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Abstract

Unsaturated periporomechanics is a strong nonlocal poromechanics based on peridynamic state and effective force state
oncept. In the previous periporomechnics the total Lagrangian formulation is adopted for the solid skeleton of porous media. In
his article as a new contribution we formulate and implement an updated Lagrangian unsaturated periporomechanics framework
or modeling extreme large deformation in unsaturated soils under drained conditions. In this new framework the so-called
ond-associated sub-horizon concept is utilized to enhance the stability and accuracy at extreme large deformation of the solid
keleton. The stabilized nonlocal velocity gradient in the deformed configuration is used to update the effective force state from
critical state based visco-plastic constitutive model for unsaturated soils. The updated Lagrangian periporomechanics paradigm

s numerically implemented through an explicit Newmark scheme for high-performance computing. Numerical examples are
resented to demonstrate the stability of the computational updated Lagrangian periporomechanics paradigm and its efficacy
nd robustness in modeling extreme large deformation in porous media under drained conditions.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Unsaturated periporomechanics (e.g., [1–5]) is a strong nonlocal formulation of classical poromechanics (e.g.,
6–12]) based on peridynamic state [13,14] and effective force state concept [3]. In periporomechanics the solid
keleton of porous media is described by the total Lagrangian framework [1,15,16], following the lines in the original
eridynamics for solids (e.g., [13,14,17,18]). Thus, the periporomechanics inherits the significant advantage of the
riginal peridynamics for solids in dealing with discontinuities, long range force, and nonlocality (including less
umerical grid dependency). Meanwhile, because the governing equations of periporomechanics are formulated
ased on integral equations in space, the periporomechanics paradigm is a legitimate computational tool for
odeling extreme large deformation in unsaturated porous media, which is the focus of the present contribution.
e refer to [4] for detailed discussions on the periporomechanics and local continuum-based numerical methods

or modeling unsaturated porous media. The total Lagrangian framework for porous solids could become unreliable
f extreme large deformation occurs (e.g., [7,19–21], among others). In peridynamics for single-phase solids, a
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few studies have been focused on updated Lagrangian or Eulerian formulations (e.g., [22–24]). Bergel and Li [22]
proposed an updated Lagrangian peridynamic model for solids in which the horizon of a material point is updated
in the deformed configuration. The influence function [14] is determined in terms of the relative position of material
points in the deformed configuration. The deformation gradient operator and shape tensor are reformulated in
the updated Lagrangian framework. Silling et al. [24] presented a Eulerian peridynamic model that defines bond
forces based on only the current configuration. In [24] the authors demonstrated the thermodynamic consistency
of the formulation and the efficacy of the formulation in modeling shock waves and fluid motion. While the
Eulerian peridynamic formulation in [24] is robust in the aforementioned applications, it is difficult to simulate
path-dependent deformation, e.g., plasticity or viscoplasticity. In this article we formulate an updated Lagrangian
unsaturated periporomechanics paradigm for simulating extreme large deformation in unsaturated porous media
under drained conditions (i.e., constant matric suction) [8]. In this updated Lagrangian periporomechanics paradigm,
it is hypothesized that the horizon of a mixed material point is the same uniform sphere as in the reference
and current/deformed configurations of the solid skeleton. In line with this hypothesis, the internal variables of
the plastic or viscoplastic constitutive model are stored on Lagrangian material points. In this new framework,
the multiphase correspondence constitutive principle in periporomechanics [3,4] is reformulated in the updated
Lagrangian framework, which will be discussed in what follows.

It is known that both the original single-phase (i.e., solids) and multiphase (i.e., porous media) peridynamic cor-
espondence constitutive models exhibit zero-energy deformation mode instability (e.g., [5,14,16,25]). Silling [25]
howed that the numerical oscillation in peridynamic correspondence constitutive models for solids is a material
nstability instead of a pure numerical instability related to the spatial meshless discretization [26]. The reasons
f instability and numerical oscillations are (i) the weak dependence of the force state in a bond on its own
eformation and (ii) the loss of the non-uniform deformation due to the integration over the whole horizon of a
aterial point. In [5] the authors demonstrated that the multiphase correspondence principle in periporomechanics

nherits the zero-energy mode instability in the original peridynamic correspondence principle [14]. We note that
umerous techniques have been proposed to circumvent the instability of the original peridynamic correspondence
onstitutive model for solids under extreme large deformation and/or dynamic loading (e.g., [25,27–31,31–34],
mong others). One technique that could eliminate the instability of peridynamic correspondence material models
s the so-called sub-horizon or bond-associated peridynamic correspondence material model [31,32,35]. In [35], the
uthors proposed to decompose the spherically symmetric horizon into discrete sub-horizons that would effectively
isturb the radial symmetry of peridynamics. At a material point, each sub-horizon has its own deformation gradient
hat can remove the smoothing effect of assembling the deformation gradient over the entire horizon. Chen [32]
ormulated a bond-associated peridynamics for correspondence material models for solids which is consistent with
he sub-horizon concept. Different from the work in [35] the sub-horizons are associated with individual bonds and
nclude only the neighboring material points that are around the bond (i.e., sub-horizon). Gu et al. [31] enhanced the
ond-associated sub-horizon peridynamics using the higher-order deformation gradient to improve its accuracy for
odeling solids. Note the sub-horizon or bond-associated peridynamics was proposed for stabilizing peridynamic

orrespondence constitutive models for single-phase solids. Recently the authors [5] formulated a stabilized
ultiphase correspondence principle for unsaturated periporomechanics in the total Lagrangian framework.
In this study, as a new contribution, we demonstrate that the updated Lagrangian periporomechanics formulation

nherits the stability issue of the original multiphase correspondence principle in the total Lagrangian formulation
f solid skeleton in periporomechanics. Then we implement the bond-associated sub-horizon concept to stabilize
he formulated updated Lagrangian periporomechanics. The updated Lagrangian periporomechanics paradigm is
umerically implemented through an explicit Newmark scheme with Open MPI [36] for high-performance comput-
ng. Numerical examples are presented to demonstrate the efficacy of the updated Lagrangian periporomechanics
nd its robustness in modeling unsaturated soil column collapse under drained conditions. We model unsaturated
oil column collapse with the proposed stabilized updated Lagrangian periporomechanics framework in that the soil
olumn collapse is of great relevance in a number of geological and industrial processes such as debris flows [37,38],
andslides [39,40] and pyroclastic flows [41,42]. For instance, debris flows during avalanches and mudslides are

ajor geohazards on Earth because debris can travel extensive distances and destroy civil infrastructure such as
uildings and roadways. For this reason, numerous studies of this subject through physical testing and numerical
odeling have been reported (e.g., [43–48]). We refer to the literature ([7,40,46,48–52], among others) for

omputational methods based on classical local continuum theory for modeling large deformation in unsaturated
orous media.
2
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We note that due to its natural nonlocality the updated Lagrangian periporomechanics paradigm is computa-
ionally more demanding than other continuum-based computational methods (e.g., the finite element method) for

odeling the mechanics and physics of porous media. Therefore, in this study parallel computing through Open
PI is utilized for computational efficiency. We refer to the literature for coupling peridynamics with the finite

lement method for modeling solid deformation and fluid flow respectively in porous materials (e.g., [53,54]). As
brief summary, the original contributions of this article include (i) the formulation of an updated Lagrangian

eriporomechanics model for extreme large deformation in unsaturated porous media under drained conditions
i.e., one-way coupling), (ii) the proof of the lack of stability of the original total Lagrangian multiphase constitutive
orrespondence principle in the updated Lagrangian framework and the stabilization through the bond-associated
ub-horizon concept, (iii) the numerical implementation for high-performance computing through an explicit
ewmark scheme, and (iv) the demonstration of efficacy of the newly implemented numerical paradigm in modeling

xtreme large deformation in porous media under drained conditions. For sign convention, the assumption in
ontinuum mechanics is followed, i.e., for the solid skeleton, tensile force/stress is positive and compression is
egative, and for fluid pressure compression is positive and tension is negative.

