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A Continuous Articulatory Gesture
Based Liveness Detection for

Voice Authentication on Smart Devices
Linghan Zhang, Sheng Tan, Yingying Chen, Jie Yang

Abstract—Voice biometrics is drawing increasing attention to
user authentication on smart devices. However, voice biometrics is
vulnerable to replay attacks, where adversaries try to spoof voice
authentication systems using pre-recorded voice samples collected
from genuine users. To this end, we propose VoiceGesture, a
liveness detection solution for voice authentication on smart
devices such as smartphones and smart speakers. With audio
hardware advances on smart devices, VoiceGesture leverages
built-in speaker and microphone pairs on smart devices as
Doppler Radar to sense articulatory gestures for liveness de-
tection during voice authentication. The experiments with 21
participants and different smart devices show that VoiceGesture
achieves over 99% and around 98% detection accuracy for text-
dependent and text-independent liveness detection, respectively.
Moreover, VoiceGesture is robust to different device placements,
low audio sampling frequency, and supports medium range
liveness detection on smart speakers in various use scenarios,
including smart homes and smart vehicles.

Index Terms—Voice authentication, continuous liveness detec-
tion, IoT, articulatory gesture.

I. INTRODUCTION

VOICE biometrics has been widely used as an alternative
to passwords on smartphones for user authentication.

For example, Google developed ”Trusted Voice” for Android
device access [1], whereas Saypay supports voice biometrics
secured online transactions on mobile devices [2]. Recently,
voice biometrics is drawing increasing attention as it enables
secure and convenient interactions between users and smart
devices for various application and services. For instance,
voice biometrics has been used for access control on smart
speakers, locks, vacuums, and thermostats in the smart home
hub [3]. The Enterprise Bank deploys voice biometrics to
secure complex personalized banking operations, such as
checking balances, making transfers, and sending bank state-
ments [4]. Moreover, automakers such as BMW, Audi, etc.
support in-car voice assistants [5] and provide voice-controlled
skills like navigation, whereas self-driving vehicles makers
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like Tesla [6] have gone a further step by allowing voice
biometrics-based car controls.

However, a growing body of research has demonstrated
the vulnerability of voice authentication systems to replay
attacks [7]. An attacker could easily collect the genuine users’
voice samples from social media or record those via common
digital devices for replay attacks. Indeed, such low-cost and
low-effort attacks are highly effective in spoofing voice authen-
tication systems. For instance, simply replaying a pre-recorded
voice command of a user could unlock her/his mobile devices
that have the voice-unlock feature (e.g., Android devices) [1].
An extensive study in 2017 shows that replay attacks increase
the equal error rate (EER) of state-of-art voice authentication
systems from 1.76% to surprisingly 30.71% [7].

To defend against replay attacks, traditional liveness de-
tection methods distinguish acoustic characteristics of live
users’ voices and replayed ones. Such methods cannot detect
replayed high-quality voice recordings [7]. Commercial voice
authentication service providers like Nuance [8] mainly rely
on challenge-response for liveness detection. These methods
require extra user cooperation besides standard authentication
procedures. Moreover, many researchers target detecting hu-
man vital signs during the human speak for liveness detection.
For example, Zhang et al. measure the time-difference-of-
arrival(TDoA) of different phonemes to the two microphones
of the smartphone [9]. Wang et al. [10] examine human
breathing patterns, while Shang et al. [11] detect human body
vibrations. These solutions require users to hold the device
close to or even in touch with their body when they speak.
Besides, some liveness detection systems necessitate extra
devices. For instance, WiVo [12] and REVOLT [13] use Wi-
Fi signals to detect mouth motions and breathing. VAuth [14]
and VocalPrint [15] leverage wearable sensors and mmWave
to measure body vibrations, respectively. Furthermore, most
solutions only support text-dependent liveness detection [9]–
[11], [16] and hence could not protect real-time conversations
between users and smart devices.

In this paper, we introduce VoiceGesture, a continuous
liveness detection system that achieves the best of both worlds
- i.e., it is highly effective in detecting live users but does
not require the users to perform any cumbersome operations.
Specifically, VoiceGesture measures a user’s articulatory ges-
tures for liveness detection. Human speech production relies
on the precise, highly coordinated movements of multiple
articulators (e.g., the lips, jaw, and tongue) to produce each
phoneme sound. It is known as articulatory gesture, which
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involves multidimensional movements of multiple articulators.

Unlike the human, the loudspeaker produces sound relying

solely on the diaphragm that moves in one dimension (i.e.,

forward and backward). Thus, by sensing the articulatory

motions, VoiceGesture enables to distinguish a human speaker

from a loudspeaker. Moreover, there exist minute differences

in articulatory gestures among people due to individual diver-

sity in the human vocal tract (e.g., shape and size) and the ha-

bitual way of pronouncing phoneme sounds [17]. VoiceGesture

leverages such minute differences to detect mimicry attacks.

Specifically, VoiceGesture re-uses a pair of built-in speaker

and microphone on a smart device as a Doppler radar to sense

user-specific features of his/her articulatory gestures while the

user speaks. In particular, the built-in speaker transmits an

ultrasound probe signal at 20kHz to the moving articulators,

which reflect the probe signal and cause Doppler frequency

shifts at around 20kHz. Meanwhile, the built-in microphone

keeps listening and recording the audio reflections and the

user’s voice samples. Next, VoiceGesture separates the voice

samples for conventional voice authentication and extracts

articulatory gesture features from the frequency shifts for

liveness detection. In particular, we extract both the frequency

and the energy features to reveal the velocity and the location

information of the articulatory gestures, respectively. Even-

tually, we evaluate VoiceGesture with 21 participants, three

different types of phones, and a smart speaker under various

experimental settings. The results show that VoiceGesture is

highly effective in detecting live users and works with users’

habitual ways of interacting with the device. The contributions

of our work are summarized as follows.

