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Abstract. Katz et al., CCS 2018 (KKW) is a popular and efficient
MPC-in-the-head non-interactive ZKP (NIZK) scheme, which is the tech-
nical core of the post-quantum signature scheme Picnic, currently consid-
ered for standardization by NIST. The KKW approach simultaneously
is concretely efficient, even on commodity hardware, and does not rely
on trusted setup. Importantly, the approach scales linearly in the circuit
size with low constants with respect to proof generation time, proof ver-
ification time, proof size, and RAM consumption. However, KKW works
with Boolean circuits only and hence incurs significant cost for circuits
that include arithmetic operations.

In this work, we extend KKW with a suite of efficient arithmetic
operations over arbitrary rings and Boolean conversions. Rings Z2k are
important for NIZK as they naturally match the basic operations of mod-
ern programs and CPUs. In particular, we:

– present a suitable ring representation consistent with KKW,
– construct efficient conversion operators that translate between arith-

metic and Boolean representations, and
– demonstrate how to efficiently operate over the arithmetic repre-

sentation, including a vector dot product of length-n vectors with cost
equal to that of a single multiplication.

These improvements substantially improve KKW for circuits with
arithmetic. As one example, we can multiply 100 × 100 square matrices
of 32 bit number using 3200× smaller proof size than standard KKW
(100× improvement from our dot product construction and 32× from
moving to an arithmetic representation).

We discuss in detail proof size and resource consumption and argue
the practicality of running large proofs on commodity hardware.
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1 Introduction

Zero-knowledge proofs of knowledge (ZKPoKs) enable a prover P, given a public
circuit C, to show that she holds a witness w, such that C(w) = 1. Recent
research focuses on efficient ZK proofs of arbitrary statements. A special case of
ZK is non-interactive ZK (NIZK). NIZK proofs can be transferred and verified
without interacting with P.

[KKW18] specified a powerful NIZK proof system over Boolean circuits that
features linear scaling in proof size, in verifier time, and, critically, in proof
generation time. In this work, we extend this system with efficient arithmetic and
conversions between Boolean and arithmetic representations. Our contribution
thus reduces both proof size and computation.

Motivation and Setting for Our Work. ZKPs, and especially NIZKs, have
enjoyed immense research interest in recent years. The majority of such works
prioritize small proof size and fast verification, important metrics in blockchain-
related applications. However, optimizing these metrics comes at significant
prover cost. In experiments reported in many works, provers are run on powerful
servers with hundreds of GB of RAM. Asymptotically, proof times are typically
super-linear in the size of the proof circuit, with costs O(n log n).

At the same time, moderate resource requirements, such as low memory
utilization, are essential to a class of applications, such as those running a ZK
prover on a mobile device. Modern flagship phones have 4 to 6 GB RAM, a
portion of which can be made available to the NIZK application.

This leaves room for a balanced approach that prioritizes total proof time,
and that takes into account the ability to run on commodity hardware, and the
costs of proof generation, network transmission, and verification.

We argue that [KKW18] is a great fit for applications where only commodity
hardware is available and where concretely efficient performance is demanded:
[KKW18]’s linear scaling in communication, prover computation, and verifier
computation mean that the approach remains tractable even for large proof
statements. [KKW18]’s RAM consumption is low even for large proof functions
due to the gate-by-gate proof generation, and [KKW18] uses only light-weight
computational primitives. The technique also requires no trusted setup. Finally,
[KKW18] is actively supported by the community, since it is under consideration
standardization by NIST as part of the Picnic post-quantum signature scheme.

However, [KKW18] supports only Boolean circuits. When [KKW18] is used
in contexts that require complex arithmetic, the circuit size grows significantly,
increasing both proof computation and communication. In this work, we improve
[KKW18] by extending it with efficient arithmetic operations and with conver-
sions between Boolean and arithmetic representations.

1.1 A Use Case for Balanced ZKP

To illustrate and make more precise our motivation, we explicate one natural
use case where [KKW18] would be a top ZKP system among prior work.
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Consider a set of mobile phones on a local Wi-Fi or bluetooth broadcast net-
work, e.g., in the context of a group event, private contact tracing, etc. Suppose
one phone wishes to prove a statement to everyone on the broadcast channel.
Note that even though interaction is available here, the interactive designated-
verifier systems, such as [JKO13,HK20] must repeat the proof for each verifier.
Thus interactive techniques are not well suited for convincing the entire network
at once, and a NIZK proof, which can be broadcasted, is a better solution.

In such a setting, the broadcast network resource is surprisingly substantial:
while somewhat slower than 1gbps LAN, Wi-Fi supports speeds up to many
hundreds of Mbps. Bluetooth 5 supports bandwidth of up to 2Mbps on distances
of up to 800 ft (240 m).

We wish to complete the proof, including its generation, transmission (which
may overlap with the other two phases), and verification, as quickly as possible.
One natural way to view this optimization space is to ask: “given the available
bandwidth, say 10Mbps, is the bottleneck proof generation, transmission, or ver-
ification?” The answer to this question (cf. Sect. 2 discussion of ZK systems’
costs) is: “Proof generation/verification.” Thus [KKW18], a proof system with
concretely efficient linear scaling in the proof size, is a top choice.