. Updated Lagrangian unsaturated periporomechanics

Periporomechanics has been formulated based on the total Lagrangian approach [3,4] in which the deformation
f solid skeleton is referred to the reference/undeformed configuration of skeleton and the fluid flow is described
hrough the relative Eulerian framework referring to the skeleton in the current configuration. In periporomechanics,
t is hypothesized that a porous media body can be conceptualized as a collection of a finite number of mixed

aterial points with two kinds of degree of freedom, i.e., displacement and fluid pressure. A material point X
has poromechanical and physical interactions with any material point X ′ within its neighborhood, H. Here H is
a spherical domain around X with radius δ, i.e., the horizon for the porous medium, the initial configuration. A
stabilized multiphase constitutive correspondence principle (e.g., [3,5]) has been proposed to incorporate the clas-
sical constitutive models for unsaturated soils and physical laws for unsaturated fluid flow in porous media. In this
section we reformulate the total Lagrangian periporomechanics paradigm using the updated Lagrangian framework
for modeling extreme large deformation in unsaturated porous media under drained conditions (i.e., constant matric
suction).

2.1. Updated Lagrangian formulation

For the updated Lagrangian periporomechanics, the equation of motion of a porous body is formulated referring
to the current (i.e., deformed) configuration instead of the initial (i.e., undeformed) configuration of the same
porous body. Fig. 1 schematically represents 3 configurations of a porous material body, i.e., the initial/undeformed
configuration, current configuration and next configuration following the current configuration. For conciseness of
notations, in the current configuration the peridynamic state variable without a prime denotes the variable evaluated
at x on the associated bond x′− x and the peridynamic state variable with a prime stands for the variable evaluated
at x′ on the associated bond x − x′, e.g., TTT = TTT [x]⟨x′ − x⟩ and TTT ′ = TTT [x′]⟨x − x′⟩.

The spatial positions of materials points X and X ′ in the initial/undeformed configuration are denoted by x
and x′ in the current/deformed configuration, respectively. Let u and u′ be the displacement vectors of x and x′
eferring to the current configuration. The bond between x and x′ is denoted by ζ , i.e., ζ = x′− x. For the updated
agrangian periporomechanics formulation, it is assumed that the horizon δ is constant. In this sense, the family

H (i.e., horizon) of a material point X in the current configuration is defined as

H := {x′|x′ ∈ B, 0 ≤ |ζ | ≤ δ}, (1)

here B denotes a porous media body. Note this assumption is consistent with the Eulerian formulation of
eridynamics for solids in [24]. However, the material points of solid skeleton are described by their motions.
n this sense, with deformation, the set of material points in the horizon of material point x can be different from
ime to time in extreme large deformation regime. Therefore, with this assumption the extreme distortion of the

orizon for extreme large deformation of the solid skeleton in the total Lagrangian formulation can be avoided. As
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Fig. 1. Schematic depiction of the kinematics of the solid skeleton in the updated Lagrangian formulation: initial configuration, current
configuration (reference), and next configuration.

in the total Lagrangian formulation, in the updated Lagrangian formulation the total force vector state at material
point x along bond ζ under the assumption of passive pore air pressure can be decomposed into

TTT = TTT − SrTTT w, (2)

where TTT and TTT w are the effective force state of the porous media and the water force state, respectively, and Sr

is the degree of saturation in the current configuration. Assuming weightless pore air the density ρ of the mixture
can be written as

ρ = ρs(1− φ)+ Srρwφ, (3)

here ρs is the intrinsic density of the solid and ρw is the intrinsic density of water, and φ is the porosity in the
urrent configuration.

Let u be the displacement vector of material point x in the current configuration. Following the lines in the total
agrangian periporomechanics [2], the equation of motion of the updated Lagrangian periporomechanics can be
ritten as

ρ ü =
∫

H
(TTT [x] ⟨ζ ⟩ −TTT ′

[
x′

]
⟨ζ ′⟩) dV ′ + ρg, (4)

here TTT [x] ⟨ζ ⟩ and TTT ′
[
x′

]
⟨ζ ′⟩ are the total force vector states at material points x and x′, respectively, in the

urrent configuration, ü is the acceleration vector, and g is gravity acceleration vector.
Following [14], the spatial shape tensor KKK in the current configuration can be defined as

KKK =

∫
H

ω⟨ζ ⟩ ζ ⊗ ζ dV ′, (5)

here ω⟨ζ ⟩ is the influence function. Then it follows from the notion of original reduction operator [14,18]
(i.e., referring to the initial configuration), we can define the spatial gradient operator [22] in the current configuration
as

GGG (z) =
[∫

H
ω⟨ζ ⟩(z′ − z)⊗ ζ dV ′

]
KKK −1

, (6)

here z′ and z are vector variables at material points x′ and x, respectively. Using (6) we can define the velocity
radient LLL . Recall from nonlinear continuum mechanics that LLL as the spatial gradient of the velocity vector u̇
eads

LLL =
∂ u̇

. (7)

∂x

4
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Next, it follows from (6) and (7) we obtain the nonlocal velocity gradient as

LLL = GGG (u̇) =
(∫

H
ω ẎYY ⊗ ζ dV ′

)
KKK −1, (8)

where YYY = y′ − y is the deformation state in the current configuration, and y = x + u. Given (8), the rate of
nonlocal deformation can be readily obtained as

DDD =
1
2

[LLL +LLL T ]. (9)

The rate of deformation tensor can be used to determine the effective Cauchy stress tensor σ through a classical
elastoplastic constitutive model for unsaturated soils (e.g., [1,55–58]). Then, the rate form of the strain energy of
the solid skeleton of an unsaturated porous material body B under pure elastic deformation reads [3,14]

Ẇ =

∫
B

σ i jDi j dV

=

∫
B

σ i jLi j dV

=

∫
B

σ i j

(∫
H

ωẎ iζ p
dV ′

)
K −1

pj dV

=

∫
B

(∫
H

ωẎ iζ p
dV ′

)
K −1

pj σ j i dV

=

∫
B

∫
B

ωζ
p
K −1

pj σ j i Ẏ i dV ′ dV , (10)

here i, j, p = 1, 2, 3. The rate of strain energy of the solid skeleton of porous media under pure elastic deformation
eferring to the current configuration reads [3]

Ẇ =

∫
B

∫
B

T i Ẏ i dV ′dV . (11)

t follows from (10) and (11) that the effective force state can be expressed as

TTT = ωζKKK −1σ . (12)

hrough the effective force state concept (see Eq. (2)) the fluid force state can be expressed as

TTT w = ωζKKK −1(pw1), (13)

here 1 is the second-order identity tensor.
Finally, substituting (12), (2) and (13) into (4) the motion of equation can be written as

ρ ü =
∫

H

[
ωζKKK −1(σ − Sr pw1)− ω′ ζ ′KKK ′−1(σ ′ − S′r p′w1)

]
dV ′ + ρg. (14)