• We leverage smart devices’ audio hardware to sense the

unique articulatory gestures of a user when he/she speaks

a passphrase. We also show that it is feasible to capture

the minute differences in different people’s articulatory

gestures when they speak the same phoneme sounds.

• We develop VoiceGesture, a practical liveness detection

system secures both text-dependent and text-independent

voice authentication. VoiceGesture requires neither cum-

bersome operations nor additional hardware other than

a pair of speaker and microphone that are commonly

available on the latest smart devices.

• The experimental results show that VoiceGesture achieves

over 99% detection accuracy at around 1% EER. More-

over, VoiceGesture works on different smart devices with

distinct sampling frequencies. Especially, VoiceGesture

supports medium-range liveness detection in various use

scenarios like smart vehicles and smart homes.

II. PRELIMINARIES

A. System and Attack Model

Voice authentication is the process of verifying a user’s

claimed identity by extracting the acoustic features that reflect

both behavioral and physiological characteristics of a user.

This work primarily focuses on the text-dependent systems,

where a user-chosen or system prompted passphrase is used

for authentication. We also extend this solution to text-

independent liveness detection. Text-dependent offers high

Fig. 1: Articulators, phonemes and the corresponding
articulatory gestures.

accuracy and thus has been used for user authentication [18].

However, text-dependent authentication only provides one-

time identity verification with enrolled passphrases. In compar-

ison, text-independent authentication can enroll and verify the

user’s identity transparently and continuously regardless of the

speech contents. This feature is especially critical to popular

conversational voice assistant systems like Google Assistant.

For the attack models, we consider replay attacks in our

work as they are easy to implement and highly effective in

spoofing the voice authentication systems. In particular, we

consider two types of replay attacks: playback attack and

mimicry attack. In a playback attack, an adversary uses a

loudspeaker to replay a pre-recorded passphrase of an intended

target user. Given that attackers may know the defending

strategy of VoiceGesture, they could conduct more sophisti-

cated mimicry attacks, where an adversary tries to mimic the

articulatory gestures of a genuine user while replay the pre-

reocrded passphrase with a far-field speaker.

B. Articulatory Gesture

Human speech production requires precise and highly coor-

dinated movements of multiple articulators. Specifically, artic-

ulatory gestures are used to describe the connection between

the lexical units with the articulator dynamic when producing

speech sounds. English Speaking involves articulatory ges-

tures like lip protrusion, lip closure, tongue tip, tongue body

constriction, and jaw angle. For example, three articulators

including upper lip, lower lip, and jaw are involved when a

speaker conducts lip closure, which could lead to the phoneme

sounds like [p], [b] and [m].

Figure 1 illustrates various articulators and their locations,

common English phonemes, and the corresponding articula-

tory gestures. Each phoneme sound production usually in-

volves multidimensional movements of multiple articulators.

For instance, the pronunciation of the phoneme [p] requires

upper and lower lips horizontal movements and jaw angle

change. Moreover, although some phonemes share the same

articulatory gestures, their movement speeds and intensities

could be different. For example, both [d] and [z] require

tongue tip constrictions. However, they differ in terms of the

exact tongue tip radial and angular position.

C. Sensing the Articulatory Gesture

We leverage the Doppler effect to sense the articulatory

gestures. When a user speaks a passphrase to a phone held



3

by his/her ear, the built-in speaker of the phone emits a

high-frequency probe signal to the users’ articulators. The

moving articulators reflect the probe signal and the reflections

are recorded by the built-in microphone. In our context, the

articulators reflecting the probe signal can be considered as

virtual transmitters that generate the reflected sound waves. As

the articulators move towards the microphone, the crests and

troughs of the reflected sound waves arrive at the microphone

at a faster rate. Conversely, if the articulators move away

from the microphone, the crests and troughs arrive slower.

In particular, an articulator moving at a speed of v with an

angle of α from the microphone results in a Doppler shift

(i.e., frequency change Δf ) of:

Δf ∝ v cos(α)

c
f0, (1)

where f0 is the frequency of the transmitted sound wave and

c is the speed of sound in the medium.

Equation (1) shows that a higher frequency of the emitted

sound (i.e., f0) results in a larger Doppler shift for the

same articulator movements. We thus choose ultrasound probe

signals at 20kHz, which are close to the limit of the built-in

speaker/microphone of smart devices. Such a high-frequency

signal maximizes the Doppler shifts caused by the articulatory

gesture and is also inaudible to the human ear. Moreover, the

Doppler shifts are vectors decided by the moving directions

of the articulators (i.e., α). An articulator moving away from

the microphone results in negative Doppler shifts, while an

articulator moving towards the microphone leads to positive

Doppler shifts. In addition, faster speeds (i.e., v) result in

larger Doppler shifts. Furthermore, the reflections from the

articulators that are closer to the microphone result in stronger

energy due to signal attenuation. Therefore, we could analyze

the Doppler shifts’ magnitudes and energy distribution to

distinguish different articulatory gestures or people who speak

the same phonemes with different articulatory gestures.

D. Loudspeaker

Unlike the human, loudspeakers solely rely on diaphragms’

one dimensional movements to produce sound waves. Specifi-

cally, the loudspeaker diaphragms move forward and backward

to increase and decrease the air pressure in front of it, thus

creating sound waves. Such movements are controlled by

the frequency and intensity of the input audio signals. For

instance, high-pitch input sounds result in fast movement

of the diaphragm, while with higher volume, the diaphragm

pushes harder to produce a higher pressure in the air.

Therefore, a loudspeaker could be distinguished from a

live speaker with sound production mechanisms. First, they

differ in terms of movement complexity and the number of

articulators. Second, the movements of human articulators

do not always produce sound, whereas the movements of

diaphragms certainly result in sound waves. Figure 2 shows

the Doppler shifts sensed by the probe signal at 20kHz when

a loudspeaker replays and a live user speaks the same phrase,

respectively. The frequency distribution inside each pair of

vertical bars in the figure corresponds to the Doppler shifts

Fig. 2: Doppler shifts of a live user and a speaker replay.

resulted from the same phoneme sound. We could observe

that the Doppler shifts of the loudspeaker look relatively clean

due to the simple diaphragm movements, whereas the Doppler

shifts caused by a live user’s complex articulatory gestures

spread out over a much larger volume of space.

