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Abstract
The large-deformation mechanics and multiphysics of continuous or fracturing
partially saturated porous media under static and dynamic loads are signif-
icant in engineering and science. This article is devoted to a computational
coupled large-deformation periporomechanics paradigm assuming passive
air pressure for modeling dynamic failure and fracturing in variably satu-
rated porous media. The coupled governing equations for bulk and fracture
material points are formulated in the current/deformed configuration through
the updated Lagrangian–Eulerian framework. It is assumed that the hori-
zon of a mixed material point remains spherical and its neighbor points are
determined in the current configuration. As a significant contribution, the
mixed interface/phreatic material points near the phreatic line are explicitly
considered for modeling the transition from partial to full saturation (vice
versa) through the mixed peridynamic state concept. We have formulated
the coupled constitutive correspondence principle and stabilization scheme in
the updated Lagrangian–Eulerian framework for bulk and interface points.
We numerically implement the coupled large deformation periporomechan-
ics through a fully implicit fractional-step algorithm in time and a hybrid
updated Lagrangian–Eulerian meshfree method in space. Numerical examples
are presented to validate the implemented stabilized computational coupled
large-deformation periporomechanics and demonstrate its efficacy and robust-
ness in modeling dynamic failure and fracturing in variably saturated porous
media.
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1 INTRODUCTION

The large-deformation mechanics and multiphysics of deformable porous geomaterials (clay and sand) and biomate-
rials (human tissues and bone) are significant in engineering and science (e.g., geohazards and biomechanics).1-7 The
coupled large deformation and fluid flow/cracking can compromise the integrity of civil infrastructure and could dam-
age human tissues under certain circumstances.8-11 For instance, faulting propagation triggered by earthquake involves
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large deformation and multiphysics in geomaterials.12-15 Landslides and landfill slope failure could be triggered by large
deformation, multiphysics processes, or cracking in geomaterials.16-18 Computational coupled poromechanics is an essen-
tial tool in studying the mechanics and physics of such continuous or fracturing porous materials under static and
dynamic loads.2,19-21 Coupled unsaturated periporomechanics22-26 is a strong nonlocal reformulation of classical coupled
local poromechanics27-29 through the peridynamic effective force state22,30,31 and stabilized multiphase correspondence
principle.25,32 The coupled governing equations, including the motion equation and mass balance equation, are for-
mulated in terms of integral-differential equations (integration in space and differentiation in time) in lieu of partial
differential equations.24 Through the stabilized multiphase correspondence principle, classical constitutive models and
physical laws can be incorporated in periporomechanics for modeling the coupled deformation, fracturing, and fluid
flow processes in porous media under static and dynamic loads.25 These salient features of periporomechanics make
it a legitimate method for modeling coupled static and dynamic large-deformation mechanics and physics of contin-
uous or fracturing porous media. We note that the coupled periporomechanics has been formulated using the total
Lagrangian–Eulerian framework.24 In Reference 33, the authors formulated an updated-Lagrangian periporomechanics
framework for modeling extreme large-deformation in unsaturated porous media under drained conditions (i.e., uncou-
pled). As a new contribution, in this article, we propose a fully coupled large-deformation periporomechanics paradigm
in the updated Lagrangian–Eulerian framework for modeling dynamic failure and fracturing in variably saturated porous
media. In this new framework, the phreatic interface/line29,34 is explicitly considered through the mixed peridynamic state
concept.

To incorporate the classical constitutive models for porous media into this new coupled periporomechanics paradigm,
we reformulate the original multiphase constitutivecorrespondence principle22 in the updated Lagrangian–Eulerian
framework. It has been demonstrated in Reference 25 that the multiphase correspondence principle in the total
Lagrangian–Eulerian periporomechanics framework has a zero-energy mode instability issue. In Reference 33 we have
also shown that the single-phase correspondence principle for the extreme large-deformation periporomechanics formu-
lated in the updated Lagrangian–Eulerian framework inherits the zero-energy mode instability. The authors adopted the
so-called sub-horizon concept to remove the zero-energy mode associated with the correspondence principle. However,
this method is computationally demanding because a sub-horizon will need to be defined for each bond in its horizon
(see Reference 33 for details). In this study, we first demonstrate that the coupled updated Lagrangian–Eulerian peri-
poromechanics also inherits the zero-energy mode issue (see Section 2.3). To reduce the computational cost, we adopt the
multiphase stabilization scheme formulated in Reference 25 to resolve the zero-energy mode instability. We refer to the
literature for a thorough review of the remedies for circumventing the zero-energy mode associated with the peridynamic
correspondence principle (e.g., References 25,32,33,35, among others).

The interface between a saturated zone and an unsaturated zone in variably saturated porous media is called the
phreatic interface/line.9,36 The porous material across the phreatic line has different mechanical and physical proper-
ties because of the variation of degree of saturation across the phreatic line. We note that the phreatic line has not
been explicitly considered in the previously formulated saturated/unsaturated periporomechanics models. For a mixed
material point near the phreatic line, its neighboring material points can be in either a saturated or unsaturated zone.
Therefore, to simulate variably saturated soils with a phreatic line using coupled periporomechanics, the material points
near the phreatic line should be treated as composite material points. As a significant contribution and novelty, in this
study, the mixed interface/phreatic material points near the phreatic line are explicitly considered for better modeling
the transition from partially to fully saturated states (vice versa) of porous media through the mixed peridynamic state
concept.30 Specifically, the peridynamic state (e.g., effective force state and fluid flow state) at the material point across
the interface line is decomposed into two states, that is, saturated and unsaturated states (see Section 2.2 for details).
Following the lines in the stabilization scheme for the bulk mixed material point (i.e., material points and their neighbor-
ing points in either fully saturated or unsaturated zones), we have formulated the coupled constitutive correspondence
principle and its stabilization scheme for the phreatic interface material points in the updated Lagrangian–Eulerian
framework.

We numerically implement the coupled large deformation periporomechanics through a fully implicit fractional-step
algorithm in time24 and a hybrid updated Lagrangian–Eulerian meshfree method in space with Open MPI37

for high-performance computing. We refer to the classical literature for technical discussions on monolithic and
fractional-step/staggered algorithms for numerically implementing the coupled poromechanics in time (e.g., References
38-42, among others). It is assumed that the horizon of a mixed material point remains spherical, and its neighbor
points are determined in the current configuration. In line with this assumption, in the numerical implementation,
the neighboring material point list of a material point updated at time step n is used for the computation at time
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step n + 1. The coupled periporomechanics is computationally more demanding than other continuum-based compu-
tational methods such as the finite element method (FEM) and XFEM for modeling porous media.1,2,19,20 We refer
to the literature for coupling peridynamics with FEM for modeling porous media (e.g., References 43,44 and oth-
ers) and the mixed FEMs for large deformation in unsaturated porous media (e.g., References 2,21,45 and others).
Numerical examples are presented to validate the implemented stabilized coupled large-deformation periporomechan-
ics and demonstrate its efficacy and robustness in modeling dynamic failure and fracturing in partially saturated porous
media.

The original contributions of this article include (i) the mathematical formulation of a fully coupled large-deformation
periporomechanics paradigm through the updated Lagrangian–Eulerian framework, (ii) the explicit treatment of inter-
face material points as a composite point through the mixed peridynamic state concept, (iii) the formulation of the
coupled constitutive correspondence principle in the updated Lagrangian–Eulerian framework and its stabilization
scheme through an energy method, and (iv) the implementation of the formulated large-deformation periporomechan-
ics paradigm through an implicit-implicit fractional step algorithm in time and a hybrid updated Lagrangian-Eulerian
meshfree method in space. For sign convention, the assumption in continuum mechanics is followed, that is, for the
solid skeleton, tensile force/stress is positive, and compression is negative. For fluid pressure, compression is positive, and
tension is negative.

2 COUPLED LARGE-DEFORMATION UNSATURATED
PERIPOROMECHANICS

We present the mathematical formulation of the coupled large-deformation periporomechanics in the updated
Lagrangian–Eulerian framework for fracturing unsaturated porous media assuming passive air pressure. The phreatic
interface points are explicitly considered in this new framework through the mixed peridynamic state concept. In line
with the total Lagrangian–Eulerian periporomechanics, it is assumed that a porous material body can be represented
by a finite number of mixed material points that are endowed with two kinds of degrees of freedom, that is, displace-
ment and fluid pressure. In the current/deformed configuration, a mixed material point has poromechanical and physical
interactions with all mixed material points within its neighborhoodℋ , that is, the family. Hereℋ is a spherical domain
around a material point x with radius 𝛿, called horizon in periporomechanics, in the current configuration. In the updated
Lagrangian–Eulerian formulation, it is assumed that the horizon remains the same. In line with this assumption, the
family ℋ of a mixed material point x in the current configuration is determined by

ℋ ∶= {x′|x′ ∈ℬ, 0 ≤ ||𝜻|| ≤ 𝛿}, (1)

where ℬ denotes a porous material body and 𝜻 = x′ − x is the mixed (multiphase) bond between material points x and
x′. With this assumption, the extreme distortion of the horizon for large deformation of the solid skeleton in the total
Lagrangian formulation can be avoided. Indeed this assumption is consistent with the Eulerian formulation of peridy-
namics for solids in Reference 46. However, the material point of the solid skeleton is described by its motion, and the
fluid phase is described by the relative Eulerian coordinate referring to the solid skeleton. Thus, the mixed material points
in the horizon of a material point x evolves with time in the large deformation regime.

Figure 1 presents the schematics of the initial configuration, current/deformed configuration, and future configura-
tion of a porous material body. We note that all variables refer to the current/deformed configuration in the formulation
presented in this section instead of the initial/undeformed configuration as in the total Lagrangian–Eulerian peri-
poromechanics. For conciseness of notations, in the current configuration the peridynamic state variable without a
prime denotes the variable evaluated at x on the associated bond 𝜻 = x′ − x and the peridynamic state variable with
a prime stands for the variable evaluated at x′ on the associated bond 𝜻 ′ = x − x′, for example, 𝓣 =𝓣[x]⟨x′ − x⟩ and
𝓣′ =𝓣[x′]⟨x − x′⟩. In what follows, we first present the governing equations and the coupled correspondence princi-
ple in the updated Lagrangian–Eulerian framework for a mixed material point (and its neighbor material points) (i.e.,
the bulk material point) in the unsaturated or fully saturated domain. Second, we formulate the governing equations
and the coupled correspondence principle for the phreatic material point through the mixed peridynamic state con-
cept. Third, we present the stabilization scheme for the phreatic material point since the stabilization scheme for a bulk
material point is a special case, followed by a brief discussion of the material models and physical laws in the new
framework.
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F I G U R E 1 Kinematics of the mixed solid skeleton and pore fluid material points in the updated Lagrangian–Eulerian formulation:
Initial configuration, current/deformed configuration, and future configuration.