The degree of saturation Sr can be determined from the soil–water retention curve (e.g., [59–63]) that depends
on the volume strain of the solid skeleton (e.g., porosity). In this study, we adopt the one in [19,20,64] which reads

Sr (J , φ, pw) =
{

1+
[
−α1

(
J

1− φ
− 1

)α2

J pw

]α3}(α3−1)/α3

, (15)

here α1, α2, and α3 are all material parameters. The evolution of porosity can be written as

φ(J ) = 1−
(1− φ)

J
, (16)

here J is the determinant of the spatial deformation gradient FFF .
From (6), the spatial deformation gradient can be written as

FFF = GGG =

[∫
ω YYY ⊗ ζ dV ′

]
KKK −1. (17)
H

5
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It can be proved as follows. Given that the spatial deformation gradient FFF maps ζ onto YYY

YYY =FFF ζ . (18)

Substituting (18) into (17) generates

GGG (x) =
∫

H
ωYYY ⊗ ζ dV ′

[∫
H

ω ζ ⊗ ζ dV ′
]−1

=

∫
H

ω(FFF ζ )⊗ ζ dV ′
[∫

H
ω ζ ⊗ ζ dV ′

]−1

=FFF

∫
H

ωζ ⊗ ζ dV ′
[∫

H
ωζ ⊗ ζ dV ′

]−1

=FFF . (19)

In what follows, we demonstrate that the nonlocal spatial deformation gradient defined in (17) only represents
he uniform deformation state. Thus the spatial correspondence principle inherits the zero-energy mode instability
ssue. The nonuniform part of the solid spatial deformation state reads

RRR = YYY −FFF ζ . (20)

ubstituting (20) into the spatial nonlocal deformation gradient (17)

FFF
(
RRR

)
=

(∫
H

ωYYY ⊗ ζ dV ′
)

KKK −1

=

∫
H

ω RRR ⊗ ζ dV ′
(∫

H
ω ζ ⊗ ζ dV ′

)−1

=

∫
H

ω (YYY −FFF ζ )⊗ ζ dV ′
(∫

H
ω ζ ⊗ ζ dV ′

)−1

=

(∫
H

ω (YYY ⊗ ζ ) dV ′ −FFF

∫
H

ω (ζ ⊗ ζ ) dV ′
) (∫

H
ω ζ ⊗ ζ dV ′

)−1

=FFF −FFFKKK KKK −1
= 0. (21)

t follows from (21) that the nonuniform part of the deformation state is missing in the spatial deformation gradient.
ext, we present a stabilization scheme for the spatial corresponding model for the solid skeleton based on the
ond-associated sub-horizon concept.

.2. Stabilization through the sub-horizon based concept

In this study, we apply the sub-horizon concept (e.g., [31,32,35]) to circumvent the zero-energy mode instability
f correspondence material models for solid skeleton in the updated Lagrangian periporomechanics. We refer to the
iterature for other stabilization techniques (e.g., [5,25,31]). Fig. 2 plots the bond-associated sub-horizon concept
oth in the initial/reference and current/deformed configurations of a porous material body. As shown in Fig. 2, in the
orizon of material point x each bond is endowed with a sub-horizon composed of material points around the bond
hat is used to determine the nonlocal deformation gradient, the effective stress and the effective force state on that
ond. Therefore, the sub-horizon stabilized scheme can guarantee a unique mapping between the deformation state
nd the force state on each individual bond. We note that the original bond-associated sub-horizon formulation was
ased on the total Lagrangian approach (i.e., the sub-horizon refers to the initial/undeformed configuration). In the
pdated Lagrangian periporomechanics formulation, this bond-associated sub-horizon concept is reformulated in the
urrent/deformed configuration with updated material points in the horizon of a material point and the sub-horizon
or an individual bond.

Referring to Fig. 2 the sub-horizon Hs for the bond ζ at material point x in the current configuration of the
solid skeleton reads

′
Hs =H ∩H . (22)

6
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Fig. 2. Schematic of the sub-horizon concept for the updated Lagrangian framework.

It follows from (17), (5) and (22) that the sub-horizon based spatial shape tensor and deformation gradient can be
written as

KKK s =

∫
Hs

ω ζ ⊗ ζ dV ′, (23)

FFF s =

(∫
Hs

ω YYY ⊗ ζ dV ′
)

KKK −1
s . (24)

From (8), the sub-horizon based spatial velocity gradient reads

LLL s =

(∫
Hs

ω ẎYY ⊗ ζ dV ′
)

(KKK s)−1, (25)

ith (25) the sub-horizon based rate of deformation in the current configuration can be expressed as

DDD s =
1
2

[LLL s +LLL T
s ]. (26)

Given (26) the effective Cauchy stress tensor σ s can be determined in the current configuration through a classical
onstitutive model.

Next, we derive the effective force state on a bond ζ at material point x following the lines in the updated
Lagrangian formulation in Section 2.1. The rate of strain energy density at x on the bond ζ that is determined by
the bond-associated sub-horizon method can be written as

˙W s⟨ζ ⟩ =

∫
Hs

TTT s · ẎYY dV ′, (27)

here TTT s is the sub-horizon effective force state on the bond ζ in the current configuration. Ẇs⟨ζ ⟩ can be related
to the rate of total strain energy density ˙W at x through a volume fraction factor ϕs as

˙W s⟨ζ ⟩ = ϕs
˙W , (28)

ith

ϕs =

∫
Hs

1 dV ′∫
′
. (29)
H 1 dV

7
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Given the rate of deformation tensor DDD s the effective Cauchy stress tensor σ s can be determined from a local
constitutive model. From local theory, the rate of strain energy density at material point x reads

˙W = σ s : DDD s

= σ s :

(∫
Hs

ω ẎYY ⊗ ζ dV ′
)

(KKK s)−1

=

∫
Hs

ω ζ (KKK s)−1σ sẎYY dV ′. (30)

t follows from (27), (28) and (30) the sub-horizon based effective force state can be expressed as

TTT s = ϕsω ζ (KKK s)−1σ s . (31)

rom the effective force state concept and (31), the sub-horizon based total force state reads

TTT s = ϕsω ζ (KKK s)−1(σ s − Sr pw1). (32)

hen, the equation of motion (14) can be rewritten as

ρ ü =
∫

H

[
ϕsω ζ (KKK s)−1(σ s − Sr pw1)− ϕ′sω

′ ζ ′(KKK ′

s)−1(σ ′s − S′r p′w1)
]

dV ′ + ρg. (33)

In what follows, we demonstrate that the updated Lagrangian sub-horizon correspondence constitutive model
atisfies the sufficient condition (e.g.,[5,25]) that mitigates the zero-energy mode instability. This criterion in terms
f the rate form of the effective force state and deformation state can be written as∫

H

˙TTT · ẎYY dV ′ > 0. (34)

t follows from (31) that this condition can be expressed using the sub-horizon based effective force state as∫
H

(∫
Hs

˙TTT · ẎYY dV ′
)

dV ′ > 0, (35)

here

˙T i =
1
ϕs

˙T s,i

= ω ζ
k
K −1

s,k j σ̇ s, j i . (36)

ssuming a local elastic material model, we have

σ̇ s,i j = Ci jmnDs,mn

= Ci jmnLs,mn, (37)

here Ci jmn is the fourth-order elastic stiffness tensor, and m, n = 1, 2, 3. Substituting (37) into (35) yields∫
H