E. Individual Diversity of Articulator Gesture

There exist minute differences in articulatory gestures

among people when producing the same phoneme due to the

individual diversity in the human vocal tract and the habit-

ual way of pronunciation. For example, research shows that

people adopt different movement trajectories of articulators

to produce the same utterances [19]. Moreover, physiological

features of vocal tracts, such as the sizes and shapes of the

lips and tongues, vary among people [20]. Furthermore, there

are diverse articulatory strategies for sound production. For

instance, some speakers’ jaw movements are closely connected

with tongue body gestures, while others are not [21].

According to research on five individuals [22] articulatory

gestures, the averaged speed differences of their upper lips

and jaws are 0.04m/s and 0.06m/s, respectively. Given the

duration of a phoneme sound is around 250ms and most smart

devices support 192kHz sampling frequency, we could achieve

1Hz frequency resolution when calculating each phoneme’s

frequency shifts. Moreover, with the 20kHz probe signal, 1Hz

Doppler shift corresponds to the articulator speed of 0.017m/s,

which provides a much higher sensitivity than that of the speed

difference in both upper lip and jaw movements (i.e., 0.04m/s

and 0.06m/s). We thus enable to differentiate different people

even if they are pronouncing the same phoneme sound. The

differences in articulatory gestures are expected to be much

smaller under the mimicry attacks, where an adversary mimics

the articulatory gestures of a genuine user. Nevertheless, each

articulatory gesture involves movements of multiple articu-

lators. In addition, a passphrase consists of a sequence of

phoneme sounds, which dramatically increase the possibility

to distinguish between a genuine user and an attacker.

III. SYSTEM DESIGN

A. Approach Overview

The key idea underlying our liveness detection system is

to leverage the smart devices’ audio hardware to sense the

articulatory gesture of a sequence of phoneme sounds when

a user speaks to the devices. Taking the smartphone use

case in Figure 3 as an example, the built-in speaker at the
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Fig. 3: Illustration of the articulatory gesture based live-
ness detection on smartphone.

bottom of the phone starts to emit an inaudible acoustic

tone at 20kHz once the authentication system is triggered.

When a user speaks a passphrase, the built-in microphone

records user’s voice as well as the inaudible acoustic tone

and its reflections. Then we extract features based on both

the frequency shift and energy distribution in the observed

Doppler shifts around 20kHz, and compared those against

the passphrase-based or phoneme-based user profile obtained

during user enrollment for text-dependent or text-independent

liveness detection. A live user is declared if the similarity

score exceeds a predefined threshold. Under playback attacks,

the extracted Doppler shift features are different from the

user profile due to the fundamental difference between the

human speech and the loudspeaker sound production systems.

Under mimicry attacks, the extracted features show minute

differences from the user profile given individual diversity of

human vocal tract and the habitual ways of pronunciation.

Our system works when the users hold the phones with their

nature habits as opposed to the prior smartphone based solu-

tions that require users to hold or move the phone in some pre-

defined manners. Moreover, our system support medium-range

(up to 1m) text-independent liveness detection for smart device

use cases in IoT environments like smart vehicles and smart

homes. Comparing with the commercially used challenge-

response based solutions, our system does not require any

cumbersome operations besides the standard authentication

process. Once it integrated with a voice authentication system,

the liveness detection is totally transparent to the users.

B. System Flow

Realizing our system requires five major components:

Doppler Shifts Extraction, Feature Extraction, Wavelet-based
Denoising, Similarity Comparison, and Detection. As shown

in Figure 4, the acoustic signal captured by the built-in

microphone first passes through the Doppler Shifts Extraction

process, which extracts the Doppler shifts for each phoneme

sound in the spoken utterance. We rely on the user’s audible

voice samples to separate each phoneme and the corresponding

Doppler shifts. Then, we map the segmentation to the inaudi-

ble frequency range at around 20kHz frequency to extract the

Doppler shifts of each phoneme. Next, the Feature Extraction

component extracts both energy-band and frequency-band

features from the Doppler shifts. Then we utilize wavelet-

based denoising technique to further remove the mixed noises.

Fig. 4: The flow of our liveness detection system.

At last, our system matches the frequency-based and energy-

based features with the ones stored in the liveness detection

system by using cross-correlation coefficient. It yields a simi-

larity score, which is compared against a predefined threshold.

If the score is higher than the threshold, a live user is detected.

Otherwise, an attack is declared.

C. Doppler Shifts Extraction

Once finish recording, our system first separates the user’s

voice samples (i.e., below 10kHz) for conventional voice

authentication. Then, we rely on the audible voice samples

to separate each phoneme and the corresponding Doppler

shifts at around 20 kHz. Specifically, we convert the recorded

signal from the time domain to the frequency domain by

performing Short-Time Fourier Transform (STFT) with a

window size of 250ms. Since voice samples are below 10

kHz whereas Doppler shifts are around 20 kHz, we could

separate these two signals with low-pass and band-pass filters.

Next, given the spectrogram of the recorded signal, we aim

to extract the Doppler shifts for each individual phoneme.

For text-dependent liveness detection, we further remove the

pauses due to transaction between phoneme sounds and also

the transactions between words. Then we perform phoneme

segmentation [9] to obtain segmented and labeled phonemes

for each word. Finally, our system matches the time stamp

of each phoneme segmentation to 20kHz frequency range to

extract the corresponding Doppler shifts.

D. Feature Extraction

After we obtain the Doppler shifts of all the phonemes,

we first normalize them as the same length as those in the

user profile. Such normalization is used to mitigate the user’s

different speech speeds when performing voice authentication.

