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ABSTRACT
Garbled Circuit (GC) is themain practical 2PC technique, yet despite

great interest in its performance, GC notoriously resists improve-

ment. Essentially, we only know how to evaluate GC functions

gate-by-gate using encrypted truth tables; given input labels, the

GC evaluator decrypts the corresponding output label.

Interactive protocols enjoy more sophisticated techniques. For

example, we can expose to a party a (masked) private value. The

party can then perform useful local computation and feed the re-

sulting cleartext value back into the MPC. Such techniques are not

known to work for GC.

We show that it is, in fact, possible to improve GC efficiency,

while keeping its round complexity, by exposing masked private

values to the evaluator. Our improvements use garbled one-hot en-
codings of values. By using this encoding we improve a number of

interesting functions, e.g., matrix multiplication, integer multiplica-

tion, field element multiplication, field inverses and AES S-Boxes,

integer exponents, and more. We systematize our approach by pro-

viding a framework for designing such GC modules.

Our constructions are concretely efficient. E.g., we improve bi-

nary matrix multiplication inside GC by more than 6× in terms of

communication and by more than 4× in terms of WAN wall-clock

time.

Our improvement circumvents an important GC lower bound

and may open GC to further improvement.
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1 INTRODUCTION
Garbled circuits (GCs) allow two mutually untrusting parties to

compute arbitrary functions of their private inputs while revealing

only the functions’ outputs. Today, cryptographers view GC as

a cryptographic primitive rather than a protocol. The primitive

can be plugged into many protocols and is foundational in secure

multiparty computation (MPC).

The GC primitive only allows the circuit generator 𝐺 and evalu-

ator 𝐸 to communicate a constant number of times. This restriction

makes GC difficult to improve. Indeed, since Yao first described GC,

only a handful of fundamental improvements have been made.

GCs are usually structured as encryptions of Boolean circuits

composed of XOR and AND gates. Most prior work has focused

on improving these gates. The most relevant cost is bandwidth

consumption: 𝐺 must send to 𝐸 an ‘encryption’ of the circuit, and

this transmission is typically understood to be the GC bottleneck.

The widely used half-gates [ZRE15] garbling requires 𝐺 send to

𝐸 two ciphertexts per AND gate; XOR gates are communication

free [KS08]. [ZRE15] also established a matching lower bound on

AND gate communication that is difficult to circumvent
1
.

Thus, it is natural to target GC evaluation of more complex

functions. Thus, searching for complex functions that can be quickly

computed in GC became a natural research direction. Nevertheless,

only two core-GC improvements have subsequently been found:

Arithmetic GCs [BMR16] show that Free XOR [KS08] can be

generalized to achieve free additive homomorphisms for arbitrary
fields. Using this technique, we can efficiently add arithmetic values

inside GC. Unfortunately, both multiplying field values and con-

verting between fields is expensive, since these operations require

𝐺 to send to 𝐸 a number of ciphertexts proportional to the size of

the field. Thus, arithmetic GCs only improve communication in

very specific scenarios.

Stacked garbling [HK20a] improves the performance of GCs

for functions that include conditional branching. The technique

shows that 𝐺 needs to send a number of ciphertexts proportional

to only the longest program execution path, not to the entire cir-

cuit. Stacked garbling dramatically improves some functions, but

requires that these functions feature exclusive conditional behavior.

Our work.We show that a number of useful functions can be

greatly improved by operating over a garbled one-hot encoding.
Specifically, suppose the GC holds two bit vectors 𝑎 ∈ {0, 1}𝑛

and 𝑏 ∈ {0, 1}𝑚 . Moreover, suppose 𝐸 knows 𝑎 in cleartext. Our

central primitive allows 𝐺 and 𝐸 to compute the following 2
𝑛 ×𝑚

1
“Three-halves” [RR21], a recent improvement to half gates developed concurrently

with our work, requires only 1.5 ciphertexts per AND gate. This new approach cir-

cumvents the letter, but not the spirit, of the [ZRE15] lower bound by operating on

portions of garbled labels. The core of the lower bound still holds and implies further

improvements will be difficult.
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Application Comm. Improvement
128 × 128 binary matrix mult. 6.2×
32-bit mult. 1.5×
GF(28) mult. 2.2×
AES S-Box 1.1×
32-bit 𝑥𝑦 for public 𝑥 11.8×
32-bit 𝑥 mod 𝑝 for public 𝑝 3.3×

Figure 1: Use cases that we implemented where a one-hot
encoding improves over a standard Boolean circuit imple-
mented with [ZRE15]. We list communication reduction as
compared to a standard circuit. See Section 7 for details.

matrix inside the GC extremely efficiently:

0 0 · · · 0

.

.

.

0 0 · · · 0

𝑏0 𝑏1 · · · 𝑏𝑚−1
0 0 · · · 0

.

.

.

0 0 · · · 0


(1)

In this matrix, row 𝑎, viewed as 𝑎 ∈ {0, 2𝑛−1}, is the only non-

zero row.

At first glance, this primitive, which we call a one-hot outer

product, may seem incredibly contrived and niche. It is not.

This primitive can be used to implement a number of important

functions. We use it to improve the GC bandwidth consumption of

matrix multiplication, integer multiplication, field multiplication,

field inverses and AES S-Boxes, integer exponents, and more. We

believe other efficient applications of the technique are likely.

We develop a framework for designing such ready-to-use mod-

ules. Once designed, these modules are freely composable in GC.

1.1 Contribution
Non-interactivity is a key advantage of GC, as compared to other

MPC techniques, such as GMW. However, non-interactivity also

severely limits the set of GC building blocks. Essentially, we only

know how to evaluate GC functions by using encrypted truth tables;

given input labels, 𝐸 decrypts the corresponding output label.

In this work, we show that it is possible to improve GC efficiency

by exposing masked private values to 𝐸. By doing so, we circumvent
the [ZRE15] GC lower bound, and openGC for further improvement.

In more detail, we:

(1) Introduce a new GC gate primitive that computes a one-

hot outer product (see Equation (1)) for only 2(𝑛 − 1) +𝑚
ciphertexts.

(2) Provide numerous constructions that utilize this new primi-

tive to implement improved GC modules (see Figure 1 and

Section 7).

(3) Formalize a framework that allows new one-hot-based mod-

ules to be easily plugged in. Once implemented, these new

modules can be used as if they are ordinary gates.

(4) Implement our approach in C++ and provide experimental

evaluation (see Section 7).

1.2 High Level Intuition
Let H(·) denote the function that maps a bit vector to its corre-

sponding one-hot encoding. That is, for 𝑎 ∈ {0, 1}𝑛 , H(𝑎) is a
length-2

𝑛
bit vector that is zero everywhere, except at index 𝑎,

where it is one. Let 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑚 be two bit vectors

and suppose 𝐸 holds garblings of these two values. Our lowest

level primitive allows 𝐸 to efficiently construct a garbling of the

following matrix (see also Equation (1)):

H(𝑎) ⊗ 𝑏

where ⊗ denotes the vector outer product operation. This matrix

has dimension 2
𝑛 ×𝑚, yet the parties construct the output using

only O(𝑛 +𝑚)𝜅 bits of communication, for security parameter 𝜅.

Our construction does have one limitation: 𝐸 must know 𝑎. Nev-

ertheless, we build a number of useful GC constructions from this

low-level primitive, even if 𝐸 does not know the input.

Our constructions use two key ideas:

First, the garbled one-hot encoding of a value is, in a sense, ‘fully

homomorphic’. Namely, letT (𝑓 ) denote the truth table (represented
as a matrix) for arbitrary function 𝑓 . The following equality holds:

T (𝑓 )⊺ · H (𝑎) = 𝑓 (𝑎)

Thus, if 𝑓 is public and 𝐸 knows 𝑎, then we can map a garbling of

H(𝑎) to a garbling of 𝑓 (𝑎) without communication. Specifically, the
parties locally construct and apply T (𝑓 )⊺ via Free XOR [KS08].

Second, we can reveal in cleartext to 𝐸 masked intermediate

circuit values. This way, 𝐸 learns nothing, yet can use the above

one-hot primitive to compute 𝑓 of masked 𝑎. In many useful cases

we can use simple algebra to cheaply undo the masking and obtain

𝑓 (𝑎) inside GC, where 𝐸 does not know 𝑎.

2 RELATED WORK
Ours is in a line of works that improve the practical performance

of GC. We review other works in this line. Our emphasis is commu-
nication reduction, which is the GC bottleneck.

Practical GC research has long focused on efficient evaluation

of AND/XOR gates. [NPS99] gave the first GC communication

improvement: garbled row reduction. Much later [KS08], gave the

important Free XOR optimization which eliminated the communica-

tion cost of XOR gates. Garbled gateswere slowly improved [PSSW09,

KMR14], and the half-gates technique [ZRE15] reduced AND gate

communication cost to only two ciphertexts. Subsequently, [GLNP18]

showed that similar costs (two ciphertexts per AND and one per

XOR) are possible even when assuming only one-way functions, as

opposed a circular correlation robust hash function. Very recently,

a new “three-halves” garbling technique showed that only 1.5 ci-

phertexts are needed per AND gate [RR21]. However, “three-halves”

has not yet been implemented, so we focus our comparison on the

widely-available half-gates technique. We mention that [RR21]’s

construction uses Free XOR based GC labels, and so is compatible

with and complementary to our technique: one-hot gates can be

composed with 1.5 ciphertext AND gates in a single circuit.

Not only have there been few core-GC improvements, but those

improvements have also been small. For example, half-gates im-

proved over the prior state-of-the-art [KMR14] by only 1 − 1.5×
(1.5× is for the pessimal case where [KMR14]’s heuristics fail).
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Recently, GC performance improvement has proceeded in two

new directions:

(1) Consider more expressive fields. One elegant direction views

a circuit as an object that operates over the Boolean field.
With this perspective, it is natural to consider whether larger

finite fields are also candidates for GC evaluation. [BMR16]

showed that they indeed are candidates, and gave construc-

tions that add/multiply in a small arithmetic field and even

that convert between different fields. Unfortunately, multi-

plication/conversion gates grow linearly in the size of the
considered fields, and so rapidly become impractical. Arith-

metic GCs are, unfortunately, only useful in specific settings.

(2) Consider more expressive functions. Since an improved AND

gate seems unlikely, it is natural to consider more complex

functions. However, such improvements are elusive in GC,

and, to our knowledge, only one has been made: stacked gar-

bling [HK20a, HK21] shows that GC communication can be

improved for functions with exclusive conditional behavior.

Our work falls into the second category.

Non-GC Expressive Functions. In other MPC protocols, it is possi-

ble to improve beyond considering simple XOR/AND or ADD/MUL

gates. For example, other protocols allow (1) efficient lookup-table-

based approaches [IKM
+
13, DKS

+
17, KKW17, DNNR17]

2
, (2) ef-

ficient linear algebra operations, e.g. [HKP20, ADI
+
17, PSSY20,

RWT
+
18], or (3) custom designed subprotocols, such as fast field

inverse computation [BIB89]. Our work brings a flavor of such

techniques to GC.

Puncturable PRFs and MPC. Our one-hot outer product construc-
tion uses a well-known puncturable PRF derived from the classic

GGM PRF [GGM84]. This same idea is often applied in MPC, for

example to help achieve efficient OT extension [BCG
+
19, YWL

+
20].

Our work shows that this primitive can be directly and elegantly

plugged into GC and that the resulting primitive is powerful.

GC frameworks. Part of our contribution is a framework for build-
ing new GC modules from one-hot outer products. The generally

accepted GC framework, specified by [BHR12], defines garbling

schemes. We clarify that our framework and [BHR12]’s framework

achieve different goals. The [BHR12] framework provides an ab-

straction barrier between high level protocols and garbling schemes.

Our framework instead supports new GCmodules which are hosted

inside a specific garbling scheme. Indeed, our framework is proved

secure in the [BHR12] framework.

Previous work, e.g., [KNR
+
17, GLMY16] viewed their circuits as

modules. The similarity between these works and ours is superficial.

They build modular GC components that are individually garbled,

then dynamically stitched together into a full GC for improved

performance. In contrast, our modules enforce scope of private

variables, and facilitate clean security proofs of circuits composed

of our one-hot gates.

2
Technically, large lookup tables can be implemented in GC by enumerating garbled

rows, but this is expensive.

3 NOTATION AND ASSUMPTIONS
We list some simple notation here. We elaborate on more involved

notation in the following subsections.

• 𝜅 is our computational security parameter, e.g. 128.

• 𝐺 is the GC generator. We refer to 𝐺 by he/him.

• 𝐸 is the GC evaluator. We refer to 𝐸 by she/her.

• 𝑥 ≜ 𝑦 denotes that 𝑥 is equal to 𝑦 by definition.

• 𝑥
𝑐
= 𝑦 denotes that 𝑥 is computationally indistinguishable

from 𝑦.

• We work with vectors and matrices:

– If 𝑣 is a vector, then 𝑣𝑖 denotes the 𝑖th entry in 𝑣 . If𝑚 is

a matrix, then𝑚𝑖, 𝑗 , denotes the entry at the 𝑖th row and

𝑗th column. We use zero-based indexing.

– 𝑚⊺
denotes the transpose of𝑚.

– 𝑥 ⊗ 𝑦 denotes the outer product of vectors 𝑥 and 𝑦. The

outer product can be defined as follows: 𝑥 ⊗ 𝑦 ≜ 𝑥 · 𝑦⊺.
• LetD be a distribution. We write 𝑥 ← D to denote that 𝑥 is

drawn from D.

• We overload the notion of a circuit wire to hold a matrix of

bits of arbitrary dimension. We sample wires in a natural

manner from general D. Namely, we sample D, encode the

result in binary, then store the result onto the wires.

• [𝑛] denotes the sequence of natural numbers 0, 1, ..., 𝑛 − 1.

3.1 One-Hot Encoding and Truth Tables
Recall from Section 1.2 that our central construction computes the

one-hot outer productH(𝑎) ⊗ 𝑏. Moreover, we apply functions to

one-hot encodings via truth tables. We define appropriate notation:

Definition 3.1 (One-hot encoding). Let 𝑎 ∈ {0, 1}𝑛 be a length-𝑛

bitstring. The one-hot encoding of 𝑎 is a length-2
𝑛
bitstring denoted

H(𝑎) such that for all 𝑖 ∈ [𝑛]:

H(𝑎)𝑖 ≜
{
1 if i = 𝑎

0 otherwise

Definition 3.2 (Truth table). Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 be a func-

tion. The truth table for 𝑓 , denoted T (𝑓 ), is a 2𝑛 ×𝑚 matrix of bits

such that:

T (𝑓 )𝑖, 𝑗 ≜ 𝑓 (𝑖) 𝑗
That is, the 𝑖th row of T (𝑓 ) is the bitstring 𝑓 (𝑖).

