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Abstract. We give a new proof of l2 decoupling for the parabola inspired

from efficient congruencing. Making quantitative this proof matches a bound

obtained by Bourgain for the discrete restriction problem for the parabola.
We illustrate similarities and differences between this new proof and efficient

congruencing and the proof of decoupling by Bourgain and Demeter. We
also show where tools from decoupling such as l2L2 decoupling, Bernstein’s

inequality, and ball inflation come into play.

1. Introduction

For an interval J Ă r0, 1s and g : r0, 1s Ñ C, we define

pEJgqpxq :“
ż

J

gpξqepξx1 ` ξ2x2q dξ

where epaq :“ e2πia. For an interval I, let PℓpIq be the partition of I into intervals
of length ℓ. By writing PℓpIq, we are assuming that |I|{ℓ P N. We will also similarly
define PℓpBq for squares B in R2. Next if B “ Bpc,Rq is a square in R2 centered
at c of side length R, let

wBpxq :“ p1`
|x´ c|

R
q´100. (1)

We will always assume that our squares have sides parallel to the x and y-axis. We
observe that 1B ď 2100wB . For a function w, we define

}f}Lppwq :“ p

ż

R2

|fpxq|pwpxq dxq1{p.

For δ P N´1 “ tn´1 : n P Nu, let Dpδq be the best constant such that

}Er0,1sg}L6pBq ď Dpδqp
ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2 (2)

for all g : r0, 1s Ñ C and all squares B in R2 of side length δ´2. Let Dppδq be
the decoupling constant where the L6 in (2) is replaced with Lp. Since 1B À wB ,
the triangle inequality combined with the Cauchy-Schwarz inequality shows that
Dppδq Àp δ

´1{2 for all 1 ď p ď 8. The l2 decoupling theorem for the paraboloid
proven by Bourgain and Demeter in [4] implies that for the parabola we have
Dppδq Àε δ

´ε for 2 ď p ď 6 and this range of p is sharp.
Decoupling-type inequalities were first studied by Wolff in [24]. Following the

proof of l2 decoupling for the paraboloid by Bourgain and Demeter in [4], decou-
pling inequalities for various curves and surfaces have found many applications to
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analytic number theory (see for example [2, 3, 5, 7, 8, 10, 11, 14, 15, 17]). Most no-
tably is the proof of Vinogradov’s mean value theorem by Bourgain-Demeter-Guth
using decoupling for the moment curve t ÞÑ pt, t2, . . . , tnq in [8]. Wooley in [26]
was also able to prove Vinogradov’s mean value theorem using his nested efficient
congruencing method.

This paper probes the connections between efficient congruencing and l2 decou-
pling in the simplest case of the parabola. For a slightly different interpretation of
the relation between efficient congruencing and decoupling for the cubic moment
curve inspired from [16], see [12]. See also [13] for an interpretation of [26] in
the decoupling language which provides an alternative proof of decoupling for the
moment curve in Rd different from the proof in [8].

Our proof of l2 decoupling for the parabola is inspired by the exposition of
Wooley’s efficient congruencing in Pierce’s Bourbaki seminar exposition [21, Section
4]. This proof will give the following result.

Theorem 1.1. For δ P N´1 such that 0 ă δ ă e´200200 , we have

Dpδq ď expp30
log 1

δ

log log 1
δ

q.

In the context of discrete Fourier restriction, Theorem 1.1 implies that for all N
sufficiently large and arbitrary sequence tanu Ă l2, we have

}
ÿ

|n|ďN

ane
2πipnx`n2tq}L6pT2q À exppOp

logN

log logN
qqp

ÿ

|n|ďN

|an|
2q1{2

which rederives (up to constants) the upper bound obtained by Bourgain in [1,
Proposition 2.36] but without resorting to use of a divisor bound. It is an open

problem whether the exppOp
logN

log logN qq can be improved.

1.1. More notation and weight functions. We define

}f}Lp
#pBq :“ p

1

|B|

ż

B

|fpxq|p dxq1{p, }f}Lp
#pwBq :“ p

1

|B|

ż

|f |pwBq
1{p,

and given a collection C of squares, we let

Avg
∆PC

fp∆q :“
1

|C|
ÿ

∆PC
fp∆q.

Finally we will let η be a Schwartz function such that η ě 1Bp0,1q and suppppηq Ă

Bp0, 1q. For B “ Bpc,Rq we also define ηBpxq :“ ηpx´c
R q. In Section 2 we care

about explicit constants and so we will use the explicit η constructed in Corollary
6.7. In particular, for this η, ηB ď 102400wB . For the remaining sections in this
paper, we will ignore this constant. The most important facts about wB we will
need are that

wBp0,Rq ˚ wBp0,Rq À R2wBp0,Rq

and
1Bp0,Rq ˚ wBp0,Rq Á R2wBp0,Rq

from which we can derive all the other properties about weights we will use such
as given a partition t∆u of B,

ř

∆ w∆ À wB and

}f}pLppwBp0,Rqq
À

ż

R2

}f}p
Lp

#pBpy,Rqq
wBp0,Rqpyq dy.
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We refer the reader to [6, Section 4] and [19, Section 2.2] for some useful details and
properties of the weights wB and ηB . To keep the paper relatively self contained,
we have also included proofs of these estimates in Section 6 with explicit constants.

1.2. Outline of proof of Theorem 1.1. Our argument is inspired by the discus-
sion of efficient congruencing in [21, Section 4] which in turn is based off Heath-
Brown’s simplification [16] of Wooley’s proof of the cubic case of Vinogradov’s mean
value theorem [25].

Our first step, much like the first step in both efficient congruencing and decou-
pling for the parabola, is to bilinearize the problem. Throughout we will assume
δ´1 P N and ν P N´1 X p0, 1{100q.

Fix arbitrary integers a, b ě 1. Suppose δ and ν were such that νaδ´1, νbδ´1 P N.
This implies that δ ď minpνa, νbq and the requirement that νmaxpa,bqδ´1 P N is
equivalent to having νaδ´1, νbδ´1 P N. For this δ and ν, let Ma,bpδ, νq be the best
constant such that

ż

B

|EIg|2|EI1g|4 ďMa,bpδ, νq
6p

ÿ

JPPδpIq

}EJg}2L6pwBqqp
ÿ

J 1PPδpI1q

}EJ 1g}2L6pwBqq
2 (3)

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all intervals I P Pνapr0, 1sq,
I 1 P Pνbpr0, 1sq with dpI, I 1q ě 3ν. We will say that such I and I 1 are 3ν-separated.
Applying Hölder’s inequality followed by the triangle inequality and the Cauchy-
Schwarz inequality shows that Ma,bpδ, νq is finite. This is not the only bilinear
decoupling constant we can use (see (28) and (32) in Sections 4 and 5, respectively),
but in this outline we will use (3) because it is closest to the one used in [21] and
the one we will use in Section 2.

Our proof of Theorem 1.1 is broken into the following four lemmas. We state
them below ignoring explicit constants for now.

Lemma 1.2 (Parabolic rescaling). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1.
Let I be an arbitrary interval in r0, 1s of length σ. Then

}EIg}L6pBq À Dp
δ

σ
qp

ÿ

JPPδpIq

}EJg}2L6pwBqq
1{2

for every g : r0, 1s Ñ C and every square B of side length δ´2.

Lemma 1.3 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M1,1pδ, νq.

Lemma 1.4. Let a and b be integers such that 1 ď a ď 2b. Suppose δ and ν were
such that ν2bδ´1 P N. Then

Ma,bpδ, νq À ν´1{6M2b,bpδ, νq.

Lemma 1.5. Suppose b is an integer and δ and ν were such that ν2bδ´1 P N. Then

M2b,bpδ, νq ÀMb,2bpδ, νq
1{2Dp

δ

νb
q1{2.

Applying Lemma 1.4, we can move from M1,1 to M2,1 and then Lemma 1.5
allows us to move from M2,1 to M1,2 at the cost of a square root of Dpδ{νq. Ap-
plying Lemma 1.4 again moves us to M2,4. Repeating this we can eventually reach
M2N´1,2N paying some Op1q power of ν´1 and the value of the linear decoupling
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constants at various scales. This combined with Lemma 1.3 and the choice of
ν “ δ1{2

N

leads to the following result.

Lemma 1.6. Let N P N and suppose δ was such that δ´1{2N P N and 0 ă δ ă

100´2N . Then

Dpδq À Dpδ1´
1

2N q ` δ´
4

3¨2N Dpδ1{2q
1

3¨2N

N´1
ź

j“0

Dpδ1´
1

2N´j q
1

2j`1 .