Then, we re-splice the normalized Doppler shifts of each

phoneme together for text-dependent liveness detection. To

eliminate the interferences due to other movements such as

nearby moving objects or body movements, we further utilize

a Butterworth filter with cut-off frequencies of 19.8kHz and

20.2kHz to remove these out-of-band noises. Next, we extract

two types of features from the Doppler shifts of the whole

passphrase (text-dependent systems) or single phonemes (text-

independent systems): energy-band frequency features and

frequency-band energy features.

The first type of feature quantifies the relative movement

speeds among multiple articulations. By dividing the energy

level of all the frequency shifts into several different bands, we

can separate different parts of articulators based on their dis-

tances to the microphone. With higher energy of the captured
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Fig. 5: An example of energy sub-band and energy-based
frequency contours.

Doppler shifts, a closer movement occurred with respect to the

microphone. Before energy band partition, we first normalize

each segmented phoneme’s energy level into the same scale

(i.e., from 0 to 1). Such normalization can mitigate the energy

shifts caused by the inconsistency of a user speaking the

same utterance to the device. We partition the energy into

three levels based on the energy distribution, resulting in

6 sub-bands. Each energy level includes both positive and

negative Doppler shifts, as shown in the top graph of Figure 5.

Sub-band 5 and 6 with power levels between 0.95 to 0.99

capture the strongest Doppler shifts that resulted from closest

articulators like lips. Sub-band 3 and 4 include the power

level from 0.7 to 0.9. They catch the Doppler shifts caused by

closer articulators like jaws. Whereas sub-band 1 and 2 with

lowest energy level between 0.4 to 0.7 contain Doppler shifts

of the farthest articulators like the tongue. Given each sub-

band, we use the centroid frequency as the feature and combine

all the centroid frequencies of each phoneme, resulting in

one frequency contour for each band. The bottom part of

Figure 5 demonstrates two energy-band frequency contours

(i.e., band 1 and 2) extracted from the sentence ”Oscar didn’t
like sweep day” spoken by a live user. Those two bands

represent articulators (e.g., the tongue) with a longer distance

to the microphone.

The second type of feature is the frequency-band energy fea-

ture, which quantifies the relative movement positions among

multiple articulations across phonemes. As a faster movement

results in a larger magnitude of Doppler shift, we can compare

the energy levels of different articulators moving at similar

velocities. In particular, we divide the frequency shifts into

5 major sub-bands considering three levels of velocities in

both positive and negative directions, as shown in the upper

part of Figure 6. Sub-band 3 covers frequency shifts from

-50Hz to 50Hz, sub-band 2 and 4 include frequency shifts

from 50Hz to 100Hz and -100Hz to -50Hz, and sub-band 1

and 5 correspond to 100Hz to 200Hz and -200Hz to -100Hz.

Similar to the frequency contour, we calculate the average

energy level at each frequency sub-band, and then splice the

resulted energy levels together to form an energy contour.

The lower part of Figure 6 demonstrates three frequency-band

energy contours at the band 2, 3, and 5. We observe that the

frequency band 3 contour has the highest energy level. It is

because while speaking an utterance, the lower facial region of

Fig. 6: An example of frequency sub-band and frequency-
based energy contours.

a user moves slowly. Nevertheless, the large size of the lower

facial region leads to strong signal reflections. The frequency

band 5 contour demonstrates the lowest energy level caused by

articulators farthest from the microphone, such as the tongue.

E. Wavelet-based Denoising

We adopt Discrete Wavelet Transform (DWT) to remove

the noisy components mixed in the extracted features. Those

components could be caused by hardware imperfections or

surrounding environment interferences and noises. DWT de-

composes the input signal into two components: approxima-

tion coefficients and detailed coefficients, which depict the

signal overall trend and fine details, respectively. VoiceGesture

first decomposes each extracted contour into approximation

and detailed coefficients by going through low pass and high

pass filters. VoiceGesture runs this step recursively for 3

levels. After obtaining multiple levels of detailed coefficients, a

dynamic threshold is applied to each level of detail coefficients

to filter out the mixed noises (i.e., the readings with small

values). Then, VoiceGesture combines the original approxima-

tion coefficients with the filtered detail coefficients. After that,

VoiceGesture use the inverse DWT to reconstruct the denoised

contour.

F. Template Building

For text-dependent liveness detection, we build and compare

passphrase-based contour features. While for text-independent

liveness detection, we establish a set of phoneme-based tem-

plates for each individual user. We notice that the contour

features of some phonemes are more stable than those of

others. For example, a short-sound phoneme tends to provide

more consistent contour features than a long-sound phoneme.

The reason is that when pronouncing a short-sound phoneme

like a consonant or a monophthong, the individual’s articulator

movements are monotonous. However, when a human pro-

nouncing a long-sound phoneme, especially a diphthong, the

articulator movements could be changeable. This observation

may vary depending on the speakers’ accent.
Therefore, we improve the system stability by assigning

different weights to phoneme templates according to their

consistency. This could enhance the impact of the phonemes

with stable features, whereas lower the influence of phonemes

with unstable features. Specifically, we align the beginning of
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Fig. 7: Weighted Phoneme-based Templates Building.

each phoneme contour and then adopt the following equation

to calculate the weight of a phoneme-based template:

w =

∑n
i=1 Li∑n

i,j=1(Ai −Aj))
(2)

where A is any one of the same type of contour features, and L
is the length of the phoneme. The denominator of this equation

calculates the aggregate areas between the contours of any

two trials of the same phoneme. We remove the impact of the

phoneme length by introducing the numerator that computes

the total lengths of n trials of pronunciations. Figure 7b

displays the weights of 12 phonemes in Figure 7a. As we

could note that consonants or monophthongs like [s] [di] yield

more consistent contour than diphthongs like [dei].

G. Similarity Comparison

Text-dependent Similarity Comparison. For the text-

dependent liveness detection system, to compare the similarity

of each extracted contour feature with the corresponding one

in the user profile, we use the correlation coefficient technique,

which measures the degree of linear relationship between two

input sequences. The resulted correlation coefficient ranges

from −1 to +1, where the value closer to +1 indicates a

higher level of similarity and a value closer to 0 implies a

lack of similarity.