1.2 Our Contribution and Outline of the Work

We extend the [KKW18] proof system with efficient ring arithmetic. Ring (e.g.,
vs field) operations are a particularly useful primitive for ZK, since they naturally
match basic steps of existing programs written in standard languages, such as
C. A ring-based ZK system can thus be more naturally used in proving program
properties (e.g. presence of bugs [HK20]) in ZK.

While [dSGMOS19,BN19] (cf. Related Work Sect. 2) considered adding arith-
metic to KKW for highly tailored applications, we provide a generic construction,
and additionally offer the following efficient arithmetic operations:

Consider a finite ring whose elements are l bits long.

– We add an efficient operation that computes the dot-product of two arbitrary
size vectors of ring elements for 2l proof bits (cf Sect. 5.1).

– We add efficient conversions between Boolean and arithmetic representations.
Specifically, we add conversion operations between Boolean and rings Zk for
arbitrary k. Let l = log k. Converting l Boolean values to an arithmetic value
(or vice versa) costs l2 bits in the proof (cf Sect. 5.2).

In Sect. 6, we formalize our approach as a p party semi-honest protocol in the
preprocessing model, prove its security, and explain how it plugs into the honest-
verifier ZK protocol of [KKW18]. Thus, via the Fiat-Shamir transform [FS87]
our approach directly extends the NIZK [KKW18] proof system.

We provide a detailed account of the performance of our system, including
individual gate costs and comparisons with standard [KKW18] (Sect. 7). We
demonstrate that for arithmetic operations, our approach substantially improves
[KKW18]. Of particular note is our improvement for linear arithmetic: as an
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example, our approach can multiply 100× 100 square matrices of 32 bit number
using 3200× smaller proof size than standard [KKW18].

1.3 Intuition: MPC-in-the-Head, [KKW18] and Our Work

[KKW18] is a NIZK in the MPC-in-the-Head paradigm. In the MPC-in-the-head
paradigm, the prover P simulates in her head a secure multi-party computation
(MPC) protocol between several ‘virtual players’. These players are given shares
of P’s witness as input and run the proof circuit C under MPC. P commits
to the views of these players, and then the verifier V selects a subset of views
to open. By checking that these views are consistent with the honest execution
of the MPC protocol resulting in the output 1, V gains confidence that P did
not cheat and indeed has a witness. Because V does not see the views of all
players, the MPC protocol’s security properties prevent him from learning P’s
witness. Therefore, such a protocol achieves Zero Knowledge. The players amplify
soundness by repeating the protocol. Such systems can be transformed into NIZK
proof systems using the classic Fiat-Shamir transform [FS87].

[KKW18] implements MPC-in-the-head with a protocol heavily based on
preprocessing. Preprocessing fits elegantly with MPC-in-the-head because it can
be easily prepared by P and checked by V. As do [IKOS07,GMO16,CDG+17],
[KKW18] allows efficient broadcast-based MPC, which allows P to simulate
larger numbers of MPC players in her head. Because the protocol happens only
in P’s head, these broadcasts are efficient. By simulating more players, P reduces
the number of repetitions needed to amplify soundness.

Our work notices inherent flexibility in this broadcast-based MPC protocol.
We point out that broadcasts of Boolean values are easily generalized to broad-
casts of elements of arbitrary finite rings. We show how this extension allows us
to directly encode algebraic operations like addition and multiplication, signifi-
cantly reducing cost. We further show how Boolean and k-bit integer operations
can be mixed in the same circuit by including conversion operations.

2 Related Work

Zero Knowledge. ZKP [GMR85,GMW91] is a fundamental cryptographic prim-
itive. ZK proofs of knowledge (ZKPoKs) [GMR85,BG93,DP92] allow a prover
to convince a verifier, who holds a circuit C, that the prover knows an input,
or witness, w for which C(w) = 1. Originally, practical ZK research focused on
specific algebraic relations. More recently, ZK research has focused on practical
proofs of arbitrary circuits. Our work is in this arbitrary circuit setting.

MPC-in-the-Head. Ishai et al. [IKOS07], introduced the powerful ‘MPC-in-the-
head’ paradigm, outlined in Sect. 1.3. ZKBoo [GMO16] was the first implemen-
tation of MPC-in-the-head. Chase et al. [CDG+17] deprecated ZKBoo by build-
ing a more efficient system, ZKB++. They demonstrated that ZKB++ can
implement an efficient signature scheme using only symmetric-key primitives.
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Katz et al. [KKW18], the basis of our work, further improved this direction by
using MPC with preprocessing. Picnic [ZCD+17], a signature scheme based on
ZKB++, was submitted to the NIST post-quantum standardization effort. The
Picnic submission was since updated and is now based on [KKW18].

Ligero [AHIV17] is another MPC-in-the-head protocol that diverges from our
work’s lineage. Ligero offers sublinear proof size (O(

√|C|)), but incurs super-
linear prover computation (O(|C| log |C|)). It is estimated that Ligero constructs
smaller proofs than [KKW18] for circuits with more than approximately 100K
gates. Thus, a choice between [KKW18] and Ligero should be based on the
desired application and on performance requirements.

