrained 
ecific storage coefficient 𝑐0. On the square [0, 1]2 and the time interval 
, 1], the test solution reads as
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Fig. 2. The loglog plots of errors w.r.t the mesh sizes for the dual meshes  1 (left), for the distorted dual meshes  2 (right).
38
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Fig. 3. The loglog plots of errors w.r.t the mesh sizes for the centroidal Voronoi meshes  3 (left), for the non-convex meshes  4 (right).
39
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Table 1

The errors on the dual mesh  1.

ℎ ||𝜃𝑁
𝒖
||0,ℎ ||𝜃𝑁

𝒖
||𝑎1 ||𝜃𝑁

𝒘
||𝑎2 ||div𝜃𝑁

𝒘
||0 ||𝜃𝑁

𝑝
||0 ||𝑒𝑁

𝑝
||0

2.50e-01 4.87e-02 9.35e-01 1.95e-01 3.64e-01 4.75e-03 1.63e-01

1.25e-01 1.45e-02 5.19e-01 4.45e-02 8.02e-02 1.79e-03 8.33e-02

6.25e-02 3.95e-03 2.71e-01 1.07e-02 1.97e-02 5.05e-04 4.20e-02

3.12e-02 1.03e-03 1.38e-01 2.64e-03 5.69e-03 1.31e-04 2.11e-02

1.56e-02 2.63e-04 6.95e-02 6.56e-04 1.82e-03 3.31e-05 1.05e-02

Table 2

The errors on the distorted dual mesh  2 .

ℎ ||𝜃𝑁
𝒖
||0,ℎ ||𝜃𝑁

𝒖
||𝑎1 ||𝜃𝑁

𝒘
||0 ||div𝜃𝑁

𝒘
||0 ||𝜃𝑁

𝑝
||0 ||𝑒𝑁

𝑝
||0

2.50e-01 5.14e-02 9.63e-01 2.08e-01 3.91e-01 4.82e-03 1.67e-01

1.25e-01 1.94e-02 6.20e-01 6.74e-02 1.97e-01 2.37e-03 9.36e-02

6.25e-02 6.24e-03 3.58e-01 1.79e-02 4.84e-02 8.47e-04 5.00e-02

3.12e-02 1.72e-03 1.88e-01 4.53e-03 1.12e-02 2.37e-04 2.55e-02

1.56e-02 4.46e-04 9.57e-02 1.14e-03 3.35e-03 6.12e-05 1.29e-02

Table 3

The errors on the centroidal Voronoi mesh  3.

ℎ ||𝜃𝑁
𝒖
||0,ℎ ||𝜃𝑁

𝒖
||𝑎1 ||𝜃𝑁

𝒘
||0 ||div𝜃𝑁

𝒘
||0 ||𝜃𝑁

𝑝
||0 ||𝑒𝑁

𝑝
||0

2.50e-01 4.77e-02 9.12e-01 1.87e-01 5.45e-01 4.84e-03 1.61e-01

1.25e-01 1.30e-02 4.76e-01 4.58e-02 2.17e-01 1.38e-03 8.03e-02

6.25e-02 3.27e-03 2.41e-01 1.14e-02 7.14e-02 3.97e-04 4.12e-02

3.12e-02 8.28e-04 1.24e-01 2.84e-03 3.47e-02 9.78e-05 2.04e-02

1.56e-02 1.90e-04 6.07e-02 6.83e-04 1.44e-02 2.30e-05 1.01e-02

Table 4

The errors on the non-convex polygonal mesh ( 4).

ℎ ||𝜃𝑁
𝒖
||0,ℎ ||𝜃𝑁

𝒖
||𝑎1 ||𝜃𝑁

𝒘
||0 ||div𝜃𝑁

𝒘
||0 ||𝜃𝑁

𝑝
||0 ||𝑒𝑁

𝑝
||0

2.50e-01 5.84e-02 1.12e+00 2.39e-01 2.24e-01 5.85e-03 1.65e-01

1.25e-01 1.71e-02 5.99e-01 6.06e-02 5.98e-02 1.66e-03 8.25e-02

6.25e-02 4.56e-03 3.06e-01 1.55e-02 1.82e-02 4.48e-04 4.13e-02

3.12e-02 1.17e-03 1.54e-01 3.91e-03 5.71e-03 1.15e-04 2.07e-02

1.56e-02 2.96e-04 7.73e-02 9.83e-04 1.85e-03 2.90e-05 1.03e-02

Table 5

The errors for different Lamé constant 𝜆 on the dual mesh ( 1).