(∫
Hs

˙TTT · ẎYY dV ′
)

dV ′ =

∫
H

(∫
Hs

(
ω ζ

k
K −1

s,k j dσ̇ s, j i

)
Ẏi dV ′

)
dV ′

=

∫
H

(∫
Hs

ω ζ
k
K −1

s,k j σ̇ s, j i Ẏi dV ′
)

dV ′

=

∫
H

(
σ̇ s,i j

(∫
Hs

ω Ẏi ζ
k

dV ′
)

K −1
s,k j

)
dV ′

=

∫
H

(
σ̇ s,i jLs,i j

)
dV ′

=

∫
H

(
Ls,i jCi jmnLs,mn

)
dV ′ > 0. (38)

t follows from (25) and (38) that (35) holds given ẎYY > 0 (i.e., nonzero increment of deformation state). Therefore,

he sub-horizon based correspondence constitutive model is stable in the updated Lagrangian formulation. In this

8
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study we assume δ = δ′ that implies LLL s =LLL ′
s . By this assumption, it will guarantee

TTT s = −TTT
′

s . (39)

ext, we introduce a classical viscoplastic model for unsaturated porous media that will be implemented in the
pdated Lagrangian periporomechanics framework.

.3. Constitutive model for unsaturated soil

In this section, we briefly introduce the key elements of a critical state based viscoplasticity model for unsaturated
oil using the Perzyna model of viscoplasticity (e.g., [65,66]). For the local viscoplastic constitutive model, the yield
unction reads

f (p, q, pc) =
q2

M2 + p(p − pc), (40)

here p = tr(σ )/3 is the mean effective stress, q =
√

3/2|σ − p1| is the equivalent shear stress, σ is the effective
stress tensor, M is the slope of the critical state line, and pc is the effective pre-consolidation pressure that evolves
with the viscoplastic volumetric strain ε

vp
v and matric suction (i.e., −pw assuming passive pore air pressure). The

effective mean stress p and the shear stress q can be written as

p = K εe
v, q = 3µsε

e
s , (41)

here K and µs are the elastic bulk and shear moduli, respectively, and εe
v = tr(εe) and εe

s =

√
2
3 |ϵ

e
−

1
3εe

v1| are
elastic volumetric strain and shear strain, respectively.

The total strain rate is decomposed into

ε̇ = ε̇e
+ ε̇vp. (42)

ssuming the Perzyna type of viscoplasticity, the rate of viscoplastic strain tensor ε̇vp can be expressed as

ε̇vp
=
⟨ f ⟩
η

∂ f
∂σ

, (43)

here η is the viscosity coefficient and ⟨ ⟩ is the Macaulay bracket operator

⟨ f ⟩ =

{
0 f ≤ 0,

f f > 0.
(44)

he effective apparent pre-consolidation pressure pc [1,67,68] can be written as

pc = −exp(b1)(−pc)b2 , (45)

here b1 and b2 are variables depending on the degree of saturation and matric suction (see [1,67] for more details)
nd the rate of pc reads

ṗc =
−pc

λ̃− κ̃
tr(ϵ̇vp), (46)

here λ̃ and κ̃ are compression index and swell index, respectively.

. Numerical implementation

.1. Discretization in space

The equation of motion (33) is discretized in space by an updated Lagrangian meshfree scheme. In this method,
porous continuum material is discretized into a finite number of mixed material points (i.e., solid skeleton and

ore water). Under the assumption of drained conditions, each material point has one kind of degree of freedom
i.e., displacement) because the negative pore water pressure (matric suction) is constant at each individual material
oint under drained conditions (i.e., one-way coupling). The uniform grid is used to spatially discretize the problem

omain in which all material points have an identical size. Fig. 3 provides a flowchart of the global solution

9
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Fig. 3. Global flowchart for the explicit numerical algorithm for the updated Lagrangian periporomechanics.

rocedure and Algorithm 1 summarizes the detailed steps for updating the total force states (i.e., effective force
nd fluid force states) at load step n + 1 from time step n. At time step n the material points in the family of a

material point are updated through a search algorithm and the neighboring material points are described by their
material coordinates (i.e., Lagrangian). At time step n+1, calculations of all variables (e.g., sub-horizon, deformation
gradient, velocity gradient) are referred to the configuration of solid skeleton at time step n (i.e., updated Lagrangian
formulation) instead of the initial/undeformed configuration of solid skeleton (i.e., total Lagrangian formulation).

Let P denote the number of total material points in the problem domain and Ni be the number of material points
in the horizon of material point i . The spatially discretized equation of motion can be written as

A P
i=1(MMM i üi −TTT i +TTT w,i +F i ) = 0, (47)

here A is a global linear assembly operator [4,69], MMM i is the mass matrix at material point i , TTT i is the vector of
effective force, TTT w,i is the vector of fluid force and F i is the vector of gravity force. In the current configuration
of solid skeleton, the three variables can be written as

MMM i =
[
ρs(1− φi )+ ρw Sr,iφi

]
Vi 1, (48)

TTT i =

Ni∑
j=1

(
TTT (i j) −TTT ( j i)

)
V jVi , (49)

TTT w,i =

Ni∑
j=1

(
Sr,iTTT w,(i j) − Sr, jTTT w,( j i)

)
V jVi , (50)

here Vi and V j are the volumes of material points i and j , respectively, in the current configuration.
In (49) and (50), the effective force state and the water force state are written as

TTT (i j) = ϖ(i j)ω(i j)ζ (i j)
KKK −1

(i j)σ (i j), (51)

TTT ( j i) = ϖ( j i)ω( j i)ζ ( j i)
KKK −1

( j i)σ ( j i), (52)

TTT = ϖ ω ζ KKK −1 1p , (53)
(w,i j) (i j) (i j) (i j) (i j) w,i

10
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TTT (w, j i) = ϖ( j i)ω( j i)ζ ( j i)
KKK −1

( j i)1pw, j . (54)

he weighting factors ϖ(i j) and ϖ(i j) in (51)–(54) are defined as

ϖ(i j) =

∑N(i j)
k=1 Vk∑Ni
l=1 Vl

, (55)

ϖ( j i) =

∑N( j i)
k=1 Vk∑N j
l=1 Vl

, (56)

where N(i j) is the number of material points in the sub-horizon H(i j) and N( j i) is the number of material points in
he sub-horizon H( j i). Note that for the case of δ = δ′, N(i j) = N( j i).

The velocity gradient is written as

LLL (i j) =

⎡⎣N(i j)∑
k=1

(
ω(i j)ẎYY (ik) ⊗ ζ

(ik)

)
Vk

⎤⎦ (KKK (i j))−1. (57)

he rate of deformation tensor reads

DDD (i j) =
1
2

[
LLL (i j) +LLL ( j i)

]
. (58)

Then the increment in strain reads

∆ε(i j) = ∆t DDD (i j). (59)

Given (59) a classical constitutive model for unsaturated porous media can be used to compute σ (i j) as described
n Section 3.2.1. Next, we introduce the temporal discretization through an explicit Newmark scheme.