SNARKs. Succinct non-interactive arguments of knowledge (SNARK)
[GGPR13,PHGR13,BCG+13,CFH+15,Gro16] build proofs that are particu-
larly efficient, both in communication and verification time. They construct
proofs that are shorter than the input itself. Prior work demonstrated the feasi-
bility of sublinear ZK proofs [Kil92,Mic94], but were concretely inefficient. Early
SNARKs required a semi-trusted party. This disadvantage led to the develop-
ment of STARKs (succinct transparent arguments of knowledge) [BBHR18].
STARKs do not require trusted setup and rely on more efficient primitives.
STARKs are succinct ZKP, and thus are SNARKs. In this work, we do not sep-
arate them; rather we see them as a body of work focused on sublinear proofs.

Recent SNARKs include Libra [XZZ+19] and Virgo [ZXZS19]. SNARKs
[MBKM19,CHM+20] rely on trusted setup, which we wish to avoid. SPARKs
[EFKP20] parallelize expensive prover time, but total CPU consumption (our
metric) is superlinear. Supersonic’s prover [BFS20] is quazilinear with high con-
stants. Fractal [COS20] runs its concretely expensive prover on a high-end Intel
Xeon 6136 CPU at 3.0 GHz with 252 GB of RAM (no more than 32 GB of RAM
were used in any experiment).

Interactive ZK. In this work, we focus on concretely efficient non-interactive
ZK. Another direction forgoes non-interactivity in exchange for very fast proofs.
Interactivity allows private-coin ZK protocols, such as those based on [JKO13]
and garbled circuits (GC). In [JKO13], V garbles the evaluated circuit, then P
evaluates and thus obtains the random encoding of the output. The GC authen-
ticity property guarantees that P is unable to obtain a requisite output label
without evaluating with a valid witness w. Recently, [HK20] showed that condi-
tional branches in the proof circuit can be evaluated for free.

We achieve performance similar to the above works (linear with low concrete
overhead), but we work with algebraic values and in the non-interactive setting.

Prior work on Arithmetic. [KKW18] tailors [KKW18] for AES-based signatures
and Short Integer Solution problem. In contrast, we propose a more general
KKW suite of tools. Namely:

Motivated by ZKP of AES (whose S-boxes use F28 arithmetic), [dSGMOS19]
adapt [KKW18] to operate in the field F28 . Our approach similarly improves
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[KKW18] by adding operations, but we take a more general approach and inte-
grate ring operations, efficient dot product, and conversions.

Baum and Nof [BN19] consider an arithmetic field-only version of [KKW18],
focusing on interactive instances of ZK arguments of knowledge for instances of
the Short Integer Solution problem. [BN19] do not provide conversions between
representations. We offer ring arithmetic (matching basic steps of existing pro-
grams) and additional efficient operations: dot product and conversions.

We are not aware of other arithmetic ZK constructions that work with KKW.

Balanced NIZK. In Sect. 1, we motivate a setting that prioritizes total proof
time, taking into account the ability to run on commodity hardware and the
cost of proof generation, transmission, and verification. Among the many recent
ZKP systems (cf. Sect. 2), several works belong to this balanced niche, among
them Libra [XZZ+19] and Virgo [ZXZS19] (concretely expensive but with linear
prover time), Ligero [AHIV17] and [KKW18]. We improve this balanced setting.
Among the above works, Libra and Virgo are the most recent, and enjoy linear
proof time with reasonable proof size. However, Libra requires trusted setup
that we wish to avoid. While Libra and Virgo report faster proof times than
Ligero and [KKW18], they were tested on vastly more powerful machines: Libra:
Amazon EC2 c5.9xlarge with 70 GB of RAM and Intel Xeon Platinum 8124 m
CPU with 3 GHz virtual core, and Virgo: server with 512 GB of DDR3 RAM
(1.6 GHz) and 16 3.2 GHz cores (2 threads/core). While Ligero runs on modest
hardware, its proof time is super-linear: O(n log n). Finally, [KKW18] enjoys
both linear scaling and concretely efficient proof time, but its proof size is linear
as well. Because of [KKW18]’s linear scaling, it is a strong fit for balanced-cost
NIZK.

MPC Arithmetic Protocols. We highlight some related works that address arith-
metic protocols with properties similar to our own improvements.

[CGH+18] used threshold secret sharing to construct an efficient arithmetic
MPC protocol. Like our approach, their protocol provides an efficient vector dot
operation. However, their protocol works with fields (and we are interested in
supporting efficient ring arithmetic), and further, is not compatible with Boolean
circuits.