𝜆 ℎ ‖𝜃𝑁
𝒖
‖0,ℎ ‖𝜃𝑁

𝒖
‖𝑎1 ‖𝜃𝑁

𝒘
‖𝑎2 ‖div𝜃𝑁

𝒘
‖0 ‖𝜃𝑁

𝑝
‖0 ‖𝑒𝑁

𝑝
‖0

1𝑒2 2.50e-01 3.96e-02 1.96e+00 4.28e-01 1.39e-01 7.80e-02 3.67e-01

1.25e-01 9.32e-03 1.15e+00 1.21e-01 6.68e-02 2.80e-02 2.08e-01

6.25e-02 2.55e-03 6.08e-01 3.24e-02 2.95e-02 7.67e-03 1.10e-01

3.13e-02 7.05e-04 3.11e-01 8.48e-03 1.35e-02 1.85e-03 5.61e-02

1𝑒8 2.50e-01 3.96e-02 1.96e+00 4.28e-01 1.37e-01 7.81e-02 3.67e-01

1.25e-01 9.32e-03 1.15e+00 1.21e-01 6.61e-02 2.80e-02 2.08e-01

6.25e-02 2.55e-03 6.08e-01 3.23e-02 2.93e-02 7.70e-03 1.10e-01

3.12e-02 7.05e-04 3.11e-01 8.47e-03 1.34e-02 1.87e-03 5.61e-02
𝒖(𝑥, 𝑡) = 𝑒𝑡
(

sin(𝜋𝑥) cos(𝜋𝑦)
−cos(𝜋𝑥) sin(𝜋𝑦)

)
+ 𝑒𝑡

2𝜆

(
𝑥2

𝑦2

)
,

𝒘 = −𝜅∇𝑝, 𝑝(𝑥, 𝑡) = 𝑒𝑡(sin(𝜋𝑥) sin(𝜋𝑦) − 4∕𝜋2).

5.2.1. Tests for the Lamé constant 𝜆
To test the robustness with respect to 𝜆, we set all the parameters to 

be 1 except the Lamé constant 𝜆. In Table 5, we list the errors on the 
dual mesh  1 with respect two different 𝜆. It is shown that the errors 
are almost the same on the same mesh and will not be deteriorated 
when 𝜆 becomes larger.

We also do the tests using the P2-RT0-P0 finite element approxi-

mation for 𝜆 = 102 and 𝜆 = 108 respectively. The errors are reported in 
Table 6. It is viewed that the error ‖𝜃𝑁

𝒖
‖𝑎1 depends on 𝜆.

5.2.2. Tests for the parameter 𝑐0
We then fix 𝜇 = 𝜆 = 𝛼 = 𝜅 = 1 and do tests for 𝑐0 = 1𝑒−2 and 𝑐0 = 1𝑒−6

respectively. By comparing the results in Table 7, the errors do not 
40
depend on 𝑐0. If P2-RT0-P0 element is used for the discretization, it 
seems the decay of the error ‖𝜃𝑁

𝑝
‖0 is of 𝑂(ℎ0.75) from Table 8.

5.3. Example 3

In order to show the performance of nonphysical pressure oscil-

lations, we test the cantilever bracket problem (see, e.g., [38]). The 
problem is defined on a unit square [0, 1]2. The boundary conditions are 
imposed as follows. The displacement is set to be zero at the left side 
𝑥 = 0, and a traction boundary condition is used at the other sides, i.e., 
(𝜎(𝒖) − 𝛼𝑝𝕀)𝒏 = [0, −1]𝝉 for 𝑦 = 1, and (𝜎(𝒖) − 𝛼𝑝𝕀)𝒏 = [0, −1]𝝉 for the sides 
𝑦 = 0 and 𝑥 = 1. The outer normal component of the flow velocity is as-

sumed to be zero on the entire boundary. The material parameters is 
set as 𝛼 = 0.93, 𝑐0 = 0, 𝜅 = 10−7, 𝐸 = 105, 𝜈 = 0.4. All the other datas, in-

cluding the loads and the initial conditions, are assumed to be zeros. In 
Fig. 4, we plot the numerical pressure at the first step (Δ𝑡 = 0.001). It is 
observed that there is no spurious oscillations.
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Table 6

The errors for different Lamé constant 𝜆 using the P2-RT0-P0 element.