In particular, given a series of n values in each energy-

band frequency or frequency-band energy contour A and the

corresponding pre-built user profile B, written as Ai and Bi,

where i = 1, 2, ..., n. The Pearson correlation coefficient can

be calcualted as:

rAB =

∑n
i=1(Ai − Ā)(Bi − B̄)

(n− 1)δAδB
, (3)

where Ā and B̄ are the sample means of A and B, δA and

δB are the sample standard deviations of A and B.

Text-independent Similarity Comparison. For the text-

independent liveness detection, while the user speaks,

VoiceGesture keeps listening while searching for the phoneme-

based templates for each phoneme in the speech. After col-

lecting all the templates for the current sentence, we compare

the similarity between the contour features of each phoneme

in this sentence and the phoneme-based weighted templates

with the following equation:

ρxy =

∑n
i,j=1[wi(Ai − Āi)(Bi − B̄i)]]√∑n

i=1(wi(Ai − Ā))2
∑n

i=1(wi(Bi − B̄))2
(4)

Fig. 8: Two different phone placements diagram.

where Ai and Bi are the corresponding contours of the ith

phoneme, and wi is the weight of this phoneme. To be noticed,

both Ai and Bi are sequences, and Āi and B̄i are the averages

of Ai and Bi respectively. Before comparison, we normalize

Ai and Bi to become the same length, then we apply wi to

each point in Ai and Bi.

These procedures enable text-independent liveness detec-

tion by comparing the current speech with the weighted,

phoneme-based templates, rather than the passphrase-based

templates. Therefore, VoiceGesture could protect the whole

communication session continuously in the IoT environments.

To detect a live user, we use energy-based frequency contours

(i.e., energy-based feature), frequency-band energy contours

(i.e., frequency-based feature), and combined feature of these

two (combined feature), respectively. Given the correlation

coefficients of all contours, we simply compare the averaged

coefficient to a predefined threshold for live user detection.

IV. PERFORMANCE EVALUATION

A. Experiment Methodology

Phones and Placements. We employ three types of phones

including Galaxy S5, Galaxy Note3, and Galaxy Note5 for

our evaluation. These phones differ in terms of sizes and

audio chipsets. Specifically, the lengths of S5, Note3 and

Note5 are 14.1cm, 15.1cm and 15.5cm respectively, whereas

the chipsets are Wolfson WM1840, 800 MSM8974 and Au-

dience’s ADNC ES704, respectively. All the audio chips

and the speaker/microphones of these phones can record and

playback 20kHz frequency sound. The operating systems of

those phones are the Android 6.0 Marshmallow that released in

2015, which supports audio recording and play back at 192kHz

sampling frequency. We thus evaluate our system with the

sampling frequencies including 48kHz, 96kHz and 192kHz.

We present the results for 192kHz sampling frequency in the

evaluation unless otherwise stated. Additionally, we consider

two types of phone placements as shown in Figure 8 that peo-
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Fig. 9: Overall Performance.

ple usually used to talk on the phone, i.e., holding smartphones
closely by the ear or in front of the mouth.

Smart Speaker Setup We adopt MiniDSP UMA-8 [23] for
experiments on smart speakers as it deploys circular arranged
microphone arrays like many state-of-the-art popular smart
speakers (e.g., Google Home and Amazon Echo). Moreover,
it grants users access to the raw recording data. In particular,
MiniDSP UMA-8 has a microphone array composed of 7
MEMS microphones. One of the microphones is located at the
center and the other 6 microphones are uniformly configured
around a circular board with a radius of 0.43 m. To extend
the effective range of our liveness detection solution, we
utilize the Delay-and-Sum beamforming technique on the
microphone array. The Delay-and-Sum beamforming is based
on the fact that the signals received by these microphones are
similar, nevertheless, they have different delays and phases.
Therefore, it calculates the time difference of arrival of the
signals received by the 6 microphones and that recorded by
the microphone in the center, and then shifts the signals by
corresponding phases and sums them up. During experiments,
the smart speaker locates on a typical desk around 1 meter
tall. The participants stand in front of the smart speaker and
face the speaker when they speak.

Data Collection. Our experiments involve 21 participants,
including 11 males and 10 females. The participants are
recruited by emails including both graduate students and
undergraduate students. These participants include both native
and non-native English speakers with ages from 21 to 35.
We explicitly tell the participants that the purpose of the
experiments is to perform voice authentication and liveness
detection. Each participant chooses his/her own 10 different
passphrases. For text-dependent liveness detection, they repeat
each passphrase three times to enroll in the authentication
system and use the averaged features to establish the user
profiles. Whereas for text-independent liveness detection, the
participants read the ”Rainbow Passage” [24] that contains all
English phonemes to create the phoneme-based frequency shift
templates. Each participant tries 10 times for each passphrase
to perform legitimate authentication, which totals 2100 pos-
itive cases. The lengths of those passphrases range from 2
to 10 words with one third are 2 to 4 words, one third are
5 to 7 words, and the rest are 8 to 10 words. In addition,
to evaluate the individual diversity among users, we ask 12
out of the 21 participants to pronounce the same passphrase.
Our experiments are conducted in classrooms, apartments, and
offices with background and ambient noises such as HVAC
noises and people chatting.
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Fig. 10: Performance under Replay Attacks

Attacks. We evaluate our system under two types of replay
attack: playback attacks and mimicry attacks. Both forms
of attacks are considered in our evaluation sections unless
claimed otherwise. The playback attacks are conducted with
loudspeakers including the standalone speakers, the built-in
speakers of mobile devices, and the earbuds. In particular, a
DELL AC411 loudspeaker, the build-in speaker of Note5 and a
pair of Samsung earbud are used to playback the participants’
voice samples in front of the smartphone that performing
voice authentication. Specifically, each form of these speakers
replays voice samples from 10 participants, and the build-in
speaker/earbud and the loudspeaker contributes 3 and 4 trials
for each of the 10 passphrases respectively, amounting to 1000
replay attacks. All replay attacks are captured by an identical
phone with the same holding position that the participants used
for authentication.