2.1 Formulation of a material point in unsaturated or fully saturated zones

We define the deformation vector state 𝓨 = y′ − y as the mapping of 𝜻 from the current configuration to the next
configuration in which y′ and y represent the same material points of the solid skeleton in the next configuration.

In line with the total Lagrangian formulation of periporomechanics,23-25 the equation of motion at material point x in
the current configuration reads

𝜌ü =
∫ℋ

(𝓣 − Sr𝓣w) − (𝓣
′
− S′r𝓣′

w) d𝒱 ′ + 𝜌g, (2)

where 𝓣 and 𝓣
′

are the effective force vector states at x and x′, respectively, 𝓣w and 𝓣′
w are the fluid force vector

states at x and x′, respectively, Sr and S′r are the degrees of saturation at x and x′, respectively, d𝒱 ′ is the volume of the
neighboring material point in the current configuration, ü is the acceleration vector, 𝜌 is the density of the mixture, and
g is the gravity acceleration. Assuming weightless pore air, the density of the mixture 𝜌 reads

𝜌 = 𝜌s(1 − 𝜙) + Sr𝜌w𝜙, (3)

where 𝜌s is the intrinsic density of the solid, 𝜌w is the intrinsic density of water, and 𝜙 is the porosity in the current
configuration. The balance of mass at material point x in the current configuration reads

𝜙

(
Sr

Kw
+ 𝜕Sr

𝜕pw

)
dpw

dt
+ Sr𝒱̇ s +

∫ℋ

(
𝒬 − 𝒬′

)
d𝒱 ′ +s = 0, (4)

where 𝒱̇ s is the solid volume change rate at x, 𝒬, and 𝒬′ are the fluid flow states at x and x′, respectively, pw is the pore
water pressure, s is a source term, and Kw is the bulk modulus of water.

For a fracture material point, similar to (2) the equation of motion can be written as

𝜌ü =
∫


(

𝓣 −𝓣
′)

d𝒱 ′ −
∫


(
Sl𝓣l − S′l𝓣

′
l

)
d𝒱 ′ + 𝜌g, (5)
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where

Sl𝓣l =

{
Sr, f𝓣f for a fracture point,

Sr𝓣w otherwise.
(6)

The mass balance equation in the fracture space can be written as

𝜕Sr,f

𝜕pw

𝜕pw

𝜕t
+
∫


(

𝒬f − 𝒬
′
f

)

d𝒱 ′ −s = 0, (7)

where 𝒬f and 𝒬′f are the fracture fluid flow states at material points x and x′, respectively. In the fully saturated regime,
Sr = 1 and 𝜕Sr∕𝜕pw = 0. Therefore, Equations (2), (4), (5), and (7) naturally degenerate into the equations under saturated
conditions. In what follows, we cast the coupled corresponding principle in the updated Lagrangian–Eulerian framework.

2.1.1 Coupled corresponding principle in the updated Lagrangian–Eulerian framework

The rate of strain energy of the solid skeleton assuming elastic deformation in the updated Lagrangian–Eulerian
periporomechanics reads22

𝒲̇ =
∫ℬ ∫ℬ

𝓣i 𝒴̇ i
d𝒱 ′d𝒱 . (8)

Next, we express the rate of strain energy of the solid skeleton in terms of effective stress and the rate of deformation.
The velocity gradient33 can be written as

𝓛 =
(

∫ℋ
𝜔 𝓨̇⊗ 𝜻 d𝒱 ′

)

𝓚−1
, (9)

where 𝜔 is the weighting function and 𝒦 is the spatial shape tensor in the current configuration

𝓚 =
∫ℋ

𝜔 𝜻 ⊗ 𝜻 d𝒱 ′
. (10)

Given (9), the rate of nonlocal deformation reads

𝓓 = 1
2
(𝓛 +𝓛T). (11)

The rate of the strain energy of the solid skeleton assuming elastic deformation in classical poromechanics can be
written as22,30

𝒲̇ =
∫ℬ

𝜎ij𝒟ij d𝒱 ,

=
∫ℬ

𝜎ij

(

∫ℋ
𝜔𝒴̇

i
𝜁

k
d𝒱 ′

)

𝒦−1
kj d𝒱 ,

=
∫ℬ

(

∫ℋ
𝜔𝒴̇

i
𝜁

k
d𝒱 ′

)

𝒦−1
kj 𝜎ji d𝒱 ,

=
∫ℬ ∫ℬ

𝜔𝜁
k
𝒦−1

kj 𝜎ji𝒴̇ i
d𝒱 ′ d𝒱 , (12)

where i, j, k = 1, 2, 3.
Then, it follows from (12) and (8) that the effective force state can be related to the effective Cauchy stress tensor as

𝓣 = 𝜔𝜻𝓚−1𝝈. (13)
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Through the effective force state concept, the fluid force state can be written as

𝓣w = 𝜔𝜻𝓚
−1(Srpw1). (14)

The rate from of energy dissipation due to fluid flow in periporomechanics can be written as22

𝒲̇ d =
∫ℬ ∫ℬ

𝒬 Φ d𝒱 ′
, (15)

where Φ = p′w − pw is the pressure potential state. Similar to (9), the spatial gradient of fluid pressure in the current
configuration can be written as23,33

grad(pw)i = grad(̃Φ)i =
(

∫ℋ
𝜔 Φ 𝜁

j
d𝒱 ′

)

𝒦−1
ji . (16)

The rate form of the energy dissipation due to fluid flow in classical poromechanics22 reads

̇
𝒲 d =

∫ℬ
qi grad(pw)i d𝒱 ,

=
∫ℬ

qi

(

∫ℋ
𝜔 Φ 𝜁

j
d𝒱 ′

)

𝒦−1
ji d𝒱 ,

=
∫ℬ

qi

(

∫ℬ
𝜔 Φ 𝜁

j
d𝒱 ′

)

𝒦−1
ji d𝒱 ,

=
∫ℬ ∫ℬ

𝜔qi𝒦−1
ij 𝜁 j

Φ d𝒱 ′d𝒱 , (17)

Then, from (17) and (15) the fluid flow state can be written as

𝒬 = 𝜔qi𝒦−1
ij 𝜁 j

. (18)

Next, we present the governing equations for a mixed material point at the phreatic interface/line.

2.2 Formulation of a mixed material point at the phreatic interface/line

The phreatic material point (i.e., the mixed material point near the phreatic interface) could lie in either the unsaturated
(vadose) zone or the saturated (phreatic) zone. However, a percentage of the material points in its horizon lies in the vadose
zone and the remaining material points lie in the phreatic zone. For this reason, it is hypothesized that the deformation
state, effective force state, fluid pressure state, and fluid flow state can be decomposed into two parts through the mixed
(double) peridynamic state concept, that is,𝓣(1) and𝓣(2),𝓨(1) and𝓨(2),𝒬(1) and𝒬(2), andΦ(1) andΦ(2). Figure 2 sketches
the periporomechanics representation of the phreatic interface material points for the solid skeleton and fluid phases
through the mixed (double) peridynamic state concept.30

It follows from this hypothesis and in line with (8) that the strain energy density at a phreatic mixed material point
reads

𝒲̇ =
(

∫ℬ ∫ℬ
𝓣

(1)

i 𝓨̇
(1)
i
+𝓣

(2)
i 𝓨̇

(2)
i

)

d𝒱 ′d𝒱 . (19)

The two velocity gradient tensors𝓛(1) and𝓛(2) at a phreatic mixed material point can be written as

𝓛(1) =
(

∫ℋ (1)
𝜔 𝓨̇⊗ 𝜻 d𝒱 ′

)

𝓚−1
, (20)

𝓛(2) =
(

∫ℋ (2)
𝜔 𝓨̇⊗ 𝜻 d𝒱 ′

)

𝓚−1
, (21)
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(A)

(B)

F I G U R E 2 Schematics of the phreatic interface material points in periporomechanics for (A) the solid skeleton phase and (B) the pore
fluid phase through the mixed (double) peridynamic state concept.

From (11) and (21) we can obtain the rate form of the two deformation tensors at a phreatic material point, that is, 𝓓(1)

and 𝓓(2). From a classical constitutive model for the solid skeleton we have two effective stress tensors, that is, 𝝈(1) and
𝝈
(2). Then, the corresponding strain energy density of (19) in classical unsaturated poromechanics reads

𝒲̇ = 𝒲̇ (1) + 𝒲̇ (2)
,

=
∫ℬ

𝜎
(1)
ij 𝒟

(1)
ij d𝒱 +

∫ℬ
𝜎
(2)
ij 𝒟

(2)
ij d𝒱,

=
∫ℬ

{

𝜎
(1)
ij

(

∫ℋ (1)
𝜔 𝒴̇

i
𝜁

k
d𝒱 ′

)

𝒦−1
kj

}

d𝒱 +
∫ℬ

{

𝜎
(2)
ij

(

∫ℋ (2)
𝜔 𝒴̇

i
𝜁

k
d𝒱 ′

)

𝒦−1
kj

}

d𝒱,

=
∫ℬ ∫ℋ (1)

{

𝜔 𝒴̇
i
𝜁

k
𝒦−1

kj 𝜎ji

}

d𝒱 ′d𝒱 +
∫ℬ ∫ℋ (2)

{

𝜔 𝒴̇
i
𝜁

k
𝒦−1

kj 𝜎ji

}

d𝒱 ′d𝒱,

=
∫ℬ ∫ℋ

{

𝜔 𝒴̇
i
𝜁

k
𝒦−1

kj 𝜎ji

}(1)
d𝒱 ′d𝒱 +

∫ℬ ∫ℋ

{

𝜔 𝒴̇
i
𝜁

k
𝒦−1

kj 𝜎ji

}(2)
d𝒱 ′d𝒱,

=
∫ℬ ∫ℬ

(

𝜔 𝜁
k
𝒦−1

kj 𝜎ji

)(1)
𝒴̇

(1)

i
+

(

𝜔 𝜁
k
𝒦−1

kj 𝜎ji

)(2)
𝒴̇

(2)

i
d𝒱 ′d𝒱, (22)

where 𝒲̇ (1) and 𝒲̇ (2) are strain energy densities associated with the neighboring material points under saturated and
unsaturated conditions, respectively.