BLAZE [PS20] proposed a fast three-server privacy-preserving machine learn-
ing framework. Their protocol allows both vector dot product operations and
conversions between Boolean and arithmetic values. BLAZE is a 3-PC protocol,
and does not generalize to arbitrary numbers of parties. Additionally, their arith-
metic to Boolean conversions require the use of garbled circuits and are expen-
sive. Our MPC-in-the-head protocol supports similar operations, but allows any
number of virtual parties and leverages the ZK prover to efficiently instantiate
conversions.
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3 Notation

– Let p denote the number of parties: there are p parties Pi for i ∈ {1, . . . , p}.
– We consider finite rings R. We denote the bit-length of an R element by l.
– We write a ←$ R to denote that a is a uniform element drawn from R.
– λ denotes a uniform Boolean mask.
– x, y, z, etc. denote cleartext Boolean bits that appear in the proof.
– x̃, ỹ, z̃, etc. denote encrypted Boolean bits. I.e., x̃ = x ⊕ λ for some mask λ.
– Capitalized variables are used for ring values: Λ is a uniform ring element

mask, X,Y,Z are cleartext ring elements, and X̃, Ỹ , Z̃ are encrypted ring
elements. That is, X̃ = X + ΛX .

– Suppose a is a Boolean value (resp. A is a ring element). Then let [[a]] denote
a secret sharing of a (resp. [[A]] of A). That is, suppose each player Pi holds
an additive share ai such that

⊕p
i=1 ai = a (resp.

∑p
i=1 Ai = A). Then [[a]] is

the vector (a1, a2, . . . , ap) (resp. [[A]] = (A1, A2 . . . Ap) ).
– We refer to Boolean (resp. arithmetic) wires with lowercase (resp. uppercase),

e.g., value A on wire A. Context disambiguates this slight abuse of notation.

Although our circuits discuss arbitrary rings, we also provide concrete con-
version operators between particular rings. Specifically, we construct conversion
operations from the Booleans to rings Zk for arbitrary k. We also provide the
dual conversion from Zk to the Booleans.

4 [KKW18] Background

As discussed in Sect. 1, [KKW18] is a powerful MPC-in-the-head NIZKPoK sys-
tem that takes advantage of a preprocessing-based protocol to achieve efficiency.
[KKW18] NIZKPoK’s relevant (to us) features are non-interactivity and its low-
constant linear scaling in all proof costs, including proof generation, proof trans-
mission, and proof verification.

The proof system is built from two protocols:

1. An MPC protocol with preprocessing secure against up to p − 1 semi-honest
corruptions. It is this protocol that we improve in our work.

2. An honest-verifier Zero Knowledge (HVZK) protocol. This HVZK protocol
uses the above MPC protocol as a black-box. In particular, P runs the MPC
protocol in her head many times (i.e., there are many instances) and among
many players. This MPC protocol includes a preprocessing and online phase.
The verifier V challenges P to open the views of players. In some instances,
V inspects the preprocessing given to all players to check it was correctly
constructed. In the other instances, V inspects the preprocessing and online
views of all but one MPC party and checks that the views are consistent with
the MPC protocol. Thus, V becomes convinced that P could not have cheated
in either the preprocessing or the online phases.
Because the MPC protocol is used as a black-box, we can substitute in our
own improved protocol.
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Due to lack of space, we defer a formal review of [KKW18]’s MPC protocol
to a full version of this paper. We present our extensions to their protocol in full
detail such that the specific details of their protocol are not essential background.

5 Adding Arithmetic to Boolean Circuits

Our core contribution is an extension to the concretely efficient NIZK proof
system of [KKW18]. In particular, we add efficient arithmetic operations as well
as conversions between arithmetic and Boolean representations. In this section,
we explain how our protocol implements these operations.

We first discuss a pure algebraic version of [KKW18] and explain the relative
efficiency of our arbitrary ring operations. Then, we show how to mix arithmetic
and Boolean representations in a single circuit by adding conversion operations.

5.1 Ring Circuits with Efficient Dot Product

Consider circuits where the gates perform ring operations: i.e. circuits with addi-
tion, multiplication, and subtraction gates. Ring [KKW18] is a natural gener-
alization of the Boolean protocol, and we leverage similar preprocessing and
online phases. The phases are primarily concerned with propagating the follow-
ing invariants gate-by-gate through the circuit:

– Preprocessing invariant. During the preprocessing phase, P ensures that
each virtual player has a uniformly random additive share of a random mask.
For each ring wire A the p virtual players hold the random sharing [[ΛA]]
where ΛA is a uniform element of a finite ring R.

– Online invariant. In the online phase, each virtual player holds the value
Ã = A + ΛA. I.e., they each hold the same encryption of A.

These invariants support correctness, because they imply that on each output
wire A the players hold A+ΛA and [[ΛA]]. Thus, the players can broadcast their
mask shares and locally reconstruct A. The invariants support security against
up to p − 1 semi-honest corruptions, because they ensure that each cleartext
value A is masked by ΛA, and thus no strict subset of players, who together
have only a uniform additive share of ΛA, can reconstruct ΛA. We prove these
facts formally in the full version of this paper.

We next step through the supported algebraic operations, showing how our
representation propagates the preprocessing and online invariants.

Inputs. Suppose the wire A is an input wire. Our goal is to provide a uniform
sharing [[ΛA]] in the preprocessing phase and to provide the encryption Ã =
A + ΛA to each player in the online phase.