For mimicry attacks, we first record the articulatory gesture
of the participants when they speaking the passphrase by using
a digital video recorder. The video recording only covers
the lower facial region for privacy concerns. Such a lower
facial region including the articulator movement of upper
and lower lips, tongue and jaw. Then other participants are
invited to watch the video carefully and repeatedly practice
the pronunciation by mimicking the articulatory gesture in the
video. In particular, they are instructed to mimic the speed of
talking, the intensity and range of each articulator movement,
the speech tempo and etc. After they claim that they have
learned how the person in the video speaks and moves the
articulators, they start to conduct the mimicry attacks in
front of the smartphone that used for voice authentication.
We recruit 4 attackers and each mimics 6 participants. For
each victim/participant, 5 trials for each of 5 passphrases are
mimicked. There are in total 600 mimicry attack attempts.

B. Overall Performance

We first present the overall performance of our system in
detecting live users under both playback and mimicry attacks.
Figure 9a depicts the ROC curves of our system under both
types of attacks. We observe that with 1% FAR, the detection
rate is as high as 98% when using the combined features. Such
an observation suggests that our system is highly effective
in detecting live users under both replay and mimic attacks.
Moreover, we find that the energy-based feature results in bet-
ter performance than that of the frequency-based feature. For
example, with 1% FAR, the frequency-based feature provide
the detection rate at around 90%. Furthermore, we observe
that the participants who have smaller scale of articulatory
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Fig. 12: Performance under different phone placements

movements generate higher false accept rate. Additionally,
Figure 9b shows the overall accuracy under both attacks.
Similarity, we observe that combined feature has the best
performance, with an accuracy at about 99.34%, whereas the
energy-based feature alone achieves an accuracy of 96.22%.
The time to perform an authentication is about 0.5 seconds on
a laptop server. The above results demonstrate the effectiveness
of our system in detecting live users. Also, the energy-based
feature and frequency-based feature can complement each
other to improve the detection performance.

Playback Attack. We next detail the performance under
playback attacks. Figure 10 shows the performance in terms
of accuracy and EER under replay attacks. We observe that
the combined feature results in the best performance. It has
an accuracy of 99.3% and an EER of 1.26%. In particular,
with only one type of feature, we can achieve an accuracy of
97.41% and an EER of 2.83%. These results show that the
two types of feature can complement with each other and the
combined feature is very effective in detecting live user under
playback attacks.

Mimicry Attack. Next, we study the detailed performance
under mimicry attacks. Figure 11 shows both the the accuracy
and EER of our system. Again, the combined feature achieves
the best accuracy at about 99.3% and an EER of 1.21%. Unlike
the playback attack scenario, the frequency-based feature has
better performance than that of the energy-based feature. In
particular, the frequency-based feature has an accuracy of
95.9% and an EER of 4.67%. The above results suggest that
the extracted features from the Doppler shifts of a sequence
of phoneme sounds could capture the differences of the
articulatory gesture between an attacker and a live user under
mimicry attacks. Thus, our system is effective in detecting live
users under mimicry attacks.

C. Impact of Phone’s Placement

Different users may have different habits to talk on the
phone in terms of how to hold the phone while speaking.
We thus compare the performance under two placements of
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Fig. 13: Performance under different sampling frequencies

the phone (i.e., hold the phone to ear and hold the phone in
front of the mouth) that people usually feel comfortable to
use. Figure 12a presents the performance comparison of the
accuracy, whereas Figure 12b shows the comparison of the
EER. In high level, the results show that our system is highly
effective under both placements. In particular, when placing
the phone to the ear, we have the best accuracy as 98.61%,
while the best accuracy for placing the phone in front of the
mouth is slightly higher. This is due to the fact that placing
the phone in front of the mouth can capture the movement
of the tongue better as the microphone is directly facing the
mouth. Similarly, placing the phone to the ear has slightly
worse EER, i.e., at 2.24%, whereas it is about 1.2% for the
other placement. Nevertheless, our system works well under
both placements and could accommodate different users who
have different habits to hold the phone while talking. This
property of our system indicates our system doesn’t require the
user to hold the phone at a specific position or move the phone
in a predefined manner as opposed to the prior smartphone
based solutions.

D. Impact of Sampling Frequency

We next show that how well our system can work with
some low-end phones that can only playback and record at
48kHz or 96kHz sampling frequency. Figure 13a depicts the
accuracy of our system under 48kHz, 96kHz and 192kHz
sampling frequencies. We notice that a higher sampling fre-
quency results in a better performance. This is because a
higher sampling frequency could capture more details of the
articulatory gestures and has a better frequency resolution.
In particular, the combined feature achieves an accuracy of
98.72% for 96kHz sampling frequency, and 98.69% for 48kHz
sampling frequency. Moreover, Figure 13b shows the EER
under those three sampling frequencies. We find the 96kHz
sampling frequency has an EER of 1.63%, whereas it is
2.01% for 48kHz sampling frequency. These results indicate
that our system still works very well at a lower sampling
frequency. Thus, our system is compatible to these older
version smartphones.

E. Impact of Different Phones

Our system also supports the users to use different types of
phones for enrollment and online authentication. Specifically,
we experiment with three different phones including S5, Note3
and Note5. In the experiments, the participants use one of
these three phones to enroll in the system but use the other

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3199995

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Florida State University. Downloaded on August 19,2022 at 21:40:04 UTC from IEEE Xplore.  Restrictions apply. 



9

0

20

40

60

80

100
A

c
c

u
ra

c
y

(%
)

Energy based Feature

Frequency based Feature

Combined Feature

Note5

S5/Note3

Note3

S5/Note5

S5

Note3/Note5

Fig. 14: Accuracy of using
a phone for enrollment and
another for authentication.