We extensively use the following simple lemma that relates truth

tables and one-hot encodings:

Lemma 3.3 (Evaluation by truth table). Let 𝑓 : {0, 1}𝑛 →
{0, 1}𝑚 be an arbitrary function. Let 𝑎 ∈ {0, 1}𝑛 be a bitstring:

T (𝑓 )⊺ · H (𝑎) = 𝑓 (𝑎)

Proof. Straightforward from Definitions 3.1 and 3.2. Informally,

the one-hot vector “selects” row 𝑎 of the truth table. □

3.2 GC Notation: Garbled Sharings
In this work, we forgo the standard GC notation of garbled labels in

favor of garbled sharings of cleartext values held by 𝐺 and 𝐸. This

will be convenient for handling vectors and matrices of bits. We

stress that the GC mechanism, including communication rounds,

remains completely unchanged.
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We use Free XOR style garbled circuit labels [KS08]. In the GC,

𝐺 and 𝐸 hold sharings of each circuit wire. Each sharing consists of

two shares, one held by𝐺 and one by 𝐸.𝐺 samples a uniform value

Δ ∈ {0, 1}𝜅 ; Δ is a value that is global to all wires in the circuit.

Then, for each wire value 𝑎 ∈ {0, 1}, 𝐺 samples a uniform value

𝐴 ∈ {0, 1}𝜅 . 𝐴 is 𝐺 ’s share; 𝐸 holds 𝐴 ⊕ 𝑎Δ. Hence, the two parties

together hold an XOR share of 𝑎Δ. We will say that gates “output” a

sharing. This corresponds to the traditional notation of 𝐸 obtaining

a valid wire label which can be used in continued GC evaluation.

Definition 3.4 (Garbled sharing). Let 𝑎 ∈ {0, 1} be a bit. Let𝐴, 𝐵 ∈
{0, 1}𝜅 be two bitstrings. We say that the pair (𝐴, 𝐵) is a garbled
sharing of 𝑎 over (usually implicit) Δ ∈ {0, 1}𝜅 if 𝐴 ⊕ 𝐵 = 𝑎Δ. We

denote a garbled sharing of 𝑎 by writing J𝑎K:

J𝑎K ≜ (𝐴, 𝐵) such that 𝐴 ⊕ 𝐵 = 𝑎Δ

Each of the two elements in the sharing are called shares. In the

GC,𝐺 holds one share and 𝐸 holds the other. We say that a garbled

sharing is uniform if one share is drawn uniformly from {0, 1}𝜅 .
We extend sharing notation to vectors/matrices: a sharing of a

matrix is a matrix of sharings. I.e., for a matrix 𝑎 ∈ {0, 1}𝑛×𝑚 :

J𝑎K =

u

w
v

𝑎0,0 . . . 𝑎0,𝑚−1
.
.
.

. . .

𝑎𝑛−1,0 𝑎𝑛−1,𝑚−1

}

�
~ ≜


J𝑎0,0K . . . J𝑎0,𝑚−1K

.

.

.
. . .

J𝑎𝑛−1,0K J𝑎𝑛−1,𝑚−1K


Note, XOR is homomorphic over garbled sharings [KS08]:

J𝑎K ⊕ J𝑏K = J𝑎 ⊕ 𝑏K

More generally, we can homomorphically apply arbitrary linear

functions to sharings. Specifically, if 𝑓 is a linear map, then we

overload function application syntax as follows:

𝑓 (J𝑎K) = 𝑓 ((𝐴,𝐴 ⊕ 𝑎Δ)) ≜ (𝑓 (𝐴), 𝑓 (𝐴 ⊕ 𝑎Δ))

That is, the parties apply (linear) 𝑓 to a sharing by locally applying

𝑓 to their respective shares. This generates a correct output sharing:

Lemma 3.5. Let 𝑓 be a linear map and let J𝑎K be a sharing. Then

𝑓 (J𝑎K) = J𝑓 (𝑎)K

Proof.

𝑓 (J𝑎K)
= 𝑓 ((𝐴,𝐴 ⊕ 𝑎Δ)) Definition 3.4

= (𝑓 (𝐴), 𝑓 (𝐴 ⊕ 𝑎Δ)) function application to sharing

= (𝑓 (𝐴), 𝑓 (𝐴) ⊕ 𝑓 (𝑎)Δ) 𝑓 is a linear map

= J𝑓 (𝑎)K Definition 3.4 □

We apply the above fact often, most notably when applying truth

tables to shared one-hot vectors. Specifically for arbitrary function

𝑓 , Lemma 3.3 and Lemma 3.5 together imply the following:

T (𝑓 )⊺ · JH(𝑎)K = J𝑓 (𝑎)K

3.2.1 𝐺 constants. It is easy for 𝐺 to inject secret constants into

the GC. Specifically to input a constant 𝑐 , 𝐸 takes as her share 0

and 𝐺 takes 𝑐Δ: note that this matches Definition 3.4. We use such

constants to help eliminate introduced masks.

3.2.2 Share colors. GC techniques use garbled shares to decrypt

ciphertexts arranged in tables. The classic point and permute tech-

nique [BMR90] shows that 𝐸 need not try to decrypt each row of a

table, but rather can use share “pointer bits” to directly decrypt the

appropriate row. Per [ZRE15], we refer to these pointers as colors.
Namely, each share has a single distinguished bit that we refer to

as the color. The key property is that on each wire, 𝐸’s two possible

shares have different colors, and the color of a share is independent

of the cleartext value that the share represents.

Formally, we ensure that the global value Δ has a one in its least

significant bit. We define a procedure Color that, when given a

bit sharing J𝑎K, returns to 𝐺 and 𝐸 the least significant bit of their

respective shares. Note the following:

Color(J𝑎K) = Color((𝐴,𝐴 ⊕ 𝑎Δ))
= (Color(𝐴),Color(𝐴 ⊕ 𝑎Δ)) = (Color(𝐴),Color(𝐴) ⊕ 𝑎)

That is, if both parties compute the color of their respective shares,

the result is an XOR secret share of the cleartext value. We extend

the Color procedure over vectors and matrices: the color of a matrix

of sharings is the matrix of colors of its elements.

3.3 Model and Cryptographic Assumptions
We use the Free XOR technique [KS08] and so we assume a circular

correlation robust hash function 𝐻 [CKKZ12]. In practice, we can

instantiate 𝐻 using fixed-key AES [GKWY20, BHKR13].

Formally, we construct a garbling scheme [BHR12], which is a

tuple of algorithms that can be plugged into GC protocols. Thus

we do not need to formally consider a specific threat model, e.g.

semi-honest adversaries. Informally, 𝐸 and 𝐺 can be understood as

semi-honest. Our implementation (see Section 6) uses our garbling

scheme to instantiate a semi-honest protocol.

4 TECHNICAL OVERVIEW
In this section, we present our techniques with sufficient detail

to understand our contribution. Section 5 later presents our con-

structions in formal detail with appropriate theorems and proofs,

and Section 7 shows a number of interesting functions that can be

computed efficiently from our technique.

Let 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑚 be two strings. Recall from Sec-

tion 1.2 that our core primitive efficiently computes the following:

J𝑎K, J𝑏K ↦→ JH(𝑎) ⊗ 𝑏K

To use the primitive, 𝐸 must know in cleartext the value 𝑎. We first

sketch the construction, then show how it can be used.

4.1 Garbled One-Hot Encoding J𝑎K ↦→ JH(𝑎)K
We first describe how to compute J𝑎K ↦→ JH(𝑎)K when 𝐸 knows 𝑎.

The idea marries GC with a well-known puncturable PRF built from

the classic GGM PRF [GGM84]. Puncturable PRFs are useful in a

number of settings, see e.g. [BW13, KPTZ13, BGI14, Ds17, BCG
+
19,

SGRR19]. The technique is well known, but we nevertheless sketch

it here and emphasize its natural compatibility with GC sharings.

𝐺 first generates a full binary tree of PRG seeds with 2
𝑛
leaves

in the natural manner. Namely, each node’s seed is derived by

evaluating a PRG on its parent’s seed. Let 𝑆𝑖, 𝑗 denote the 𝑗th seed
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on level 𝑖 . Let the root of the overall tree reside in level −1. Let 𝐿𝑗
be a pseudonym for the 𝑗th leaf seed: 𝐿𝑗 ≜ 𝑆𝑛−1, 𝑗 .

Our goal is to deliver to 𝐸 all leaf seeds 𝐿𝑗≠𝑎 . Recall that𝐺 and 𝐸

hold garbled shares of J𝑎K. Let J𝑎𝑖K = (𝐴𝑖 , 𝐴𝑖 ⊕ 𝑎𝑖Δ) be the shares
of the individual bits in 𝑎. Recall, 𝐸 knows each 𝑎𝑖 in cleartext but

does not know Δ. We can use these shares to encrypt values that

help 𝐸 recover each seed in the binary tree, except the seeds along

the path to 𝐿𝑎 .

As a base case,𝐺 simply defines the seeds on level zero as follows:

𝑆0,0 ≜ 𝐴0 ⊕ Δ 𝑆0,1 ≜ 𝐴0

Thus, 𝐸 trivially obtains exactly one seed on level zero.

Now, consider arbitrary level 𝑖 . Assume 𝐸 has all seeds on level 𝑖

except for one (along the path to 𝐿𝑎). By applying a PRG to these

seeds, 𝐸 can recover all seeds in level 𝑖 + 1 save two.
To deliver to 𝐸 the missing seed “just off” the path to 𝐿𝑎 ,𝐺 sends

two encrypted values. Let Even (resp. Odd) denote the XOR sum

of all seeds 𝑆𝑖+1, 𝑗 for even 𝑗 (resp. for odd 𝑗 ). 𝐺 sends to 𝐸 Even

encrypted by𝐴𝑖 ⊕ Δ and Odd encrypted by𝐴𝑖 . Thus, 𝐸 can decrypt

Even if the seed just off the path to 𝐿𝑎 is even (resp. for odd). 𝐸 can

then XOR in the even seeds (resp. odd seeds) she already holds and

recover the missing seed.

𝐺 nowholds each seed 𝐿𝑖 and 𝐸 holds each𝐿𝑖≠𝑎 . ByDefinition 3.4,

the parties hold garbled sharings of zero at all points 𝑖 ≠ 𝑎. To

complete the shared one-hot vector, we must convey to 𝐸 a valid

share of one at position 𝑎. 𝐺 thus sends the following value to 𝐸:(⊕
𝑖
𝐿𝑖

)
⊕ Δ

𝐸 XORs this value with the leaves she already holds and hence

extracts 𝐿𝑎 ⊕ Δ: a valid share of one.

Thus, the two parties compute JH(𝑎)K via 2(𝑛−1)+1 ciphertexts.

4.2 Garbled One-Hot Outer Product
We now generalize the above approach to compute JH(𝑎) ⊗ 𝑏K.

Let us back up to the point where the two parties each hold each

𝐿𝑖 except that 𝐸 does not hold 𝐿𝑎 . For each 𝑗 , the parties hold a

garbled sharing J𝑏 𝑗 K. Let 𝐵 𝑗 (resp. 𝐵 𝑗 ⊕𝑏 𝑗Δ) be𝐺 ’s (resp. 𝐸’s) share.

For each 𝑗 ∈ [𝑚] the parties act as follows. Both parties apply

a PRG to each of their leaf seeds 𝐿𝑖 and hence obtain strings 𝑋𝑖, 𝑗 .

Now, 𝐺 sends to 𝐸 the following value:(⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

𝐸 XORs this with her 2
𝑛 − 1 values 𝑋𝑖≠𝑎,𝑗 and with her share of 𝑏 𝑗 :(⊕

𝑖≠𝑎
𝑋𝑖, 𝑗

)
⊕

((⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

)
⊕

(
𝐵 𝑗 ⊕ 𝑏 𝑗Δ

)
= 𝑋𝑎,𝑗 ⊕ 𝑏 𝑗Δ

In other words, at index 𝑎, 𝐸 receives a share of 𝑏 𝑗 .

Thus, the parties now hold a sharing of a 2
𝑛 ×𝑚 matrix 𝑥 where

each row is all zeros except row 𝑎: row 𝑎 holds the vector 𝑏. We

have constructed JH(𝑎) ⊗ 𝑏K.
The full construction, formalized in Figure 3, requires 𝐺 send to

𝐸 2(𝑛 − 1) +𝑚 ciphertexts.

4.3 Applying the One-Hot Encoding
We now give some examples of how the one-hot outer product can

be used. We greatly expand on this topic in Section 7.

Recall that garbled shares support linear maps (Lemma 3.5) and

that for any function 𝑓 the following equality holds:

T (𝑓 )⊺ · H (𝑎) = 𝑓 (𝑎) Lemma 3.3

Zero Knowledge. We briefly mention that our one-hot outer prod-

uct implies improvement for GC-based Zero Knowledge [JKO13,

HK20b]; we emphasize that our focus is 2PC, not ZK.

In ZK, 𝐸 knows each circuit wire value, so our requirement that

𝐸 knows the argument toH(·) is met automatically. Thus, in GC-

ZK we can compute any function using only 2𝑛 − 1 ciphertexts by
computing T (𝑓 )⊺ · JH(𝑎)K. However, we must keep the domain

of 𝑓 small, since the parties construct a tree with 2
𝑛
leaves.

If 𝑓 requires a large circuit, then this truth-table based approach

can improve over the circuit. For example, if the ZK proof invokes

SHA256 on a small domain 𝑛-bit input, we need only 2𝑛 − 1 ci-

phertexts. The hand tuned SHA256 circuit, on the other hand, has

a staggering 22573 AND gates [AAL
+
]. Other ZK protocols, e.g.

[WYKW21], can similarly use truth tables by brute force construct-

ing a one-hot encoding (at the cost of 𝑂 (2𝑛) AND gates). However,

as the size of the input grows, our technique becomes more effi-

cient. For tables with more than 9 input bits, our GC-based one-hot

encoding will improve over other protocols.

2PC. We now consider 2PC applications where both parties have

input and neither party knows any intermediate wire value.

Since our one-hot outer product primitive requires 𝐸 to know

the argument 𝑎, we must reveal 𝑎 to 𝐸 in cleartext. Of course, we

cannot arbitrarily reveal cleartext values to 𝐸: this would not be

secure. Instead, we are careful to only reveal values that have a

mask applied such that the cleartext value remains protected.