This then gives a recursion which shows that Dpδq Àε δ
´ε (see Section 2.3 for

more details).
The proof of Lemma 1.2 is essentially a change of variables and applying the def-

inition of the linear decoupling constant (some small technical issues arise because
of the weight wB , see [19, Section 2.4]). The idea is that a cap on the paraboloid
can be stretched to the whole paraboloid without changing any geometric prop-
erties. The bilinear reduction Lemma 1.3 follows from Hölder’s inequality. The
argument we use is from Tao’s exposition on the Bourgain-Demeter-Guth proof
of Vinogradov’s mean value theorem [22]. In general dimension, the multilinear
reduction follows from a Bourgain-Guth argument (see [9] and [6, Section 8]). We
note that if a and b are so large that νa, νb « δ then Ma,b « Op1q and so the goal
of the iteration is to efficiently move from small a and b to very large a and b.

Lemma 1.4 is the most technical of the four lemmas and is where we use a
Fefferman-Cordoba argument in Section 2. We can still close the iteration with
Lemma 1.4 replaced by Ma,b À Mb,b for 1 ď a ă b and Mb,b À ν´1{6M2b,b. Both
these estimates come from the same proof of Lemma 1.4 and is how we approach the
iteration in Sections 3 and 4 (see Lemmas 3.3 and 3.5 and their rigorous counterparts
Lemmas 4.7 and 4.8). The proof of these lemmas is a consequence of l2L2 decoupling
and ball inflation. Finally, Lemma 1.5 is an application of Hölder’s inequality and
parabolic rescaling.

1.3. Comparison with efficient congruencing as in [21, Section 4]. The main
object of iteration in [21, Section 4] is the following bilinear object

I1pX; a, bq

“ max
ξ‰η pmod pq

ż

p0,1sk
|

ÿ

1ďxďX
x”ξ pmod paq

epα1x` α2x
2q|2|

ÿ

1ďyďX
y”η pmod paq

epα1y ` α2y
2q|4 dα.

Lemma 1.2-1.5 correspond directly to Lemmas 4.2-4.5 of [21, Section 4]. The ob-
servation that Lemmas 4.2 and 4.3 of [21] correspond to parabolic rescaling and
bilinear reduction, respectively was already observed by Pierce in [21, Section 8].

We think of p as ν´1, JpXq{X3 as Dpδq, and pa`2bI1pX; a, bq{X3 as Ma,bpδ, νq
6.

We have the expressions JpXq{X3 and pa`2bI1pX; a, bq{X3 because heuristically
assuming square root cancellation (ignoring Xε powers) we expect JpXq « X3 and
I1pX; a, bq « X3{pa`2b. This heuristic explains why

I1pX; a, bq ď p2b´aI1pX; 2b, bq

from [21, Lemma 4.4] becomes (essentially, after ignoring the ν´1 « δ´ε)

Ma,bpδ, νq
6 ÀM2b,bpδ, νq

6.

In the definition of I1, the maxξ‰η pmod pq condition can be thought of as corre-
sponding to the transversality condition that I1 and I2 are ν-separated intervals of
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length ν. The integral over p0, 1s2 corresponds to an integral over B. Finally the
expression

|
ÿ

1ďxďX
x”ξ pmod paq

epα1x` α2x
2q|,

can be thought of as corresponding to |EIg| for I an interval of length νa and so
the whole of I1pX; a, bq can be thought of as

ş

B
|EI1g|2|EI2g|4 where ℓpI1q “ νa and

ℓpI2q “ νb with I1 and I2 are Opνq-separated. This will be our interpretation in
Section 2.

Interpreting the proof of Lemma 1.4 using the uncertainty principle, we reinter-
pret I1pX; a, bq as (ignoring weight functions)

Avg
∆PP

ν´maxpa,bq pBq

}EIg}2L2
#p∆q}EI1g}4L4

#p∆q (4)

where I and I 1 are length νa and νb, respectively and are ν-separated. The uncer-
tainty principle says that (4) is essentially equal to 1

|B|

ş

B
|EIg|2|EI1g|4.

Finally in Section 5 we replace (4) with

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb pIq

}EJg}2L2
#p∆qqp

ÿ

J 1PP
νb pI1q

}EJ 1g}2L2
#p∆qq

2

where I and I 1 are length ν and ν-separated. Note that when b “ 1 this then is
exactly equal to 1

|B|

ş

B
|EIg|2|EI1g|4. The interpretation given above is now similar

to the Ap object studied by Bourgain-Demeter in [6].

1.4. Overview. Theorem 1.1 will be proved in Section 2 via a Fefferman-Cordoba
argument. This argument does not generalize to proving that Dppδq Àε δ

´ε except
for p “ 4, 6. However in Section 3, by the uncertainty principle we reinterpret a key
lemma from Section 2 (Lemma 2.7) which allows us to generalize the argument in
Section 2 so that it can work for all 2 ď p ď 6. We make this completely rigorous in
Section 4 by defining a slightly different (but morally equivalent) bilinear decoupling
constant. A basic version of the ball inflation inequality similar to that used in [6,
Theorem 9.2] and [8, Theorem 6.6] makes an appearance. Finally in Section 5,
we reinterpret the argument made in Section 4 and write an argument that is
more like that given in [6]. We create a 1-parameter family of bilinear constants
which in some sense “interpolate” between the Bourgain-Demeter argument and
our argument here.

The three arguments in Sections 2-5 are similar but will use slightly different
bilinear decoupling constants. We will only mention explicit constants in Section 2.
In Sections 4 and 5, for simplicity, we will only prove that Dpδq Àε δ

´ε. Because
the structure of the iteration in Sections 4 and 5 is the same as that in Section 2,
we obtain essentially the same quantitative bounds as in Theorem 1.1 when making
explicit the bounds in Sections 4 and 5.

Finally, in Section 6, we include some discussion on the explicit constants for
various estimates that we need for the proof of Theorem 1.1.

Acknowledgements. The author would like to thank Ciprian Demeter, Larry Guth,
and his advisor Terence Tao for encouragement and many discussions on decoupling.
The author would also like to thank Kevin Hughes and Trevor Wooley for a fruitful
discussion on efficient congruencing at the Harmonic Analysis and Related Areas
conference held by the Clay Math Institute at the University of Oxford in September
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2017. The author is partially supported by NSF grants DGE-1144087 and DMS-
1266164. Finally the author would like to thank the referee for detailed comments
and suggestions.

2. Proof of Theorem 1.1

We recall the definition of the bilinear decoupling constant Ma,b as in (3). The
arguments in this section will rely strongly on the fact that the exponents in the
definition of Ma,b are 2 and 4, though we will only essentially use this in Lemma
2.7.

Given two expressions x1 and x2, let

geom2,4 xi :“ x
2{6
1 x

4{6
2 .

Hölder’s inequality gives } geom2,4 xi}p ď geom2,4 }xi}p.

2.1. Parabolic rescaling and consequences. The linear decoupling constant
Dpδq obeys the following important property.

Lemma 2.1 (Parabolic rescaling). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1.
Let I be an arbitrary interval in r0, 1s of length σ. Then

}EIg}L6pBq ď 1016000Dp
δ

σ
qp

ÿ

JPPδpIq

}EJg}2L6pwBqq
1{2

for every g : r0, 1s Ñ C and every square B of side length δ´2.

Proof. The proof without explicit constants is standard, see [6, Proposition 7.1] or
[20, Lemma 3.2]. The derivation of the constant 1016000 is given later in Section
6.3 (and a similar proof can also be found in [19, Section 2.4], see also that section
for a minor clarification of parabolic rescaling with weight wB and the argument in
[6, Proposition 7.1]). �

As an immediate application of parabolic rescaling we have almost multiplica-
tivity of the decoupling constant.

Lemma 2.2 (Almost multiplicativity). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P

N´1, then
Dpδq ď 1020000DpσqDpδ{σq.

Proof. From the definition of Dpσq, we have

}Er0,1sg}L6pBq ď Dpσqp
ÿ

JPPσpr0,1sq

}EJg}2L6pwBqq
1{2.

For each J P Pσpr0, 1sq, combining Lemma 2.1 with Corollary 6.5 gives

}EJg}L6pwBq ď 8100{61016000Dp
δ

σ
qp

ÿ

J 1PPδpJq

}EJ 1g}2L6pwBqq
1{2.

�
The trivial bound of Opνpa`2bq{6δ´1{2q forMa,bpδ, νq is too weak for applications.

We instead give another trivial bound that follows from parabolic rescaling.

Lemma 2.3. If δ and ν were such that νaδ´1, νbδ´1 P N, then

Ma,bpδ, νq ď 1020000Dp
δ

νa
q1{3Dp

δ

νb
q2{3.
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Proof. Fix arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are 3ν-separated.
Hölder’s inequality gives that

} geom2,4 |EIig|}6L6pBq ď }EI1g}2L6pBq}EI2g}
4
L6pBq.

Parabolic rescaling bounds this by

10120000Dp
δ

νa
q2Dp

δ

νb
q4p

ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2.

Taking sixth roots then completes the proof of Lemma 2.3. �

Hölder’s inequality and parabolic rescaling allows us to interchange the a and b
in Ma,b.

Lemma 2.4. Suppose b ě 1 and δ and ν were such that ν2bδ´1 P N. Then

M2b,bpδ, νq ď 1010000Mb,2bpδ, νq
1{2Dpδ{νbq1{2.