2-4 5-7 8-10
Passphrase Length (words)

94

95

96

97

98

99

100

A
c

c
u

ra
c

y
(%

)

Energy based Feature

Frequency based Feature

Combined Feature

94.84

99.34

95.92

99.25

96.40

96.21
95.63

97.17

99.41

Fig. 15: Accuracy under dif-
ferent length of passphrase.

0

20

40

60

80

100

A
c
c
u

ra
c
y
(%

)

Energy

based Feature

Frequency

based Feature

Combined

based Feature

(a) Accuracy

0

2

4

6

8

10
E

E
R

(%
)

Energy

based Feature

Frequency

based Feature

Combined

based Feature

(b) EER

Fig. 16: Text-independent Liveness Detection Performance

two phones for online voice authentication. The performance
of our system is in Figure 14. Results show that our system
works well under such scenarios. In particular, the combined
feature provides an accuracy of 96.58%, 96.93% and 96.98%
when using S5, Note3, and Note5 as the enrollment phone,
respectively. Results also indicate that the performance is
comparably well no mater which phone is used for enrollment.
Although the accuracy is slightly worse than that of using the
same phone for enrollment and authentication, our system is
still able to accommodate different types of phones.

F. Impact of Passphrase Length

Next, we show how the length of each passphrase affects
the performance of our system. Security professionals usually
suggest to choose a passphrase with more than 5 words so as to
provide a desired security. In the light of this, we classify the
passphrases into three categories according to their lengths:
2 to 4 words, 5 to 7 words, and 8 to 10 words. Figure 15
displays the accuracy of our system with different lengths
of passphrases. We could observe that when increasing the
length of the passphrase, the accuracy slightly improved from
99.25% to 99.41%. This is expected as a longer passphrase
results in more articulatory gestures for differentiating a live
user from an attacker. Moreover, we observe the improvement
is not obvious, since we extract 11-dimensional features from
each phoneme, which suggests that 2 to 4 words passphrases
containing around 10 to 20 phonemes could provide sufficient
information for live user detection.

G. Overall Performance of Text-independent Liveness Detec-
tion

To secure conversational voice assistants and continuous
voice authentication, we build a text-independent liveness
detection solution based on phoneme templates. Figure 16
present the overall accuracy and EER of the text-independent
liveness system. We could observe that, similar to the perfor-
mance of the text-dependent liveness detection, the combined
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features result in the best performance with 97.65% accuracy
and 3.52% EER. Whereas the energy-based features yield
better performance than the frequency-based features, which,
nevertheless, both achieve accuracy around 95%. Comparing
with the text-dependent liveness detection, whose best ac-
curacy is around 99%, our system realize text-independent
liveness detection at a small cost of around 2% accuracy loss.
Such slight degradation is normal as it could protect the whole
conversation from replay attacks.

H. Overall Performance of Medium-range Liveness Detection
on Smart Speakers

With the microphone array on smart speakers and the
beamforming technique, we realize medium-range liveness
detection to support various use cases in IoT environments.
For example, in smartphone use cases, the users may hold their
device within 30cm to themselves. In a smart vehicle, a driver
could activate the auto-drive function by talking with the in-
car Audio System around 50cm away. Whereas in smart home
environments, a user may sit on the couch while interacting
with a smart speaker on the end table locating at a distance
of 100cm. To start the experiment, we connect the UMA-8
to a laptop in an office environment. We ask one participant
to stand in front of the microphone array with distances of
0 cm, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm. The
participant is asked to speak 3 sentences at each distance, and
to repeat each sentence for 10 times. During the experiments,
we use a smartphone (Note5) to emit the 20 kHz probe signal,
and record the reflected probe signal, as well as the voices
with the microphone array at a sampling frequency of 48
kHz. Figure 17 shows the liveness detection accuracies of
our solution on the UMA-8 smart speaker with and without
beamforming. We could observe that when the user is 20 cm
away, the accuracy resulted from single microphone recordings
drops to as low as 89.55%. Moreover, with increasing distance,
the accuracy keeps dropping and jumps to 76.49% at 60 cm,
71.26% at 80 cm, and 41.87% at 100 cm. In comparison, the
beamformed audio recording results in stable high accuracy
above 98% for all test distances.

V. DISCUSSION

Unconventional Loudspeaker. In our work, we have tested
conventional loudspeakers including the standalone speakers,
the built-in speakers of mobile devices, and the earbuds.
Nevertheless, there exists unconventional loudspeakers that do
not relies on the diaphragm movement for sound production.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3199995

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Florida State University. Downloaded on August 19,2022 at 21:40:04 UTC from IEEE Xplore.  Restrictions apply. 



10

For example, a piezoelectric speaker relies on a ceramic disc
that interacts when it feels a certain voltage difference. A
higher signal amplitude VPP (Voltage peak to peak) results
in a larger piezo deformation and leads to a larger volume.
Such a mechanism is fundamentally different from human
speech production system. Another example of unconventional
loudspeaker is the Electrostatic Loudspeaker (ESL), which still
relies on the diaphragm movements for sound production. It is
however, driven by two metal grids or stators instead of voice
coil. As our liveness detection system relies on the movements
of articulators for live user detection. Playing back with such
loudspeakers can still be detected as a replay attack.

Individual Diversity. In our evaluation, we have tested
our system when an attacker mimics the articulatory gesture
of a genuine user by observing how the user pronouncing
the passphrase. We now show how the performance looks
like when an attacker has no prior-knowledge on how the
legitimate user speaks. That is, the attacker use his own way
of pronouncing the passphrase. This case is equipotent to
compare the Doppler shifts of the articulatory gesture between
two people who speak the same passphrase with their own
habitual ways. Figure 18 shows the accuracy comparison. We
observe that we could be able to achieve much higher accuracy
at close to 100%. The result demonstrates that it is relative
easier to capture the individual diversity than that of a mimicry
attack.