.2. Integration in time

The Newmark scheme [69] is adopted to integrate the motion of equation in time. Let un, u̇n and ün be the
isplacement, velocity, and acceleration vectors at time step n. The predictors of displacement and velocity in a
eneral Newmark scheme read

˙̃un+1 = u̇n + (1− β1)∆ün, (60)

ũn+1 = un +∆t u̇n +
∆t2

2
(1− 2β2) ün, (61)

here β1 and β2 are numerical integration parameters. Given (60) and (61), the acceleration an+1 is determined by
he recursion relation

ün+1 =MMM−1
n+1(Fn+1 − T̃TT n+1 + T̃TT w,n+1), (62)

here T̃TT n+1 and T̃TT w,n+1 are determined from (61) and the local constitutive model. From (62), the displacement
and velocity at time step n + 1 can be updated as

u̇n+1 = ˙̃un+1 + β1∆t ün+1, (63)

un+1 = ũn+1 + β2∆t2ün+1. (64)

In this study, we adopt the explicit central difference solution scheme [69] in which β1 = 1/2 and β2 = 0. We
ote that the explicit method is efficient and robust to model dynamic problems with extreme large deformation [26].
ig. 4 plots a flowchart of the algorithm and Algorithm 2 summarizes the central difference time integration scheme.

For the numerical stability of the explicit algorithm, the critical time step is determined through a simple method
riginally formulated for the bond-based peridynamics for solids (e.g., [26])

∆tc =

√
2(1− φ)ρs∑Ni

, (65)

j V jC|ζ (i j)|

11
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Algorithm 1 Given u construct effective force vector TTT and pressure force vector TTT w

1: Execute neighbor search: ∀ j ∈ B, if |ζ
(i j)
| ≤ δi add j to the neighbor list of i , the set Hi

2: for all points i do
3: for all neighboring points j do
4: Search for the sub-horizon neighbors: ∀k ∈Hi , if |ζ

jk
| ≤ δ j , then k ∈H(i j)

5: for all sub-horizon neighbors k do
6: Compute contribution of bond ik to the shape tensor KKK (i j) using (23)
7: end for
8: Compute the sub-horizon based deformation gradient FFF (i j) using (24)
9: end for

10: Compute deformation gradient FFF i and its determinant Ji using (17)
11: end for
12: for all points i do
13: for all neighboring points j do
14: for all sub-horizon neighbors k do
15: Compute the contribution of bond ik to the velocity gradient LLL (i j) using (25)
16: end for
17: Compute the rate of deformation DDD (i j) using (26)
18: Compute the strain increment using (59)
19: Compute Cauchy stress σ (i j)
20: end for
21: Compute the degree of saturation Sr using (15)
22: end for
23: for all points i do
24: for all neighboring points j do
25: Compute TTT (i j) using (51)
26: Compute TTT w,i j using (53)
27: end for
28: end for
29: for all points i do
30: Compute TTT i using (49)
31: Compute TTT w,i using (50)
32: end for

where φ is the porosity and ρs is the intrinsic density of solid skeleton as defined previously, and Ci j is the

micro-mechanical elastic modulus for a bond i j [5,26]. We note that (65) can provide a conservative estimate

for state-based peridynamics [70]. However, for the extreme large deformation analysis involving visco-plasticity

and contact the numerical instability could occur even when (65) is followed. Thus we perform an energy balance

check to ensure stability of the algorithm. The internal energy, external energy and kinetic energy of the system at

time step n + 1 can be written as

Wint,n+1 = Wint,n +
∆t
2

(
u̇n +

1
2
∆t ün

) [(
TTT n −TTT w,n

)
+

(
TTT n+1 −TTT w,n+1

)]
, (66)

Wext,n+1 = Wext,n +
∆t
2

(
u̇n +

1
2
∆t ün

)
(FFF n +FFF n+1) , (67)

Wkin,n+1 =
1
2

u̇n+1MMM n+1u̇n+1. (68)
12
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Fig. 4. Flowchart for the computation at the material point level for the sub-horizon based updated Lagrangian periporomechanics.

Then energy conservation requires that

|Wint,n+1 +Wkin,n+1 −Wext,n+1| ≤ ε max(Wkin,n+1, Wint,n+1, Wext,n+1), (69)

here ε is a small tolerance on the order of 10−2 [21].
For self completeness, in what follows we summarize the numerical integration algorithm for the local constitutive

odel.

.2.1. Integration of the local constitutive model
The backward Euler integration scheme is adopted to numerically implement the adopted viscoplasticity model

or unsaturated soil in the updated Lagrangian periporomechanics model (e.g., [1]). Given ∆εn+1 = εn+1 − εn , the
rial effective stress tensor can be computed from the elastic model. For the elastic loading case, the trial effective
tress tensor is the real effective stress. For the visco-plastic loading case (i.e., f > 0), the effective stress and
ffective apparent pre-consolidation pressure can be solved in the stress invariant (p, q) space as follows. At time

step n + 1, p, q, and pc can be written as

p = ptr
− K

f ∆t
(

∂ f
)

, (70)

η ∂ p

13
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Algorithm 2 Explicit Newmark time integration scheme

1: Set initial conditions u̇0, u = 0, tn = 0, σ 0, pw0 and compute ∆t = ∆tcri t using (65)
2: Evaluate initial state using Algorithm 1
3: Compute initial acceleration ü0 =MMM−1

0 (−TTT 0 +TTT w,0)
4: while tn < tfinal do
5: Update time tn+1 = tn + ∆t
6: Compute the predictor ˙̃un+1 using (60)
7: Apply boundary conditions
8: Compute the displacement un+1 using (64)
9: Compute internal force using Algorithm 1

10: Compute the acceleration ün+1 using (62)
11: Compute the velocity u̇n+1 using (63)
12: Compute global kinetic energy Wkin,n+1, internal energy Wint,n+1 and external energy Wext,n+1 using (66),

(67) and (68), respectively
13: Check energy balance using (69)
14: n← n + 1
15: end while
16: end

q = q tr
− 3µs

f ∆t
η

(
∂ f
∂q

)
, (71)

pc = pc,n exp
[

f ∆t

(λ̃− κ̃)η

(
∂ f
∂ p

)]
. (72)

he values of p, q, pc at time step n+1 can be determined through Newton’s method by defining a residual vector
r = {r1, r2, r3}

T as

r1 = p − ptr
+ K

f ∆t
η

(
∂ f
∂ p

)
, (73)

r2 = q − q tr
+ 3µs

f ∆t
η

(
∂ f
∂q

)
, (74)

r3 = pc − pc,n exp
[

f ∆t

(λ̃− κ̃)η

(
∂ f
∂ p

)]
, (75)

here ptr and q tr are the trial values by freezing the viscoplastic deformation at time step n+ 1 [65]. Let the local
nknown vector be x = {p, q, pc}

T , through Newton’s method x can be solved as

xk+1
= xk

− A−1rk(x), (76)

here k is the iteration counter and A is the local tangent operator that reads

A =

⎡⎣A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤⎦ . (77)

The elements of A can be obtained by chain rule as

A11 = 1+ K
∆t
η

[(
∂ f
∂ p

)2

+ f
∂2 f

∂ p2

]
, (78)

A12 = K
∆t
η

(
∂ f
∂ p

∂ f
∂q

)
, (79)

A13 = K
∆t

(
∂ f ∂ f

+ f
∂2 f

)
∂ pc

, (80)

η ∂ p ∂ pc ∂ p∂ pc ∂pc

14
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A21 = 3µs
∆t
η

(
∂ f
∂q

∂ f
∂ p

)
, (81)

A22 = 1+ 3µs
∆t
η

[
f
∂2 f
∂q2 +

(
∂ f
∂q

)2
]

, (82)

A23 = 3µs
∆t
η

(
∂ f
∂q

∂ f
∂ pc

)
∂ pc

∂pc
, (83)