Proof. Fix arbitrary I1 and I2 intervals of lengths ν2b and νb, respectively which
are 3ν-separated. Hölder’s inequality then gives

}|EI1g|1{3|EI2g|2{3}6L6pBq ď p

ż

B

|EI1g|4|EI2g|2q1{2p
ż

B

|EI2g|6q1{2.

Applying the definition of Mb,2b and parabolic rescaling bounds the above by

p1020000q3Mb,2bpδ, νq
3Dp

δ

νb
q3p

ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2

which completes the proof of Lemma 2.4. �

Lemma 2.5 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq ď 1030000pDp
δ

ν
q ` ν´1M1,1pδ, νqq.

Proof. Let tIiu
ν´1

i“1 “ Pνpr0, 1sq. We have

}Er0,1sg}L6pBq “ }
ÿ

1ďiďν´1

EIig}L6pBq ď }
ÿ

1ďi,jďν´1

|EIig||EIjg|}
1{2
L3pBq

ď
?
2

ˆ

}
ÿ

1ďi,jďν´1

|i´j|ď3

|EIig||EIjg|}
1{2
L3pBq

` }
ÿ

1ďi,jďν´1

|i´j|ą3

|EIig||EIjg|}
1{2
L3pBq

˙

.

(5)

We first consider the diagonal terms. The triangle inequality followed by the
Cauchy-Schwarz inequality gives that

}
ÿ

1ďi,jďν´1

|i´j|ď3

|EIig||EIjg|}L3pBq ď
ÿ

1ďi,jďν´1

|i´j|ď3

}EIig}L6pBq}EIjg}L6pBq.
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Parabolic rescaling and the Cauchy-Schwarz inequality bounds this by

1040000Dp
δ

ν
q2

ÿ

1ďi,jďν´1

|i´j|ď3

p
ÿ

JPPδpIiq

}EJg}2L6pwBqq
1{2p

ÿ

JPPδpIjq

}EJg}2L6pwBqq
1{2

ď 1040010Dp
δ

ν
q2

ÿ

JPPδpr0,1sq

}EJg}2L6pwBq.

Therefore the first term in (5) is bounded above by

1030000Dp
δ

ν
qp

ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2. (6)

Next we consider the off-diagonal terms. We have

}
ÿ

1ďi,jďν´1

|i´j|ą3

|EIig||EIjg|}
1{2
L3pBq

ď ν´1 max
1ďi,jďν´1

|i´j|ą3

}|EIig||EIjg|}
1{2
L3pBq

Hölder’s inequality gives that

}|EIig||EIjg|}
1{2
L3pBq

ď }|EIig|1{3|EIjg|2{3}
1{2
L6pBq

}|EIig|2{3|EIjg|1{3}
1{2
L6pBq

(7)

and therefore from (3) (and using that νδ´1 P N), the second term in (5) is bounded
by

?
2ν´1M1,1pδ, νqp

ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2.

Combining this with (6) and applying the definition of Dpδq then completes the
proof of Lemma 2.5. �

2.2. A Fefferman-Cordoba argument. In the proof of Lemma 2.7 we need a
version of Ma,b with both sides being L6pwBq. The following lemma shows that
these two constants are equivalent.

Lemma 2.6. Suppose δ and ν were such that νaδ´1, νbδ´1 P N. Let M 1
a,bpδ, νq be

the best constant such that
ż

|EIg|2|EI1g|4wB ďM 1
a,bpδ, νq

6p
ÿ

JPPδpIq

}EJg}2L6pwBqqp
ÿ

J 1PPδpI1q

}EJ 1g}2L6pwBqq
2

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all 3ν-separated intervals
I P Pνapr0, 1sq and I 1 P Pνbpr0, 1sq. Then

M 1
a,bpδ, νq ď 12100{6Ma,bpδ, νq.

Remark 1. Since 1B À wB , we find Ma,bpδ, νq À M 1
a,bpδ, νq and hence Lemma 2.6

implies Ma,b „M 1
a,b.

Proof. Fix arbitrary 3ν-separated intervals I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. It
suffices to assume that B is centered at the origin.

Corollary 6.4 gives

} geom2,4 |EIig|}6L6pwBq ď 3100
ż

R2

} geom2,4 |EIig|}6L6
#pBpy,δ´2qqwBpyq dy.



AN l2 DECOUPLING INTERPRETATION OF EFFICIENT CONGRUENCING 9

Unraveling the definition of L6
# and applying the definition of Ma,b gives that the

above is

ď 3100δ4Ma,bpδ, νq
6

ż

R2

geom2,4p
ÿ

JPPδpIiq

}EJg}2L6pwBpy,δ´2qq
q3wBpyq dy

ď 3100δ4Ma,bpδ, νq
6 geom2,4

ż

R2

p
ÿ

JPPδpIiq

}EJg}2L6pwBpy,δ´2qq
q

1
2 ¨6wBpyq dy

ď 3100δ4Ma,bpδ, νq
6 geom2,4p

ÿ

JPPδpIiq

p

ż

R2

}EJg}6L6pwBpy,δ´2qq
wBpyq dyq

1{3q3

where the second inequality is by Hölder’s inequality and the third inequality is by
Minkowski. Since B is centered at the origin, wB ˚ wB ď 4100δ´4wB (Lemma 6.2)
and hence

δ4
ż

R2

}EJg}6L6pwBpy,δ´2qq
wBpyq dy ď 4100}EJg}6L6pwBq.

This then immediately implies that M 1
a,bpδ, νq ď 12100{6Ma,bpδ, νq which completes

the proof of Lemma 2.6. �

We have the following key technical lemma of this paper. We encourage the
reader to compare the argument with that of [21, Lemma 4.4].

Lemma 2.7. Let a and b be integers such that 1 ď a ď 2b. Suppose δ and ν was
such that ν2bδ´1 P N. Then

Ma,bpδ, νq ď 101000ν´1{6M2b,bpδ, νq.

Proof. It suffices to assume that B is centered at the origin with side length δ´2.
The integrality conditions on δ and ν imply that δ ď ν2b and νaδ´1, νbδ´1 P N. Fix
arbitrary intervals I1 “ rα, α ` νas P Pνapr0, 1sq and I2 “ rβ, β ` νbs P Pνbpr0, 1sq
which are 3ν-separated.

Let gβpxq :“ gpx ` βq, Tβ “ p 1 2β
0 1

q, and d :“ α ´ β. Shifting I2 to r0, νbs gives
that

ż

B

|pEI1gqpxq|2|pEI2gqpxq|4 dx “

ż

B

|pErd,d`νasgβqpTβxq|
2|pEr0,νbsgβqpTβxq|

4 dx

“

ż

TβpBq

|pErd,d`νasgβqpxq|
2|pEr0,νbsgβqpxq|

4 dx. (8)

Note that d can be negative; however since g : r0, 1s Ñ C and d “ α´β, Erd,d`νasgβ
is defined. Since |β| ď 1, TβpBq Ă 100B. Combining this with 1100B ď η100B gives
that (8) is

ď

ż

R2

|pErd,d`νasgβqpxq|
2|pEr0,νbsgβqpxq|

4η100Bpxq dx

“
ÿ

J1,J2PPν2b prd,d`νasq

ż

R2

pEJ1
gβqpxqpEJ2

gβqpxq|pEr0,νbsgβqpxq|
4η100Bpxq dx. (9)

We claim that if dpJ1, J2q ą 10ν2b´1, the integral in (9) is equal to 0.
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Suppose J1, J2 P Pν2bprd, d` νasq such that dpJ1, J2q ą 10ν2b´1. Expanding the
integral in (9) for this pair of J1, J2 gives that it is equal to

ż

R2

ˆ
ż

J1ˆr0,νbs2ˆJ2ˆr0,νbs2

3
ź

i“1

gβpξiqgβpξi`3qep¨ ¨ ¨ q
6

ź

i“1

dξi

˙

η100Bpxq dx (10)

where the expression inside the ep¨ ¨ ¨ q is

ppξ1 ´ ξ4qx1 ` pξ21 ´ ξ24qx2q ` ppξ2 ` ξ3 ´ ξ5 ´ ξ6qx1 ` pξ22 ` ξ23 ´ ξ25 ´ ξ26qx2q.

Interchanging the integrals in ξ and x shows that the integral in x is equal to the
inverse Fourier transform of η100B evaluated at

p

3
ÿ

i“1

pξi ´ ξi`3q,
3

ÿ

i“1

pξ2i ´ ξ2i`3qq.