From (19) and (22), it follows that the effective force states at a phreatic material point can be written as

𝓣
(1)
=

{

𝜔𝜻𝓚−1(𝝈)
}(1)

, (23)

𝓣
(2)
=

{

𝜔𝜻𝓚−1(𝝈)
}(2)

. (24)

Through the effective force state concept, the fluid force states at a phreatic material point read
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𝓣(1)
w =

{

𝜔𝜻𝓚−1(Srpw1)
}(1)

, (25)

𝓣(2)
w =

{

𝜔𝜻𝓚−1(Srpw1)
}(2)

. (26)

Then, substituting (23)–(26) into (2) we have the equation of motion at a phreatic material point in terms of the total
force states as

𝜌ü =
∫ℋ

(
𝓣(1) +𝓣(2)) −

(
𝓣′(1) +𝓣′(2)) d𝒱 ′ + 𝜌g. (27)

For the fluid phase, the energy dissipation rate at a phreatic material point through fluid flow can be written as

𝒲̇ d =
∫ℬ ∫ℬ

(
𝒬(1) Φ(1) + 𝒬(2) Φ(2)

)
d𝒱 ′

. (28)

At a phreatic material point, the two fluid pressure gradient vectors can be written as

grad(̃Φ)
(1)
=

(

∫ℋ (1)
𝜔 Φ 𝜁 d𝒱 ′

)

𝓚−1
, (29)

grad(̃Φ)
(2)
=

(

∫ℋ (2)
𝜔 Φ 𝜁 d𝒱 ′

)

𝓚−1
. (30)

Given (29) and (30), flux vectors q(1) and q(2) can be obtained through the generalized Darcy’s law for unsaturated
porous media. Then, the energy dissipation rate due to fluid flow at a phreatic material point in classical poromechanics
reads

̇
𝒲 d =

̇
𝒲

(1)
d + ̇

𝒲
(2)
d ,

=
∫ℬ

q(1)i grad(pw)(1)i d𝒱 +
∫ℬ

q(2)i grad(pw)(2)i d𝒱,

=
∫ℬ

{

q(1)i

(

∫ℋ (1)
𝜔 Φ 𝜁

j
d𝒱 ′

)

𝒦−1
ji

}

d𝒱 +
∫ℬ

{

q(2)i

(

∫ℋ (2)
𝜔 Φ 𝜁

j
d𝒱 ′

)

𝒦−1
ji

}

d𝒱,

=
∫ℬ ∫ℋ

{

𝜔 Φ 𝜁
j
𝒦−1

ji qi

}(1)
d𝒱 ′d𝒱 +

∫ℬ ∫ℋ

{

𝜔 Φ 𝜁
j
𝒦−1

ji qi

}(2)
d𝒱 ′d𝒱,

=
∫ℬ ∫ℬ

(

𝜔 𝜁
j
𝒦−1

ji qi

)(1)
Φ(1) +

(

𝜔 𝜁
j
𝒦−1

ji qi

)(2)
Φ(2) d𝒱 ′d𝒱. (31)

It follows from (31) and (28) that the two fluid flow states at a phreatic material point read

𝒬(1) =
{

𝜔q𝒦−1𝜻
}(1)

, (32)

𝒬(2) =
{

𝜔q𝒦−1𝜻
}(2)

. (33)

Given (32) and (33) the balance of mass at a phreatic material point can be written as

𝜙

(
Sr

Kw
+ 𝜕Sr

𝜕pw

)
dpw

dt
+ Sr

2∑

i=1
ℒ (i) ∶ 1 +

∫ℋ

[(
𝒬(1) + 𝒬(2)

)
−

(
𝒬′(1) + 𝒬(2)

)]
d𝒱 ′ +s = 0. (34)

In this study, we assume that the fracturing is not across the phreatic interface/line. However, the formulation
for fracturing material points across the phreatic line can be achieved following the lines in this section and in
Reference 23.
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2.3 Coupled stabilization scheme in the updated Lagrangian–Eulerian framework

In this section, we derive a two-phase stabilization scheme for the two-phase correspondence principle for the phreatic
material point formulated in the previous section. Note that the stabilization scheme of the mixed material point com-
pletely in either a saturated or an unsaturated domain is a special case of the phreatic material point. For a phreatic
material point, the two spatial deformation gradient vectors are written as

𝓕(1) =
∫ℋ (1)

𝜔 𝓨⊗ 𝜻 d𝒱 ′𝓚−1
, (35)

𝓕(2) =
∫ℋ (2)

𝜔 𝓨⊗ 𝜻 d𝒱 ′𝓚−1
. (36)

The two residual deformation vector states are written as

𝓡s,(1) =𝓨(1) −𝓕(1)𝜻 (1), (37)

𝓡s,(2) =𝓨(2) −𝓕(2)𝜻 (2). (38)

Substituting (37) and (38) into (35) and (36) generates two null tensors implying that the non-uniform defor-
mation state is not considered by the correspondence principle derived in the last section.33 The missing
non-uniform deformation state is the origin of the zero-energy mode associated with the standard correspondence
principle.

The energy method25 is adopted for its computational efficiency. The effective force state with stabilization can be
written as

𝓣 =𝓣
(1)
+𝓣

(2)
+𝓣(1)

s +𝓣(2)
s , (39)

where𝓣(1)
s and𝓣(2)

s are the stabilization terms corresponding to𝓣
(1)

and𝓣
(2)

, respectively. Next, we determine the two
stabilization terms from the energy method. Following References 25,32 we propose that the stabilization force states take
the form

𝓣(1)
s = 𝛽(1)𝓡s,(1)

, (40)

𝓣(2)
s = 𝛽(2)𝓡s,(2)

, (41)

where 𝛽
(1) and 𝛽

(2) are weighting factors. The strain energy associated with the non-uniform deformation is
written as

𝓦s(𝓨) =𝒲s(𝓨(1)) +𝒲s(𝓨(2)),

= 1
2
(𝛽𝓡)s,(1) •𝓡s,(1) + 1

2
(𝛽𝓡)s,(2) •𝓡s,(2)

, (42)

where • is the state dot product operator. 𝒲s(𝒴 (1)) in (42) can be expressed as

𝒲 (1)
s =

∫ℋ (1)
𝛽
(1)ℛs,(1)

i

(

𝒴
i
−ℱij𝜁 j

)(1)
d𝒱 ′

,

=
∫ℋ (1)

{

𝛽ℛs,
i 𝒴 i

}(1)
d𝒱 ′ −

∫ℋ (1)

{

𝛽ℛs
iℱij𝜁 j

}(1)
d𝒱 ′

,

=
∫ℋ (1)

{

𝛽ℛs
i𝒴 i

}(1)
d𝒱 ′ −

(

∫ℋ (1)
𝛽ℛs

i𝜁 j
d𝒱 ′

)(1)(

∫ℋ (1)
𝜔𝒴

i
𝜁

l
d𝒱 ′

)(1)

𝒦−1
lj ,

=
∫ℋ (1)

[

𝛽ℛs
i −

(

∫ℋ (1)
𝛽ℛs

i𝜁 j
d𝒱 ′

)

𝜔𝜁
l
𝒦−1

lj

](1)

𝒴 (1)
i

d𝒱 ′
. (43)
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Similarly, we have

𝒲 (2)
s =

∫ℋ (2)

[

𝛽ℛs
i −

(

∫ℋ (1)
𝛽ℛs

i𝜁 j
d𝒱 ′

)

𝜔𝜁
l
𝒦−1

lj

](2)

𝒴 (2)
i

d𝒱 ′
. (44)

In line with the formulation of the standard correspondence principle the stabilized force state terms at a phreatic
material point can be determined as

𝓣(1)
s,i =

{

𝛽ℛs
i −

(

∫ℋ
𝛽ℛs

i𝜁 j
d𝒱 ′

)

𝜔𝜁
l
𝒦−1

lj

}(1)

, (45)

𝓣(2)
s,i =

{

𝛽ℛs
i −

(

∫ℋ
𝛽ℛs

i𝜁 j
d𝒱 ′

)

𝜔𝜁
l
𝒦−1

lj

}(2)

. (46)

In this study to simplify (45) and (46) it is assumed that 𝛽(1) and 𝛽(2) are constants as

𝛽
(1) = GC(1)

𝜔
(1)
0

𝜔, (47)

𝛽
(2) = GC(2)

𝜔
(2)
0

𝜔, (48)

where G is the stabilization parameter,25,32 C is the micro-elastic modulus,25 and

𝜔
(1)
0 =

∫ℋ (1)
𝜔 d𝒱 ′

, (49)

𝜔
(2)
0 =

∫ℋ (2)
𝜔 d𝒱 ′

. (50)

It follows that (45) and (46) can be rewritten as

𝓣s,(1) = GC(1)

𝜔
(1)
0

𝜔𝓡s,(1)
,

𝓣s,(2) = GC(2)

𝜔
(2)
0

𝜔𝓡s,(2)
. (51)

Then, the effective force state at a phreatic material point can be written as

𝓣 = 𝜔
{

𝜻𝓚−1𝝈 + GC
𝜔0
𝓡s

}(1)

+ 𝜔
{

𝜻𝓚−1𝝈 + GC
𝜔0
𝓡s

}(2)

. (52)

The parameters C(1) and C(2) can be determined by the strain energy method assuming an isotropic elastic deformation
of the skeleton as follows. For simplicity, a microelastic peridynamic model47 is adopted to determine the elastic energy
in the solid skeleton.