We illustrate this idea by example. Let𝑎 ∈ {0, 1}𝑛 and𝑏 ∈ {0, 1}𝑚
be two bitstrings. Moreover, let 𝑛,𝑚 be small. (Formally, let 𝑛,𝑚 be

at most logarithmic in the overall circuit input size. This restriction

avoids exponential-time computation due to the one-hot technique.)

Suppose the parties hold two sharings J𝑎K and J𝑏K and wish to

compute the (non-one-hot) outer product J𝑎 ⊗ 𝑏K. Note that outer
products are useful since they can be leveraged to compute matrix

products, integer products, and more (see Section 7).

First,𝐺 chooses two uniform masks 𝛼 ∈ {0, 1}𝑛 and 𝛽 ∈ {0, 1}𝑚 .

The parties compute J𝑎 ⊕ 𝛼K and J𝑏 ⊕ 𝛽K inside GC. Now, it is safe
to reveal the values 𝑎 ⊕ 𝛼 and 𝑏 ⊕ 𝛽 to 𝐸 in cleartext. These values

are revealed by 𝐺 sending his color bits to 𝐸3.

From here, the parties use the following straightforward lemma:

Lemma 4.1. Let 𝑥 ∈ {0, 1}𝑛, 𝑦 ∈ {0, 1}𝑚 be two bitstrings and let
id : {0, 1}𝑛 → {0, 1}𝑛 denote the identity function:

T (id)⊺ · (H (𝑥) ⊗ 𝑦) = 𝑥 ⊗ 𝑦

3
Alternatively and more directly,𝐺 can define 𝛼 (resp. 𝛽) to be his color bits of 𝑎 (resp.

𝑏). This avoids sending small cleartext values to 𝐸 and is similar to the method used

in [ZRE15]. Here, we introduce the idea that𝐺 can send color bits of a masked value

to 𝐸 because this sending generalizes to non-XOR masks.
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Proof.

T (id)⊺ · (H (𝑥) ⊗ 𝑦)
= T (id)⊺ · (H (𝑥) · 𝑦⊺) Definition ⊗
= (T (id)⊺ · H (𝑥)) · 𝑦⊺ Associativity

= id(𝑥) · 𝑦⊺ Lemma 3.3

= 𝑥 · 𝑦⊺ Definition id

= 𝑥 ⊗ 𝑦 Definition ⊗ □

In particular, the parties compute the following two values:

T (id)⊺ · JH(𝑎 ⊕ 𝛼) ⊗ 𝑏K = J(𝑎 ⊕ 𝛼) ⊗ 𝑏K
T (id)⊺ · JH(𝑏 ⊕ 𝛽) ⊗ 𝛼K = J(𝑏 ⊕ 𝛽) ⊗ 𝛼K

Finally, the parties compute the following:

J(𝑎 ⊕ 𝛼) ⊗ 𝑏K ⊕ J(𝑏 ⊕ 𝛽) ⊗ 𝛼K⊺ ⊕ J𝛼 ⊗ 𝛽K

= J𝑎 ⊗ 𝑏K ⊕ J𝛼 ⊗ 𝑏K ⊕ J𝑏 ⊗ 𝛼K⊺ ⊕ J𝛽 ⊗ 𝛼K⊺ ⊕ J𝛼 ⊗ 𝛽K

= J𝑎 ⊗ 𝑏K ⊕ J𝛼 ⊗ 𝑏K ⊕ J𝛼 ⊗ 𝑏K ⊕ J𝛼 ⊗ 𝛽K ⊕ J𝛼 ⊗ 𝛽K

= J𝑎 ⊗ 𝑏K
(𝐺 knows 𝛼 ⊗ 𝛽 , so he can inject this value as a GC constant.)

Thus, 𝐸 and𝐺 can compute the outer product J𝑎 ⊗ 𝑏K using only
two one-hot outer products. In total, 𝐺 sends to 𝐸 3(𝑛 +𝑚) − 4

ciphertexts. This is a significant improvement compared to com-

puting the outer product via AND gates: the AND-gate method

consumes 2𝑛𝑚 ciphertexts.

As an interesting aside, the above technique is a strict general-

ization of the [ZRE15] half-gates technique. Namely, if we consider

length one inputs 𝑎 and 𝑏, the above technique computes Boolean

AND using only two ciphertexts. Moreover, the numbers of per-

party calls to 𝐻 match the half-gates technique.

While we have shown here only how to compute an outer prod-

uct, our technique improves other functions as well (see Section 7).

We highlight the key ideas common to such constructions:

(1) Apply a mask to an internal circuit value such that it is safe

to reveal the masked value to 𝐸.

(2) Use the revealed value as input to a one-hot outer product.

(3) Apply a function, via truth table, to this outer product matrix.

(4) Use simple algebra to remove the introduced masks and

obtain the desired output sharing. The parties can use the

output in further GC evaluation.

4.4 A Framework for One-Hot Techniques
We found a number of interesting functions that can be efficiently

implemented using the one-hot outer product (see Section 7). We

certainly did not find all such functions. Thus, part of our contribu-

tion is a simple framework for designing new such constructions,

which can then be directly used without building a new garbling

scheme from the ground up.

Section 5 motivates and explains this framework in detail. In

brief, notice our above high-level strategy involves revealing clear-

text values to 𝐸. Our framework provides a simple infrastructure

that prevents insecure leakage by packaging sensitive values into

modules and ensuring these values cannot leave the module.

Our framework is a tool for designing modules that implement

useful functions inside GC. Modules are built from a small set

C

α← Dmask

a C(a, α)

E

Reveal

x← Dout

{a, C(a, α)} c= {a, x}

G

M

M(a) = f (a)

a

Figure 2: Left: Reveal gates safely reveal values to 𝐸. At run-
time, 𝐺 samples a mask 𝛼 from the designer-specified dis-
tribution D

mask
. This mask, and the input, are fed into the

designer-specified function C. For security, the output of C
must be indistinguishable from a value sampled from some
output distribution Dout, even in the context of the input
𝑎 (Requirement 2, Section 5.3). The masked value C(𝑎, 𝛼) is
revealed in cleartext to 𝐸 and 𝛼 is given to 𝐺 . The masked
value C(𝑎, 𝛼) and the mask 𝛼 are output as GC shares.
Right: A moduleM implements a specific function and en-
capsulates any internal randomness that can emerge from
Reveal gates.M must satisfy Requirement 1 (Section 5.3).

of primitives provided by the framework. These primitives allow

the designer to specify what to compute, how to sample auxiliary

randomness, and what to reveal to 𝐸. Crucially, the module de-

signer will not directly manipulate garbled labels, material, and

other garbling scheme artifacts – all such handling is done through

the framework’s primitives. In particular, this means that the mod-

ule designer need not prove her GC instantiation secure: module

security follows from our framework’s security theorems.

5 OUR GARBLING FRAMEWORK
In this section we formalize our approach. Typically, GC approaches

consider simple gates, e.g. XOR/AND or ADD/MUL; the resulting

GC framework is simple to prove and use. Ours is more complex.

At the heart of this complexity lies our highly nonstandard one-

hot outer product gate. In particular, the gate is nonstandard because

it requires that 𝐸 know one of its inputs. Thus, to use the gate

effectively, the GC must reveal certain values to 𝐸.

One direction we could take, but which we do not take, would

be to expose one-hot gates to the circuit designer and to allow her

to manage (e.g., via masking) the information release associated

with its efficient use in GC. This would not be ideal, since each new

top level circuit would require a new proof of security.

Instead, we do not allow our one-hot primitive to be used by

top level circuits. Rather, these gates must be packaged into self-

containedmodules. Each module can use our primitive to efficiently

implement a specific function. As a module might internally reveal

values to 𝐸, it must satisfy certain simple security properties. Once

these properties are proved, the module may be used by a top level

circuit as if it were a standard gate.
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Input: 𝐸 inputs 𝑎. Parties together input shared bitstrings J𝑎K and J𝑏K where 𝑎 ∈ {0, 1}𝑛, 𝑏 ∈ {0, 1}𝑚 .

Output: Parties output a shared matrix JH(𝑎) ⊗ 𝑏K.
Procedure:

• Let 𝐴𝑖 represent 𝐺 ’s share of each bit 𝑎𝑖 ; hence 𝐸 holds 𝐴𝑖 ⊕ 𝑎𝑖Δ.
• Our first goal is to deliver to 𝐸 2

𝑛 − 1 out of 2𝑛 pseudorandom seeds where the 𝑎th seed is missing:

• 𝐸 and 𝐺 consider a full binary tree with 2
𝑛
leaves. Let 𝑁𝑖, 𝑗 be the 𝑗th node on level 𝑖 and let the root reside on level −1.

• 𝐸 and 𝐺 label nodes from level 1 down with jointly agreed nonces nonce𝑖, 𝑗 .

• 𝐺 labels each node (except the root) with a 𝜅-bit string 𝑆𝑖, 𝑗 :

– 𝐺 labels 𝑁0,0 by letting 𝑆0,0 ≜ 𝐴0 ⊕ Δ and 𝑁0,1 by letting 𝑆0,1 ≜ 𝐴0.

– Consider 𝑁𝑖, 𝑗 with parent 𝑁𝑖−1, ⌊ 𝑗/2⌋ . 𝐺 sets 𝑆𝑖, 𝑗 = 𝐻 (𝑆𝑖−1, ⌊ 𝑗/2⌋ , nonce𝑖, 𝑗 ).
• For each level 𝑖 > 0, 𝐺 XORs all odd and all even labels:

Even ≜
⊕

2
𝑖−1
𝑗=0

𝑆𝑖,2𝑗 Odd ≜
⊕

2
𝑖−1
𝑗=0

𝑆𝑖,2𝑗+1

For each level 𝑖 > 0, the parties agree on two nonces nonce𝑖,even and nonce𝑖,odd. 𝐺 sends to 𝐸 the following two values:

𝐻 (𝐴𝑖 ⊕ Δ, nonce𝑖,even) ⊕ Even 𝐻 (𝐴𝑖 , nonce𝑖,odd) ⊕ Odd

• 𝐸 reconstructs each label 𝑆𝑖, 𝑗 except the labels along the path to leaf 𝑎:

– 𝐸 labels 𝑁0,1 with 𝐴0 if 𝑎0 = 0; otherwise she labels 𝑁0,0 with 𝐴0 ⊕ Δ (recall, her share is 𝐴0 ⊕ 𝑎0Δ).
– Consider each level 𝑖 > 0. There are two sibling nodes on level 𝑖 that do not have a labeled parent. Consider each of the other

2
𝑖+1 − 2 nodes 𝑁𝑖, 𝑗 with parent 𝑁𝑖−1, ⌊ 𝑗/2⌋ . 𝐸 computes 𝐻 (𝑆𝑖−1, ⌊ 𝑗/2⌋ , nonce𝑖, 𝑗 ) = 𝑆𝑖, 𝑗 .

– For the other nodes on level 𝑖 , 𝐸 decrypts the XOR sum Even if 𝑎𝑖 is odd or Odd if 𝑎𝑖 is even; 𝐸 XORs this value with her 2
𝑖 − 1

even (resp. odd) labels and hence extracts the remaining even (resp. odd) label.

• 𝐺 now holds 2
𝑛
strings 𝑆𝑛−1, 𝑗 ; 𝐸 also holds each string except 𝑆𝑛−1,𝑎 . Rename these leaf strings 𝐿𝑖 ≜ 𝑆𝑛−1,𝑖 .

• For each bit 𝑏 𝑗 of 𝑏:

– Let 𝐵 𝑗 be 𝐺 ’s share of J𝑏 𝑗 K. Hence, 𝐸 holds 𝐵 𝑗 ⊕ 𝑏 𝑗Δ.
– 𝐸 and 𝐺 agree on 2

𝑛
fresh nonces nonce𝑖 .

– For each leaf 𝑖 , 𝐺 sets 𝑋𝑖, 𝑗 ≜ 𝐻 (𝐿𝑖 , nonce𝑖 ). 𝐺 sends to 𝐸:(⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

– For each leaf 𝑖 ≠ 𝑎, 𝐸 computes 𝑋𝑖, 𝑗 = 𝐻 (𝐿𝑖 , nonce𝑖 ). 𝐸 then computes:(⊕
𝑖≠𝑎

𝑋𝑖, 𝑗

)
⊕

((⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

)
⊕

(
𝐵 𝑗 ⊕ 𝑏 𝑗Δ

)
= 𝑋𝑎,𝑗 ⊕ 𝑏 𝑗Δ

• Thus, for each column 𝑗 of 𝑋 , 𝐸 and 𝐺 hold 2
𝑛
values equal everywhere (i.e., each is a garbled share of zero) except at index 𝑎,

where the parties hold an XOR share of 𝑏 𝑗Δ: the computation outputs a shared one-hot outer product.

• 𝐺 outputs his matrix share 𝑋 ; 𝐸 outputs her matrix share 𝑋 ⊕ (H (𝑎) ⊗ 𝑏)Δ

Figure 3: Our central primitive computes the outer product of two values: (1) a one-hot encoded valueH(𝑎) where 𝐸 knows 𝑎
and (2) a value 𝑏. For inputs 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑚 , 𝐺 sends to 𝐸 2(𝑛 − 1) +𝑚 ciphertexts. Recall from Section 3.3 that 𝐻 is a
circular correlation robust hash function.

In Section 7, we enumerate a number of useful modules, but we

are confident that we have not found them all. Thus, we provide

a framework for building and using modules: we specify the mod-

ule requirements, and prove that, if met, the module can be used

as a regular gate in GC. Thus GCs can be arbitrarily constructed

from secure modules, without the need for additional proofs. New

modules require proofs; the circuits that use them do not.

5.1 Reveal gates
Our framework introduces a Revealmeta-gate (see Figure 2). Reveal

gates are our framework’s method for revealing cleartext values to

𝐸. The GC may reveal a value to 𝐸 so long as that value is indistin-

guishable from a value drawn from a fixed distribution (more for-

mally, the input and output are together indistinguishable from the

input and the sampled value). To achieve this indistinguishability,

we allow the module designer to specify an arbitrary function that

can apply a mask to the Reveal gate input value. The Reveal gate

samples the mask (which is revealed to𝐺) from a designer-specified

distribution. In practice, this is achieved by 𝐺 locally sampling the

mask and programming it into the gate.

The Reveal gate produces as (garbled) output both the mask

and the masked value; crucially, it also reveals in cleartext the

masked value to 𝐸 and the mask to 𝐺 .4 Because the masked value

is indistinguishable from one drawn from a fixed distribution, our

security proofs can simulate 𝐸’s view5
.