Since the inverse Fourier transform of η100B is supported in Bp0, δ2{100q, (10) is
equal to 0 unless

|

3
ÿ

i“1

pξi ´ ξi`3q| ď δ2{200

|

3
ÿ

i“1

pξ2i ´ ξ2i`3q| ď δ2{200. (11)

Since δ ď ν2b and ξi P r0, νbs for i “ 2, 3, 5, 6, (11) implies

|ξ1 ´ ξ4||ξ1 ` ξ4| “ |ξ21 ´ ξ24 | ď 5ν2b. (12)

Since I1, I2 are 3ν-separated, |d| ě 3ν. Recall that ξ1 P J1, ξ4 P J2 and J1, J2 are
subsets of rd, d` νas. Write ξ1 “ d` r and ξ4 “ d` s with r, s P r0, νas. Then

|ξ1 ` ξ4| “ |2d` pr ` sq| ě 6ν ´ |r ` s| ě 6ν ´ 2νa ě 4ν. (13)

Since dpJ1, J2q ą 10ν2b´1, |ξ1 ´ ξ4| ą 10ν2b´1. Therefore the left hand side of
(12) is ą 40ν2b, a contradiction. Thus the integral in (9) is equal to 0 when
dpJ1, J2q ą 10ν2b´1.

The above analysis implies that (9) is

ď
ÿ

J1,J2PPν2b prd,d`νasq

dpJ1,J2qď10ν2b´1

ż

R2

|pEJ1
gβqpxq||pEJ2

gβqpxq||pEr0,νbsgβqpxq|
4η100Bpxq dx.

Undoing the change of variables as in (8) gives that the above is equal to

ÿ

J1,J2PPν2b pI1q

dpJ1,J2qď10ν2b´1

ż

R2

|pEJ1
gqpxq||pEJ2

gqpxq||pEI2gqpxq|4η100BpTβxq dx. (14)

Observe that

η100BpTβxq ď 102400w100BpTβxq ď 102600w100Bpxq ď 102800wBpxq

where the second inequality is an application of Lemma 6.1 and the last inequal-
ity is because wBpxq

´1w100Bpxq ď 10200. An application of the Cauchy-Schwarz
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inequality shows that (14) is

ď 102800
ÿ

J1,J2PPν2b pI1q

dpJ1,J2qď10ν2b´1

p

ż

R2

|EJ1g|
2|EI2g|4wBq

1{2p

ż

R2

|EJ2g|
2|EI2g|4wBq

1{2.

Note that for each J1 P Pν2bpI1q, there are ď 10000ν´1 intervals J2 P Pν2bpI1q such
that dpJ1, J2q ď 10ν2b´1. Thus two applications of the Cauchy-Schwarz inequality
bounds the above by

102802ν´1{2p
ÿ

J1PPν2b pI1q

ż

R2

|EJ1g|
2|EI2g|4wBq

1{2ˆ

p
ÿ

J1PPν2b pI1q

ÿ

J2PPν2b pI2q

dpJ1,J2qď10ν2b´1

ż

R2

|EJ2
g|2|EI2g|4wBq

1{2.

Since there are ď 10000ν´1 relevant J2 for each J1, the above is

ď 103000ν´1
ÿ

JPP
ν2b pI1q

ż

R2

|EJg|2|EI2g|4wB

ď 10300012100ν´1M2b,bpδ, νq
6p

ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2

where the last inequality is an application of Lemma 2.6. This completes the proof
of Lemma 2.7. �

Iterating Lemmas 2.4 and 2.7 repeatedly gives the following estimate.

Lemma 2.8. Let N P N and suppose δ and ν were such that ν2
N

δ´1 P N. Then

M1,1pδ, νq ď 1060000ν´1{3Dp
δ

ν2N´1 q
1

3¨2N Dp
δ

ν2N
q

2

3¨2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2

j`1

.

Proof. Lemmas 2.4 and 2.7 imply that if 1 ď a ď 2b and δ and ν were such that
ν2bδ´1 P N, then

Ma,bpδ, νq ď 1020000ν´1{6Mb,2bpδ, νq
1{2Dp

δ

νb
q1{2. (15)

Since ν2
N

δ´1 P N, νiδ´1 P N for i “ 0, 1, 2, . . . , 2N . Applying (15) repeatedly
gives

M1,1pδ, νq ď 1040000ν´1{3M2N´1,2N pδ, νq
1

2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2

j`1

.

Bounding M2N´1,2N using Lemma 2.3 then completes the proof of Lemma 2.8. �

Remark 2. A similar analysis as in (11)-(13) shows that if 1 ď a ă b and δ and ν
were such that νbδ´1 P N, then Ma,bpδ, νq À Mb,bpδ, νq. Though we do not iterate
this way in this section, it is enough to close the iteration with Ma,b À Mb,b for

1 ď a ă b, and Mb,b À ν´1{6M2b,b, and Lemma 2.4. We interpret the iteration and
in particular Lemma 2.7 this way in Sections 3-5.
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2.3. The Oεpδ
´εq bound. Combining Lemma 2.8 with Lemma 2.5 gives the fol-

lowing.

Corollary 2.9. Let N P N and suppose δ and ν were such that ν2
N

δ´1 P N. Then

Dpδq ď 1010
5

ˆ

Dp
δ

ν
q ` ν´4{3Dp

δ

ν2N´1 q
1

3¨2N Dp
δ

ν2N
q

2

3¨2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2

j`1

˙

Choosing ν “ δ1{2
N

in Corollary 2.9 and requiring that ν “ δ1{2
N

P N´1 X

p0, 1{100q gives the following result.

Corollary 2.10. Let N P N and suppose δ was such that δ´1{2N P N and δ ă

100´2N . Then

Dpδq ď 1010
5

ˆ

Dpδ1´
1

2N q ` δ´
4

3¨2N Dpδ1{2q
1

3¨2N

N´1
ź

j“0

Dpδ1´
1

2N´j q
1

2j`1

˙

.

Corollary 2.10 allows us to conclude that Dpδq Àε δ
´ε. To see this, the trivial

bounds for Dpδq are 1 À Dpδq À δ´1{2 for all δ P N´1. Let λ be the smallest
real number such that Dpδq Àε δ

´λ´ε for all δ P N´1. From the trivial bounds,
λ P r0, 1{2s. We claim that λ “ 0. Suppose λ ą 0.

Choose N to be an integer such that

5

6
`
N

2
´

4

3λ
ě 1. (16)

Then by Corollary 2.10, for δ´1{2N P N with δ ă 100´2N ,

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´
4

3¨2N
´ λ

6¨2N
´

řN´1
j“0 p1´ 1

2N´j q
λ

2j`1 ´ε

Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´p 5
6`

N
2 ´ 4

3λ q 1

2N
q´ε

Àε δ
´λp1´ 1

2N
q´ε

where in the last inequality we have used (16). Applying almost multiplicativity of
the linear decoupling constant (similar to [19, Section 2.10] or the proof of Lemma
2.12 later) then shows that for all δ P N´1,

Dpδq ÀN,ε δ
´λp1´ 1

2N
q´ε.

This then contradicts minimality of λ. Therefore λ “ 0 and thus we have shown
that Dpδq Àε δ

´ε for all δ P N´1.

2.4. An explicit bound. Having shown that Dpδq Àε δ´ε, we now make this
dependence on ε explicit. Fix arbitrary 0 ă ε ă 1{100. Then Dpδq ď Cεδ

´ε for all
δ P N´1.

Lemma 2.11. Fix arbitrary 0 ă ε ă 1{100 and suppose Dpδq ď Cεδ
´ε for all

δ P N´1. Let integer N ě 1 be such that

5

6
`
N

2
´

4

3ε
ą 0.

Then for δ such that δ´1{2N P N and δ ă 100´2N , we have

Dpδq ď 2 ¨ 1010
5

C
1´ ε

2N
ε δ´ε.



AN l2 DECOUPLING INTERPRETATION OF EFFICIENT CONGRUENCING 13

Proof. Inserting Dpδq ď Cεδ
´ε into Corollary 2.10 gives that for all integers N ě 1

and δ such that δ´1{2N P N, δ ă 100´2N , we have

Dpδq ď 1010
5

pCεδ
ε

2N ` C
1´ 2

3¨2N
ε δ

ε

2N
p 5
6`

N
2 ´ 4

3ε qqδ´ε.

Thus by our choice of N ,

Dpδq ď 1010
5

pCεδ
ε

2N ` C
1´ 2

3¨2N
ε qδ´ε. (17)

There are two possibilities. If δ ă C´1
ε , then since 0 ă ε ă 1{100, (17) becomes

Dpδq ď 1010
5

pC
1´ ε

2N
ε ` C

1´ 2

3¨2N
ε qδ´ε ď 2 ¨ 1010

5

C
1´ ε

2N
ε δ´ε. (18)

On the other hand if δ ě C´1
ε , the trivial bound gives

Dpδq ď 2100{6δ´1{2 ď 2100{6C1{2
ε

which is bounded above by the right hand side of (18). This completes the proof
of Lemma 2.11. �

Note that Lemma 2.11 is only true for δ satisfying δ´1{2N P N and δ ă 100´2N .
We now use almost multiplicativity to upgrade the result of Lemma 2.11 to all
δ P N´1.