Let u and u′ are the displacement vectors at material points x and x′ respectively referring to the current con-
figuration. The rate form of the strain energy density at material point x due to deformation 𝜼 = u′ − u can be
written as

𝒲̇ = 1
2 ∫ℋ (1)

w(𝜂, 𝜁) d𝒱 ′ + 1
2 ∫ℋ (2)

w(𝜂, 𝜁) d𝒱 ′
,

= 1
2
𝜑
(1)
∫ℋ

w(𝜂, 𝜁) d𝒱 ′ + 1
2
𝜑
(2)
∫ℋ

w(𝜂, 𝜁) d𝒱 ′
, (53)

where 𝜂 = ||𝜼||, 𝜁 = ||𝜻||, and 𝜑(1) and 𝜑(2) are defined as follows.
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𝜑
(1) =

∫ℋ (1) d𝒱 ′

∫ℋ d𝒱 ′
, (54)

𝜑
(2) =

∫ℋ (2) d𝒱 ′

∫ℋ d𝒱 ′
. (55)

Consider an isotropic deformation of the solid skeleton the stretch of a bond reads

𝜂 = C1𝜁, (56)

where C1 is a material constant. The micro-potential25 can be written as

w(1) = C(1)C2
1𝜁∕2, (57)

w(2) = C(2)C2
1𝜁∕2. (58)

Substituting (57) and (58) into (53) gives

𝒲̇ = 1
2
𝜑
(1)
∫ℋ

1
2

(

C(1)Ċ
2
1𝜁

)

d𝒱 ′ + 1
2
𝜑
(2)
∫ℋ

1
2

(

C(2)Ċ
2
1𝜁

)

d𝒱 ′
,

= 1
2
𝜑
(1)
∫

𝛿

0

1
2

(

C(1)Ċ
2
1𝜁

)

(4𝜋𝜁2) d𝜁 + 1
2
𝜑
(2)
∫

𝛿

0

1
2

(

C(2)Ċ
2
1𝜁

)

(4𝜋𝜁2) d𝜁,

= 𝜑(1) 𝜋C(1)
𝛿

4

4
Ċ

2
1 + 𝜑(2)

𝜋C(2)
𝛿

4

4
Ċ

2
1. (59)

From the classical elastic theory, the incremental elastic strain energy density of the solid skeleton at a phreatic
material point under isotropic deformation reads

𝒲̇ =
{1

2
𝝈 ∶ 𝜺̇

}(1)
+

{1
2
𝝈 ∶ 𝜺̇

}(2)
,

=
{1

2
(K𝜀v)(𝜀̇v)

}(1)
+

{1
2
(K𝜀v)(𝜀̇v)

}(2)
,

=
{1

2
K(3Ċ1)2

}(1)
+

{1
2

K(3Ċ1)2
}(2)

,

=
{9K

2
Ċ

2
1

}(1)
+

{1
2

K(3Ċ1)2
}(2)

, (60)

where K is the elastic bulk modulus and 𝜀v is the elastic volumetric strain under isotropic deformation. From (60) and
(59) C under three-dimensional condition can be written as

C(1) = 𝜑(1) 18K
𝜋𝛿4 , (61)

C(2) = 𝜑(2) 18K
𝜋𝛿4 , (62)

Next, we first demonstrate that the fluid flow state in the updated Lagrangian–Eulerian formulation inherits the insta-
bility as in the total Lagrangian–Eulerian formulation and then present a stabilization scheme through the energy method
for the fluid phase. The two residual fluid flow states at a phreatic material point read

ℛw,(1) = Φ(1) − grad(̃Φ)
(1)
𝜻 (1), (63)

ℛw,(2) = Φ(2) − grad(̃Φ)
(2)
𝜻 (2). (64)

Substituting (63) or (64) into the spatial nonlocal pressure gradient (16) generates
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grad
(
ℛw) =

(

∫ℋ
𝜔 Φ 𝜻 d𝒱 ′

)

𝓚−1
,

=
∫ℋ

𝜔 ℛw 𝜻 d𝒱 ′
(

∫ℋ
𝜔 𝜻 ⊗ 𝜻 d𝒱 ′

)−1

,

=
∫ℋ

𝜔 (Φ − grad(̃Φ)𝜻)𝜻 d𝒱 ′
(

∫ℋ
𝜔 𝜻 ⊗ 𝜻 d𝒱 ′

)−1

,

=
(

∫ℋ
𝜔 (Φ𝜻) d𝒱 ′ − grad(̃Φ)

∫ℋ
𝜔 (𝜻 ⊗ 𝜻) d𝒱 ′

)(

∫ℋ
𝜔 𝜻 ⊗ 𝜻 d𝒱 ′

)−1

,

= grad(̃Φ) − grad(̃Φ)𝓚𝓚−1 = 0. (65)

It is implied by (65) that the correspondence principle for fluid flow in the updated Lagrangian–Eulerian formulation will
generate zero-energy mode instability under non-uniform fluid flow conditions. We define the stabilization terms for the
fluid flow states at a phreatic material point as

𝒬s = 𝜆(1)ℛw,(1) + 𝜆(2)ℛw,(2)
, (66)

where 𝜆
(1) and 𝜆

(2) are positive parameters. The fluid flow dissipation energy in the updated Lagrangian-Eulerian
formulation reads

𝒲 s
d =

1
2
(
𝜆ℛw)w,(1) •ℛw,(1) + 1

2
(
𝜆ℛw)(2) •ℛw,(2)

. (67)

It follows from (63) and (67) that

𝒲 s,(1)
d =

∫ℋ (1)
𝜆
(1)


w,(1)
(

Φ − grad(̃Φ)i𝜁 i

)(1)
d𝒱 ′

,

=
∫ℋ (1)

{
𝜆ℛwΦ

}(1)d𝒱 ′ −
∫ℋ (1)

{

𝜆ℛwgrad(̃Φ)i𝜁 i

}(1)
d𝒱 ′

,

=
∫ℋ (1)

{
𝜆

wΦ
}(1)d𝒱 ′ −

(

∫ℋ (1)
𝜆𝜁

i
d𝒱 ′

)(1)(

∫ℋ (1)
𝜔Φ𝜁

j
d𝒱 ′

)(1)

𝒦−1
ji ,

=
∫ℋ (1)

[

𝜆ℛw −
(

∫ℋ (1)
𝜆ℛw

𝜁
i
d𝒱 ′

)

𝜔𝜁
j
𝒦−1

ji

](1)

Φ(1) d𝒱 ′
. (68)

Similarly, we have

𝒲 s,(2)
d =

∫ℋ (1)

[

𝜆ℛw −
(

∫ℋ (2)
𝜆ℛw

𝜁
i
d𝒱 ′

)

𝜔𝜁
j
𝒦−1

ji

](2)

Φ(2) d𝒱 ′
. (69)

From (15), (68), and (69) the stabilized terms for the fluid flow state accounting for the non-uniform fluid potential
state can be written as

𝒬s,(1) =
{

𝜆ℛw −
(

∫ℋ
𝜆

w
𝜁

i
d𝒱 ′

)

𝜔𝜁
j
𝒦−1

ji

}(1)

, (70)

𝒬s,(2) =
{

𝜆ℛw −
(

∫ℋ
𝜆

w
𝜁

i
𝒦−1

ji d𝒱 ′
)

𝜔𝜁
j

}(2)

. (71)

For simplicity, we assume that 𝜆 takes the following form

𝜆
(1) =

GK(1)
p

𝜔
(1)
0

𝜔, (72)

𝜆
(2) =

GK(2)
p

𝜔
(2)
0

𝜔, (73)
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where K(1)
p and K(2)

p are hydraulic micro-conductivities. Then, we obtain

𝒬s,(1) =
GK(1)

p

𝜔
(1)
0

𝜔
w,(1)

,

𝒬s,(2) =
GK(2)

p

𝜔
(2)
0

𝜔
w,(2)

. (74)

Then, the stabilized fluid flow state at material point x is written as

𝒬 = 𝜔
(

q𝓚−1𝜻 +
GKp

𝜔0
ℛw

)(1)

+ 𝜔
(

q𝓚−1𝜻 +
GKp

𝜔0
ℛw

)(2)

. (75)

Next, we derive the material variables through an energy method assuming an isotropic fluid flow. The dissipation
potential energy at a phreatic material point reads

𝒲d =
1
2∫(1)

𝓌f (x′, x
)

d𝒱 ′ + 1
2∫(2)

𝓌f (x′, x
)

d𝒱 ′
,

= 1
2
𝜑
(1)
∫


𝓌f (x′, x
)

d𝒱 ′ + 1
2
𝜑
(2)
∫


𝓌f (x′, x
)

d𝒱 ′
. (76)

The peridynamic hydraulic micro-conductivity can be related to the classical hydraulic conductivity by equating the peri-
dynamic fluid dissipation potential to the classical fluid dissipation potential at a phreatic material point. For simplicity,
we assume a linear pressure field in a porous material body, pw = 𝒞2(1 ⋅ x) for a three-dimensional case. The fluid flow
micro potential25 can be written as

𝓌f = Kp
1
2
𝒞 2

2 𝜁. (77)

Then we have

𝒲d =
1
2
𝜑
(1)
∫

𝛿

0

(1
2

K(1)
p 𝒞 2

2 𝜁
)

(4𝜋𝜁2)d𝜁 + 1
2
𝜑
(2)
∫

𝛿

0

(1
2

K(2)
p 𝒞 2

2 𝜁
)

(4𝜋𝜁2)d𝜁,

= 𝜑(1)
𝜋K(1)

p 𝛿
4

4
𝒞 2

2 + 𝜑
(2)
𝜋K(2)

p 𝛿
4

4
𝒞 2

2 . (78)

Assuming an isotropic fluid flow, the classical fluid dissipation energy in classical unsaturated poromechanics reads

𝒲 d =
{

1
2
(𝛁pw)

krkw

𝜇
1(𝛁pw)

}(1)

+
{

1
2
(𝛁pw)

krkw

𝜇
1(𝛁pw)

}(2)

,

=
{

3
2

krkw

𝜇
𝒞 2

2

}(1)

+
{

3
2

krkw

𝜇
𝒞 2

2

}(2)

. (79)

where kw is the intrinsic permeability of saturated porous media and kr is the relative permeability for the partially
saturated case, and 𝜇w is the water viscosity.