𝜆 ℎ ‖𝜃𝑁
𝒖
‖0,ℎ ‖𝜃𝑁

𝒖
‖𝑎1 ‖𝜃𝑁

𝒘
‖𝑎2 ‖div𝜃𝑁

𝒘
‖0 ‖𝜃𝑁

𝑝
‖0 ‖𝑒𝑁

𝑝
‖0

1𝑒2 2.50e-01 1.13e-02 3.60e-01 2.52e-02 5.20e-04 2.86e-03 2.57e-03

1.25e-01 1.74e-03 7.62e-02 6.45e-03 7.18e-05 6.63e-04 6.59e-04

6.25e-02 1.79e-04 1.29e-02 1.68e-03 9.31e-06 1.22e-04 1.66e-04

3.12e-02 1.37e-05 1.94e-03 4.77e-04 1.18e-06 2.11e-05 4.15e-05

1𝑒8 2.50e-01 1.48e-02 4.01e+02 2.52e-02 5.25e-04 2.88e-03 2.57e-03

1.25e-01 3.57e-03 1.04e+02 6.45e-03 7.20e-05 6.72e-04 6.59e-04

6.25e-02 8.83e-04 2.63e+01 1.68e-03 9.31e-06 1.26e-04 1.66e-04

3.12e-02 2.20e-04 6.58e+00 4.72e-04 1.18e-06 2.09e-05 4.15e-05

Table 7

The errors for different 𝑐0 on the dual mesh ( 1).

𝑐0 ℎ ‖𝜃𝑁
𝒖
‖0,ℎ ‖𝜃𝑁

𝒖
‖𝑎1 ‖𝜃𝑁

𝒘
‖𝑎2 ‖div𝜃𝑁

𝒘
‖0 ‖𝜃𝑁

𝑝
‖0 ‖𝑒𝑁

𝑝
‖0

1𝑒−2 2.50e-01 5.74e-03 2.75e-01 5.87e-02 5.76e-02 9.40e-03 4.94e-02

1.25e-01 1.41e-03 1.60e-01 1.70e-02 2.68e-02 3.22e-03 2.81e-02

6.25e-02 3.84e-04 8.47e-02 4.88e-03 1.29e-02 7.25e-04 1.48e-02

3.12e-02 1.04e-04 4.33e-02 1.58e-03 6.34e-03 9.29e-05 7.59e-03

1𝑒−6 2.50e-01 5.74e-03 2.75e-01 5.87e-02 5.76e-02 9.40e-03 4.94e-02

1.25e-01 1.41e-03 1.60e-01 1.70e-02 2.69e-02 3.22e-03 2.81e-02

6.25e-02 3.84e-04 8.47e-02 4.87e-03 1.29e-02 7.26e-04 1.48e-02

3.12e-02 1.04e-04 4.33e-02 1.57e-03 6.34e-03 9.33e-05 7.59e-03

Table 8

The errors for 𝑐0 = 1𝑒−6 using the P2-RT0-P0 element.

ℎ ‖𝜃𝑁
𝒖
‖0,ℎ ‖𝜃𝑁

𝒖
‖𝑎1 ‖𝜃𝑁

𝒘
‖𝑎2 ‖div𝜃𝑁

𝒘
‖0 ‖𝜃𝑁

𝑝
‖0 ‖𝑒𝑁

𝑝
‖0

1.25e-01 3.03e-04 1.44e-02 7.91e-03 2.86e-04 4.05e-04 6.59e-04

6.25e-02 6.59e-05 6.93e-03 2.79e-03 3.50e-05 3.10e-04 1.66e-04

3.12e-02 1.47e-05 3.47e-03 1.20e-03 4.33e-06 1.96e-04 4.15e-05

1.56e-02 3.21e-06 1.74e-03 5.69e-04 5.39e-07 1.09e-04 1.04e-05

Fig. 4. The numerical pressure at 𝑇 = 0.001 for the cantilever bracket problem.
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