A31 = −pc
∆t

(λ̃− κ̃)η

[(
∂ f
∂ p

)2

+ f
∂2 f

∂ p2

]
, (84)

A32 = −pc
∆t

(λ̃− κ̃)η

(
∂ f
∂ p

∂ f
∂q

)
, (85)

A33 = 1− pc
∆t

(λ̃− κ̃)η

(
∂ f
∂ p

∂ f
∂ pc
+ f

∂2 f
∂ p∂ pc

)
∂ pc

∂pc
, (86)

where
∂ f
∂ p
= 2p − pc, (87)

∂2 f

∂ p2 = 2, (88)

∂ f
∂q
= 2q/M2, (89)

∂ f
∂ pc
= −p, (90)

∂2 f
∂ p∂ pc

= −1, (91)

∂2 f
∂q2 = 2/M2, (92)

∂ pc

∂pc
= b2 exp(b1)(−pc)b2−1. (93)

(94)

. Numerical examples

In this section, we present two numerical examples to demonstrate the stability and efficacy of the updated
agrangian periporomechanics paradigm for modeling extreme large deformation in unsaturated porous media. In
xample 1, we conduct a uniaxial compression test of a two-dimensional soil specimen to demonstrate the stability
f the updated Lagrangian periporomechanics paradigm under static and dynamic conditions. In example 2, we
odel the unsaturated soil column collapse that involves extreme large deformation. In example 2, the numerical

esults are compared against the experimental data under dry conditions in the literature. Then we study the impact
f initial matric suction and substrate roughness on the soil column collapse. We note that the soil column collapse
s adopted as a numerical example in this study because it is a significant problem related to geo-hazard engineering
e.g., landslides and debris flow) that involves extreme large deformation in geomaterials. In this study the boundary
ayer method is adopted to impose boundary conditions in the implemented numerical model (e.g., [4,13]).

.1. Uniaxial compression test

This example deals with the stability analysis of the sub-horizon based updated Lagrangian periporomechanics
odel. The stability analysis is focused on the correspondence principle formulated in the updated Lagrangian

eriporomechanics model. We note that in poromechanics the values of parameters like the permeability, fluid

iscosity, and the degree of saturation may affect the stability which are not investigated here. We simulate the

15
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Fig. 5. Problem setup for the uniaxial compression test.

Fig. 6. Contours of σ x (× 100 kPa) from the quasi-static simulations using the original correspondence elastic constitutive model with
(a) m = 2 and (b) m = 3 at ux = 0.5× 10−3 m.

uniaxial compression of a rectangular specimen with zero matric suction under quasi-static and dynamic conditions.
Note that for the quasi-static case an implicit time integration scheme [4] is utilized. The problem geometry and
loading protocol are presented in Fig. 5. The problem is discretized into 12,000 uniform material points. The distance
between two adjacent material point centers is ∆ = 0.005 m. An isotropic elastic correspondence constitutive model
is utilized for the solid skeleton. The material parameters adopted are bulk modulus K = 25 MPa, shear modulus
µs = 15 MPa, solid skeleton density ρs = 2200 kg/m3 and initial porosity φ = 0.2. The simulation is repeated using
two horizons, i.e., δ1 = 0.01 m and δ2 = 0.015 m. The ratios of δ/∆ are m = 2 and m = 3, respectively.

The total applied displacement is ux = 0.5 × 10−3 m. The total loading time is t = 0.1 s. The time increment
or the quasi-static simulation is ∆t1 = 0.001 s and the time increment for the dynamic loading case is ∆t2 =

3×10−6 s that meets the critical time step criterion. The numerical results are presented in Figs. 6–11. For clarity,
in what follows the stabilized correspondence constitutive model means that the local constitutive model for porous
media is implemented using the sub-horizon based correspondence principle formulated in this study. The standard
correspondence constitutive model means that the local constitutive model for porous media is implemented using
the original multiphase correspondence principle [2,14].

Fig. 6 presents the contours of σ x from the simulations through the standard correspondence constitutive model
with two values of m. For comparison, Fig. 7 plots the contours of σ x from the simulations using the stabilized
orrespondence constitutive model. The contours of σ x in Fig. 6 show noticeable oscillations. Fig. 7 shows that the

oscillations have disappeared in the results with the stabilized correspondence constitutive model.
Fig. 8 compares the variations of σ x along the x axis of the specimen from the simulations with stabilized and

tandard correspondence material models. The results show that the higher value of m produces larger oscillations
n σ x from the simulations using the standard correspondence constitutive model. For the simulations using the

stabilized correspondence constitutive model the oscillations have been eliminated for both values of m ratios.
Figs. 9 and 10 present the contours of σ x from the dynamic simulations with two values of m using the standard

and stabilized correspondence constitutive models, respectively. Fig. 11 compares the variations of σ x along the x
xis of the specimen. It is found that the numerical instabilities in the simulations with the standard correspondence
onstitutive models are more noticeable for the dynamic loading case than the static simulations. Overall, the
esults in both figures show that the simulations with the stabilized correspondence constitutive model eliminates
he oscillations in σ x .

Finally, for a convergence analysis we re-run the simulations in the dynamic loading cases with stabilized updated
Lagrangian periporomechanics using three spatial discretization schemes. The three spatial discretization schemes
16
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p

Fig. 7. Contours of σ x (× 100 kPa) from the quasi-static simulations using the stabilized correspondence constitutive model with (a) m = 2
and (b) m = 3 at ux = 0.5× 10−3 m.

Fig. 8. Comparison of σ x along the x axis of the specimen from the static loading case with (a) m = 2 and (b) m = 3.

Fig. 9. Contours of σ x (× 100 kPa) from the dynamic loading case with (a) m = 2 and (b) m = 3 using the original correspondence
constitutive model.

consist of 15,000, 30,000 and 50,000 material points, respectively. The results are shown in Figs. 12 and 13. Fig. 12
presents the contours of σ x of the simulations with three spatial discretization schemes at ux = 0.001 m. Fig. 13

resents the variations of σ x along the x axis for the three cases at ux = 0.001 m. The results in Figs. 12 and 13
demonstrate that the numerical results with the three spatial discretization schemes agree well with each other. This
agreement implies that the numerical solution is unique.
17
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Fig. 10. Contours of σ x (× 100 kPa) from the dynamic loading case with (a) m = 2 and (b) m = 3 using the stabilized correspondence
constitutive model.

Fig. 11. Comparison of σ x along the x axis of the specimen from the dynamic loading case with (a) m=2 and (b) m = 3.

Fig. 12. Comparison of contours of σ x (× 100 kPa) with the three spatial discretization schemes (a) case 1 = 15,000 (material points),
b) case 2 = 30,000, and (c) case 3 = 50,000 at ux = 0.001 m.

.2. Unsaturated soil column collapse in two dimensions

In this example, through the proposed sub-horizon based updated Lagrangian periporomechanics we simulate
nsaturated soil column collapse by gravity loading under drained conditions (i.e., one-way coupling) in two
imensions. We first simulate the collapse of a dry column to demonstrate the ability of the formulation to model
xtreme large plastic deformation in porous media. We then investigate the influence of the aspect ratio, initial
atric suction and sub-grade roughness on the characteristics of collapse. All the simulations are conducted using
18
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Fig. 13. Comparison of σ x along the x axis of the specimen from the simulations with the three spatial discretization schemes at ux =
.001 m.

Fig. 14. Problem setup for unsaturated soil column collapse in two-dimensions (a) initial configuration, (b) final configuration.