P sets up the preprocessing invariant by choosing p uniform values and send-
ing one to each virtual player. She distributes [[ΛA]]. The sum of these p values is
the uniform mask ΛA. In practice, P draws these values according to per-player
pseudorandom seeds. Thus, Pi’s view of all input mask messages (as well as all
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other pseudo-randomly generated masks, as we discuss for subsequent gates)
can be computed from a short seed. The online phase is also straight-forward:
P sends the value Ã = A + ΛA to each virtual player.

To use our protocol to construct a proof, P sends to V the views of all
virtual players save one. For an input wire, this costs l bits of communication
where l is the bit-length of an element in R. Thus, the preprocessing phase is
communication-free due to seeds and the online phase requires only a single
broadcast of a ring element.

Addition. Consider an addition gate with inputs A and B and output C that
computes C ← A+B. By induction, the players hold uniform sharings [[ΛA]] and
[[ΛB ]] in the preprocessing phase and encryptions Ã, B̃ in the online phase. Our
goal is to propagate a sharing [[ΛC ]] in the preprocessing phase and an encryption
C̃ = C + ΛC such that C = A + B.

In the preprocessing phase, we let the preprocessing mask of the output wire
be ΛC = ΛA + ΛB. Accordingly, the virtual players locally compute their mask
shares by adding their respective input shares: together they compute [[ΛC ]] ←
[[ΛA]] + [[ΛB ]]. In the online phase, the players locally add together the masked
input values: C̃ ← Ã + B̃. The preprocessing and online local computations
propagate the respective invariants:

Ã + B̃ = (A + ΛA) + (B + ΛB) = (A + B) + (ΛA + ΛB) = C + ΛC = C̃

Because addition gates do not require the virtual players to communicate,
addition gates are communication-free in the proof.

Subtraction. Subtraction is performed in the same manner as addition. Consider
a gate with inputs A and B and output C that computes C ← A − B. We let
ΛC = ΛA − ΛB . During the online phase, the virtual players locally subtract:

Ã − B̃ = (A + ΛA) − (B + ΛB) = (A − B) + (ΛA − ΛB) = C + ΛC = C̃

Like addition gates, subtraction gates are communication-free.

Public Constants. Public constants and multiplication by public constants can
be easily encoded in our representation. Due to lack of space, we defer this
explanations of these encodings to the full version of this paper.

Multiplication. Consider a multiplication gate with inputs A,B and output C
that computes C ← AB. Unfortunately, multiplication cannot be computed as
easily as addition. In particular, P must distribute auxiliary ring elements to
the players in the preprocessing phase, and the players must communicate via
broadcast in the online phase.

In the preprocessing phase, P generates a fresh uniform mask ΛC by draw-
ing uniform ring elements and sending one to each player. In practice, these
values are drawn according to the per-player pseudorandom seed, and hence are
communication-free in the proof.
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Additionally, P computes the product ΛA,B = ΛAΛB and distributes a uni-
form sharing [[ΛA,B ]] to the players. Note that because ΛA,B is a fixed value,
one virtual player’s uniform share cannot be generated from a seed, and must
instead be set according to ΛA,B . Therefore, that player’s preprocessing incurs
communication in the proof.

In the online phase, the virtual players hold [[ΛA]], [[ΛB ]], [[ΛA,B ]], [[ΛC ]], Ã, and
B̃. They locally compute the following intermediate sharing:

[[S]] ← [[ΛA,B ]] + [[ΛC ]] − Ã[[ΛB ]] − [[ΛA]]B̃

Recall that we do not assume ring multiplication is commutative, so we take care
to order multiplicands properly. The players broadcast these shares, reconstruct
S, and set C̃ ← ÃB̃ + S. Note that it is safe to reconstruct S, because S is
masked by the uniform element ΛC . This computation properly calculates an
encryption of AB:

ÃB̃ + S = ÃB̃ + (ΛAΛB + ΛC − ÃΛB − ΛAB̃)

= ÃB̃ + (ΛAΛB + ΛC − (AΛB + ΛAΛB) − (ΛAB + ΛAΛB))

= AB + ΛC = C̃

Altogether, this arithmetic product costs 2l bits in the proof where l is the
bit-size of ring elements: l bits to add the last player’s share of ΛA,B to the proof
message and l bits to send the unopened player’s broadcast (V can compute the
opened players’ broadcasts himself, so they need not be sent).

Dot Product. In this section, we generalize from multiplication to vector dot
product without increasing cost. Without our optimization, such a dot product
of n element vectors costs 2ln bits in the proof, because the dot product involves
n multiplications each costing 2l bits. We show that only 2l total bits are needed.

Note, a particular player Pi’s received messages Λi
A,B and S are only used in

an additive manner to compute the product. Therefore, if our intent is to add
together n products, then we can sum the per-player messages for all products
before sending them, avoiding sending all of the summands.

Consider a dot product gate with input vectors (A1, . . . An), (B1, . . . , Bn) and
output C. The gate computes:

C ← A1B1 + . . . + AnBn

By the circuit invariants, players have mask shares for all input vector elements in
the preprocessing phase and encryptions all vector elements in the online phase.
The players receive auxiliary masks/communicate to evaluate the dot product.