Lemma 2.12. Fix arbitrary 0 ă ε ă 1{100 and suppose Dpδq ď Cεδ
´ε for all

δ P N´1. Then

Dpδq ď 1010
6

24¨8
1{ε
C

1´ ε

81{ε
ε δ´ε

for all δ P N´1.

Proof. Choose

N :“ r
8

3ε
´

5

3
s (19)

and δ P t2´2Nnu8n“7 “ tδnu
8
n“7. Then for these δ, δ´1{2N P N and δ ă 100´2N . If

δ P pδ7, 1s X N´1, then

Dpδq ď 2100{6δ´1{2 ď 2100{622
N´1¨7.

If δ P pδn`1, δns for some n ě 7, then almost multiplicativity and Lemma 2.11 gives
that

Dpδq ď 1020000DpδnqDp
δ

δn
q

ď 1020000p2 ¨ 1010
5

C
1´ ε

2N
ε δ´ε

n qp2100{6p
δn
δ
q1{2q

ď 1010
6

22
N´1

C
1´ ε

2N
ε δ´ε

where N is as in (19) and the second inequality we have used the trivial bound for
Dpδ{δnq.

Combining both cases above then shows that if N is chosen as in (19), then

Dpδq ď 1010
6

27¨2
N´1

C
1´ ε

2N
ε δ´ε
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for all δ P N´1. Since we are no longer constrained by having N P N, we can
increase N to be 3{ε and so we have that

Dpδq ď 1010
6

24¨8
1{ε
C

1´ ε

81{ε
ε δ´ε

for all δ P N´1. This completes the proof of Lemma 2.12. �

Lemma 2.13. For all 0 ă ε ă 1{100 and all δ P N´1, we have

Dpδq ď 2200
1{ε
δ´ε.

Proof. Let P pC, λq be the statement that Dpδq ď Cδ´λ for all δ P N´1. Lemma
2.12 implies that for ε P p0, 1{100q,

P pCε, εq ùñ P p1010
6

24¨8
1{ε
C

1´ ε

81{ε
ε , εq.

Iterating this M times gives that

P pCε, εq ùñ P pr1010
6

24¨8
1{ε

s
řM´1

j“0 p1´ ε

81{ε
qj

C
p1´ ε

81{ε
qM

ε , εq.

Letting M Ñ 8 thus gives that for all 0 ă ε ă 1{100,

Dpδq ď p1010
6

24¨8
1{ε

q8
1{ε{εδ´ε ď 2100

1{ε{εδ´ε ď 2200
1{ε
δ´ε

for all δ P N´1. This completes the proof of Lemma 2.13. �

Optimizing in ε then gives the proof of our main result.

Proof of Theorem 1.1. Choose A “ plog2 200qplog
1
δ q, η “ logA ´ log logA, and

ε “ 1
η log 200. Note that η exppηq “ Ap1 ´ log logA

logA q ď A. Then from our choice of

η,A, ε,

2001{ε log 2 ď ε log
1

δ
and hence

2200
1{ε
δ´ε ď expp2ε log

1

δ
q. (20)

Since η “ logA ´ log logA, we need to ensure that our choice of ε is such that
0 ă ε ă 1{100. Thus we need

ε “
log 200

logpplog2 200qplog
1
δ qq ´ log logpplog2 200qplog

1
δ qq

ă
1

100
.

Note that for all x ą 0, log log x ă plog xq1{2 and hence for all 0 ă δ ă e´
e4

log2 200 ,

logpplog2 200qplog
1

δ
qq ´ log logpplog2 200qplog

1

δ
qq

ě logpplog2 200qplog
1

δ
qq ´ rlogpplog2 200qplog

1

δ
qqs1{2

ě
1

2
logpplog2 200qplog

1

δ
qq ě

1

2
log log

1

δ
. (21)

Thus we need 0 ă δ ă e´
e4

log2 200 to also be such that

2 log 200

log log 1
δ

ă
1

100
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and hence δ ă e´200200 . Therefore using (20) and (21), we have that for δ P

p0, e´200200q X N´1,

Dpδq ď expp30
log 1

δ

log log 1
δ

q.

This completes the proof of Theorem 1.1. �

3. An uncertainty principle interpretation of Lemma 2.7

We now give a different interpretation of Lemma 2.7, making use of the uncer-
tainty principle. We will pretend all weight functions wB are indicator functions
1B in this section and will make the argument rigorous in the next section. In this
section, B will denote an arbitrary square of side length δ´2.

The main point was of Lemma 2.7 was to show that if 1 ď a ď 2b, δ and ν such
that ν2bδ´1 P N, then

ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b pI1q

ż

B

|EJg|2|EI2g|4 (22)

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. From
Lemma 2.8, we only need (22) to be true for 1 ď a ď b. Our goal of this section is to
prove (heuristically under the uncertainty principle) the following two statements:

(I) For 1 ď a ă b, Ma,bpδ, νq ÀMb,bpδ, νq; in other words
ż

B

|EI1g|2|EI2g|4 À
ÿ

JPP
νb pI1q

ż

B

|EJg|2|EI2g|4 (23)

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν.
(II) Mb,bpδ, νq À ν´1{6M2b,bpδ, νq; in other words

ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b pI1q

ż

B

|EJg|2|EI2g|4 (24)

for arbitrary I1, I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν.

Replacing 4 with p´ 2 then allows us to generalize to 2 ď p ă 6.
The particular instance of the uncertainty principle we will use is the following.

Let I be an interval of length 1{R with center c. Fix an arbitrary RˆR2 rectangle
T oriented in the direction p´2c, 1q. Heuristically for x P T , pEIgqpxq behaves
like aT,Ie

2πiωT,I ¨x. Here the amplitude aT depends on g, T , and I and the phase
ωT,I depends on T and I. In particular, |pEIgqpxq| is essentially constant on every
RˆR2 rectangle oriented in the direction p´2c, 1q. This also implies that if ∆ is a
square of side length R, then |pEIgqpxq| is essentially constant on ∆ (with constant
depending on ∆, I, g) and }EIg}Lp

#p∆q is essentially constant with the same constant

independent of p.
We introduce two standard tools from [6, 8].

Lemma 3.1 (Bernstein’s inequality). Let I be an interval of length 1{R and ∆ a
square of side length R. If 1 ď p ď q ă 8, then

}EIg}Lq
#p∆q À }EIg}Lp

#p∆q.

We also have
}EIg}L8p∆q À }EIg}Lp

#p∆q.
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Proof. See [6, Corollary 4.3] or [19, Lemma 2.2.20] for a rigorous proof. �

The reverse inequality in the above lemma is just an application of Hölder’s
inequality and so ignoring weight functions, }EIg}Lq

#p∆q „ }EIg}Lp
#p∆q for any 1 ď

p, q ď 8. In other words, }EIg}Lp
#p∆q is essentially constant independent of p.

Therefore we can view Bernstein’s inequality as one instance of the uncertainty
principle.

Lemma 3.2 (l2L2 decoupling). Let I be an interval of length ě 1{R such that
R|I| P N and ∆ a square of side length R. Then

}EIg}L2p∆q À p
ÿ

JPP1{RpIq

}EJg}2L2p∆qq
1{2.

Proof. See [6, Proposition 6.1] or [19, Lemma 2.2.21] for a rigorous proof. �

The first inequality (23) is an immediate application of the uncertainty principle
and l2L2 decoupling.

Lemma 3.3. Suppose 1 ď a ă b and δ and ν were such that νbδ´1 P N. Then
ż

B

|EI1g|2|EI2g|4 À
ÿ

JPP
νb pI1q

ż

B

|EJg|2|EI2g|4

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. In other
words, Ma,bpδ, νq ÀMb,bpδ, νq.

Proof. It suffices to show that for each ∆1 P Pν´bpBq, we have
ż

∆1
|EI1g|2|EI2g|4 À

ÿ

JPP
νb pI1q

ż

∆1
|EJg|2|EI2g|4.

Since I2 is an interval of length νb, |EI2g| is essentially constant on ∆1. Therefore
the above reduces to showing

ż

∆1
|EI1g|2 À

ÿ

JPP
νb pI1q

ż

∆1
|EJg|2

which since a ă b and I1 is of length νa is just an application of l2L2 decoupling.
This completes the proof of Lemma 3.3. �

Inequality (24) is a consequence of the following ball inflation lemma which
is reminiscent of the ball inflation in the Bourgain-Demeter-Guth proof of Vino-
gradov’s mean value theorem. The main point of this lemma is to increase the
spatial scale so we can apply l2L2 decoupling while keeping the frequency scales
constant.

Lemma 3.4 (Ball inflation). Let b ě 1 be a positive integer. Suppose I1 and I2
are intervals of length νb with dpI1, I2q Á ν. Then for any square ∆1 of side length
ν´2b, we have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#p∆q}EI2g}

4
L4

#p∆q À ν´1}EI1g}2L2
#p∆1q}EI2g}

4
L4

#p∆1q.
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Proof. The uncertainty principle implies that |EI1g| and |EI2g| are essentially con-
stant on ∆. Therefore we essentially have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#p∆q}EI2g}

4
L4

#p∆q „
1

|Pν´bp∆1q|

ÿ

∆PP
ν´b p∆1q

1

|∆|

ż

∆

|EI1g|2|EI2g|4

“
1

|∆1|

ż

∆1
|EI1g|2|EI2g|4.