64 CPU (central processing unit) cores with a total 512 GB (gigabyte) of dedicated memory. Next, we introduce
the problem set up, input material parameters, initial conditions, and the contact model for the soil column and the
rigid substrate.

The problem geometry is depicted in Fig. 14. The solid skeleton is modeled using the visco-plastic constitutive
odel introduced in Section 3.2.1. The rigid substrate is modeled using an isotropic elastic model. For the solid

keleton the material parameters are: K = 25 MPa, µs = 15 MPa, ρs = 2200 kg/m3, ρw = 1000 kg/m3, initial
porosity φ = 0.2, M = 1.1, λ̃ = 0.12, κ̃ = 0.04, η = 1000 Pa3/s and an over-consolidation ratio of 1.25 (i.e., slightly
overconsolidated soil). The parameters for the soil–water retention curve are: α1 = 0.038, α2 = 3.49 and α3 = 1.25.

he initial geostatic stress in the soil is prescribed through a quasi-static loading step. Subsequently, the lateral
onstraints on the soil column are relaxed to allow it to collapse onto the rigid substrate.

A contact model for the interface of the soil and the substrate is needed to model the spreading of soil over the
ubstrate. In this study we adopt the short range force model in [26]. In this contact model, contact interactions are
odeled using spring-like repulsive forces acting along the normal to the substrate surface. The contact forces act

long virtual bonds that carry only contact force (i.e., no material interaction). The repulsive forces act between
airs of material points within a cut-off distance of each other, δc. The repulsive contact force and frictional contact
orce [71] are defined as

TTT c = −Cs
(
δc − |YYY |

) YYY

|YYY |
, (95)

TTT f = −µ f sign
(

∂

∂t
|YYY |

)
TTT c, (96)
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Fig. 15. Schematic of the contact model for the soil column and the substrate.

Fig. 16. Contours of initial effective vertical stress σ y in the specimens with (a) a1 = 2, (b) a2 = 1 and (c) a3 = 0.5.

where Cs is the contact stiffness and µ f is the friction coefficient. Given (95) and (96), the equation of motion with
the contact model is written as

ρ ü =
∫

Hs

(TTT − SrTTT w)− (TTT
′

− S′rTTT
′

w) dV ′ +

∫
Hc

[
(TTT c +TTT f )− (TTT ′c +TTT ′f )

]
dV ′ + b, (97)

where Hc is the contact neighborhood defined by δc. Fig. 15 depicts the contact interaction between the soil column
nd the substrate. The initial contact domain is specified in the input file of the numerical model. A search algorithm
s used to detect contact pairs in a radius rc around each individual material point in the defined contact domain.

The input parameters for the contact model are: Cs = 4× 106 N/m2, µ f = 0.25, δc = 0.8∆, and rc = 3δc.
In what follows, we study the influence of initial aspect ratios, initial matric suction, and substrate roughness on

he soil column collapse.

.2.1. Influence of initial aspect ratios
We first study the influence of initial aspect ratios (width over height) on the characteristics (e.g., run-out distance

nd final deposit height) of the soil column collapse under completely dry conditions. Our numerical results are
ompared with the experimental data in the literature [43,44]. We run the simulations with three aspect ratios,
1 = 2, a2 = 1, and a3 = 0.5. All three specimens have the same initial width w = 0.1 m. Fig. 16 plots the contours
f the initial vertical stress in the three specimens.

Figs. 17–19 plot the snapshots of the contours of εs for the three aspect ratios. The results show that the aspect
atio could affect the soil column collapse processes and final deposit morphologies which are consistent with the
xperimental results in the literature [43,44]. As shown in Figs. 17 (a) and 18 for the specimens with a1 = 2 and
2 = 1, banded zone of extensive shear develops during the collapse process. For the specimen with a3 = 0.5,
he collapse pattern is clearly different from the simulations using larger aspect ratios. The results confirm the
xistence of two moving layers observed in the experimental testing. Initially, the contour shows that the upper half

f the column moves directly downward with little horizontal movement, while the base rapidly spreads outward.
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Fig. 17. Contours of εs at (a) t = 0.11 s, (b) t = 0.17 s, (c) t = 0.25 s superimposed on the deformed configuration for a1 = 2.

Fig. 18. Contours of εs at (a) t = 0.17 s, (b) t = 0.27 s, (c) t = 0.4 s superimposed on the deformed configuration for a2 = 1.

Fig. 19. Contours of εs at (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s superimposed on the deformed configuration for a3 = 0.5.

ubsequently, the upper half of the column moves laterally and creates two lateral moving fronts, the so-called
Mexican-hat” morphology observed in experimental tests of soil column collapse [43,44]. It is likely that the
nertial effects contribute to the change in behavior observed in the simulation with a3 = 0.5. Figs. 20–22 present
he snapshots of the contour of σ y for the three aspect ratios. The results show that the aspect ratio could significantly

impact the vertical stress states in the final deposit. Both the contours of equivalent shear strains and vertical stresses
demonstrate that there could be an underlying and undisturbed region in the soil column throughout the collapse
process.
21
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Fig. 20. Contours of σ y at (a) t = 0.11 s, (b) t = 0.17 s, (c) t = 0.25 s superimposed on the deformed configuration for a1 = 2.

Fig. 21. Contours of σ y at (a) t = 0.17 s, (b) t = 0.27 s, (c) t = 0.4 s superimposed on the deformed configuration for a2 = 1.

Fig. 22. Contours of σ y at (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s superimposed on the deformed configuration for a3 = 0.5.

Next, we present the contact force along the base in the final deposit configuration for the simulations with three
spect ratios. Figs. 23 and 24 plot the normal and frictional components of the contact force acting along the base
f the final deposit configuration. The results show that both normal and frictional forces along the interface have
scillations along the base of final deposit configurations. The general trend observed from the results in Figs. 23
nd 24 is that the normal and shear forces are larger for the specimen with a smaller aspect ratio (i.e., taller soil
olumn).

To validate our numerical results, the final deposit height and runout distance are compared against the experiment

esting results in the literature. Here the final runout distance is the distance between the lateral front of the final
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Fig. 23. Variation of the magnitude of the vertical reaction force along the base of the column for 3 aspect ratios.

Fig. 24. Variation of the magnitude of the horizontal reaction force along the base of the column for 3 aspect ratios.

eposit and the center along the substrate. The deposit height is measured from the substrate to the highest point
f the final deposit. The final height and runout distance are normalized by the initial width of the soil column.
ig. 25 plots the normalized final runout distance from the numerical simulations and the experimental data for three
spect ratios. The numerical results that are consistent with the experimental data demonstrate that the final runout
istance decreases with the increase of aspect ratios. Fig. 26 compares the normalized final deposit heights from
ur numerical simulations and the experimental data for three aspect ratios in the literature. It can be concluded
rom the results in Figs. 25 and 26 that the update Lagrangian periporomechanics formulation can be applied to
odel soil column collapse under gravity loading that involves extreme large deformation.

.2.2. Influence of initial matric suction
The initial matric suction could have a strong impact on the soil collapse process under unsaturated conditions.

o test this hypothesis, we run simulations of soil column collapse with three different initial suctions, i.e., s1 = 0
kPa, s2= 25 kPa, and s3 = 50 kPa. The corresponding degrees of saturation Sr = 1.0, 0.92 and 0.88 respectively. The
simulations are repeated for the above three aspect ratios. All simulations are conducted under drained conditions
with a constant matric suction. We note that a constant matric suction is a simplified assumption in that matric
suction may not be significant in the extreme deformation regime at the later stage of soil column collapse. The
degree of saturation Sr varies with the deformation through the porosity φ (i.e., Eq. (15)). In this case, the degree

of saturation may decrease with extreme deformation, although a constant matric suction is assumed.
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Fig. 25. Comparison of the normalized run-out distance with experimental data [44] for different aspect ratios.