For simplicity, we argue that our improvement works for the sum of two
products A1B1 +A2B2, but our argument generalizes to the sum of any number
of products. Let S1, S2 respectively be the broadcasted terms reconstructed by
virtual players when computing A1B1 and A2B2. Recall that to compute an
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encryption of A1B1 and A2B2, the players locally compute Ã1B̃1+S1 and Ã2B̃2+
S2. Thus, to compute the overall sum, the players compute:

(Ã1B̃1 + S1) + (Ã2B̃2 + S2) = (Ã1B̃1 + Ã2B̃2) + (S1 + S2)

Thus, in the online phase, the players need not broadcast [[S1]] and [[S2]] sepa-
rately: instead they more efficiently broadcast [[S1 + S2]]. This reduces the com-
munication cost of the online phase. The preprocessing communication cost is
similarly improved: to compute [[S1 + S2]], the players compute shares of the
following expression (where ΛC1 , ΛC2 are uniformly random):

S1 + S2 = (ΛA1,B1 + ΛC1 − ˜A1ΛB1 − ΛA1
˜B1) + (ΛA2,B2 + ΛC2 − ˜A2ΛB2 − ΛA2

˜B2)

= (ΛA1,B1 + ΛA2,B2 ) + (ΛC1 + ΛC2)− ˜A1ΛB1 − ΛA1
˜B1 − ˜A2ΛB2 − ΛA2

˜B2

Thus, in the preprocessing phase it suffices for P to distribute uniform shares
[[ΛA1,B1+ΛA2,B2 ]] instead of distributing both [[ΛA1,B1 ]] and [[ΛA2,B2 ]]. Again, this
improves communication. Other values are known to the players a priori or can
be generated from seeds. Altogether, the vector dot product of length n vectors
costs 2l bits in the proof.

To illustrate the importance of this optimization, we compare the communi-
cation cost to multiply an M × N matrix by a N × P matrix where each matrix
entry is an l bit ring element. Without vector dot product, such a multiplication
costs 2M · N · P · l bits of communication, because the resulting M · P matrix
entries are each l bit sums of N products. Our optimization removes the factor
N : the total cost is 2M · P · l bits.

5.2 Converting Between Boolean and Arithmetic

We have shown how we construct an arithmetic version of the [KKW18] proto-
col for arbitrary rings. However, many functions (e.g., comparisons and bitwise
operations) are more efficiently expressed in a Boolean representation. To get the
best of both worlds, we now introduce efficient conversion operations between
Boolean and arithmetic representations. We stress that our conversions are not
for arbitrary rings, but only rings of the form Zk for arbitrary k > 2.

Single Bit Conversion. Consider a conversion gate with Boolean input wire a
and arithmetic output wire A. By induction, the players together hold the mask
sharing [[λa]] in the preprocessing phase and each hold the encryption a ⊕ λa

in the online phase. We show how added communication allows the players to
propagate the invariant such that they hold [[ΛA]] and Ã = A + ΛA. In other
words, we convert the Boolean encoding to a valid arithmetic encoding.

We start by giving the players preprocessing material. First of all, P pseu-
dorandomly generates from seeds [[ΛA]] ∈ Zk and distributes it to the players.
This new value ΛA serves only as a mask that ensures security. Additionally, P
deals a uniform sharing [[Λa]] ∈ Zk such that Λa = λa (λa is a Boolean value and
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Λa is an arithmetic value)1. The role of this auxiliary mask is different than ΛA.
In particular, the auxiliary mask algebraically eliminates the Boolean mask λa.
Note that, similar to multiplication, one player’s share of Λa cannot be pseudo-
randomly generated, because the shares must sum to Λa = λa, and λa is a fixed
value. Thus, the translation preprocessing costs l proof bits. We emphasize that
although λa = Λa, the players hold XOR shares of λa and additive shares of Λa.

In the online phase, we use the following two properties of arbitrary values
x, y ∈ {0, 1} when computing modulo k > 2:

x ⊕ y = x + y − 2xy (1)

x2 = x (2)

To convert, the virtual players locally compute the following intermediate share:

[[S]] ← [[Λa]](1 − 2ã) + [[ΛA]]

Each virtual player then broadcasts her share, reconstructs S, and computes
Ã ← ã + S. That is, each player outputs a correct arithmetic representation
Ã = A + ΛA. We now show that this computation is correct:

ã + S = (a ⊕ λa) + Λa(1 − 2(a ⊕ λa)) + ΛA ã = a ⊕ λa

= (a + λa − 2aλa) + Λa(1 − 2(a + λa − 2aλa)) + ΛA Equation (1)
= (A + λa − 2Aλa) + Λa(1 − 2(A + λa − 2Aλa)) + ΛA a = A

= (A + Λa − 2AΛa) + Λa(1 − 2(A + Λa − 2AΛa)) + ΛA λa = Λa

= (A + Λa − 2AΛa) + Λa − 2AΛa − 2Λ2
a + 4AΛ2

a + Λa distribute
= A + Λa − 2AΛa + Λa − 2AΛa − 2Λa + 4AΛa + ΛA Equation (2)

= A + ΛA = Ã

This conversion costs l bits of communication in the preprocessing phase,
because one virtual player is given a non-pseudorandomly chosen value for her
share of Λa. Therefore P sends this non-pseudorandom value to V to open the
view of this player (if this player is not opened, preprocessing is free). In the
online phase, we incur l bits of communication, because P must send the broad-
cast of the unopened player to V to convey the views of all opened players.