4
Values are revealed to 𝐸 via color bits; as noted above,𝐺 selects the mask himself.

5
In this work, we only use Reveal gates that each produce a distribution that is identical
to a fixed distribution, not merely indistinguishable. We allow indistinguishability

because it is more flexible and because it is easily proved secure.
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OneHot.ev(C, x) takes as input a circuit C and a string 𝑥 . It outputs a string 𝑦. Each gate in a module is handled as follows:

• For each XOR gate𝑤2 := 𝑤0 ⊕𝑤1 and each one-hot gate𝑤2 := H(𝑤0) ⊗𝑤1, ev applies the appropriate function and stores the

result in𝑤2. For each constant gate𝑤0 := Constant(𝑐), ev stores 𝑐 in𝑤0.

• For each Module𝑤1 := Module[M](𝑤0), OneHot.ev recursively evaluatesM on input𝑤0 and stores the result in𝑤1.

• For each Reveal gate𝑤�𝐸
1

,𝑤�𝐺
2

:= Reveal[C,D
mask
] (𝑤0), OneHot.ev (1) samples a mask 𝛼 ← D

mask
, (2) recursively evaluates

C with input (𝑤0, 𝛼), (3) stores the result on wire𝑤1, and (4) stores 𝛼 on wire𝑤2. Each Color gate𝑤1,𝑤2 := Color(𝑤0) is handled
in the same manner as each Reveal gate except that 𝛼 is drawn uniformly.

OneHot.Gb(1𝜅 , C) takes as input a circuit C. It outputs an input encoding string 𝑒 , an output decoding string 𝑑 , and circuit material𝑀 .

OneHot is a projective garbling scheme [BHR12], so 𝑒 and 𝑑 are standard. When OneHot.Gb is first called, it uniformly draws the global

XOR offset Δ← {0, 1}𝜅 and sets Δ’s least significant bit to one. To generate𝑀 , OneHot.Gb maintains a garbled share on each circuit

wire. Each gate in a module is handled as follows:

• For each XOR gate𝑤2 := 𝑤0 ⊕𝑤1, OneHot.Gb generates the output sharing by XORing the two input sharings (see Lemma 3.5).

• For each one-hot gate𝑤2 := H(𝑤0) ⊗𝑤1, OneHot.Gb runs 𝐺 ’s steps as described in Figure 3. When Figure 3 indicates 𝐺 should

send a message to 𝐸, OneHot.Gb appends the message to𝑀 .

• For each constant gate𝑤0 := Constant(𝑐), OneHot.Gb sets𝑤0 to 𝑐Δ.
• For each Module, OneHot.Gb recursively garbles.

• For each Reveal gate 𝑤�𝐸
1

,𝑤�𝐺
2

:= Reveal[C,D
mask
] (𝑤0), Gb samples a mask 𝛼 ← D

mask
and sets the share 𝑤2 to 𝛼Δ. The

procedure recursively garbles the subcircuit C with appropriate input shares and stores the output shares in 𝑤1. Finally, the

procedure evaluates Color(𝑤1) and attaches the result to𝑀 : informally, this reveals the masked output to 𝐸.

• For each Color gate𝑤1,𝑤2 := Color(𝑤0), Gb computes Color(𝑤0) and stores Color(𝑤0)Δ in𝑤2. It then stores𝑤2 ⊕𝑤0 in𝑤1.

OneHot.Ev(C, 𝑀,𝑋 ) takes as input a circuit C, material𝑀 , and encoded input 𝑋 . It outputs encoded output 𝑌 . OneHot.Ev maintains

𝐸’s garbled share on circuit wires, propagating them through each gate in a module as follows:

• For each XOR gate𝑤2 := 𝑤0 ⊕𝑤1, OneHot.Ev generates the output share by XORing the two input shares (see Lemma 3.5).

• For each one-hot gate𝑤2 := H(𝑤0) ⊗𝑤1, OneHot.Ev runs 𝐸’s steps as described in Figure 3. Note,𝑤0 must have been revealed

for this call to be legal. When Figure 3 indicates 𝐺 should send a message to 𝐸, OneHot.Ev parses the message from𝑀 .

• For each Constant gate𝑤0 := Constant(𝑐), OneHot.Ev sets𝑤0 to zero. Note, 𝐸 need not know 𝑐 .

• For each Module, OneHot.Ev recursively evaluates.

• For each Reveal gate𝑤�𝐸
1

,𝑤�𝐺
2

:= Reveal[C,D
mask
] (𝑤0), Ev sets𝑤2 to zero. The procedure recursively evaluates the subcircuit

C with appropriate input shares and stores the output shares in𝑤1. Finally, the procedure parses 𝐺 ’s color bits col from𝑀 (see

Gb above), computes Color(𝑤1) ⊕ col, and as a side-effect outputs this value: i.e, the value𝑤1 is revealed.

• For each Color gate𝑤1,𝑤2 := Color(𝑤0), Ev computes Color(𝑤0) and outputs this value to 𝐸. Color sets𝑤1 to𝑤0 and𝑤2 to zero.

OneHot.En(𝑒, 𝑥) takes as input an encoding string 𝑒 and cleartext input 𝑥 ; it outputs encoded input 𝑋 . En maps each bit 𝑥𝑖 to 𝑋𝑖 ⊕ 𝑥𝑖Δ
for uniform 𝑋𝑖 .

OneHot.De(𝑑,𝑌 ) takes as arguments a decoding string 𝑑 and an encoded output 𝑌 ; it outputs a cleartext output 𝑦. We ensure that for

each output bit 𝑦𝑖 , 𝑑 holds the following two strings:

𝐻 (𝑌𝑖 , nonce) 𝐻 (𝑌𝑖 ⊕ Δ, nonce)
where nonce is a fresh nonce. De hashes 𝑌 and outputs 0 or 1 depending on which above string matches. If neither matches, De aborts.

Figure 4: Our garbling scheme algorithms. We describe the handling of gates G (Equation (2)) inside of modules. Circuit/module
handling is achieved by the repeated handling of gates. Note that our scheme does not directly provide XOR/AND gates to
top-level circuits. However, these standard gates can be formalized as modules in our framework (see Section 5.4). Recall, in our
notation wires hold matrices of bits.

We do not wish to restrict masking methods (in this work we

mask via XORing, adding, and multiplying). Reveal gates can im-

plement arbitrary masking by way of the circuit C (see Figure 2).

5.1.1 Color Gates and Connection to [ZRE15]. The half-gates tech-
nique views the color (see Section 3.2.2) of a GC label as a masked

cleartext value, where the mask is known to 𝐺 . They use this ob-

servation to help implement efficient AND gates.

Reveal gates can be viewed as a generalization of this simple

masking: we allow arbitrary masks, and the chosen mask can be

tailored to the application.

Reveal gates require 𝐺 to send bits to 𝐸 to reveal the output.

Color bits do not require extra sending from 𝐺 to 𝐸: the revealed

value is implicit. We view color-based masking as a special case;

for completeness, we include a special Color gate. At the interface,

Color gates are the same as Reveal gates, except that they do not

need a designer-specified distribution D
mask

or circuit C. Color
gates can be viewed as a specific instantiation of a Reveal gate.

Formally, a Color gate takes as input a matrix J𝑎K. Let 𝛼 be the

color of 𝐺 ’s share: 𝛼 = Color(𝐴). The gate outputs (1) J𝑎 ⊕ 𝛼K
and (2) J𝛼K. The gate “reveals” 𝛼 to 𝐺 and 𝑎 ⊕ 𝛼 to 𝐸. Of course,

the parties already knew these values, so no communication is
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required – the Color gate is merely a formalism that allows modules

to syntactically manipulate colors.

5.2 Modules
Reveal gates and Color gates do not encapsulate sensitive data that
might be misused.

As an example, suppose the module designer specifies a Reveal

gate that applies a uniform XOR mask 𝛼 to a bit 𝑎: thus 𝐸 learns

𝑎 ⊕ 𝛼 . Now suppose the designer inadvertently specifies that 𝛼 is

an output of the overall circuit. Because 𝑎 ⊕ 𝛼 was revealed to 𝐸,

this leaks 𝑎 to 𝐸!

To achieve a clean modular GC framework, we must prevent

sensitive values (i.e. values that depend on random masks) from

escaping the context where they are used. Thus, we introduce the

concept of Modules. A Module is a subroutine that computes a

specific function of its input and that encapsulates internal data.

A Module is parameterized over a module-designer-provided

circuit. It simply passes its input to this circuit and then propagates

the output. So far, this is trivial. However, we require that the mod-

ule designer provide a proof of correctness demonstrating that the

internal circuit implements a deterministic function of its argument.

This will, in particular, guarantee that the output is independent of

internal random masks; thus, masks cannot escape the module.

Top level circuits are only allowed to manipulate modules. I.e.,

our one-hot outer product primitive, Reveal gates, and Color gates

are syntactically prohibited outside of modules. This restriction

means (we prove this) that top level circuits may use modules

without any extra proofs, and so are suitable for end users.

5.3 Formal Syntax
We now formalize our syntax. Specifically, we formalize the space of

circuits C, the space of modulesM, and the space of gates allowed

in modules G. Because we wish to allow modules to use other,

simpler modules (i.e., one module designer should be allowed to

use the work of another) our syntax is inductively defined.

As stated above, top level circuits are only allowed to manipulate

modules. Formally, a circuit C is an ordered list of modules with
specified input and output wires. Modules can manipulate lower

level gates. A moduleM is a list of gates with accompanying input

and outputwires.Modules do not directlymanipulate garbled shares,

etc (Section 4.4).

We provide a grammar for the gates allowed inside of modules.

Let each 𝑤𝑖 denote a wire that holds a matrix of bits of arbitrary

dimension. When a wire𝑤𝑖 ’s cleartext value is revealed to 𝐺 (resp.

𝐸), we write𝑤�𝐺
𝑖

(resp.𝑤�𝐸
𝑖

). When a wire is revealed, it remains

a valid garbled sharing and can be used inside a module. LetD
mask

refer to an arbitrary distribution over a finite set of values. Let 𝑐

refer to a constant chosen by 𝐺 :

G ≜𝑤2 := 𝑤0 ⊕𝑤1

| 𝑤2 := H(𝑤0) ⊗𝑤1

| 𝑤0 := Constant(𝑐)

| 𝑤�𝐸
1

,𝑤�𝐺
2

:= Reveal[C,D
mask
] (𝑤0)

| 𝑤�𝐸
1

,𝑤�𝐺
2

:= Color(𝑤0)
| 𝑤1 := Module[M](𝑤0)

(2)

That is, modules can use gates that (1) compute the XOR of two

matrices (of equal dimension), (2) compute the one-hot outer prod-

uct of two vectors, (3) output a constant chosen by 𝐺 , (4) reveal a

masked value to 𝐸 (see Figure 2), (5) incorporate a share’s color in

the GC (see Section 5.1.1), and (6) recursively call another module.

We refer to one-hot outer product gates simply as ‘one-hot’ gates.

We specify two requirements each module must satisfy.

Reqirement 1 (Module correctness). For moduleM com-
puting function 𝑓 , it must hold that for all inputs 𝑥 :

𝑓 (𝑥) =M(𝑥)

Reqirement 2 (Reveal indistinguishability). For a Reveal
gate𝑤�𝐸

1
,𝑤�𝐺

2
:= Reveal[C,D

mask
] (𝑤0), there must exist a distri-

bution Dout such that for all inputs 𝑥 on wire𝑤0 and for 𝑟 ← Dout

and 𝛼 ← D
mask

the following indistinguishability holds:

{𝑥, C(𝑥, 𝛼)} 𝑐
= {𝑥, 𝑟 }

Note, each module may have more than one Reveal gate, so it

may not be a priori clear that arbitrary Reveal gate interactions are

secure. For instance, is it safe to feed the output of one Reveal gate

as input to another? From Requirement 2, we can prove that every-

thing revealed in a module can be simulated by a fixed distribution.

We then (Theorem 5.5) prove that this is sufficient for security.

Lemma 5.1. LetM be a module and let 𝑦 be the tuple of all values
revealed to 𝐸 inM due to Reveal gates and Color gates (as formally
specified by OneHot.Ev). There exists a distribution Drev such that:

{𝑦} 𝑐
= {𝑟 } where 𝑟 ← Drev

Specifically, Drev is the distribution that samples from each

Reveal gate distribution Dout (and samples a uniform distribution

in the case of Color gates) and concatenates the samples. Due to

lack of space, we prove Lemma 5.1 in Appendix A.

5.4 Standard Boolean Gates in Our Framework
Neither XOR nor AND are by default available to top level circuits.

However, these functions can be expressed as modules, and thus

traditional Boolean circuits are compatible with our framework:

XOR is easily handled by building a module with a single XOR

gate that XORs the two bits of its input and outputs the result.

AND is conspicuouslymissing fromG.We do not need a separate

AND gate primitive, because we can express AND as a module.

Moreover, the resulting module is functionally identical to the state-
of-the-art half-gates technique [ZRE15]. Namely, our approach uses

the same number of calls to𝐻 for each party and transfers the same

number of ciphertexts (i.e., two) from 𝐺 to 𝐸.

Let 𝑎, 𝑏 be bits, and view them as one element vectors. Let 𝛼, 𝛽

denote the color of 𝑎, 𝑏 respectively. Note the following equality:

(T (id) · H (𝑎 ⊕ 𝛼) ⊗ 𝑏) ⊕ (T (id) · H (𝑏 ⊕ 𝛽) ⊗ 𝛼) ⊕ 𝛼𝛽
= ((𝑎 ⊕ 𝛼) ⊗ 𝑏) ⊕ ((𝑏 ⊕ 𝛽) ⊗ 𝛼) ⊕ 𝛼𝛽
= ((𝑎 ⊕ 𝛼)𝑏) ⊕ ((𝑏 ⊕ 𝛽)𝛼) ⊕ 𝛼𝛽
= 𝑎𝑏

Thus, we can compute 𝑎𝑏 via two Color gates (to compute and

reveal 𝑎⊕𝛼 and𝑏⊕𝛽), two one-hot gates, one Constant gate (for𝛼𝛽),
and XOR gates (to compute T (𝑖𝑑)·). Each of these sub-components
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is communication free except for the one-hot gates. A one-hot gate

uses 2(𝑛 − 1) +𝑚 ciphertexts; here, in both cases 𝑛 =𝑚 = 1, so the

module costs a total of two ciphertexts.

Thus, [ZRE15] half-gates can be hosted in our framework.