Fig. 26. Comparison of the normalized final deposit height with experimental data [44] for different aspect ratios.

The numerical results are presented in Figs. 27–32. Figs. 27, 28, and 29 plot the snapshots of εs in the final deposit
onfigurations from the simulations with three different initial aspect ratios and matric suctions. The results in
igs. 27, 28, and 29 demonstrate that the initial matric suction could significantly affect the final deposit morphology
f the soil. The impact of the initial matric suction on the contour of deviatoric strain in the final configuration may
epend on the initial aspect ratio of the soil column. For instance, for a1 = 2, as shown in Fig. 27 the initial
atric suction affects the maximum deviatoric strain in the soil. However, this influence becomes rather mild when

3 = 0.5 with the same initial column width (i.e., larger initial height of the soil column). Moreover, as shown
n Fig. 30 the increase of initial matric suction in the soil column reduces the final runout distance for the same
spect ratio. Under the same initial matric suction, the specimen with the larger aspect ratio generates the smaller
nal runout distance. The final deposit height is generally larger for the specimen with a larger initial matric suction
nder the same aspect ratio. These observations can be explained by the fact that increasing matric suction generally
ncreases the cohesion of soils (e.g., [1,72]).

To show the sensitivity of shear strains to initial matric suctions, Fig. 32 plots εs over time at the selected material
oints (see Fig. 16) in the specimens with different aspect ratios. The results in Fig. 32 demonstrate that εs is smaller
n the specimen with smaller initial matric suction at the same time for a1 = 2 or a2 = 1. For the specimen with
3 = 0.5 the simulation results show similar shear strains in the early stage of the collapse. However, the equivalent
hear strain at the same location becomes larger at the later stage of collapse for the larger initial matric suction. It

ay be concluded that the impact of initial matric suction on collapse could also depend on initial aspect ratios.
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Fig. 27. Contours of εs on the final deposit configuration from simulations with (a) s1 = 0 kPa, (b) s2 = 25 kPa, and (c) s3 = 50 kPa for
1 = 2.

Fig. 28. Contours of εs on the final deposit configuration from simulations with (a) s1 = 0 kPa, (b) s2 = 25 kPa, and (c) s3 = 50 kPa for
2 = 1.

Fig. 29. Contours of εs on the final deposit configuration from simulations with (a) s1 = 0 kPa, (b) s2 = 25 kPa, and (c) s3 = 50 kPa for
2 = 0.5.

4.2.3. Influence of substrate roughness
We investigate the influence of substrate roughness on the soil column collapse by running simulations with

different friction coefficients of the substrate, i.e., µ f 1 = 0, µ f 2 = 0.25, and µ f 3 = 0.5. The simulations are repeated
for the specimens with the above three initial aspect ratios. Figs. 33–35 present the contours of εd in the final
deposit configuration for the simulations with different initial aspect ratios. The results show that the roughness of
the substrate could strongly influence the final deposit morphology. This effect increases for the cases with smaller

initial aspect ratios. For a1 = 2, the final deposit morphology is in a triangular shape when the substrate is perfectly
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Fig. 30. Normalized final runout distance for simulations with different initial matric suctions.

Fig. 31. Normalized final deposit height for simulations with different initial matric suctions.

smooth. Increasing the surface roughness of the substrate causes the final deposit morphology to transition to a
more parabolic shape. For the case of a2 = 1 as shown in Fig. 34 the final deposit morphology for a smooth
substrate has concave slopes. Increasing the substrate roughness changes the final morphology to a more convex
shape. For the case of a3 = 0.5 increasing the substrate friction reduces the runout distance of the bottom layer
along the substrate while the upper layer of soil has a larger runout distance as µ f increases. Figs. 36 and 37

resent the normalized final runout distance and the deposit height. The results show that the increasing substrate
riction could decrease the final runout distance for the specimens with all aspect ratios. For the specimens with
arger aspect ratios the deposit height generally increases with larger substrate frictions. However, for the specimen
ith a1 = 2, the substrate friction has mild influence on the final deposit height as shown in Fig. 37.
Finally, Fig. 38 compares εs at the selected points from the simulations using different substrate frictions µ f

(see Fig. 16). The results in Fig. 38 show that εs at the points is independent of the substrate friction in the early
stages of the collapse for all aspect ratios while the substrate friction does affect the maximum shear strain. It
could be concluded that the substrate friction influences the final run-out distance and flow behavior but not the
collapse triggering mechanism. We note that there might be the cracking phenomenon in the soil column under
certain circumstances, i.e., soil moisture and boundary conditions. In this case, the energy based crack criterion in
the total Lagrangian periporomechanics [16] can be used to model cracking in the proposed updated Lagrangian
periporomechanics.
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(

Fig. 32. Comparison of εs at the selected locations from simulations using different initial matric suctions with (a) a1 = 2, (b) a2 = 1 and
c) a3 = 0.5.

Fig. 33. Contours of εs from the simulations using (a) µ f 1 = 0, (b) µ f 2 = 0.25, and (c) µ f 3 = 0.5 for a1 = 2.

5. Closure

In this article, we have formulated an updated Lagrangian periporomechanics paradigm for modeling extreme
large deformation in unsaturated porous media under drained conditions (i.e., constant matric suction). In this
updated Lagrangian framework it is assumed that the family of a material point is a uniform sphere (i.e., constant
horizon) independent of deformation. In this study, the bond-associated sub-horizon concept is utilized to eliminate
the zero-energy modes at extreme large deformation of solid skeleton when using the correspondence constitutive
models of unsaturated porous media. The stabilized nonlocal velocity gradient in the deformed configuration
is used to numerically implement a critical state based visco-plastic model for unsaturated soils. The updated
Lagrangian periporomechanics framework is numerically implemented through the explicit Newmark scheme for
high-performance computing. The uniaxial compression testing of a rectangular porous material specimen is first
27
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Fig. 34. Contours of εs from the simulations using (a) µ f 1 = 0, (b) µ f 2 = 0.25, and (c) µ f 3 = 0.5 for a2 = 1.

Fig. 35. Contours of εs from the simulations using (a) µ f 1 = 0, (b) µ f 2 = 0.25, and (c) µ f 3 = 0.5 for a3 = 0.5.

Fig. 36. Normalized final runout distance for different substrate frictions.

presented to demonstrate the stability of the updated Lagrangian periporomechanics paradigm under static and
dynamic loads. We then conduct the numerical modeling of soil column collapse to demonstrate the efficacy
and robustness of the updated Lagrangian periporomechanics paradigm in modeling extreme large deformation
in unsaturated porous media under drained conditions. The numerical results have been validated against the
experimental data in the literature. We also investigate the influence of initial matric suction and substrate friction
on the final deposit morphology. The preliminary numerical results have shown that the impact of initial matric
suction on the final run-out distance and deposit height may also depend on initial aspect ratios.
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Fig. 37. Normalized final deposit height for different substrate frictions.

Fig. 38. Comparison of εs at the marked point for (a) a1 = 2, (b) a2 = 1 and (c) a3 = 0.5 from simulations using different substrate
rictions.
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