It follows from (78) and (79) that the hydraulic micro-conductivities at a phreatic material point under
three-dimensional condition are

K(1)
p = 𝜑(1) 6krkw

𝜇𝜋𝛿4 , (80)

K(2)
p = 𝜑(2) 6krkw

𝜇𝜋𝛿4 . (81)
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2.4 Constitutive models and physical laws

We summarize the constitutive models and physical laws. The effective stress tensor can be determined by an isotropic
linear elastic model (or a plastic or visco-plastic constitutive model33,48-50) as

̇̂
𝝈 = ℭ ∶𝓓e

, (82)

where ℭ is the forth-order elastic modulus tensor,4 ̇̂
𝝈 is the rotated Cauchy stress, and 𝒟 e is the elastic deformation rate

tensor. Given the velocity gradient tensor the rate of unrotated deformation tensor reads

𝒟 =ℛT
[1

2
(
ℒ +ℒT)

]

ℛ, (83)

where𝓡 is the rotation tensor from the left polar decomposition of𝓕,

𝓕 =𝓥𝓡. (84)

Once the effective Cauchy stress tensor is updated it is rotated back to the deformed configuration as follows

𝝈̇ =𝓡T ̇̂𝝈𝓡. (85)

Similarly, the fluid flux q can be determined by the generalized Darcy’s law for unsaturated fluid flow as

q = −krkw

𝜇w
grad(̃Φ), (86)

where grad(̃Φ) is the nonlocal fluid pressure gradient referring to the current configuration and kw is the intrinsic per-
meability tensor. For large deformation applications there exists pure rotations that change the reference frame with no
deformation. Therefore, the permeability tensor needs to be modified as

kw =𝓡Tk̂w𝓡. (87)

It follows from ( 87 ) that ( 86 ) 2 can be written as

q = −𝓡
[

kr𝓡Tkw𝓡
𝜇w

grad(̃Φ)
]

. (88)

The fluid flow state in the fracture space reads

Q
f
= 3

mv
𝜔𝜌wqf 𝜻 , (89)

where qf is the fluid flow vector in fracture space. Through Darcy’s law for unsaturated fluid flow the fracture fluid flow
vector qf can be written as

qf = −
kr

f kf

𝜇w
𝛁Φf , (90)

where kr
f is the relative permeability, kf is the intrinsic permeability of fracture space24, and ∇̃Φf is the nonlocal fracture

fluid pressure gradient determined as

∇̃Φf =
3

mv ∫ℋ
𝜔 Φf 𝜻 d𝒱 ′

, (91)
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where

Φf = p′f − pf , (92)

and

mv =
∫ℋ

𝜔 𝜻 𝜻 d𝒱 ′
. (93)

The porosity in (3) can be written as21

𝜙 = 1 − (1 − 𝜙t)𝒥
𝒥

, (94)

where 𝜙t is the current configuration porosity and

𝒥 = det(𝓕). (95)

The degree of saturation Sr can be determined from the soil-water retention curve51-58 that depends on the volume
strain of the solid skeleton (e.g., porosity). In this study, we adopt the one in References 21,59,60 which reads

Sr(𝒥 , 𝜙, pw) =

{

1 +
[

−a1

(
𝒥

1 − 𝜙
− 1

)a2

𝒥 pw

]a3
}(a3−1)∕a3

, (96)

where a1, a2, and a3 are all material parameters. Given Sr the relative permeability kr can be written as

kr = S1∕2
r

[

1 − (1 − S1∕m
r )m

]2
, (97)

where m = (a3 − 1)∕a3.
The bond-breakage criterion is based on the deformation energy stored in a poromechanical bond. With the effective

force state the energy density in an intact poromechanical bond 𝜻 reads

𝜛̇ =
∫

t+Δt

t

(

𝓣 −𝓣
′)
𝜼̇ dt =

∫

t+Δt

t

[(
𝓣 + Sr𝓣w

)
−

(
𝓣′ + S′r𝓣′

w

)]
𝜼̇ dt, (98)

where 𝜼̇ = u̇′ − u̇ is the relative displacement vector. The bond breakage is realized through the influence function at
the material point level for both the solid and fluid phases. The influence function will be replaced by a new influence
function 𝜚𝜔, where 𝜚 is defined as

𝜚 =

{
0 if 𝜛 ≥ 𝜛cr,

1 otherwise.
(99)

In periporomechanics, the failure at solid skeleton material points is tracked through a scalar damage variable 𝜑.24 This
damage variable is defined as the fraction of broken solid bonds at a material point in its horizon

𝜑 = 1 −
∫ℋ 𝜚𝜔 d𝒱 ′

𝜔0
, (100)

where 𝜑 ∈ [0, 1] and 𝜔0 is defined as

𝜔0 =
∫ℋ

𝜔 d𝒱 ′
. (101)
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3 NUMERICAL IMPLEMENTATION

In this section, we implement the computational large-deformation periporomechanics model through an
implicit-implicit fractional step algorithm. With an undrained operator split, the strongly coupled problem is decom-
posed into an undrained deformation stage and a partially saturated fluid flow stage. The list of neighboring material
points of a mixed material point is updated in the deformed configuration at each time step through a dedicated search
algorithm. The evolution of phreatic material points across the phreatic line is tracked at each time step through another
dedicated search algorithm. In this study, we focus on deformation-driven processes, and loading conditions are applied
to the solid skeleton. Thus, we first solve the deformation problem and then the fluid flow process. We note that in other
applications, such as hydraulic fracturing wherein fluid pressure drives deformation, it would be preferred to solve the
fluid flow first.

3.1 Time discretization of the deformation stage

In the deformation stage, the equation of motion is solved under undrained condition through an implicit Newton’s
method.24,40

Given un, u̇n, ün at time step n. Let Δük+1
n+1 = ük+1

n+1 − ün and k is the iteration counter. Following Newmark’s method,1
the displacement, velocity, and acceleration of the solid skeleton at time step n + 1 can be written as

ük+1
n+1 = ük

n+1 + 𝛿Δük+1
n+1, (102)

u̇k+1
n+1 = u̇n + Δtün + 𝛽2ΔtΔük+1

n+1, (103)

uk+1
n+1 = un + Δtu̇n +

(Δt)2

2
ün + 𝛽1

(Δt)2

2
Δük+1

n+1, (104)

where 𝛽1 and 𝛽2 are numerical integration parameters. For unconditional stability1
𝛽1 ≥ 𝛽2 ≥ 0.5.

The solution procedure for the solid deformation stage with phreatic material points is outlined in Figure 3. A detailed
description of its numerical implementation is provided in Algorithm 1. At tn+1, the residual of the motion equation for
a mixed material point in the bulk space reads

ru,k+1 = 𝜌k+1ük+1 −
∫ℋn

𝜚
n

(

𝓣 −𝓣
′)k+1

d𝒱 ′
n +
∫ℋn

(
Sr𝓣w − S′r𝓣′

w

)k+1 d𝒱 ′
n − 𝜌k+1g. (105)

Similarly, the residual of the motion equation for a phreatic material point reads

ru,k+1 = 𝜌k+1ük+1 −
∫ℋn

𝜚
n

{(

𝓣
(1)
+𝓣

(2))
−

(

𝓣
′(1)
+𝓣

′(2))}k+1
d𝒱 ′

n

+
∫ℋn

{
Sr

(
𝓣(1)

w +𝓣(2)
w

)
− S′r

(
𝓣′(1)

w +𝓣′(2)
w

)}k+1 d𝒱 ′
n − 𝜌k+1g. (106)

The terms of the fluid pressure in (105) are determined from the explicit fluid pressure predictor p̃k+1
w computed under

undrained condition. Given pw,n and ṗw,n at time step n, let Δ ̇̃pw,n+1 = ̇̃pw,n+1 − ṗw,n. From Newmark’s method1,25 p̃w,n+1
can be written as

p̃k+1
w = pw,n + Δtṗw,n + 𝛽3ΔtΔ ̇̃pk+1

. (107)

Through the undrained operator split, the rate form of p̃w,n+1 at a material point in the bulk reads

̇̃pk+1
w = −

(

𝜙
Sr

Kw
+ 𝜙 𝜕Sr

𝜕pw

)−1

n

[

Sr,n(𝓛k+1 ∶ 1) +
∫ℋn

𝜚
n

(
𝒬n − 𝒬

′
n

)
d𝒱 ′

n

]

. (108)
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F I G U R E 3 Flowchart of Newton’s method for solving the motion equation in the deformation stage of the fractional step algorithm for
coupled updated Lagrangian–Eulerian periporomechanics.

Similarly, the rate of the predicted fluid pressure at a phreatic material point can be written as

̇̃pk+1
w = −

(

𝜙
Sr

Kw
+ 𝜙 𝜕Sr

𝜕pw

)−1

n

[
Sr,n

(
𝓛(1),k+1 +𝓛(2),k+1) ∶ 1

+
∫ℋn

𝜚
n

{(
𝒬(1) + 𝒬(2)

)

n −
(
𝒬′(1) + 𝒬′(2)

)

n

}
d𝒱 ′

n

]

. (109)

Algorithms 2 and 3 summarize the algorithms for computing the force states in the residuals of the motion equations at
a bulk material point and a phreatic material point, respectively.
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Algorithm 1. Fractional step algorithm for the solid deformation stage in fully coupled updated Lagrangian–Eulerian
periporomechanics

1: procedure Given un, u̇n, ün,pw,n, ṗw,n,pf ,n, ṗf ,n, tn and Δt, Solve ün+1 and compute 𝒱 n+1
2: tn+1 = tn + Δt
3: for all points i do
4: for all points j do
5: Execute neighbor search ∀j ∈ℬ
6: if ‖xj − xi‖ ≤ 𝛿 then
7: Add j ∈ℋi
8: end if
9: end for

10: end for
11: Compute the velocity predictor ̇̃un+1
12: Apply boundary conditions
13: Compute the displacement predictor ũn+1
14: Compute the predictors p̃w,n+1 and p̃f ,n+1
15: for all points i do
16: for all neighbors j do
17: if sgn(pw,i) = sgn(pw,j) then
18: set 𝛼ij = 0
19: else if sgn(pw,i)! = sgn(pw,j) then
20: set 𝛼ij = 1
21: end if
22: end for
23: if

∑
𝛼ij∕i > 𝜍 then

24: SET i as INTERFACE_POINT
25: end if
26: end for
27: Compute the effective force and fluid force via Algorithm 2
28: Compute balance of momentum residualu,0

n+1
29: Set k = 0,
30: while ‖ru,k

n+1‖ > tol1 do
31: Construct tangent operator for the momentum balance𝓐u,k =

[
𝜕ru,k∕𝜕Δük]

n+1
32: Solve the linear system for 𝛿Δük+1

n+1

33: Update ük+1
n+1, xk+1

n+1, p̃k+1
w,n+1 and p̃k+1

f ,n+1

34: Check the residualu,k+1
n+1

35: Set k ← k + 1
36: end while
37: Update pw,n ← p̃w,n+1, pf ,n ← p̃f ,n+1
38: Evaluate the bond failure criterion and update broken bonds
39: end procedure

Substituting (102)–(104) into (105) and using (107), Δün+1 can be solved by Newton’s method as follows.