5.5 The OneHot Garbling Scheme
Now that we have established syntax, we prove the framework

secure. We formalize our framework as a garbling scheme [BHR12].
A garbling scheme is a five-tuple of algorithms:

(ev, En,Gb, Ev,De)
These five algorithms specify the actions taken by𝐺 and 𝐸 when

executing the protocol. Informally, (1) En describes how cleartext

inputs are encoded as garbled shares, (2) Gb describes how 𝐺 con-

structs the garbled circuit, (3) Ev describes how 𝐸 uses input shares

and the garbled circuit to compute output shares, (4) De describes

how output shares are decoded to cleartext outputs, and (5) ev

provides a cleartext specification of the circuit semantics. Loosely

speaking, En, Gb, Ev, and De should together perform the same

task as ev while preventing 𝐸 from learning 𝐺 ’s inputs.

Construction 1 (OneHot Garbling Scheme). OneHot is the
tuple of algorithms defined in Figure 4 by reference to Figure 3.

Our scheme is a straightforward formalization of the high level

intuition given in Section 4.

OneHot satisfies the [BHR12] definitions of correctness, oblivi-
ousness, privacy, and authenticity. We include definitions and ex-

planations of each of these properties. Full formal proof of each
theorem is presented in Appendix A due to a lack of space.

Definition 5.2 (Correctness). A garbling scheme is correct if for
all circuits C and all inputs 𝑥 :

De(𝑑, Ev(C, 𝑀, En(𝑒, 𝑥))) = ev(C, 𝑥)
where (𝑀, 𝑒, 𝑑) ← Gb(1𝜅 , C).

Correctness requires the scheme to realize the semantics speci-

fied by ev. That is, the implementation matches the specification.

Theorem 5.3. OneHot is correct.

Correctness is mostly trivial, save the correctness of one-hot

gates. One-hot gate correctness can be inferred from discussion in

Section 4. See Appendix A for a full proof.

Definition 5.4 (Obliviousness). A garbling scheme is oblivious if
there exists a simulator S

obv
such that for any circuit C and all

inputs 𝑥 , the following are indistinguishable:

(C, 𝑀,𝑋 ) 𝑐= S
obv
(1𝜅 , C)

where (𝑀, 𝑒, ·) ← Gb(1𝜅 , C) and 𝑋 ← En(𝑒, 𝑥).
Informally, obliviousness ensures that the material 𝑀 and en-

coded input shares 𝑋 reveal no information about the input 𝑥 or

about the output ev(C, 𝑥).
Theorem 5.5. If 𝐻 is a circular correlation robust hash function,

then OneHot is oblivious.

In short, because of the properties of 𝐻 we can simulate most

values by uniform bits. For Reveal gates, we instead simulate values

by sampling from each such gate’s specified distribution; this is

valid due to Requirement 2. See Appendix A for a full proof.

Definition 5.6 (Privacy). A garbling scheme is private if there
exists a simulator Sprv such that for any circuit C and all inputs 𝑥 ,

the following are computationally indistinguishable:

(𝑀,𝑋,𝑑) 𝑐= Sprv (1𝜅 , C, 𝑦),
where (𝑀, 𝑒, 𝑑) ← Gb(1𝜅 , C), 𝑋 ← En(𝑒, 𝑥), and 𝑦 ← ev(C, 𝑥).

Privacy ensures that 𝐸, who is given (𝑀,𝑋,𝑑), learns nothing
about the input 𝑥 except what can be learned from the output 𝑦.

Theorem 5.7. If 𝐻 is a circular correlation robust hash function,
then OneHot is private.

The privacy simulator follows relatively trivially from the obliv-

iousness simulator and from our choice of output decoding string

𝑑 (Figure 4). See Appendix A for a full proof.

Definition 5.8 (Authenticity). A garbling scheme is authentic if
for all circuits C, all inputs 𝑥 , and all poly-time adversaries A the

following probability is negligible in 𝜅:

Pr
(
𝑌 ′ ≠ Ev(C, 𝑀,𝑋 ) ∧ De(𝑑,𝑌 ′) ≠ ⊥

)
where (𝑀, 𝑒, 𝑑) = Gb(1𝜅 , C), 𝑋 = En(𝑒, 𝑥), and 𝑌 ′ = A(C, 𝑀,𝑋 ).

Authenticity ensures that even an adversarial 𝐸 cannot construct

shares that successfully decode except by running Ev as intended.

Theorem 5.9. If 𝐻 is a circular correlation robust hash function,
then OneHot is authentic.

Authenticity is nontrivial only for one-hot gates. One-hot gates

can be shown authentic due to the properties of 𝐻 . See Appendix A

for a full proof.

5.5.1 Compatibility with Stacked Garbling. As mentioned in Sec-

tion 2, stacked garbling (SGC) is a state-of-the-art GC improvement

for conditional branching [HK20a, HK21]. SGC is parameterized

over an underlying garbling scheme which it leverages to handle

each conditional branch. OneHot can, in a slightly limited sense,

be used as this underlying scheme.

SGC requires that the underlying scheme produces garbled mate-

rial𝑀 and inputs shares 𝑋 that are indistinguishable from uniform

strings. Our scheme satisfies this, with the notable exception of

Reveal gates. OneHot can be ‘stacked’ so long as all Reveal gates

use uniform binary strings as their output distribution Dout.

In Appendix A, we prove that, under this condition, OneHot is

strongly stackable [HK21] and can be the SGC underlying scheme.

6 EXPERIMENTAL SETUP
In the following section, we give experimental findings of the per-

formance of our technique as compared to standard Boolean circuits.

We record details of our experimental setup here.

Implementation Details. We implemented our technique and

benchmarks in ∼ 2000 lines of C++. Our implementation uses our

garbling scheme to instantiate a semi-honest 2PC protocol. Garbled

shares are 128 bits long. Hence our security parameter 𝜅 = 127; the

128th bit is reserved for share color.

We compare our implementation against half-gates [ZRE15]. We

refer to half-gates based implementations of our experiments sim-

ply as ‘standard’. We do not compare in detail to the concurrent
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Input: Parties input shared bitstrings J𝑎K, J𝑏K where 𝑎 ∈ {0, 1}𝑛
and 𝑏 ∈ {0, 1}𝑚 .

Output: Parties output a shared matrix J𝑎 ⊗ 𝑏K.
Procedure:

• Parties reveal to 𝐸 𝑎 ⊕ 𝛼 and 𝑏 ⊕ 𝛽 for uniform 𝛼 ∈
{0, 1}𝑛, 𝛽 ∈ {0, 1}𝑚 via Color gates. Notably, the Color

gates output J𝑎 ⊕ 𝛼K, J𝑏 ⊕ 𝛽K, and J𝛼K.
• Parties compute JH(𝑎 ⊕ 𝛼) ⊗ 𝑏K via a one-hot gate.
• Parties compute JH(𝑏 ⊕ 𝛽) ⊗ 𝛼K via a one-hot gate.
• Parties compute the following two outer products:

T (id)⊺ · JH(𝑎 ⊕ 𝛼) ⊗ 𝑏K = J(𝑎 ⊕ 𝛼) ⊗ 𝑏K Lemma 4.1

T (id)⊺ · JH(𝑏 ⊕ 𝛽) ⊗ 𝛼K = J(𝑏 ⊕ 𝛽) ⊗ 𝛼K Lemma 4.1

• 𝐺 locally computes 𝛼 ⊗ 𝛽 . He injects J𝛼 ⊗ 𝛽K as a constant.
• Parties compute and output:

J(𝑎 ⊕ 𝛼) ⊗ 𝑏K ⊕ J(𝑏 ⊕ 𝛽) ⊗ 𝛼K⊺ ⊕ J𝛼 ⊗ 𝛽K = J𝑎 ⊗ 𝑏K
See Section 4.3 for a correctness argument.

Figure 5: Efficient small domain outer product module. The
module implements the function 𝑎, 𝑏 ↦→ 𝑎 ⊗ 𝑏.

work [RR21]; moreover their technique has not yet been imple-

mented. For many of our applications, our improvement will be

slightly diminished given a fast [RR21] implementation. In particu-

lar, our work improves over [RR21] for all considered applications,

except for AES S-Box.

Computation Setup. For each experiment, we ran both 𝐺 and 𝐸

on a single commodity laptop: a MacBook Pro with an Intel Quad-

Core i7 2.3GHz processor and 16GB of RAM. The two parties run

in parallel on separate processes on the same machine.

Communication Setup. 𝐺 and 𝐸 communicate over a simulated

100Mbps WAN. (For completeness we configure the network with

30ms latency, though this is largely irrelevant in our experiments

which do not incur multiple rounds of interaction.)

In our experiments, we record bandwidth consumption and wall

clock time. For each experiment, we build a top-level circuit that

repeatedly uses the target module 1000 times; our presented mea-

surements divide total communication/total wall clock time by 1000

to approximate the cost of a single module instance.

7 APPLICATIONS
In this section, we instantiate applications of our approach. Each

application is formalized in our framework (see Section 5); when

necessary, we implement a module.

We mention that all of the following modules, with the excep-

tion of our binary field inverse and our modular reduction, are

compatible with stacked garbling.

7.1 Small Domain Binary Outer Products
Our first module follows naturally from our one-hot primitive.

Let 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑚 be two bitstrings and let 𝑛,𝑚 be

small (formally, at most logarithmic in the overall circuit input size).

Figure 6: Communication consumption (top) and wall clock
time (bottom) when computing the outer product of two 𝑛-
bit vectors. We varied 𝑛 from 1 to 9. The standard method
computes the outer product usingANDgates. Our technique’s
computation scales exponentially in the vector sizes, but is
more efficient for vectors between lengths 4 and 8.

The module maps two input garbled sharings J𝑎K, J𝑏K to the outer

product J𝑎 ⊗ 𝑏K.
This module was explained in Section 4 and is formalized in

Figure 5. Because we need XOR-based masks, we use Color gates.

The full construction consumes only 3(𝑛 +𝑚) − 4 ciphertexts,
a significant improvement from the 2𝑛𝑚 ciphertexts needed to

compute the outer product via AND gates.

We implemented our module and experimented with its perfor-

mance. Figure 6 plots the results.

7.2 General Binary Outer Products
We have shown how to compute the outer product of two short
vectors. We are, so far, limited to short vectors because of the

exponential computation scaling of our one-hot technique.

It is interesting to compute the outer product of vectors of all

sizes, not just short ones. Here, we give an efficient construction of

general outer products.

In Section 7.1 we decomposed 𝑎 ⊗ 𝑏 into three summands:

(𝑎 ⊗ 𝑏) = ((𝑎 ⊕ 𝛼) ⊗ 𝑏) ⊕ ((𝑏 ⊕ 𝛽) ⊗ 𝛼)⊺ ⊕ (𝛼 ⊗ 𝛽)
The third term is known to𝐺 and is free. The other two terms must

be computed inside the GC. Consider the term (𝑎 ⊕ 𝛼) ⊗ 𝑏.
In Section 7.1 we insisted that this outer product be computed by

a single one-hot gate. More generally, we can tile together multiple

one-hot outer products. We ensure the tiles are small enough that

computation remains polynomial in the input size.

Each tile computes the outer product of a 𝑘-bit chunk of 𝑎 ⊕ 𝛼
with𝑏, yielding a𝑘×𝑚 submatrix of the full outer product (𝑎⊕𝛼)⊗𝑏.
Vertically concatenating the ⌈𝑛/𝑘⌉ submatrices yields the correct
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Figure 7: We used our implementation to compute the bit-
wise outer product of two 128 bit vectors. We instantiated our
approach with various “chunking factors” 𝑘 (see Section 7.2).
Increasing 𝑘 decreases communication but increases compu-
tation, due to the exponential computation scaling of our
one-hot gate. The standard method computes outer products
by simply ANDing pairs of values. At 𝑘 = 6, we improve over
standard by 6.2× (communication) and 4.1× (time).

result. We use the same idea to compute (𝑏 ⊕ 𝛽) ⊗ 𝛼 . We defer

formal presentation of the module to Appendix B.

If the chosen chunk size 𝑘 is logarithmic in the size of input,

then the parties compute 𝑎 ⊗ 𝑏 in polynomial time. In terms of

communication, the parties use O(𝑛𝑚/𝑘) garbled rows: a factor

𝑘 improvement over the standard method. Formally, we improve

outer product communication by a logarithmic factor; in practice

we choose constants 𝑘 that yield good performance.

Figure 7 plots the practical efficiency we obtained when imple-

menting general outer products with different values of 𝑘 . The

results show that our approach significantly improves outer prod-

ucts over prior state-of-the art.

7.3 Binary Matrix Multiplication
It is well known that outer products can be used to efficiently

multiply matrices. We implemented this approach – see Appendix B.

For chunking factor 𝑘 = 6, our approach improves 128× 128 square
matrix multiplication by 6.2× (communication) and 5× (time).

7.4 Integer Multiplication
Consider bit vectors𝑎, 𝑏 ∈ {0, 1}𝑛 that each represent𝑛-bit numbers.

The outer product of 𝑎 ⊗𝑏 can be used to help calculate the product

𝑎 · 𝑏. See Appendix B for further discussion.

We implemented 32-bit integer multiplication using our tech-

nique and the standard method (our standard circuit is inspired

by [WMK16]). Best performance was achieved with “chunking fac-

tor” (see Section 7.2) 𝑘 = 6:

Standard Ours Improvement

Comm. (KB) 32.0 21.3 1.51×
Time (ms) 3.20 2.32 1.38×

As compared to outer products and matrix multiplication, our im-

provement here is less substantial: after the outer product is com-

puted, our technique still must add together values in the standard

manner. Still, we achieve improvement to an important primitive.

In the GC setting, the Karatsuba fast multiplication method

improves over standard multiplication even for small 20-bit in-

tegers [HKS
+
10]. Karatsuba is a recursive divide-and-conquer al-

gorithm. At the leaves of the recursion (i.e. for 19-bit numbers or

less), it is best to use standard multiplication. We thus can use our

improved standard multiplication method to accelerate Karatsuba-

based multiplication.

7.5 Binary Field Multiplication
Consider an arbitrary binary field GF(2𝑛). In such fields, multiplica-

tion can be understood as polynomial multiplication modulo an ir-

reducible polynomial 𝑝 (𝑥). By representing elements 𝑎, 𝑏 ∈ GF(2𝑛)
as vectors of bits, we can easily compute the product of the two poly-

nomials from the vector outer product. Once computed, the product

can be reduced modulo 𝑝 (𝑥) by a linear function [GKPP06]. Thus,

our outer product construction improves binary field multiplication

by the “chunking factor” 𝑘 (see Section 7.2).

Because this multiplication only uses a black box outer product

followed by XORs, we do not need to formalize a module.