Multi-bit Conversion. Often, it is useful to convert an entire vector of Boolean
values together into a single arithmetic value. Specifically, a Boolean vector is
often used as the binary representation of an arithmetic value. Suppose we have
a vector of Boolean wires (a1, a2, . . . , al) that we would like to convert into an
arithmetic value A:

A = a1 + 2a2 + . . . + 2l−1al

Of course, we can use l single-bit conversions, as described above, to construct
this sum. However, there are optimizations available.
1 Here and elsewhere, equality between a Boolean value and an arithmetic value simply

indicates that both values are either both 0 or both 1 in their respective ring.
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In particular, this näıve translation costs l2 bits in the online phase. We
now reduce this cost to l bits. Recall that each bitwise translation requires the
broadcast of an l bit value S. Let Si be this broadcast value for bit i. The idea is
to simply have the players compute and broadcast their shares of the following
single value:

[[SA]] = [[S1 + 2S2 + . . . + 2l−1Sl]]

The players then reconstruct SA and locally compute the following:

A + ΛA ← SA + ã1 + 2ã2 + . . . + 2l−1ãl

One further optimization is available for integer rings Z2n for some n, a partic-
ularly useful set of rings for modeling common cleartext computations. Looking
again at the definition of [[SA]], notice that the summand 2l−1Sl overflows the
ring by 2l−1 bits. That is, this summand carries only 1 bit of information in Z2n .
Therefore, at preprocessing time P need not give the players l bit shares Λa,
but instead need only send 1 bit shares. In general, for a given vector index i, P
sends l − i − 1 bits of preprocessing. In sum, the preprocessing costs l2+l

2 bits.
Altogether, an l bit conversion costs l bits in the online phase and (at most)

l2 bits in the preprocessing phase.

Converting Arithmetic to Boolean. Suppose we wish to convert an arithmetic
value A to its binary decomposition (a1, a2, . . . , al). Our construction for this
conversion is based on a simple observation about Zero Knowledge. In the ZK
setting, we can “compute backwards” and then prove what was computed is cor-
rect. More precisely, P simply gives the virtual players encryptions and masks
corresponding to (a1, a2, . . . , al) as Boolean inputs. Then, the virtual parties
use the multi-bit conversion described above to translate (a1, a2, . . . , al) to an
arithmetic value A′. Note that if P provides the correct inputs, then A = A′.
Therefore, the parties compute A−A′ and reconstruct the output by broadcast-
ing their mask shares of this result; i.e., they reconstruct 0 if P did not cheat.
By inspecting this output value, V is convinced that P provided a correct binary
decomposition of the value A.

Altogether, converting an arithmetic value to its binary decomposition costs
(1) at most l2 preprocessing bits for the Boolean to arithmetic conversion, (2)
l online bits for the Boolean to arithmetic conversion, (3) l online bits for the
input bits given the virtual parties, and (4) l online bits for the unopened player’s
broadcast of her mask share.

6 Our Semi-honest MPC Protocol

We first explain the 3-round honest-verifier ZK (HVZK) protocol of [KKW18] so
that our core theorems can be understood. Our protocol is plugged directly into
this HVZK protocol.

P constructs a large number M (e.g., 500) of commitments to full instances
of our protocol. That is, she commits to the views of all p (e.g., 64) players,
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both in the preprocessing and online protocol phases. Then, V challenges P to
open a small number τ (e.g., 25) of instances. For each of these τ instances, P
sends to V the compactly represented views of all except for one player chosen
by V. V checks that the views of these opened players are consistent with the
protocol, and thus is convinced (his confidence depends on τ) that P could not
have cheated in the online phase. Because V only obtains p−1 views and because
our protocol is secure against p−1 semi-honest corruptions, he does not learn P’s
witness. In the remaining M − τ instances, P opens all players’ preprocessing
views, where each preprocessing instance is compactly represented as a single
master seed. V checks that these preprocessing views are consistent with the
protocol, and thus is convinced (depending on M and τ) that P could not have
cheated in the preprocessing phase either. By configuring M, τ , and p, P can
construct a ZK proof with high soundness.

By plugging into [KKW18]’s HVZK protocol, we achieve a ZK protocol by
specifying our protocol as a semi-honest protocol in a preprocessing model. The
crucial pieces of our protocol Π are specified in Sect. 5, where we give the indi-
vidual actions taken by the virtual parties on gate types. While we stress that
the discussion given in Sect. 5 is sufficient to understand our approach, we give
also a more formal construction in the full version of this paper.

Construction 1. Π is the p party protocol defined in Sect. 5.