𝓡u,k+1 =𝓡u,k +u,k
𝛿Δük+1 ≈ 0, (110)

where u is the global residual vector of the motion equations and u is the global tangent operator of the motion
equations


u,k = 𝜕𝓡u,k

𝜕Δük
. (111)
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Algorithm 2. Construct𝓣n+1 and𝓣w,n+1 for interface points

1: for all interface points i do
2: for all neighbors j do
3: Compute the contribution to𝓚(i)
4: if 𝛼ij = 0 then
5: Compute the contribution to𝓕k,(1)

i ,𝓛k,(1)
i , and𝓓k,(1)

i
6: end if
7: if 𝛼ij = 1 then
8: Compute the contribution to𝓕k,(2)

i ,𝓛k,(2)
i , and𝓓k,(2)

i
9: end if

10: end for
11: end for
12: for all interface points i do
13: Update the porosity 𝜙k

i
14: Compute the volume coupling term 𝒱̇ k

i
15: Compute the rate pressure predictor ̇̃pk

i
16: Compute Δ𝜺k,(1)

i and 𝝈k,(1)
i

17: Compute Δ𝜺k,(2)
i and 𝝈k,(2)

i
18: end for
19: for all interface points i do
20: for all neighbors j do
21: if 𝛼ij = 0 then

22: Compute𝓣
k,(1)

ij
and𝓣k,(1)

w,ij
23: end if
24: if 𝛼ij = 1 then

25: Compute𝓣
k,(2)

ij
and𝓣k,(2)

w,ij
26: end if
27: end for
28: end for

Solving (111) we obtain

𝛿Δük+1 = −(u,k)−1


u,k
. (112)

Finally, we have

Δük+1 = Δük + 𝛿Δük+1
. (113)

3.2 Time discretization of the unsaturated fluid flow stage

Given pw,n, ṗw,n, and un, the unsaturated fluid flow stage solves ṗw,n+1 in the updated configuration of the solid
skeleton using an implicit Newton’s method at time step n + 1. Let Δṗk+1

w = ṗk+1
w − ṗw,n. From Newmark’s method1

we have

ṗk+1
w = ṗk

w + 𝛿Δṗk+1
w , (114)

pk+1
w = pw,n + Δtṗw,n + 𝛽3ΔtΔṗk+1

w . (115)
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Algorithm 3. Construct𝓣n+1 and𝓣w,n+1 for non-interface points

1: for all points i do
2: for all neighbors j do
3: Compute the contribution to𝓚i
4: Compute the contribution to𝓕k

i ,𝓛k
i , and𝓓k

i
5: end for
6: end for
7: for all points i do
8: Update the porosity 𝜙k

i
9: Compute the volume coupling term 𝒱̇ k

i
10: Compute the rate pressure predictor ̇̃pk

i
11: Compute Δ𝜺k

i and 𝝈k
i

12: end for
13: for all points i do
14: for all neighbors j do
15: Compute all𝓣k

ij

16: Compute all𝓣k,
w,ij

17: end for
18: end for

The solution procedure for the unsaturated flow stage with phreatic material points is outlined in Figure 4. A detailed
description of its numerical implementation is provided in Algorithm 4. At tn+1, the residual of the mass balance equation
for a bulk material point is written as

rp,k+1 =
(

𝜙
Sr

Kw
+ 𝜙 𝜕Sr

𝜕pw

)k+1

ṗk+1
w + Sk+1

r 𝓛 ∶ 1 +
∫ℋ

𝜚
(
𝒬 − 𝒬′

)k+1 d𝒱 ′
. (116)

Similarly, the residual of the mass balance equation for a phreatic material point reads

rp,k+1 =
(

𝜙
Sr

Kw
+ 𝜙 𝜕Sr

𝜕pw

)k+1

ṗk+1
w + Sk+1

r
(
𝓛(1) +𝓛(2)) ∶ 1

+
∫ℋ

𝜚
{(
𝒬(1) + 𝒬(2)

)
−

(
𝒬′(1) + 𝒬′(2)

)}k+1 d𝒱 ′
. (117)

Algorithms 5 and 6 show the algorithms for computing the fluid flow and volume rate states for the residual vector
of the mass balance equations for the bulk and phreatic material points. Through an implicit Newton’s method, Δṗw,n+1
can be solved as follows.

𝓡p,k+1 =𝓡p,k +p,k
𝛿Δṗk+1

w ≈ 0, (118)

wherep is the global residual vector of the mass balance andp is the corresponding global tangent operator


p,k = 𝜕𝓡p,k

𝜕Δṗk
w
. (119)

Solving (118) gives

𝛿Δṗk+1
w = −(p,k)−1


p,k
. (120)

Finally, we have

Δṗk+1
w = Δṗk

w + 𝛿Δṗk+1
w . (121)
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F I G U R E 4 Flowchart of Newton’s method for solving the mass balance equation in the unsaturated fluid flow stage of the fractional
step algorithm for coupled updated Lagrangian–Eulerian periporomechanics.

Algorithm 4. Fractional step algorithm for the partially fluid flow stage in fully coupled updated Lagrangian–Eulerian
periporomechanics

1: procedure Given𝓥n+1, p̃w,n+1,
̇̃pw,n+1, p̃f ,n+1,

̇̃pf ,n+1, tn and Δt, Solve ṗw,n+1
2: Compute fluid flow and volume change via Algorithm 5
3: Compute the balance of mass residual rp,0

n+1
4: Set k = 0
5: while ‖rp,k‖ > tol2 do
6: Construct tangentpf ,k =

[{
𝜕𝓡pf ,k∕𝜕Δpk

w
}
;
{

𝜕𝓡pf ,k∕𝜕Δpk
f

}]

7: Solve 𝒜 pf ,k [
𝛿Δpw; 𝛿Δpf

]k+1 = −
{
𝓡p,k

,𝓡f ,k} for
[
𝛿Δpw; 𝛿Δpf

]k+1

8: Update pk+1
w and pk+1

f

9: Check the residual𝓡pf ,k+1

10: Set k ← k + 1
11: end while
12: Update un ← un+1, xn ← xn+1
13: end procedure
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Algorithm 5. Construct n+1 for interface points

1: for all interface points i do
2: if pw < 0 then
3: Compute degree of saturation Sk

r,i

4: Compute relative permeability kr,k
i

5: end if
6: if pw ≥ 0 then
7: Set Sk

r,i = 1
8: Set kr,k

i = 1
9: end if

10: for all neighbors j do
11: if 𝛼ij = 0 then
12: Compute pressure gradient grad(Φ̃)k,(1)i
13: end if
14: if 𝛼ij = 1 then
15: Compute pressure gradient grad(Φ̃)k,(2)i
16: end if
17: end for
18: Compute the flux vector qk,(1)

i and qk,(2)
i

19: end for
20: for all interface points i do
21: for all neighbors j do
22: if 𝛼ij = 0 then
23: Compute 𝒬k,(1)

ij
24: end if
25: if 𝛼ij = 1 then
26: Compute 𝒬k,(2)

ij
27: end if
28: end for
29: end for

Algorithm 6. Construct n+1 for non-interface points

1: for all points i do
2: if pw,(i) < 0 then
3: Compute degree of saturation Sk

r,i

4: Compute relative permeability kr,k
i

5: end if
6: if pw,i ≥ 0 then
7: Set Sk

r,i = 1
8: Set kr,k

i = 1
9: end if

10: Compute pressure gradient grad(Φ̃)ki
11: Compute the flux vector qk

i
12: end for
13: for all points i do
14: for all neighbors j do
15: Compute fluid flow states 𝒬k

ij
16: end for
17: end for
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3.3 Spatial discretization of the updated Lagrangian–Eulerian periporomechanics

The mixed Lagrangian–Eulerian meshfree method is adopted to spatially discretize the coupled governing equations.23

Let  denote the number of total material points in the problem domain andi be the number of material points in the
horizon of material point i. The spatial discretization of the motion equation and mass balance equation can be written as

𝒜

i=1(iüi −𝓣i +𝓣w,i +  i) = 0, (122)

𝒜

i=1(i +i +𝒱 s,i + i) = 0, (123)

where

i =
[
𝜌s(1 − 𝜙i) + 𝜌wSr,i𝜙i

]
𝒱i1, (124)

𝓣i =
i∑

j=1

[(

𝓣
(1)
ij +𝓣

(2)
ij

)

−
(

𝓣
(1)
ji +𝓣

(2)
ji

)]

𝒱j𝒱i, (125)

𝓣w,i =
i∑

j=1

[

Sr,i

(

𝓣(1)
w,ij +𝓣

(2)
w,ij

)

− Sr,j

(

𝓣(1)
w,ji +𝓣

(2)
w,ji

)]

𝒱j𝒱i, (126)

i = 𝜙i

(
Sr

Kw
−
𝜕Sr,i

𝜕si

)

ṗw,i𝒱i, (127)

i =
1
𝜌w

i∑

j=1
𝜚

ij

[(

𝒬(1)ij + 𝒬
(2)
ij

)

−
(

𝒬(1)ji + 𝒬
(2)
ji

)]

𝒱j𝒱i, (128)

𝒱 s,i = Sr,i

[

𝓛(1)
i +𝓛(2)

i

]

∶ 1, (129)

𝒜 is an global assembly operator,23,61 and𝒱i and𝒱j are the volumes of material points i and j, respectively, in the current
configuration. It is noted that (125), (126), (128), and (129) are written in the forms for phreatic material points in which
only one term remains for a bulk material point.

In (125) and (126), the effective force state and the water force state are written as

𝓣
(1)
ij =

{

𝜔ij𝜻 ij
𝝈i

}(1)
𝓚−1

i +
{

𝜔ij
GC
𝜔0
𝓡s

i

}(1)

, (130)

𝓣
(2)
ij =

{

𝜔ij𝜻 ij
𝝈i

}(2)
𝓚−1

i +
{

𝜔ij
GC
𝜔0
𝓡s

i

}(2)

, (131)

𝓣(1)
w,ij =

{

𝜔ij𝜻 ij
1pw,i

}(1)
𝓚−1

i , (132)

𝓣(2)
w,ij =

{

𝜔ij𝜻 ij
1pw,i

}(2)
𝓚−1

i . (133)

The fluid flow states and velocity gradients in (128) read

𝒬(1)ij =
{

𝜔ij𝜌w𝜻 ij
qi

}(1)
𝓚−1

i +
{

𝜔ij
GKp

𝜔0
ℛw

i

}(1)

, (134)

𝒬(2)ij =
{

𝜔ij𝜌w𝜻 ij
qi

}(2)
𝓚−1

i +
{

𝜔ij
GKp

𝜔0
ℛw

i

}(2)

. (135)

The velocity gradients in (129) read

𝓛(1)
ij,n+1 =

⎡
⎢
⎢
⎣

i∑

k=1

(

𝜔ij𝓨̇ik
⊗ 𝜻

ik

)

𝒱k

⎤
⎥
⎥
⎦

(1)

(𝓚ij)−1
, (136)
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𝓛(2)
ij,n+1 =

⎡
⎢
⎢
⎣

i∑

k=1

(

𝜔ij𝓨̇ik
⊗ 𝜻

ik

)

𝒱k

⎤
⎥
⎥
⎦

(2)

(𝓚ij)−1
. (137)

In the next section, we present numerical examples to validate the computational implementation and demon-
strate the efficacy of the proposed computational periporomechanics for modeling dynamic failure and fracturing in
unsaturated porous media.