We implemented both our approach and a standard circuit for

GF(28) (modulo 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1). We used the best available

standard circuit for this field [BDP
+
20]. We ran our version with

chunking factor 𝑘 = 4 and 𝑘 = 8. We list communication, wall clock

time, and corresponding improvement over standard:

Standard 𝑘 = 4 𝑘 = 8

Comm. (Bytes) 1536 896 1.71× 704 2.18×
Time (𝜇s) 146 80 1.82× 111 1.3×

Despite the fact efficient hand-tuned circuits are available, we im-

prove communication consumption by more than 2×.

7.6 Binary Field Inverses and the AES S-Box
Our technique can compute binary field inverses using less commu-

nication than the state-of-the-art. Consider a field GF(2𝑛) where𝑛 is
small (formally, logarithmic in the circuit input size). Let𝑎 ∈ GF(2𝑛)
be a field element and suppose 𝑎 ≠ 0 (we handle this separately).

Our module follows from a technique given by [BIB89]. Namely,

for non-zero input 𝑎, we first compute 𝑎 · 𝛼 for uniform non-zero

mask 𝛼 . Then, we reveal 𝑎 ·𝛼 to 𝐸. With this done, we use a one-hot

gate to efficiently compute (𝑎 ·𝛼)−1 ·𝛼 = 𝑎−1. Due to a lack of space,
we defer a full formalization of our inverse module to Appendix B.

S-Boxes. The AES S-Box, which is the only non-linear component

of the AES block cipher, performs a single inversion in GF(28); all
other parts of the S-Box are linear. The state-of-the-art Boolean

circuit S-Box uses 32 AND gates [BP10]. Thus, with the half-gates

technique, this implementation consumes 64 ciphertexts.

Our full inverse gate consumes 58 ciphertexts: 22 to compute

J𝑎 · 𝛼K, 22 to then compute the inverse, and 14 to handle the case

where 𝑎 = 0. This improves communication by ∼ 10%.
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We implemented the [BP10] S-Box and our one-hot version:

Standard Ours Improvement

Comm. (Bytes) 1024 929 1.10×
Time (𝜇s) 103.6 105.8 0.98×

On aWAN, our implementation is slightly slower than the standard

S-Box. This can likely be improved by low-level code optimization.

It may be possible to further apply our technique to block ciphers,

perhaps by codesigning with our new cost structure in mind. We

leave such fine-grained approaches to future work.

7.7 Modular Reduction
Let 𝑥 mod 𝑦 denote a function that computes the remainder of 𝑥

divided by 𝑦. Suppose the parties hold a sharing J𝑎K and wish to

compute J𝑎 mod ℓK where ℓ is a public constant. Such computation

is potentially useful, e.g. to compute in an arithmetic field Z𝑝 .
The Boolean circuit that computes (·) mod ℓ is an expensive

quadratic construction. One-hot gates can improve the cost.

Our module first subtracts a random mask 𝛼 from 𝑎 and then

reveals 𝑎 − 𝛼 to 𝐸. It then splits 𝑎 into small 𝑘-bit “chunks” and,

for each chunk, efficiently computes (·) mod ℓ using a one-hot

gate. The reduced chunks can then be recombined and the mask

stripped off using addition mod ℓ . (Addition modulo ℓ where both

arguments are already less than ℓ is a special case and can be

computed efficiently.) Crucially, the number of needed additions is

proportional only to the number of chunks. Due to lack of space,

we defer formal treatment of the module to Appendix B.

For our concrete experiment, we implementedmodular reduction

for 32-bit numbers using the prime modulus 𝑝 = 65521 (the largest

16-bit prime). Our standard implementation conditionally subtracts

𝑝 · 2𝑘 for 𝑘 ∈ [16]; thus 16 conditional subtractions are needed.

Our optimized version uses chunking factor 𝑘 = 8. The technique

requires only 3 additions and 3 conditional subtractions and hence

substantially improves performance:

Standard Ours Improvement

Comm. (KB) 35.1 10.5 3.3×
Time (ms) 3.75 1.08 3.5×

7.8 Exponentiation
Suppose the parties hold a sharing J𝑎K and wish to compute Jℓ𝑎K
where ℓ is a publicly agreed constant. For special cases of ℓ (e.g.,

ℓ = 2), there are fast circuits that compute Jℓ𝑎K. However, for
arbitrary ℓ we need to repeatedly multiply inside GC, which is

expensive. We can use one-hot gates to greatly reduce the number

of needed multiplications.

Our module first subtracts a uniform additive mask 𝛼 from 𝑎

and then reveals 𝑎 − 𝛼 to 𝐸. Then, the module splits J𝑎 − 𝛼K into
small 𝑘-bit “chunks” and, for each chunk 𝑐 , computes Jℓ𝑐K using a
one-hot gate. These intermediate values can be combined and the

mask stripped off using multiplication. We use our improved mul-

tiplication technique (Section 7.4) to further improve the module.

We defer formal treatment of the module to Appendix B.

We implemented exponents for 32-bit numbers using a standard

technique (which consumes 31 standard multiplications) and our

technique (with chunking factor 𝑘 = 8, which consumes only 4

improved multiplications):

Standard Ours Improvement

Comm. (KB) 1024 87 11.8×
Time (ms) 101 10.6 9.52×
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A FORMAL PROOFS
We prove Lemma 5.1.

Proof. By constructing Drev.

In this proof, we view Color gates as a strict special case of

Reveal gates that use a uniform output distribution Dout.

Recall that Drev must simulate all values revealed by Reveal

gates in a moduleM. Drev is the distribution that, when sampled,

samples each Reveal gate’s distribution Dout and concatenates the

results.

We show this secure by a hybrid argument. Let the considered

moduleM have𝑛 Reveal gates. Let hybridℎ0 be the real distribution

of revealed values and let hybridℎ𝑛 beDrev. Each hybridℎ𝑖 is equal

to ℎ𝑖−1 except that we replace the output of the 𝑖th Reveal gate by

a sample from its distribution Dout.

Assume the real distribution and Drev are distinguishable, and

hence for some 𝑖 , ℎ𝑖−1 and ℎ𝑖 allow a distinguisher. Thus, the 𝑖th

gate’s simulated outputmust allow the distinguisher. Let𝑦�𝐸 , 𝑧�𝐺
:=

Reveal[C,D
mask
] (𝑥) denote the 𝑖th Reveal gate. Requirement 2

gives the following property for all inputs 𝑥 :

{𝑥, C(𝑥, 𝛼)} 𝑐
= {𝑥, 𝑟 } where 𝑟 ← Dout, 𝛼 ← Dmask

This property implies that the output of the 𝑖th gate is (compu-

tationally) independent of its input. Hence the output of the 𝑖th

gate must be computationally independent of all other Reveal gate

outputs. Note, (1) {C(𝑥, 𝛼)} 𝑐
= {𝑟 } holds trivially from the above

property and (2) the presence of other simulated Reveal outputs

cannot help a distinguisher because each such output is mutually

independent with every other output (up to computational indis-

tinguishability). Therefore, the existence of distinguisher between

ℎ𝑖−1 and ℎ𝑖 contradicts Requirement 2, and hence our assumption

does not hold.
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As an informal aside, note that this lemma would not hold if we

required only that the output of a Reveal gate is indistinguishable

from Dout: by requiring that indistinguishability hold even in the

context of the Reveal gate input, we ensure that Reveal outputs are

independent of one another (and hence cannot even jointly reveal

private information). □

We prove Theorem 5.3: OneHot is correct.

Proof. By induction on a moduleM. Our inductive hypothesis

is that modules are correct. Once modules are proved correct, cir-

cuits are trivially correct, since a circuit is merely a list of modules.

To prove modules correct, we first argue that each individual

gate type is in some sense correct. Note that we cannot prove gates

strictly correct because both Reveal and Color are non-deterministic.
However, we can show that in both our implementation (OneHot.Gb

and OneHot.Ev) and our specification (OneHot.ev), gates produces

outputs in the same distribution. This, combined with the module-

designer proof of correctness (Requirement 1), suffices to show that

the module as a whole is strictly correct.

We proceed by case analysis on gates.

XOR gates use the linearity of garbled shares (Lemma 3.5), and

are trivially correct.

Constant gates are trivially correct: For constant 𝑐 , 𝐺 uses

share 𝑐Δ and 𝐸 uses share 0. This is a valid garbled sharing of 𝑐

(Definition 3.4).

One-hot gates are our most complex construction. Figure 3

explains many details inline; we expand on details here.

We consider a one-hot gate with inputs 𝑎 and 𝑏 that computes

H(𝑎) ⊗𝑏. Recall that 𝐸 is assumed to know 𝑎. The two parties begin

by jointly expanding a GGM tree such that, in the end,𝐺 computes

2
𝑛
leaf nodes 𝐿𝑖 and 𝐸 computes each leaf node 𝐿𝑖≠𝑎 .

We prove this initial expansion correct by induction on the levels

of the tree; namely for each level 𝑖 , 𝐺 holds 2
𝑖+1

strings 𝑆𝑖, 𝑗 and 𝐸

holds all such strings except the single string on the path to 𝐿𝑎 . In

the base case, 𝐺 chooses 𝑆0,0 to be 𝐴0 ⊕ Δ and 𝑆0,1 to be 𝐴0. Thus

the invariant trivially holds.

Now consider arbitrary level 𝑖 such that level 𝑖 − 1 is already

populated. 𝐸 trivially expands all strings on this level save two: one

on the path to 𝑎 (which she should not receive) and one just off the

path to 𝑎. To correct for this, 𝐺 sends to 𝐸 two encryptions that

allow her to obtain the XOR sum of all even strings/all odd strings

depending on her share 𝐴𝑖 ⊕ 𝑎𝑖Δ. From this sum, she XORs on all

of her already expanded even (resp. odd) strings and recovers the

missing even (resp. odd) string. From this, 𝐸 recovers the string just

off the path to 𝐿𝑎 . Hence the inductive invariant holds.

Next, the parties expand their leaf strings into garbled sharings

JH(𝑎) ⊗ 𝑏K. 𝐺 generates all of his shares simply by applying 𝐻 to

each leaf𝑚 times. Thus 𝐺 computes a 2
𝑛 ×𝑚 matrix. 𝐸 similarly

applies 𝐻 to her leaves𝑚 times. Thus, she obtains the same matrix

as 𝐺 except that row 𝑎 is missing.

Let𝑋 be𝐺 ’s matrix. Let 𝐵 𝑗 be𝐺 ’s share of bit𝑏 𝑗 . For each column

𝑗 of the matrix, 𝐺 computes and sends to 𝐸 the following value:(⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

Note that 𝐸 holds her garbled share 𝐵 𝑗 ⊕ 𝑏 𝑗Δ. Thus, she computes:(⊕
𝑖≠𝑎

𝑋𝑖, 𝑗

)
⊕

((⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

)
⊕

(
𝐵 𝑗 ⊕ 𝑏 𝑗Δ

)
= 𝑋𝑎,𝑗 ⊕ 𝑏 𝑗Δ

Thus, in row 𝑎, the parties hold garbled shares of 𝑏. Altogether, the

parties hold a sharing JH(𝑎) ⊗ 𝑏K.
One-hot gates are correct.

Recursive Module calls are correct by induction.

Reveal gates are correct by inspection. The specification and

the implementation of Reveal gates match: both procedures sample

values from D
mask

and feed them as input to the internal masking

circuit. The internal masking circuit is correct by induction.

Color gates are similarly correct: the specification draws a uni-

form value while the implementation uses the color bit, which

is uniform. Note there is one tedious detail here: If we are being

pedantic, calling a color gate on the same input more than once is

problematic because the implementation uses the same uniform bit

for each gate, whereas the specification draws a freshmask for each

gate. This is easily remedied by having the specification associate a

uniform color with each wire. We elide this detail outside of this

discussion because it is so minor.

We have now shown each gate type correct in the sense that the

implementation and specification produce equal distributions. Now,

the module that calls these gates is strictly correct, because the

module designer provided a proof of correctness that demonstrates

the module output is independent of any internal randomness (Re-

quirement 1).

Since modules are correct, circuits are correct. OneHot is correct.

□

We prove Theorem 5.5: If 𝐻 is a circular correlation robust hash

function, then OneHot is oblivious.

Proof. By construction of a simulator S
obv

. At a high level, all

messages sent from𝐺 to 𝐸 are simulated by uniform bits, except val-

ues leaked by Reveal gates which are instead simulated by sampling

each such gate’s specified output distribution (Requirement 2).

First, S
obv

uniformly samples input shares 𝑋 ′. In isolation, these

are trivially indistinguishable from the real shares 𝑋 , because each

share in 𝑋 is drawn uniformly (with Δ conditionally added). These

remain indistinguishable in the context of C and𝑀 .

We describe the simulator’s gate-by-gate handling and argue

that the resultant material (even in context of input shares) is indis-

tinguishable. The simulator propagates the simulated input shares

𝑋 ′ to simulated output shares 𝑌 ′ and builds up material 𝑀 ′. Our
indistinguishability argument proceeds by induction on the struc-

ture of a moduleM. The inductive hypothesis maintains that the

simulated garbling of each submodule is indistinguishable from the

real garbling.

XOR gates are handled simply: S
obv

XORs the input shares. No

change is made to the simulator’s output.

Constants are also simple: S
obv

sets the output share to zero.

One-hot gates are more involved.

Recall that a one-hot gate first proceeds level-by-level through a

binary branching tree. For each level, Gb includes an encryption of
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all even nodes and of all odd nodes:

𝐻 (𝐴𝑖 ⊕Δ, nonce𝑖,even) ⊕
2
𝑖−1⊕
𝑗=0

𝑆𝑖,2𝑗 𝐻 (𝐴𝑖 , nonce𝑖,odd) ⊕
2
𝑖−1⊕
𝑗=0

𝑆𝑖,2𝑗+1

Note two facts: (1) each string 𝑆𝑖, 𝑗 is generated by invoking 𝐻 on

another uniform string and (2) both encryptions are generated by

again invoking 𝐻 . 𝐻 is a circular correlation robust hash function,

so S
obv

securely simulates each pair of encryptions with uniform

bits.

S
obv

then copies the actions of OneHot.Ev in decrypting the

GGM tree starting from the input shares. Recall that the purpose

of this decryption is to compute the 2
𝑛 − 1 leaf strings 𝐿𝑖≠𝑎 . As an

aside, we emphasize that the input 𝑎 is not a uniform value, but

rather must be simulated on a case-by-case basis. In particular, the

Reveal leakage is simulatable (see below). Because each input share

is uniform and each encryption is uniform, S
obv

computes 2
𝑛 − 1

uniform leaves.