Cover ∆1 by disjoint rectangles tT1u of size ν´b ˆ ν´2b pointing in the direction
p´2cI1 , 1q where cI1 is the center of I!. Similarly form the collection of ν´b ˆ

ν´2b rectangles tT2u corresponding to I2. From the uncertainty principle, |EI1g| „
ř

T1
|aT1 |1T1 and |EI2g| „

ř

T2
|aT2 |1T2 for some constants |aTi | depending on Ti, g,

and ∆1.
Since I1 and I2 are Opνq-separated, for any two tubes T1, T2 corresponding to

I1, I2, we have |T1 X T2| À ν´1´2b. Therefore

1

|∆1|

ż

∆1
|EI1g|2|EI2g|4 À ν´1 ν

´2b

|∆1|

ÿ

T1,T2

|aT1
|2|aT2

|4.

Since

}EI1g}2L2
#p∆1q}EI2g}

4
L4

#p∆1q „
ν´6b

|∆1|2

ÿ

T1,T2

|aT1 |
2|aT2 |

4

and |∆1| “ ν´4b, this completes the proof of Lemma 3.4. �
We now prove inequality (24).

Lemma 3.5. Suppose δ and ν were such that ν2bδ´1 P N. Then
ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b pI1q

ż

B

|EJg|2|EI2g|4

for arbitrary I1 P Pνbpr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. In other
words, Mb,bpδ, νq À ν´1{6M2b,bpδ, νq.

Proof. This is an application of ball inflation, l2L2 decoupling, Bernstein’s inequal-
ity, and the uncertainty principle. Since ν2bδ´1 P N, νbδ´1 P N and δ ď ν2b. Fix
arbitrary I1, I2 P Pνbpr0, 1sq. We have

1

|B|

ż

B

|EI1g|2|EI2g|4 “
1

|B|

ÿ

∆PP
ν´b pBq

ż

∆

|EI1g|2|EI2g|4

ď
1

|B|

ÿ

∆PP
ν´b pBq

p

ż

∆

|EI1g|2q}EI2g}4L8p∆q

À
1

|Pν´bpBq|

ÿ

∆PP
ν´b pBq

p
1

|∆|

ż

∆

|EI1g|2q}EI2g}4L4
#p∆q

“ Avg
∆PP

ν´b pBq

}EI1g}2L2
#p∆q}EI2g}

4
L4

#p∆q (25)

where the second inequality is because of Bernstein’s inequality. From ball inflation
we know that for each ∆1 P Pν´2bpBq,

Avg
∆PP

ν´2b p∆1q

}EI1g}2L2
#p∆q}EI2g}

4
L4

#p∆q À ν´1}EI1g}2L2
#p∆1q}EI2g}

4
L4

#p∆1q.
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Averaging the above over all ∆1 P Pν´2bpBq shows that (25) is

À ν´1 Avg
∆1PP

ν´2b pBq

}EI1g}2L2
#p∆1q}EI2g}

4
L4

#p∆1q.

Since I1 is of length νb, l2L2 decoupling gives that the above is

À ν´1
ÿ

JPP
ν2b pI1q

Avg
∆1PP

ν´2b pBq

}EJg}2L2
#p∆1q}EI2g}

4
L4

#p∆1q

“ ν´1 1

|B|

ÿ

JPP
ν2b pI1q

ÿ

∆1PP
ν´2b pBq

}EI2g}4L4p∆1q}EJg}
2
L2

#p∆1q

“ ν´1 1

|B|

ÿ

JPP
ν2b pI1q

ÿ

∆1PP
ν´2b pBq

p

ż

∆1
|EI2g|4q}EJg}2L2

#p∆1q.

Since |EJg| is essentially constant on ∆1, the uncertainty principle gives that essen-
tially we have

p

ż

∆1
|EI2g|4q}EJg}2L2

#p∆1q „

ż

∆1
|EJg|2|EI2g|4.

Combining the above two centered equations then completes the proof of Lemma
3.5. �

Remark 3. The proof of Lemma 3.5 is reminiscent of our proof of Lemma 2.7. The
}EI2g}L8p∆q can be thought as using the trivial bound for ξi, i “ 2, 3, 5, 6 to obtain
(12). Then we apply some data about separation, much like in ball inflation here
to get large amounts of cancelation.

Remark 4. After the submission of this manuscript, the author along with Shaoming
Guo, Po-Lam Yung, and Pavel Zorin-Kranich were able to interpret Wooley’s nested
efficient congruencing paper [26] in terms of decoupling which gave a new rather
short proof of l2 decoupling for the moment curve in Rk [13]. Restricting our paper
to k “ 2 gives a third proof of Lemma 3.5 that just uses Plancherel’s theorem.
In [13] we use the Fourier supported in a neighborhood formulation of decoupling.
In what follows we give a heuristic sketch of the argument using the formulation
of decoupling with an extension operator. See [13] or [23, Proposition 19] for a
rigorous proof. One can also make the argument rigorous using the methods in
[12].

By affine invariance of the parabola, we may assume that I2 “ r´νb{2, νb{2s
and I1 “ rd, d ` νas where d Á ν. From the uncertainty principle, since I2 “

r´νb{2, νb{2s, |pEI2gqpxq| is essentially constant on any vertical ν´bˆν´2b rectangle.
Partition B into vertical ν´b ˆ ν´2b rectangles l. It suffices to prove that for each
l, we have

ż

l

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b pI1q

ż

l

|EJg|2|EI2g|4.

Since |EI2g| is essentially constant on l and appears on both sides, it suffices to
prove

ż

l

|EI1g|2 À ν´1
ÿ

JPP
ν2b pI1q

ż

l

|EJg|2.
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We may assume that l “ r0, ν´bs ˆ r0, ν´2bs. It is enough to prove that each fixed
x P r0, ν´bs, we have

ż ν´2b

0

|pEIgqpx, yq|2 dy À ν´1
ÿ

JPP
ν2b pI1q

ż ν´2b

0

|pEJgqpx, yq|2 dy. (26)

We claim that this follows from Plancherel’s theorem. Observe that |pEIgqpx, yq| “
|
ş

I
gpξqepξxqepξ2yq dξ| “ |

şpd`νaq2

d2 Gxpηqepηyq dη| for Gxpηq :“ 1
2
?
η gp

?
ηqep

?
ηxq.

Let Pprd2, pd` νaq2sq be the partition of this interval into intervals rd2, pd` ν2bq2s,
rpd` ν2bq2, pd` 2ν2bq2s, rpd` 2ν2bq2, pd` 3ν2bq2s, etc. Let ψr0,ν´2bs be a Schwartz

function such that ψr0,ν´2bs ě 1r0,ν´2bs and suppp pψr0,ν´2bsq Ă r´ν2b{2, ν2b{2s. Then
by Plancherel’s theorem,

ż ν´2b

0

|pEIgqpx, yq|2 dy “

ż ν´2b

0

|

ż pd`νaq2

d2

Gxpηqepηyq dη|
2 dy

“

ż

R
|

ÿ

JPP

­Gx1Jpyqψr0,ν´2bspyq|
2 dy

“

ż

R
|

ÿ

JPP
Gx1J ˚ pψr0,ν´2bs|

2.

Since the |J | “ 2dν2b`Opν2b`aq, the Gx1J ˚ pψr0,ν´2bs have almost pairwise disjoint
support, and so the above is (essentially)

À ν´1
ÿ

JPP

ż ν´2b

0

|­Gx1Jpyq|
2 dy “ ν´1

ÿ

JPP
ν2b pIq

ż ν´2b

0

|pEJgqpx, yq|2 dy.

This proves (26) and hence proves Lemma 3.5.

4. An alternate proof of Dpδq Àε δ
´ε

The ball inflation lemma and our proof of Lemma 3.5 inspire us to define a new
bilinear decoupling constant that can make our uncertainty principle heuristics from
the previous section rigorous.

The left hand side of the definition of Dpδq in (2) is unweighted, however observe
that Corollary 6.5 implies that

}Er0,1sg}L6pwBq À Dpδqp
ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2. (27)

for all g : r0, 1s Ñ C and squares B of side length δ´2.
We will assume that δ´1 P N and ν P N´1 X p0, 1{100q. Let Ma,bpδ, νq be the

best constant such that

Avg
∆PP

ν´maxpa,bq pBq

}EIg}2L2
#pw∆q}EI1g}4L4

#pw∆q

ď Ma,bpδ, νq
6p

ÿ

JPPδpIq

}EJg}2L6
#pwBqqp

ÿ

JPPδpI1q

}EJ 1g}2L6
#pwBqq

2
(28)

for all squares B of side length δ´2, g : r0, 1s Ñ C and all intervals I P Pνapr0, 1sq,
I 1 P Pνbpr0, 1sq with dpI, I 1q ě ν.