Our protocol Π makes use of two oracle functionalities. In particular, it first
uses the functionality Fpre to instantiate preprocessing material for the p virtual
players and Finp which broadcasts P’s masked input to the p players.

Theorems proved in the full version of this paper imply the following:

Theorem 1. Π correctly implements the semantics of ring circuits and is secure
against up to p − 1 semi-honest corruptions in the Fpre, Finp hybrid model.

This fact, combined with Theorem 2.2 of [KKW18], implies the following:

Theorem 2. Let M be the total number of repetitions of the proof, τ be the
number of proofs checked by V (hence M−τ preprocessings are checked), and p be
the number of virtual players. Assuming the existence of a collision-resistant hash
function and of a secure commitment scheme, the 3-round honest-verifier Zero
Knowledge proof protocol of [KKW18] instantiated with Π is an honest-verifier
zero-knowledge proof of knowledge with soundness/knowledge error ε where:

ε = max
M−τ≤k≤M

{ (
k

M−τ

)

(
M

M−τ

) · pk−M−τ

}

We point out that our soundness error is equal that of standard [KKW18],
because the cheating P’s chances of being caught remain the same. If P cheats
in any preprocessing phase, then she is caught if V inspects the preprocessing. If
P cheats in any online phase, then she is caught if V opens the cheating player.

Finally, by applying the Fiat-Shamir transform [FS87] (and assuming a ran-
dom oracle), this instantiated 3-round HVZK protocol becomes a non-interactive
Zero Knowledge Proof of Knowledge (NIZKPoK).
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7 Performance Estimation

We improve the [KKW18] approach by adding a suite of efficient ring operations
and Boolean conversions. It is immediate from our constructions that we inherit
the performance characteristics of [KKW18], including computation and commu-
nication costs. Namely, our computation costs are approximately the same per
gate (whether arithmetic or Boolean) as [KKW18]. This is because the compu-
tations supporting arithmetic or Boolean operations are extremely lightweight,
and the main costs involve memory manipulations, which are of similar scope.
Our communication cost is the same as [KKW18] for Boolean operations, and is
correspondingly increased for arithmetic operations. We outline this cost below,
and compare it with that of [KKW18].

Gate Kind ADD SUB DOT INPUT OUTPUT B2A

Preprocessing 0 0 l 0 0 l2

Online 0 0 l l l l

Fig. 1. The per-instance proof size cost of each gate for an l-bit finite ring. Note that to
construct a NIZK, multiple instances must be completed. Realistic numbers of instances
vary between 20 − 40 depending on the parameterization of the NIZK [KKW18].

Gate Costs. Recall, multiple proof instances are required to increase soundness.
Figure 1 tabulates the per-instance communication cost for each gate. The num-
ber of instances needed to achieve a certain security parameter depends on the
number of simulated parties. As one practical example, for 128 bits of security
with 64 simulated parties, 23 instances are required [KKW18]. Thus, if p = 64,
the total communication cost of, e.g., a DOT gate is 46l bits where l is the bit
size of the finite ring elements. We emphasize that proof instances that are used
only to check preprocessing incur essentially no communication cost because the
entire preprocessing is regenerated from a single master seed.

Arithmetic Improvement. We compare our communication with that of
[KKW18] on several functions. To understand the performance of classic
[KKW18], it suffices to look at Fig. 1 with l = 1, recalling that classic [KKW18]
does not support vector dot product, only simple Boolean AND (costing 2 bits
total).

– Addition. Suppose that we wish to add numbers in the ring Z2l for some
l. Boolean circuits can encode this addition efficiently using a ripple-carry
adder that costs l − 1 AND gates or 2l − 2 proof bits. In contrast, our addition
is a free homomorphic operation.
Adding in most rings other than Z2l is extremely costly for the Boolean
approach. For example, to compute in the field Zp for prime p, the Boolean
approach must compute the costly modp operation which uses l2 AND gates.
In contrast, our approach adds elements of this field for free.
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– Multiplication. Computing a multiplication in the ring Z2l consumes l2 AND
gates by the schoolbook method. In contrast, we use only l bits. Furthermore,
if we consider other rings, the situation skews further in our favor. For exam-
ple, to multiply in a field Zp, a Boolean circuit must multiply in a ring large
enough that the product does not overflow (i.e. twice the number of bits in
p), and then compute modp.

– Matrix multiplication. As discussed in Sect. 5, our DOT gate excels as effi-
ciently computing matrix multiplications. In sum, multiplying a M×N matrix
by a N ×P matrix of l-bit elements requires 2M ·P · l bits. That is, computing
a matrix multiplication requires only twice as many bits as are needed to rep-
resent the output matrix. To compare the performance of classic [KKW18],
assume that the matrix elements are elements of Z2l . Thus, Boolean alge-
bra can encode a multiplication using l2 AND gates or 2l2 proof bits. The
total proof cost for a matrix multiplication in the specified dimensions is thus
2l2 · M · N · P bits. Thus, our approach improves by factor N · l. When con-
crete parameters are considered, it becomes clear that this improvement is
substantial. For example, to multiply 100 × 100 square matrices of 32 bit
integers, we require 3200× less communication.
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