Finally, in the real world, Gb appends to𝑀 𝑚 strings of the form:(⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

S
obv

simulates each such string with a uniform string. This is

suitable because (1) each 𝑋𝑖, 𝑗 is uniform, and (2) one string 𝑋𝑎,𝑗 is

missing from 𝐸’s view. From here, S
obv

copies the actions of Ev in

computing 𝐸’s share of the output matrix and outputs the resultant

shares.

Thus, S
obv

properly simulates one-hot gates.

Each recursive Module call is recursively simulated. This is

appropriate by induction.

Reveal gates are handled as follows. First, we simulate shares

for the sampled value 𝛼 ← D
mask

. These shares are trivially simu-

lated by all zeros (see OneHot.Ev). Next, S
obv

recursively simulates

the Reveal gate’s internal circuit C. By induction, this simulation is

indistinguishable from the real garbling. Let 𝑏 ′, 𝑐 ′ be the simulated

output shares. The real garbling appends a value Color(𝑏) to the

material (see OneHot.Gb). S
obv

simulates this message as follows:

first, it samples a value 𝑥 ← Dout. Recall that the user provided

a proof that the output of C is indistinguishable from such a sam-

pled value (Requirement 2). Hence 𝑥 simulates the cleartext output

of C. Next, S
obv

appends 𝑥 ⊕ Color(𝑏 ′) to its simulated material.

This properly simulates the material because it “reveals” the value

𝑥 , which is indistinguishable from the value revealed in the real

garbling.

Color gates are straightforward: the simulator simply copies

OneHot.Ev’s actions.

We have now proved each gate type simulatable. However, this

does not yet prove the entire module simulation indistinguishable.

In the real world, some of the module’s wires encode masks applied

to values that are revealed via Reveal gates. We must ensure that

these masks are never themselves revealed, or else the simulation

would be distinguishable. This is ensured by three facts: (1) inside

a module, no values are revealed except those revealed by new

Reveal and Color gates, (2) each Reveal gate uses a fresh mask and

its leakage is simulatable, and (3) the output of the module is a de-

terministic value, and hence is independent of any internal random

masks (Requirement 1). Thus internal random masks cannot escape

the module. Note also that the joint information given by multiple

Reveal gates does not break indistinguishability (see Lemma 5.1).

Thus S
obv

outputs a module garbling that is indistinguishable

from real. Because modules can simulated, circuits can also trivially

be simulated. OneHot is oblivious. □

We prove Theorem 5.7: If 𝐻 is a circular correlation robust hash

function, then OneHot is private.

Proof. By construction of a simulatorSprv. At a high level,Sprv
simply runs S

obv
, then builds a corresponding decoding string that

ensures the simulated circuit garbling outputs 𝑦 when evaluated.

First, Sprv invokes (C, 𝑀 ′, 𝑋 ′) = S
obv
(1𝜅 , C). The remaining

task is to generate a decoding string 𝑑 ′ which, together with 𝑀 ′

and 𝑋 ′, is indistinguishable from real (𝑀,𝑋,𝑑), even when given

the output 𝑦.

To do so, Sprv invokes the procedure 𝑌 ′ = Ev(C, 𝑀 ′, 𝑋 ′) and
hence computes output shares that correspond to the obliviousness

simulation. Recall that the real string 𝑑 is constructed by hash-

ing each corresponding zero/one output share (see OneHot.De).

Thus, Sprv must simulate two strings for each 𝑖th output: one that

properly maps𝑌 ′
𝑖
to𝑦𝑖 , and one that cannot be decrypted.Sprv com-

putes 𝐻 (𝑌 ′
𝑖
, nonce) where nonce is the same nonce as described in

OneHot.De. There are two available ‘slots’ in 𝑑 ′ where this string
can be placed; Sprv places it in slot 𝑦𝑖 . Sprv fills the other slot with
a uniform string.

Note first that the above is correct: OneHot.De(𝑑 ′, 𝑌 ′) = 𝑦. More-

over, the simulation is indistinguishable from the real world: each

element in 𝑑 is the output of a (circular correlation robust) hash

function, so appears uniformly random; the simulated decoding

string 𝑑 ′ also appears uniformly random.

OneHot is private. □

We prove Theorem 5.9: If 𝐻 is a circular correlation robust hash

function, then OneHot is authentic.

Proof. We proceed backwards across C, at each gate demon-

strating that A cannot obtain input shares except by correctly

evaluating the previous parts of the circuit. The key idea is to show

that forging an output of any subcircuit is as hard as forging an

input to that subcircuit. Thus, by induction, forging a circuit output

amounts to guessing a different circuit input, which succeeds with

probability 2
−𝜅

by trying to guess the value Δ. At a high level,

authenticity is trivial for all except one-hot gates; one-hot gates are

authentic due to the security properties of 𝐻 .

First, inspect OneHot.De. Recall that for each bit of output 𝑦𝑖 ,

the decoding string 𝑑 holds two values:

𝐻 (nonce, 𝑌𝑖 ) 𝐻 (nonce, 𝑌𝑖 ⊕ Δ)
A succeeds if for any output bit 𝑦𝑖 she causes De to output 𝑦𝑖 ⊕ 1.

To construct an output that properly decodes, A must either (1)

break the collision resistance of 𝐻 (infeasible by assumption) or

(2) construct a value 𝑌𝑖 ⊕ (𝑦𝑖 ⊕ 1)Δ. If A attempts any other value,

then OneHot.De will abort, so A fails.

Now, it suffices to show that it is infeasible to produce any such

value 𝑌𝑖 ⊕ (𝑦𝑖 ⊕ 1)Δ. We do so by induction on the structure of

a module M. Authenticity of circuits follows trivially from the

authenticity of modules. The inductive hypothesis is as follows:

Given garbled input 𝑋 and material 𝑀 for a submoduleM ′ such
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that 𝑌 = Ev(C, 𝑀,𝑋 ), A cannot construct 𝑌 ′ = 𝑌 ⊕ 𝑟Δ for some

non-zero matrix 𝑟 except with negligible probability. Put more

simply, it is infeasible forA to generate an output 𝑌 ′ that is a valid
share, but is different from 𝑌 anywhere.

XOR gates are trivially authentic. In Ev, XOR gates simply XOR

the input shares. Thus, forging output is as hard as forging input.

Constant gates are trivially authentic: Ev simply outputs a

share zero, so A is given no new information.

Recursive Module calls are authentic by induction.

Reveal gates are trivially authentic. First, each such gate sam-

ples a mask 𝛼 ← D
mask

. Forging a different mask would require

A to guess Δ, which succeeds only with probability 2
−𝜅

and hence

is infeasible. Then, the gate forwards its input and 𝛼 to a subcircuit

which is authentic by induction.

Note, the Reveal gate also leaks a value to A. Changing this

value cannot help A because the leaked values are simply guides

that indicate which garbled rows to decrypt.

Color gates are trivially authentic: Ev simply forwards parts of

the Color gate input.

One-hot gates are less straightforward, but can be proved secure
by the properties of 𝐻 . Assume the one-hot gate has inputs 𝑎 and 𝑏.

We split the one-hot gate into two parts. The first part constructs

the GGM tree where honest 𝐸 decrypts 2
𝑛−1

out of 2
𝑛
leaves. The

second part uses these leaves to construct matrix columns.

We start from the second part. For each column in the second

part, the material includes a message of the following form:(⊕
𝑖
𝑋𝑖, 𝑗

)
⊕ 𝐵 𝑗

Moreover, A holds each string 𝑋𝑖≠𝑎,𝑗 and 𝐵 𝑗 ⊕ 𝑏 𝑗Δ. However, A
does not hold 𝑋𝑎,𝑗 and, moreover, this value is the result of calling

𝐻 on a leaf string 𝐿𝑎 . But 𝐻 is a hash function, so constructing 𝑋𝑎,𝑗

is as hard as constructing 𝐿𝑎 . Thus, forging a valid output matrix

𝑋 ′ ≠ 𝑋 is as hard as forging 𝐿𝑎 or forging valid 𝐵′ ≠ 𝐵.

Now, let us look at the first part and demonstrate that forging

𝐿𝑎 is as hard as forging valid 𝐴′ ≠ 𝐴. We proceed upwards through

the binary branching tree, demonstrating that forging level 𝑖 + 1 is
as hard as forging level 𝑖 .

Each child node is constructed fby hashing its parent node, so

forging a child is as hard as forging its parent. For each level, A
additionally observes two strings:

𝐻 (𝐴𝑖 ⊕Δ, nonce𝑖,even) ⊕
2
𝑖−1⊕
𝑗=0

𝑆𝑖,2𝑗 𝐻 (𝐴𝑖 , nonce𝑖,odd) ⊕
2
𝑖−1⊕
𝑗=0

𝑆𝑖,2𝑗+1

Informally, if A could decrypt the ‘wrong’ string, then she could

forge a child on the path to 𝑎. However, both strings are encrypted

using a hash of 𝐴𝑖 and 𝐻 is circular correlation robust. Therefore,

forging the sum of odds/evens is as hard as forging 𝐴′ ≠ 𝐴. Thus,

the first part is authentic.

In summary, forging an output matrix 𝑋 ′ ≠ 𝑋 is as hard as

forging 𝐴′ ≠ 𝐴 or 𝐵′ ≠ 𝐵. Thus, one-hot gates are authentic.

Since all gate types are authentic, modules and circuits are also

authentic. Forging a valid circuit output𝑌 ′ ≠ 𝑌 is as hard as forging

a valid circuit input 𝑋 ′ ≠ 𝑋 , and forging a valid circuit 𝑋 ′ ≠ 𝑋

can only be achieved by guessing Δ, which only succeeds with

negligible probability.

OneHot is authentic. □

A.1 Compatibility with Stacked Garbling
Recall that OneHot is a garbling scheme (Section 5.5, Construc-

tion 1) [BHR12]. In this sectionwe proveOneHot’s (limited) compat-

ibility with stacked garbling [HK20a, HK21]. In particular, OneHot

can serve as the underlying garbling scheme for stacked garbling,

which handles each conditional branch. We start by giving the

definition of strong stackability [HK21].

Definition A.1 (Strong Stackability). A garbling scheme is strongly
stackable if:

(1) For all circuits C and all inputs 𝑥 ,

(C, 𝑀, En(𝑒, 𝑥)) 𝑐= (C, 𝑀 ′, 𝑋 ′)
where (𝑀, 𝑒, ·) ← Gb(1𝜅 , C), 𝑋 ′ ← {0, 1} |𝑋 | , and 𝑀 ′ ←
{0, 1} |𝑀 | .

(2) The scheme is projective [BHR12].
(3) There exists an efficient deterministic procedure Color that

maps strings to {0, 1} such that for all C and all projective

label pairs 𝐴0, 𝐴1 ∈ 𝑑 :
Color(𝐴0) ≠ Color(𝐴1)

where (·, ·, 𝑑) = Gb(1𝜅 , C).
(4) There exists an efficient deterministic procedure Key that

maps strings to {0, 1}𝜅 such that for all C and all projective

label pairs 𝐴0, 𝐴1 ∈ 𝑑 :

Key(𝐴0) | Key(𝐴1) 𝑐= {0, 1}2𝜅

where (·, ·, 𝑑) = Gb(1𝜅 , C).

Informally, strong stackability achieves two goals. First, property

(1) ensures that the garbling of a circuit “looks random”, which is

important when stacking branches [HK20a]. Second, properties

(2–4) allow the stacked garbling scheme to manipulate the shares

that emerge from evaluation of our garbling scheme.

To achieve strong stackability we modify OneHot in two ways.

The first change is simple and does not alter the flexibility of our

scheme. Specifically, we alter our output decoding string 𝑑 to meet

item (3). Recall that we construct the decoding string 𝑑 by setting

the projective pair for each output bit 𝑦𝑖 as follows (see Figure 4):

𝐻 (𝑌𝑖 , nonce) 𝐻 (𝑌𝑖 ⊕ Δ, nonce)
Note that if we call our Color procedure (Section 3) on these two

strings, the result may match, which fails property (3). Thus, we

make the following simple adjustment to 𝑑 :

𝐻 (nonce, 𝑌𝑖 ) | Color(𝑌𝑖 ) 𝐻 (nonce, 𝑌𝑖 ⊕ Δ) | Color(𝑌𝑖 ⊕ Δ) (3)

By concatenating the color of the input shares, we ensure that the

least significant bits of these two strings differ. Therefore, our Color

procedure will now meet item (3).

The second change is more fundamental: Reveal gates can re-

veal values from arbitrary distributions. This breaks property (1),

which insists that all values viewed by 𝐸 are indistinguishable from

uniform. Therefore, to achieve strong stackability we limit Reveal

gates such that only uniform distributions are allowed.

Theorem A.2. Let OneHot′ be the OneHot garbling scheme (Sec-
tion 5.5, Construction 1) with the following two modifications:

(1) The output decoding string𝑑 is configured by setting the projec-
tive output pair for each output bit𝑦𝑖 according to Equation (3).
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(2) The output distribution Dout of each Reveal gate is limited to
a uniform distribution over binary strings.

If𝐻 is a circular correlation robust hash function, OneHot′ is strongly
stackable.

Proof. By inspection of the simulator S
obv

(Theorem 5.5).

First note that strong stackability items (2–4) hold trivially. OneHot

is projective. Color is formally defined in Section 3, and we define

Key to be the procedure which drops the least significant bit (i.e.

drops the color bit) and retains the remaining bits . The indistin-

guishability of pairs of keys in 𝑑 follows from the fact that 𝐻 is a

circular correlation robust hash function (see Equation (3)).

Now, it remains to prove strong stackability item (1). Examine

the obliviousness simulator S
obv

(Theorem 5.5). Note that S
obv

simulates the entire garbling (i.e., all material and wire shares) with

uniform bits with one notable exception: the material used to reveal

𝐸’s output of a Reveal gate is simulated by sampling from that gate’s

output distribution Dout. However, since OneHot
′
restricts Dout,

this simulation is also achieved by uniform bits. Since the simulator

simulates all values with uniform bits, item (1) holds.

OneHot
′
is strongly stackable. □

B APPLICATIONS – EXTENDED
In this appendix, we expand on details deferred from Section 5.

B.1 General Binary Outer Products – Extended
In Section 7.2 we explained our general outer product technique,

but we did not formalize it. Figure 8 provides the formal module.

B.2 Binary Matrix Multiplication – Extended
It is well known that outer products can be used to efficiently

compute matrix products. Specifically, the binary matrix product

of input matrices 𝑎 and 𝑏 can be expressed by (1) for each 𝑖 taking

the outer product of column 𝑖 of 𝑎 with row 𝑖 of 𝑏 and (2) XORing

the resulting matrices.

Notice that this technique does not use our low level primitives

directly, and instead uses our outer product module as a black box.