4 NUMERICAL EXAMPLES

4.1 Example 1: Validation of the coupled stabilization scheme

In this example, we simulate the dynamic consolidation of a three-dimensional unsaturated soil specimen to validate the
proposed coupled stabilization scheme. Figure 5 presents the geometry of the soil column, the load, and the boundary
conditions. The problem domain is discretized into 9000 uniform mixed material points. The distance of two neighboring
material point centers is Δx = 0.1 m. For the fluid phase, the bottom boundary is prescribed constant fluid pressure, and
all other boundaries are impervious. The solid phase is modeled using an isotropic elastic correspondence model.22,23

The intrinsic permeability is assumed isotropic and uniform. The material properties chosen are 𝜌s = 2.1 × 103 kg/m3,
𝜌w = 1 × 103 kg/m3, 𝜇w = 1 × 10−3 Pa s, initial porosity 𝜙0 = 0.33, bulk modulus K = 3.3 × 104 kPa, shear modulus 𝜇s =
1.62 × 104 kPa, water bulk modulus Kw = 2 ×105 kPa, kw = 1 × 10−14 m2, a1 = 0.038, a2 = 3.49, a3 = 1.25, and sa = 10 kPa.
The initial uniform effective stress 𝜎 = −12.33 kPa. The initial fluid pressure pw = −15 kPa (i.e., Sr = 0.82). The loading
rate is u̇y = 0.01 m/s. The total loading time t = 5 s with the time increment Δt = 0.005 s.

Figures 6 and 7 compare the contours of displacement and water pressure, respectively, from the simulations using
different values of G. The results of the simulations with the standard correspondence material model (G = 0) show
noticeable oscillations. However, the oscillations have disappeared in the results with the stabilized correspondence
material model (G = 1.0).

F I G U R E 5 Problem setup for Example 1
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(A) (B)

F I G U R E 6 Contours of displacement with (A) G = 0.0 and (B) G = 1.0 at uy = 0.05 m.

(A) (B)

F I G U R E 7 Contours of water pressure (kPa) with (A) G = 0.0 and (B) G = 1.0 at uy = 0.05 m.

Figure 8 plots the velocity within the specimen from the simulations with three values of G at uy = 0.05 m on the top
boundary. Figure 9 plots the fluid pressure within the specimen with three values of G at the same load step. The results
in Figures 8 and 9 show the effect of stabilization could depend on the value of G. This preliminary study implies that the
simulation with G = 1.0 removes the oscillations of the velocity and fluid pressure in this example. It is noted that the
numerical instability is rooted in the zero-energy mode of deformation associated with the constitutive correspondence
principle as elaborated in Section 2.3. The value of G is on the order of 1 in the energy method.25 In this study, the same
value of G is adopted for the solid deformation and unsaturated fluid flow processes.

4.2 Example 2: Variably saturated flow with an evolving phreatic interface in porous
media

In this example, we simulate variably saturated fluid flow with the evolution of a phreatic interface in a rigid porous mate-
rial. Two cases will be simulated. Case 1 deals with the transient variably saturated fluid flow with no fixed fluid pressure
boundary. Case 2 concerns the steady-state variably saturated fluid flow under fixed fluid pressure boundary conditions.
We note that the proposed updated Lagrangian–Eulerian periporomechanics is a strong nonlocal formulation in which
the zero fluid pressure along the phreatic interface is imposed. Indeed, in this strong nonlocal framework saturated or
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F I G U R E 9 Variation of water pressure with depth at uy = 0.05 m from the simulations with three values of G.

F I G U R E 10 Problem setup for Example 2 and the contour of initial fluid pressure (kPa) with a phreatic line for case 1.

unsaturated fluid flow between material points is driven by the fluid potential difference between them. First, we present
the results of case 1. Figure 10 plots the problem setup and the contour of the initial fluid pressure with a phreatic line.
The initial fluid pressure is prescribed through a linear function of the distance above and below the initial phreatic line
as shown in Figure 10. The solid skeleton is assumed rigid. All fluid boundaries are impervious. The problem domain is
discretized into 15,000 uniform mixed material points with Δx = 0.15 m. The initial phreatic line is determined through
the search Algorithm 2 introduced in Section 3. The material properties chosen are 𝜌w = 1 ×103 kg/m3, 𝜇w = 1 × 10−3

Pa s, Kw = 2 × 105 kPa, kw = 1 × 10−15 m2, a1 = 0.038, a2 = 3.49, a3 = 3.0, sa = 50 kPa. The horizon is 𝛿 = 3.05Δx. The
total simulation time t = 8 h (hour) with Δt = 1 s.
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(A)

(B)

(C)

F I G U R E 11 Contours of the water pressure (kPa) in the problem domain at (A) t = 1 h, (B) t = 4 h, and (C) t = 8 h for case 1.

(A)

(B)

(C)

F I G U R E 12 Evolution of the phreatic interface (red line) in the problem domain at (A) t = 1 h, (B) t = 4 h, and (C) t = 8 h for case 1.
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Figures 11 and 12 plot the results of the simulation at (a) t = 1 h, (b) t = 4 h, and (c) t = 8 h. Fluid flow in the problem
domain is driven by the initial state of the fluid pressure. The initial spatial variation of fluid pressure drives fluid flow
toward the unsaturated zone causing the phreatic interface to move toward the right bottom of the problem domain.
The initial straight phreatic line becomes curved because of the saturated and unsaturated fluid flow within the problem
domain.

Next, we present the results of case 2. In this case, we simulate the steady-state phreatic interface in the rigid porous
material given the fixed fluid pressure boundaries as shown in Figure 13. We refer to the literature62 for modeling free
boundary seepage in porous media through the FEM. We note that the steady state phreatic interface is simulated by
the unsaturated fluid flow model in this study, which is different from the solution for free-boundary seepage through a
saturated fluid flow model in Reference 62. As shown in Figure 13, an initial fluid pressure with a postulated phreatic line
in the problem domain is prescribed through the method for case 1 to reduce the overall simulation time. The material
parameters and spatial discretization are the same as adopted for case 1. The total simulation time t = 40 h with Δt = 10
s. The results are presented in Figures 14-16.

F I G U R E 13 Initial phreatic line and fluid boundary conditions for case 2.

(A)

(C)

(B)

F I G U R E 14 Contours of the water pressure (kPa) in the problem domain at (A) t = 0 h, (B) t = 8 h, and (C) t = 40 h for case 2.
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(A)

(B)

(C)

F I G U R E 15 Evolution of the phreatic interface (red line) in the problem domain at (A) t = 0 h, (B) t = 8 h, and (C) t = 40 h for case 2.

F I G U R E 16 Variation of water pressure with time at two points in the saturated zone and vadose zone respectively for case 2.

Figure 14 presents the contours of water pressure at different loading stages. Figure 15 plots the evolution of phreatic
interface in the problem domain. Figure 16 plots the variation of water pressure at the two points in the saturated zone
and vadose zone respectively as shown in Figure 16. The results in Figure 16 show that the water pressures at both points
have reached a steady state. Thus, we can conclude that the phreatic interface shown in Figure 15C is the steady state
under the fixed fluid pressure boundary conditions in Figure 13. It is noted that the shape of the steady-state phreatic
interface Figure 15C is qualitatively consistent with the results reported in Reference 9.

In summary, this example demonstrates that the implemented variably saturated periporomechanics with a dedicated
search algorithm for phreatic material points can adequately model the evolution of the phreatic interface under partially
saturated fluid flow condition in porous media.
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4.3 Example 3: Mode I cracking

In this example, we simulate mode I crack propagation and unsaturated fluid flow in a porous body in two dimensions to
validate the updated Lagrangian–Eulerian fracturing periporomechanics framework. It is worth noting that the mode I
cracking in this example can be relevant to desiccation cracking in unsaturated porous media (e.g., unsaturated clay).9,63

We compare the numerical results from the updated Lagrangian formulation in this study to the results from the total
Lagrangian periporomechanics in Reference 24. We note that the results in Reference 24 were validated against the XFEM
results in Reference 19. Figure 17 presents the problem geometry, the boundary conditions, and the load. The pre-existing
crack is defined by eliminating interaction between material points across the crack plane.24 All fluid phase boundaries
of the specimen are assumed impermeable. The problem domain is discretized into 20,000 uniform mixed material points
with Δx = 0.0025 m.

The solid phase is modeled using an isotropic elastic correspondence constitutive model.22,23 The material properties
are 𝜌s = 2 × 103 kg/m3, 𝜌w = 1 × 103 kg/m3, 𝜇w = 1 × 10−3 Pa s, initial porosity 𝜙0 = 0.25, G0 = 225 J/m2, K = 1.346 × 107

kPa, 𝜇s = 1.095 × 107 kPa, intrinsic permeability kw = 1 × 10−16 m2, a1 = 0.038, a2 = 3.49, a3 = 1.78, and sa = 1.2 × 104

kPa. The horizon 𝛿 = 3.05 Δx. The stabilization parameter G = 1.0. The initial uniform effective stress 𝜎 = −13 kPa. The
initial water pressure in the specimen is −15 kPa (Sr = 0.87). The loading rate u̇y = 2.0 ×10−6 m/s. The total loading time
t = 1000 s with Δt = 0.5 s.

The results are presented in Figures 18-20. Figure 18 compares the reaction force versus the applied displace-
ment on the top boundary from the simulations using the updated Lagrangian formulation to the results from
the total Lagrangian formulation. The results in Figure 18 show good agreement between the two curves before
the peak load. The slight difference between the two curves after the peak load could be due to the fact that
the neighboring points of a mixed material point are updated on each time step in the updated Lagrangian
formulation.

Figures 19 and 20 plot the contours of damage variable and water pressure at uy = 0.002 m respectively from the
simulations using total and updated Lagrangian formulations. The results in both figures show that the crack open-
ing leads to a similar development of negative pressures (larger matric suction) in the vicinity of the crack. The
negative water pressures are due to the fluid flow into the crack space in the mode I cracking process. The results
from the total and updated Lagrangian formulations are in good agreement, while there is a slight difference in both
the value of water pressure and the length of crack propagation. We note that the mode I crack propagation in this
example is brittle in nature. Thus, it is postulated that large deformation is not required for the crack to propagate.
Indeed, this postulation is supported by the consistency between the results from the updated and total Lagrangian
formulations.

F I G U R E 17 Problem setup for Example 3
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F I G U R E 18 Comparison of the loading curves from the total and updated Lagrangian formulations.

(A) (B)

F I G U R E 19 Contours of damage variable (𝜑) from the simulations using (A) total and (B) updated Lagrangian formulations at uy =
0.002 m (×50).

(A) (B)

F I G U R E 20 Contours of water pressure (MPa) from the simulations using (A) total and (B) updated Lagrangian formulations at uy =
0.002 m (×50).