20 ZANE KUN LI

Suppose a ą b (the proof when a ď b is similar). The uncertainty principle
implies that

Avg
∆PPν´a pBq

}EI1g}2L2
#p∆q}EI2g}

4
L4

#p∆q

“
1

|Pν´apBq|

ÿ

∆PPν´a pBq

p
1

|∆|

ż

∆

|EI2g|4q}EI1g}2L2
#p∆q

„
1

|B|

ż

B

|EI1g|2|EI2g|4

where the last „ is because |EI1g| is essentially constant on ∆. Therefore our bilinear
constant Ma,b is essentially the same as the bilinear constant Ma,b we defined in
(3).

4.1. Some basic properties. We now have the weighted rigorous versions of Lem-
mas 3.1 and 3.2. Note that we will only need the L8 version of Lemma 3.1.

Lemma 4.1 (Bernstein’s inequality). Let I be an interval of length 1{R and ∆ a
square of side length R. Then

}EIg}L8p∆q À }EIg}Lp
#pw∆q.

Lemma 4.2 (l2L2 decoupling). Let I be an interval of length ě 1{R such that
R|I| P N and ∆ a square of side length R. Then

}EIg}L2pw∆q À p
ÿ

JPP1{RpIq

}EJg}2L2pw∆qq
1{2.

We now run through the substitutes of Lemmas 2.3-2.5.

Lemma 4.3. Suppose δ and ν were such that νaδ´1, νbδ´1 P N. Then

Ma,bpδ, νq À Dp
δ

νa
q1{3Dp

δ

νb
q2{3.

Proof. Let I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. Hölder’s inequality gives that

Avg
∆PP

ν´maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q

ď Avg
∆PP

ν´maxpa,bq pBq

}EI1g}2L6
#pw∆q}EI2g}

4
L6

#pw∆q

ď p Avg
∆PP

ν´maxpa,bq pBq

}EI1g}6L6
#pw∆qq

1{3p Avg
∆PP

ν´maxpa,bq pBq

}EI2g}6L6
#pw∆qq

2{3

À }EI1g}2L6
#pwBq}EI2g}

4
L6

#pwBq

where the last inequality we have used that
ř

∆ w∆ À wB (see for example Corollary
6.3). Finally applying (27) with parabolic rescaling then completes the proof of
Lemma 4.3. �

Lemma 4.4. Suppose νaδ´1, νbδ´1 P N. Then

Ma,bpδ, νq À Mb,apδ, νq
1{2Dp

δ

νb
q1{2.
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Proof. Let I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. We have

Avg
∆PP

ν´maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q

ď Avg
∆PP

ν´maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}L2

#pw∆q}EI2g}3L6
#pw∆q

ď p Avg
∆PP

ν´maxpa,bq pBq

}EI1g}4L2
#pw∆q}EI2g}

2
L2

#pw∆qq
1{2p Avg

∆PP
ν´maxpa,bq pBq

}EI2g}6L6
#pw∆qq

1{2

À p Avg
∆PP

ν´maxpa,bq pBq

}EI1g}4L4
#pw∆q}EI2g}

2
L2

#pw∆qq
1{2}EI2g}3L6

#pwBq

where the first and second inequalities are because of Hölder’s inequality and the
third inequality is an application of Hölder’s inequality and the estimate

ř

∆ w∆ À

wB . Applying parabolic rescaling and the definition of Mb,a then completes the
proof of Lemma 4.4. �

Lemma 4.5 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M1,1pδ, νq.

Proof. The proof is essentially the same as that of Lemma 2.5 except when analyzing
(7) in the off-diagonal terms we use

}|EIig|1{3|EIjg|2{3}6L6
#pBq “ Avg

∆PPν´1 pBq

1

|∆|

ż

∆

|EIig|2|EIjg|4

ď Avg
∆PPν´1 pBq

}EIig}2L2
#p∆q}EIjg}

4
L8p∆q

À Avg
∆PPν´1 pBq

}EIig}2L2
#pw∆q}EIjg}

4
L4

#pw∆q

where the second inequality we have used Bernstein’s inequality. �

4.2. Ball inflation. We now prove rigorously the ball inflation lemma we men-
tioned in the previous section.

Lemma 4.6 (Ball inflation). Let b ě 1 be a positive integer. Suppose I1 and I2
are ν-separated intervals of length νb. Then for any square ∆1 of side length ν´2b,
we have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q À ν´1}EI1g}2L2
#pw∆1 q

}EI2g}4L4
#pw∆1 q

. (29)

Proof. Observe that if c “ pc1, c2q, then pEIgqpx ` cq “ pEIgcqpxq where gcpξq “

gpξqepξc1 ` ξ2c2q. Therefore we may assume that ∆1 is centered at the origin. Fix
intervals I1 and I2 intervals of length νb which are ν-separated with centers c1 and
c2, respectively.

Cover ∆1 by a set T1 of mutually parallel nonoverlapping rectangles T1 of dimen-
sions ν´b ˆ ν´2b with longer side pointing in the direction of p´2c1, 1q (the normal
direction of the piece of parabola above I1). Note that any such ν´b ˆ ν´2b rec-
tangle outside 4∆1 cannot cover ∆1 itself. Thus we may assume that all rectangles
in T1 are contained in 4∆1. Finally let T1pxq be the rectangle in T1 containing x.
Similarly define T2 except this time we use I2.
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For x P 4∆1, define

F1pxq :“

#

supyP2T1pxq }EI1g}L2
#pw

Bpy,ν´bqq
if x P

Ť

T1PT1
T1

0 if x P 4∆1z
Ť

T1PT1
T1

and

F2pxq :“

#

supyP2T2pxq }EI2g}L4
#pw

Bpy,ν´bqq
if x P

Ť

T2PT2
T2

0 if x P 4∆1z
Ť

T2PT2
T2.

Given a ∆ P Pν´bp∆1q, if x P ∆, then ∆ Ă 2Tipxq. This implies that the center of
∆, c∆ P 2Tipxq for x P ∆, and hence for all x P ∆,

}EI1g}L2
#pw∆q ď F1pxq

and

}EI2g}L4
#pw∆q ď F2pxq.

Therefore

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q ď
1

|∆|

ż

∆

F1pxq
2F2pxq

4 dx. (30)

By how Fi is defined, Fi is constant on each Ti P Ti. That is, for each x P
Ť

TiPTi
Ti,

Fipxq “
ÿ

TiPTi

aTi
1Ti

pxq

for some constants aTi
ě 0.

Thus using (30) and that the Ti are disjoint, the left hand side of (29) is bounded
above by

1

|∆1|

ż

∆1
F1pxq

2F2pxq
4 dx “

1

|∆1|

ÿ

T1,T2

a2T1
a4T2

|T1 X T2| À ν´1 ν
´2b

|∆1|

ÿ

T1,T2

a2T1
a4T2

(31)

where in the last inequality we have used that since I1 and I2 are ν-separated, sine
of the angle between T1 and T2 is Á ν and hence |T1 X T2| À ν´1´2b. Note that

}F1}
2
L2

#p4∆1q “
ν´3b

|4∆1|

ÿ

T1

a2T1

and

}F2}
4
L4

#p4∆1q “
ν´3b

|4∆1|

ÿ

T2

a4T2
.

Therefore (31) is

À ν´1}F1}
2
L2

#p4∆1q}F2}
4
L4

#p4∆1q.

Thus we are done if we can prove that

}F1}
2
L2

#p4∆1q À }EI1g}2L2
#pw∆1 q

and

}F2}
4
L4

#p4∆1q À }EI2g}4L4
#pw∆1 q

,

but this was exactly what was shown in [6, Eq. (29)] (and [19, Lemma 2.6.3] for
the same inequality but with explicit constants). �
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Our choice of bilinear constant (28) makes the rigorous proofs of Lemmas 3.3
and 3.5 immediate consequences of ball inflation and l2L2 decoupling.

Lemma 4.7. Suppose 1 ď a ă b and δ and ν were such that νbδ´1 P N. Then

Ma,bpδ, νq À Mb,bpδ, νq.

Proof. For arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are ν-separated, it
suffices to show that

Avg
∆PP

ν´b pBq

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q

À
ÿ

JPP
νb pI1q

Avg
∆PP

ν´b pBq

}EJg}2L2
#pw∆q}EI2g}

4
L4

#pw∆q.

But this is immediate from l2L2 decoupling which completes the proof of Lemma
4.7. �

Lemma 4.8. Let b ě 1 and suppose δ and ν were such that ν2bδ´1 P N. Then

Mb,bpδ, νq À ν´1{6M2b,bpδ, νq.

Proof. For arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are ν-separated, it
suffices to prove that

Avg
∆PP

ν´b pBq

}EI1g}2L2
#pw∆q}EI2g}

4
L4

#pw∆q

À ν´1
ÿ

JPP
ν2b pI1q

Avg
∆1PP

ν´2b pBq

}EJg}2L2
#pw∆1 q

}EI2g}4L4
#pw∆1 q

.