Hence, we need not formalize a module for matrix multiplication.

Because our technique reduces the cost of outer products by

factor 𝑘 (see Section 7.2), we similarly reduce the cost of binary

matrix multiplication by factor 𝑘 . That is, for input matrices with

dimension 𝑛 ×𝑚 and𝑚 × 𝑙 , we require O(𝑛𝑚𝑙/𝑘) communication

rather than the standard O(𝑛𝑚𝑙). Formally, 𝑘 is a logarithmic factor;

in practice we instantiate 𝑘 with small constants.

We implemented matrix multiplication; Figure 9 plots our im-

provement over the standard approach.

B.3 Integer Multiplication – Extended
Consider the multiplication of two 𝑛-bit numbers 𝑎 and 𝑏. Stan-

dard GC techniques multiply such numbers using the schoolbook

Input: Parties input shared bitstrings J𝑎K, J𝑏K where 𝑎 ∈ {0, 1}𝑛
and 𝑏 ∈ {0, 1}𝑚 .

Output: Parties output a shared matrix J𝑎 ⊗ 𝑏K.
Procedure:

• Parties release to 𝐸 𝑎 ⊕ 𝛼 and 𝑏 ⊕ 𝛽 for uniform 𝛼 ∈
{0, 1}𝑛, 𝛽 ∈ {0, 1}𝑚 via Color gates. Notably, the Color

gates output J𝑎 ⊕ 𝛼K, J𝑏 ⊕ 𝛽K, and J𝛼K.
• Parties agree on a “chunk size” 𝑘 which is at most logarith-

mic in the overall circuit input size. The parties split the

input vectors into ⌈𝑛/𝑘⌉ 𝑘-bit subvectors to avoid expen-

sive exponential scaling.

• For each 𝑘-bit subvector J𝑎 ⊕ 𝛼K𝑖 ..𝑖+𝑘 , the parties compute:

T (id)⊺ · JH((𝑎 ⊕ 𝛼))𝑖 ..𝑖+𝑘 ⊗ 𝑏K = J(𝑎 ⊕ 𝛼)𝑖 ..𝑖+𝑘 ⊗ 𝑏K
via a one-hot gate (by Lemma 4.1). Notice that the parties

do not split 𝑏 into chunks. The parties then vertically con-

catenate the ⌈𝑛/𝑘⌉ resultant matrices into a single matrix

J(𝑎 ⊕ 𝛼) ⊗ 𝑏K.
• Symmetrically, the parties compute J(𝑏 ⊕ 𝛽) ⊗ 𝛼K by split-

ting J𝑏 ⊕ 𝛽K into ⌈𝑛/𝑘⌉ 𝑘-bit chunks.
• 𝐺 locally computes 𝛼 ⊗ 𝛽 and injects J𝛼 ⊗ 𝛽K as a constant.
• Parties compute and output:

J(𝑎 ⊕ 𝛼) ⊗ 𝑏K ⊕ J(𝑏 ⊕ 𝛽) ⊗ 𝛼K⊺ ⊕ J𝛼 ⊗ 𝛽K = J𝑎 ⊗ 𝑏K
(see Figure 5 for proof of above equality).

Figure 8: Efficient general outer product module. Themodule
implements the function 𝑎, 𝑏 ↦→ 𝑎 ⊗ 𝑏. Unlike Figure 5, this
module handles outer products for input vectors of arbitrary
length.

method [WMK16]
6
. For sake of example, consider 𝑛 = 4 and exam-

ine the computation done by the schoolbook method:

a0 · (
a1 · (
a2 · (
a3 · (

b3 b2 b1 b0

b2 b1 b0

b1 b0

b0+

(ab)0(ab)1(ab)2(ab)3

)

)

)0

0

0

000 )

Notice that each summand can be expressed by bits in the outer

product of 𝑎 and 𝑏. Hence, we improve multiplication by using our

general outer product module (Section 7.2). Each summand must

still be added inside GC; we do so by traditional GC means. This

addition is now the bottleneck of multiplication performance. We

leave potential improvements, perhaps by incorporating arithmetic

GC techniques [BMR16], to future work.

Our integer multiplication technique does not use our lowest

level primitives directly, so we need not formalize a module.

B.4 Binary Field Inverses – Extended
We now describe our field inverse module in detail. We first com-

pute and release to 𝐸 𝑎 · 𝛼 . To do so, we use a Reveal gate to sample

6
There exist asymptotically more efficient multiplication algorithms, but these are

inefficient in practice.
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Figure 9: We used our implementation to compute the bit-
wise matrix product of two 128 × 128 square bit matrices. We
plot total communication consumption (top) and wall clock
runtime (bottom).We instantiated our approachwith various
“chunking factors” 𝑘 (see Figure 8). At 𝑘 = 6, we improve over
standard by 6.2× (communication) and 5× (time).

uniform non-zero mask 𝛼 ∈ GF(2𝑛). Recall that a Reveal gate may

use an arbitrary circuit to apply the mask to its argument; we use

a circuit that computes 𝑎 · 𝛼 where · denotes field multiplication.

This circuit uses the technique described in Section 7.5 to reduce

field multiplication to an outer product. Because 𝐺 knows the mul-

tiplicand 𝛼 , the Reveal gate’s internal circuit can compute the outer

product more efficiently than as described in Section 7.1. Namely

the parties compute the following, where 𝛾 ∈ {0, 1}𝑛 is a uniform

mask:

T (id)⊺ · JH(𝑎 ⊕ 𝛾) ⊗ 𝛼K ⊕ J𝛾 ⊗ 𝛼K = J𝑎 ⊗ 𝛼K

𝐺 injects J𝛾 ⊗ 𝛼K as a constant. The parties apply a linear function

to this outer product to obtain J𝑎 · 𝛼K.
The above gate reveals 𝑎 · 𝛼 to 𝐸, so we must prove this secure.

This holds straightforwardly: because 𝛼 is uniform and because

GF(2𝑛) is a field, this value is indistinguishable from a uniform

non-zero field element.

Next, we use the revealed value 𝑎 · 𝛼 to compute the inverse. Let

(·)−1 be the function that takes the field inverse of its argument.

The parties use a one-hot gate to compute the following:

T ((·)−1)⊺ · JH(𝑎 · 𝛼) ⊗ 𝛼K = J(𝑎 · 𝛼)−1 ⊗ 𝛼K Lemma 3.3

The parties use the reduction described in Section 7.5 to compute

from the outer product the field product J(𝑎 · 𝛼)−1 · 𝛼K = J𝑎−1K.
Our module must account for the possibility that the input 𝑎 is

zero. The typical approach, which we also adopt, is to map input

zero to output zero. To do so, we first compute an auxiliary bit 𝑧

that indicates if 𝑎 = 0. We use a regular Boolean circuit with ANDs

and XORs to compute J𝑧K ≜ J𝑎 == 0K. At the top-level, the module

Input: Parties input shared bitstring J𝑎K where 𝑎 ∈ {0, 1}𝑛 .
Output: Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 be defined as follows:

𝑓 (𝑥) ≜
{
0 if 𝑥 = 0

𝑥−1 otherwise

Parties output a shared bitstring J𝑓 (𝑎)K.
Procedure:

• The parties first compute J𝑧K ≜ J𝑎 == 0K. This is achieved
using a circuit with 𝑛 − 1 AND gates.

• The parties next compute a Reveal gate to mask 𝑎 ⊕ 𝑧. The
gate samples a uniform non-zero element 𝛼 from GF(2𝑛).
The Reveal gate’s internal circuit is itself a module that

computes 𝑥 ↦→ 𝑥 · 𝛼 ; it is implemented as follows:

– The internal module takes as arguments 𝑎 and 𝛼 . Via

a Color gate, it reveals 𝑎 ⊕ 𝛾 to 𝐸 where 𝛾 is a uniform

mask.

– Note,𝐺 knows𝛾 ⊗𝛼 and hence can inject it as a constant.

The parties compute the following by a one-hot gate:

T (id)⊺ · JH(𝑎 ⊕ 𝛾) ⊗ 𝛼K ⊕ J𝛾 ⊗ 𝛼K

= J(𝑎 ⊕ 𝛾) ⊗ 𝛼K ⊕ J𝛾 ⊗ 𝛼K

= J(𝑎 ⊗ 𝛼) ⊕ (𝛾 ⊗ 𝛼)K ⊕ J𝛾 ⊗ 𝛼K

= J𝑎 ⊗ 𝛼K

– The internal module then computes J𝑎 · 𝛼K via a linear
function (see Section 7.5) and outputs the result.

• The above Reveal gate releases (𝑎 ⊕ 𝑧) · 𝛼 to 𝐸. This is se-

cure because both 𝑎 ⊕ 𝑧 and 𝛼 are non-zero field elements

and because 𝛼 is uniform; hence the product is indistin-

guishable from a uniform non-zero field element.

• The parties compute the following by a one-hot gate:

T ((·)−1)⊺ · JH((𝑎 ⊕ 𝑧) · 𝛼) ⊗ 𝛼K = J((𝑎 ⊕ 𝑧) · 𝛼)−1 ⊗ 𝛼K

• Finally, the parties compute the following via a linear func-

tion (see Section 7.5) and output the result:

J((𝑎 ⊕ 𝑧) · 𝛼)−1 · 𝛼) ⊕ 𝑧K =
{
J0K if 𝑧 = 1

J𝑎−1K otherwise

Figure 10: Our binary field inverse module.

computes the following expression:

J(𝑎 ⊕ 𝑧)−1 ⊕ 𝑧K

If 𝑎 is indeed zero, then this expression takes the inverse of one,

which is itself one, and then XORs one, resulting in the desired

output zero. Otherwise, this expression computes 𝑎−1.

B.4.1 S-Boxes – Extended. In Section 7.6, we discussed the 8-bit

AES S-Box. 16-bit S-Boxes, based on an inversion in GF(216), have
also been proposed for some applications [KKK

+
15]. The state-of-

the-art Boolean circuit uses 226 ciphertexts (113ANDgates) [BMP13].

Our approach produces an S-Box that consumes only 122 cipher-

texts, a ∼ 45% improvement. Unfortunately, this application is less

practical in terms of wall clock time since the parties must each

compute a 2
16 × 16 one-hot outer product matrix.
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Input: Parties input shared bitstring J𝑎K where 𝑎 ∈ {0, 1}𝑛 . Par-
ties agree on a public constant ℓ .

Output: Parties output a shared bitstring Jℓ𝑎 mod 2
𝑛K.

Procedure:

• The parties use a Reveal gate to (1) sample uniform 𝛼 , (2)

compute J𝑎 − 𝛼K, and (3) reveal 𝑎 − 𝛼 to 𝐸. Because 𝛼 is

uniform, this revelation is secure.

• The parties view J𝑎 − 𝛼K as the concatenation of ⌈𝑛/𝑘⌉ 𝑘-
bit “chunks”. For each 𝑖th chunk J𝑐𝑖K, the parties compute:

T (ℓ ( ·)≪(𝑖 ·𝑘) ) · JH(𝑐𝑖 ) ⊗ 1K = ℓ𝑐𝑖≪(𝑖 ·𝑘)

• The parties compute and output:(∏
𝑖

ℓ𝑐𝑖≪(𝑖 ·𝑘)
)
· ℓ𝛼

= (ℓ𝑎−𝛼 ) · ℓ𝛼

= ℓ𝑎

Note ℓ𝛼 is a constant known to 𝐺 . Each multiplication is

computed via the technique described in Section 7.4.

Figure 12: Our integer exponent of a public constant module.

Input: Parties input shared bitstring J𝑎K where 𝑎 ∈ {0, 1}𝑛 . Par-
ties agree on a public constant ℓ .

Output: Parties output a shared bitstring J𝑎 mod ℓK.
Procedure:

• Parties agree on a parameter𝑚 such that𝑚 · ℓ > 2
𝑛
.

• The parties use a Reveal gate to (1) sample uniform mask

𝛼 ∈ Z𝑚 ·ℓ , (2) compute J𝑎 + 𝛼 mod𝑚 · ℓK, and (3) reveal

𝑎 + 𝛼 mod𝑚 · ℓ to 𝐸. Because 𝛼 is uniform, this revelation

is secure.

• The parties view J𝑎 + 𝛼 mod𝑚 · ℓK as the concatenation
of 𝑘-bit “chunks”. For each 𝑖th chunk J𝑐𝑖 mod (𝑚 · ℓ)K, the
parties compute:

T (((·) ≪ (𝑖 · 𝑘)) mod ℓ) · JH(𝑐𝑖 ) ⊗ 1K
= (𝑐𝑖 ≪ (𝑖 · 𝑘)) mod ℓ

Where≪ denotes a left bit shift. That is, the parties com-

pute (·) mod ℓ on each 𝑘-bit chunk of the masked input.

• The parties compute and output:((∑︁
𝑖

(𝑐𝑖 ≪ (𝑖 · 𝑘)) mod ℓ

)
+ 𝛼

)
mod ℓ

= ((𝑎 + 𝛼) − 𝛼) mod ℓ

= 𝑎 mod ℓ

Each addition is computed by an AND-gate based circuit

that efficiently computes (𝑥 +𝑦) mod ℓ for 𝑥,𝑦 strictly less

than ℓ .

Figure 11: Our public modular reduction module.

B.5 Modular Reduction – Extended
Figure 11 lists the module for our modular reduction technique.

The module makes use of two key ideas:

First, consider 𝑥 and 𝑦 that are both statically known to be less

than ℓ . In this case, the operation (𝑥 + 𝑦) mod ℓ is a special case

and can be computed using linear communication: simply add the

numbers, compare the sum to ℓ , and conditionally subtract ℓ .

Second, we use the two following equalities:

(𝑥 + 𝑦) mod ℓ = ((𝑥 mod ℓ) + (𝑦 mod ℓ)) mod ℓ

𝑥 mod ℓ = (𝑥 mod (𝑚 · ℓ)) mod ℓ

Based on these ideas, we split the input 𝑎 into chunks, reduce

each chunk modulo ℓ , and then efficiently add the results.

B.6 Exponentiation – Extended
We now describe our module that computes Jℓ𝑎K for publicly agreed
constant ℓ . We take advantage of the following property of expo-

nents:

𝑥𝑦 · 𝑥𝑧 = 𝑥𝑦+𝑧

The module is formalized in Figure 12.

The key idea is that we can split 𝑎 into “chunks” and then easily

compute ℓ ( ·) for each chunk. We still need to then multiply each of

these results inside GC, but the number of required multiplications

is proportional only to the number of chunks. Notice also that

we can use our improved multiplication technique (Section 7.4) to

further improve the module.
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