Limitations. Our system is evaluated with a limited number
of young and educated subjects. It will be useful to evaluate
the system with a larger number of participants with a more
diverse background to better understand the performance.
Moreover, the system is evaluated only for several months. A
long-term study could be conducted to consider the case that
the individual characteristics is likely to change over lifetime.
Nevertheless, we believe updating user profile periodically
could potentially mitigate such a limitation. At last, the system
expects users to hold smartphones with same placements
and distances for enrollment and authentication. VoiceGesture
leverages smart devices as Doppler radars and compares
Doppler shifts caused by articulatory gestures for liveness
detection. These Doppler shifts are decided by articulatory
gestures’ speeds and directions, and relative locations between
the smart devices and users’ articulators. This limits the sys-
tem’s applicability since it does not support cross-factor usage,
where the user holds the device in one placement/distance for
enrollment and changes to another for authentication.

Other Attacks. The evaluation focuses on defending replay
attacks that are effective and require no expertise from attack-
ers. Recently, researchers propose several new modalities of
attacks on voice authentication systems in recent years. For
example, Zhang et al. modulate malicious voice commands
with inaudible carriers such that only microphones can detect
the commands due to non-linearity [25]. Moreover, a list
of adversarial attacks creates imperceptible malicious voice
commands by adding crafted perturbations to environmental
sounds like music and noises [26]–[30]. Although those attacks
are inaudible or imperceptible to human ears, attackers must
play the malicious voice commands via speakers. Therefore,
VoiceGesture potentially enables to defend both attack modal-

ities since it examines behavioral and physiological features
that only exist in live human users when they speak voice
commands.

VI. RELATED WORK

Biometrics authentication relies on the physiological and/or
behavioral characteristics of a user. The human physiological
characteristics, such as fingerprint [31], facial features [32],
ear canal shapes [33], and toothprint [34] have been widely
used for mobile authentication. Moreover, human behavioral
characteristics, such as voice [35], gait [36], signature [37],
vital signs [38], finger gestures [39], human activities [40],
and user locations [41], have been intensively investigated
as well. Among these biometrics, voice biometrics has been
gaining increasing popularity on smart devices or for mobile
applications.

Although the number of mobile applications that use voice
biometric for authentication is rapidly growing, recent stud-
ies show that voice biometrics is vulnerable to spoofing
attacks [7], [42]. Acoustic feature based methods for attack
detection have wide applicability. For example, Zhou and Liu
detect replay attacks by analyzing acoustic parameters that
reflect audio recordings’ overall quality [43]. Nevertheless,
such methods pose limited effectiveness if the attackers record
and replay the voices with advanced audio hardware in quiet
acoustic environments [44]. Current commercial voice authen-
tication system like VoiceVault and Nuance, mostly rely on
the challenge-response based methods to detect replay attacks.
Such methods however require explicit user cooperation in
addition to standard voice authentication process, which could
be cumbersome. Many smartphone based solutions require the
user to hold or move the phone in some predefined manners.
For example, Zhang et al. measure the phonemes’ time-
difference-of-arrival (TDoA) dynamics to the two microphones
of the phone when a live user speaks for liveness detection
[9]. Though effective, it necessitate the users to hold the
smartphone in front of their mouths. Moreover, many liveness
detection solutions are only effective when the user and the
device are in close proximity. For instance, Wang et al. [10]
require the users to hold the phone close to their mouth
and detect the human speakers’ featured breathing sounds for
liveness detection. Whereas Shang et al. [11] and Wang et
al. [45] ask the users to hold the smartphone against their
throats and chests to examine the throat vibrations and heart
beats respectively for liveness detection. Furthermore, some
researchers resort to extra devices for liveness detection. One
example is the WiVo system that quantifies the Wi-Fi signals’
CSI (Channel State Information) changes caused by mouth
motions [12]. Similarly, REVOLT uses Wi-Fi to measure the
breathing rate [13], whereas VocalPrint employs mmWave
to sense vocal vibrations [15]. Besides, VAuth collects body
vibrations with wearable sensors for liveness detection [14].
2MA asks the users to prove their presence with similar
recordings collected from multiple devices carried or close
to the user [46]. Yan et al. require two spaced microphones
to measure the field prints. The effectiveness of this method
could be largely affected by the size of the device (distance
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between the microphones) [47]. Recently, Meng et al. leverage
the circular layout of microphone array on smart speakers
to differentiate sound propagation features of live users and
speakers for liveness detection [48]. This method does not
work for smart devices without microphone arrays. Moreover,
Zhao et al. leverage various sensing channels, including in-
audible sound, RFID, and Wi-Fi, and introduce random noises
to these sensing signals to enhance mouth movement sensing-
based liveness detection [49]. This system could be disturbed
by environmental noises.

In contrast, our system is transparent to users and covers
more user cases as it works when holding the phones either
to the user’s ears or in front of their mouths. Moreover, our
system is less susceptible to environmental noises as it senses
articulatory gestures by actively emitting high frequency sound
waves (which could be easily separated from noises) as oppose
to passively listen to the voices that mixed with background
noises in VoiceLive.

VII. CONCLUSIONS

In this paper, we proposed a voice liveness detection system
requiring only a speaker and a microphone that are com-
monly available on smart devices. Our system, VoiceGesture,
is practical as no cumbersome operations are required be-
sides the conventional voice authentication process. Once it
is integrated with voice authentication system, the liveness
detection is transparent to the users. VoiceGesture performs
liveness detection by extracting Doppler shift features caused
by the articulatory gesture when a user speaks. Extensive
experimental evaluation demonstrates the effectiveness of our
system under various conditions, such as with different device
types, placements and sampling rates. Moreover, VoiceGesture
supports medium range liveness detection in various smart
speaker use cases in smart homes and smart vehicles. Overall,
VoiceGesture can achieve over 99% accuracy, with the EER
at around 1% for text-dependent liveness detection, whereas
around 98% accuracy and 3% EER for text-independent live-
ness detection.
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