4.4 Wetting collapse of an unsupported vertical cut

In this example, we simulate the wetting collapse of an unsupported vertical cut in an unsaturated soil. Figure 21 depicts
the problem domain and boundary conditions. The problem domain is discretized into 13,000 mixed material points with
Δx = 0.1 m.

The solid skeleton is modeled using a critical state elastoplastic constitutive model for unsaturated porous media in
Reference 23. The material parameters are 𝜌s = 2.3 × 103 kg/m3, 𝜌w = 1 × 103 kg/m3, 𝜇w = 1 × 10−3 Pa s, 𝜙0 = 0.25, K =
5.56 × 104 kPa, 𝜇s = 1.064 × 104 kPa, Kw = 2 × 105 kPa, kw = 1 × 10−8 m/s, a1 = 0.038, a2 = 3.49, a3 = 1.78, sa = 25 kPa.
For the plastic model, initial pre-consolidation pressure pc0 =−500 kPa, specific volume at unit pre-consolidation pressure
N = 2.2, critical state line slope M = 1, swelling index 𝜅 = 0.03, compression index 𝜆 = 0.13, and fitting parameters b1 =
0.185 and b2 = 1.42. The horizon 𝛿 = 3.05Δx. The stabilization parameter G= 0.1. The initial water pressure pw = − 50 kPa
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F I G U R E 21 Problem setup for Example 4 and the contour of the initial effective stress in y-direction (kPa).

(A)

(B)

(C)

F I G U R E 22 Contours of plastic shear strain at (A) pw = −23.3 kPa, (B) pw = −21.9 kPa, and (C) pw = −20.5 kPa (×2).

(i.e., matric suction = 50 kPa) throughout the problem domain. The vertical effective stress is prescribed by the equation
−𝜎y = 𝜌sgh + Srpw,0, where h is the depth from the top surface. The horizontal effective stress 𝜎x = Srpw,0. In this example,
the wetting collapse of the soil is simulated by uniformly reducing the matric suction in the problem domain.

Figures 22 and 23 plot the contours of plastic shear and plastic volume strains, respectively, at three load steps of (a)
pw =−23.3 kPa, (b) pw =−21.9 kPa, and (c) pw =−20.5 kPa. Here the plastic shear strain 𝜀p

s is the equivalent plastic strain,
that is, 𝜀p

s =
√

2
3
||𝜺p − 1

3
tr(𝜺p)1||. The results in Figure 22 reveal that the failure is initiated at the left-bottom corner of the

vertical cut from where the deformation band propagates upward. Figure 23 shows that the maximum dilatation appears
to occur at the free upper surface of the soil. As the soil deforms outward, this zone of dilatation propagates downward
along with the shear band as shown in Figures 22 and 23B,C. It is noted that the second-order work criterion23,64,65 is
useful to detect failure zones including shear bands in porous media. Thus, in this example we validate our results through
the second-order work criterion. The second-order work d𝒲 in unsaturated porous media through the effective stress
concept65 can be written as

d𝒲 = d𝝈 ∶ d𝜺. (138)

Figure 24 presents the contours of the second-order work in the problem domain at three loading stages. The results in
Figures 24 and 22 demonstrate that the zone of negative second-order work is consistent with the localized shear zone in
the problem domain.

Next, we repeat the same simulation with a finer spatial discretization with 26,000 material points. The same constant
horizon (i.e., 0.305 m) is utilized for both analyses. The results of the two simulations are compared in Figures 25 and 26.
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(A)

(B)

(C)

F I G U R E 23 Contours of plastic volume strain at (A) pw = −23.3 kPa, (B) pw = −21.9 kPa, and (C) pw = −20.5 kPa (×2).

(A)

(B)

(C)

F I G U R E 24 Contours of second-order work at (A) pw = −23.3 kPa, (B) pw = −21.9 kPa, and (C) pw = −20.5 kPa (×2).

(A)

(B)

F I G U R E 25 Contours of plastic shear strain from the simulations with (A) 26,000 material points and (B) 13,000 material points (×2).
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(A)

(B)

F I G U R E 26 Contours of plastic volume strain from the simulations with (A) 26,000 material points and (B) 13,000 material points (×2).

(A)

(B)

(C)

F I G U R E 27 (A) Schematic of the dimensions of the dam reported in the literature, (B) Geometry, soil layers within the dam and
boundary conditions in this study, and (C) Sketch of the water table in the reservoir and the phreatic line in the dam.

Figure 25 plots the contour of plastic shear strain at the same load step. Figure 26 presents the contour of plastic volume
strain at the same load step. The results demonstrate that the contours of shear and volume strains from both simulations
are in good agreement. The width of the deformation zone and magnitude of the plastic deformation appear insensitive
to the two spatial discretizations. It may be due to the same horizon adopted for the two simulations. We note that the
proposed large-deformation periporomechanics framework can capture the Roscoe, Arthur, and Coulomb angles with
an appropriate constitutive model (e.g., a non-associative plastic model with Drucker–Prager yield criterion) as shown in
the literature,66,67 which is beyond the scope of the present work.

4.5 Dynamic failure of a dam triggered by earthquake

In this example, we demonstrate the efficacy of the proposed computational periporomechanics for modeling the dynamic
failure of variably saturated porous media under earthquake loading. For this purpose, we simulate the dynamic failure
of the Lower San Fernando Dam during the 1971 San Fernando earthquake (Mw = 6.6). We refer to the celebrated litera-
ture12,68,69 for more information about the post-earthquake investigation of this event. Figure 27 shows (a) the sketch of
the geometry of the dam reported in the literature,69 (b) the geometry and boundary conditions adopted in this study, and
(c) the water table in the reservoir and the phreatic line within the dam. The base of the dam is constrained against the
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vertical motion, and the horizontal ends are constrained against lateral movement. The problem domain is discretized
into 60,000 uniform mixed points with Δx = 0.33 m. The horizon 𝛿 = 3.05Δx. The stabilization parameter G = 0.25.

The bulk of the dam is made of various types of fines. 12 The core material is simplified as a single slightly overcon-
solidated clay in this example. The remainder of the dam is composed of a looser and weaker hydraulic filler material
outlined in brown in Figure 27 . The input parameters for both materials are 𝜌s = 2 × 103 kg/m3, 𝜌w = 1 × 103 kg/m3,
𝜇w = 1 × 10−3 Pa s, 𝜙0 = 0.375, 1 K = 2.33 × 104 kPa, 𝜇s = 1.167 × 104 kPa, Kw = 2 × 105 kPa, a1 = 0.038, a2 = 3.49, a3 =
3, and sa = 1.2 × 103 kPa. The plastic material parameters33 for the core material are pc = −700 kPa, N = 2.0, M = 1.2,
𝜅 = 0.02, and 𝜆 = 0.09. For the filler material the parameters are pc = −400 kPa, N = 1.75, M = 0.9, 𝜅 = 0.04, and 𝜆= 0.13.

Figure 28A,B plots the initial geostatic stress and initial water pressure within the dam, which are generated by
a quasi-static elastic analysis. With the crest of the dam taken as the datum, the initial effective stress is computed
by the gravitational load on the soil within the dam. Pore water pressure along the upstream slope of the dam is
prescribed by pw = 𝜌wgh, where h is the distance between the water table and the upstream slope. Pore water pres-
sure and matric suction within the dam are computed through the seepage analysis as in Reference 1. The negative
water pressure in the vadose zone is prescribed by pw = −𝜌wgh, where h is the vertical distance above the phreatic
line.

Figure 29 plots the acceleration profile recorded during the earthquake. The strong ground motion only lasted for 12
s. The acceleration profile in the blue frame marks the input data in this study. In the coupled analysis, this acceleration
profile is applied to the bottom of the dam as shown in Figure 27. The results are presented in Figures 30 and 31.

Figure 30 plots the snapshots of the equivalent plastic shear strain within the dam at (a) t = 4 s, (b) t = 10 s, and (c) t
= 16 s respectively. The results show that the large plastic shear strain has occurred at the toe of the upstream slope and
the location beneath the core of the dam. The results may imply that failure initiated at the toe and progressed toward
the core of the dam. Figure 31 presents the contours of water pressure within the dam at the same three time steps. The
results in Figure 31 show that the water pressure increased at the base of the dam, which may imply the liquefaction of
the soil under the dam core during the earthquake. The numerical results are consistent with the results based on the
mixed FEM in Reference 1. For a more realistic simulation of the dynamic failure of the dam under earthquake loads, a
more representative constitutive model for different zones of soils within the dam will be required, which is beyond the
scope of the present work.

(A)

(B)

F I G U R E 28 Contours of (A) the initial water pressure (kPa), and (B) the initial vertical effective stress (kPa) in the numerical model.

F I G U R E 29 Recorded acceleration profile during the earthquake (Pacoima Dam accelerogram, http://www.strongmotioncenter.org).

http://www.strongmotioncenter.org


36 MENON and SONG

(A)

(B)

(C)

F I G U R E 30 Snapshots of the contours of the plastic shear strain within the dam at (A) t = 4 s, (B) t = 10 s, and (C) t = 16 s.

(A)

(B)

(C)

F I G U R E 31 Snapshots of the contours of the water pressure (kPa) within the dam at (A) t = 4 s, (B) t = 10 s, and (C) t = 16 s.

5 CLOSURE

In this study, we have formulated a computational coupled large-deformation periporomechanics paradigm assuming
passive air pressure for modeling dynamic failure and fracturing in variably saturated porous media. In this new com-
putational periporomechanics paradigm, the coupled governing equations for both bulk and fracture material points
are formulated in the current configuration through the updated Lagrangian–Eulerian framework. It is hypothesized
that the horizon of a mixed material point remains spherical, and its neighbor points are determined in the current
configuration. As a significant novelty, the mixed phreatic material points across the phreatic line are explicitly consid-
ered through the mixed peridynamic state concept. To incorporate the classical constitutive models into the nonlocal
framework, we have developed the coupled constitutive correspondence principle with stabilization in the updated
Lagrangian–Eulerian framework for both bulk and phreatic material points. We have numerically implemented the
coupled large-deformation periporomechanics paradigm through an implicit-implicit fractional-step algorithm in time
and a hybrid updated Lagrangian–Eulerian meshfree method in space. We first present numerical examples to validate
the implemented coupled stabilization scheme and the fluid flow across the phreatic line in partially saturated porous
media. We then conduct numerical examples to demonstrate the robustness and efficacy of the proposed computational
framework in modeling fracturing and failure in partially saturated deformable porous media under static and dynamic
loads.
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