But this is immediate from ball inflation followed by l2L2 decoupling which com-
pletes the proof of Lemma 4.8. �

Combining Lemmas 4.4, 4.7, and 4.8 gives the following corollary.

Corollary 4.9. Suppose δ and ν were such that ν2bδ´1 P N. Then

Mb,bpδ, νq À ν´1{6M2b,2bpδ, νq
1{2Dp

δ

νb
q1{2.

This corollary should be compared to the trivial estimate obtained from Lemma
4.3 which implies Mb,bpδ, νq À Dpδ{νbq.

4.3. The Oεpδ
´εq bound. We now prove that Dpδq Àε δ´ε. The structure of

the argument is essentially the same as that in Section 2.3. Repeatedly iterating
Corollary 4.9 and following the same steps in how we derived Lemma 2.8 and
Corollaries 2.9 and 2.10 gives the following result.

Lemma 4.10. Let N be an integer chosen sufficiently large later and let δ be such

that δ´1{2N P N and 0 ă δ ă 100´2N . Then

Dpδq À Dpδ1´
1

2N q ` δ´
4

3¨2N

N´1
ź

j“0

Dpδ1´
1

2N´j q
1

2j`1 .

Trivial bounds for Dpδq show that 1 À Dpδq À δ´1{2 for all δ P N´1. Let λ be
the smallest real number such that Dpδq Àε δ

´λ´ε for all δ P N´1. From the trivial
bounds λ P r0, 1{2s. We claim λ “ 0. Suppose λ ą 0.
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Let N be a sufficiently large integer ě 8
3λ . This implies

1`
N

2
´

4

3λ
ě 1.

Lemma 4.10 then implies that for δ such that δ´1{2N P N and 0 ă δ ă 100´2N , we
have

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´ 1

2N
p1`N

2 ´ 4
3λ qq´ε

Àε δ
´λp1´ 1

2N
q´ε

where the last inequality we have applied our choice of N . By almost multiplicity
we then have the same estimate for all δ P N´1 (with a potentially larger constant
depending on N). But this then contradicts minimality of λ. Therefore λ “ 0.

5. Unifying two styles of proof

We now attempt to unify the Bourgain-Demeter style of decoupling and the style
of decoupling mentioned in the previous section. In view of Corollary 4.9, instead
of having two integer parameters a and b we just have one integer parameter.

Let b be an integer ě 1 and choose s P r2, 3s any real number. Suppose δ P N´1

and ν P N´1 X p0, 1{100q were such that νbδ´1 P N. Let M
psq
b pδ, νq be the best

constant such that

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb pIq

}EJg}2L2
#pw∆qq

s
2 p

ÿ

J 1PP
νb pI1q

}EJ 1g}2L2
#pw∆qq

6´s
2

ď M
psq
b pδ, νq6p

ÿ

JPPδpIq

}EJg}2L6
#pwBqq

s
2 p

ÿ

J 1PPδpI1q

}EJ 1g}2L6
#pwBqq

6´s
2

(32)

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all intervals I, I 1 P Pνpr0, 1sq

which are ν-separated. Note that left hand side of the definition of M
p3q
b pδ, νq is the

same as A6pq,B
r, qq6 defined in [6] and from the uncertainty principle, M

p2q
1 pδ, νq

is morally the same as M1,1pδ, νq defined in (3) and M1,1pδ, νq defined in (28). The

l2 piece in the definition of M
psq
b pδ, νq is chosen so that we can make the most out

of applying l2L2 decoupling.

We will use M
psq
b as our bilinear constant in this section to show that Dpδq Àε

δ´ε. The bilinear constant M
psq
b obeys essentially the same lemmas as in the pre-

vious sections.

Lemma 5.1 (cf. Lemmas 2.3 and 4.3). If δ and ν were such that νbδ´1 P N, then

M
psq
b pδ, νq À Dp

δ

νb
q.

Proof. Fix arbitrary I1, I2 P Pνpr0, 1sq which are ν-separated. Moving up from L2
#

to L6
# followed by Hölder’s inequality in the average over ∆ bounds the left hand

side of (32) by

p Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆qq

6
2 q

s
6 p Avg

∆PP
ν´b pBq

p
ÿ

J 1PP
νb pI2q

}EJg}2L6
#pw∆qq

6
2 q

6´s
6 .

Using Minkowski to switch the l2 and l6 sum followed by
ř

∆ w∆ À wB shows that
this is

À p
ÿ

JPP
νb pI1q

}EJg}2L6
#pwBqq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2L6
#pwBqq

6´s
2 .
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Parabolic rescaling then completes the proof of Lemma 5.1. �

Lemma 5.2 (Bilinear reduction, cf. Lemmas 2.5 and 4.5). Suppose δ and ν were
such that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M

psq
1 pδ, νq.

Proof. Note that the left hand side of the definition of M
psq
1 pδ, νq is

Avg
∆PPν´1 pBq

}EI1g}sL2
#pw∆q}EI2g}

6´s
L2

#pw∆q
.

Proceeding as in the proof of Lemmas 2.5 and 4.5, for Ii, Ij P Pνpr0, 1sq which are
ν-separated, we have

}|EIig||EIjg|}
1{2

L3
#pBq

ď }|EIig|
s
6 |EIjg|1´

s
6 }

1{2

L6
#pBq

}|EIig|1´
s
6 |EIjg|

s
6 }

1{2

L6
#pBq

. (33)

We have

}|EIig|
s
6 |EIjg|1´

s
6 }6L6

#pBq “ Avg
∆PPν´1 pBq

1

|∆|

ż

∆

|EIig|s|EIjg|6´s

ď Avg
∆PPν´1 pBq

}EIig}sLs
#p∆q}EIjg}

6´s
L8p∆q

À Avg
∆PPν´1 pBq

}EIig}sL2
#pw∆q}EIjg}

6´s
L2

#pw∆q

where the last inequality we have used Bernstein’s inequality. Inserting this into

(33) and applying the definition of M
psq
1 pδ, νq then completes the proof of Lemma

5.2. �

Lemma 5.3 (Ball inflation, cf. Lemma 4.6). Let b ě 1 be a positive integer.
Suppose I1 and I2 are ν-separated intervals of length ν. Then for any square ∆1 of
side length ν´2b and any ε ą 0, we have

Avg
∆PP

ν´b p∆1q

p
ÿ

JPP
νb pI1q

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2
L6´s

# pw∆q
q

6´s
2

Àε ν
´1´bεp

ÿ

JPP
νb pI1q

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2
L6´s

# pw∆1 q
q

6´s
2

Proof. The proof proceeds as in the proof of ball inflation in [6, Theorem 9.2] (see
also [19, Section 2.6] for more details and explicit constants in the specific case of
the parabola).

From dyadic pigeonholing, since we can lose a ν´bε, it suffices to restrict the
sum over J and J 1 to families F1 and F2 such that for all J P F1, }EJg}Ls

#pw∆1 q

are comparable up to a factor of 2 and similarly for all J 1 P F2. Hölder’s inequality
gives

Avg
∆PP

ν´b p∆1q

p
ÿ

JPF1

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PF2

}EJ 1g}2
L6´s

# pw∆q
q

6´s
2

ď p#F1q
s
2´1p#F2q

6´s
2 ´1 Avg

∆PP
ν´b p∆1q

p
ÿ

JPF1

}EJg}sLs
#pw∆qqp

ÿ

J 1PF2

}EJ 1g}6´s

L6´s
# pw∆q

q.
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The proof of Lemma 4.6 shows that this is

À ν´1p#F1q
s
2´1p#F2q

6´s
2 ´1p

ÿ

JPF1

}EJg}sLs
#pw∆1 qqp

ÿ

J 1PF2

}EJ 1g}6´s

L6´s
# pw∆1 q

q.

Since for J P F1 the values of }EJg}Ls
#pw∆1 q are comparable and similarly for J 1 P F2,

the above is

À ν´1p
ÿ

JPF1

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PF2

}EJ 1g}2
L6´s

# pw∆1 q
q

6´s
2 .

This completes the proof of Lemma 5.3. �

Lemma 5.4 (cf. Corollary 4.9). Suppose δ and ν were such that ν2bδ´1 P N. Then
for every ε ą 0,

M
psq
b pδ, νq Àε ν

´ 1
6 p1`bεqM

psq
2b pδ, νq

1{2Dp
δ

νb
q1{2.

Proof. Let θ and φ be such that θ
2 ` 1´θ

6 “ 1
s and φ

2 `
1´φ
6 “ 1

6´s . Then Hölder’s

inequality gives }f}Ls ď }f}θL2}f}
1´θ
L6 and }f}L6´s ď }f}φL2}f}

1´φ
L6 .

Fix arbitrary I1, I2 P Pνpr0, 1sq which are ν-separated. We have

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L2
#pw∆qq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2L2
#pw∆qq

6´s
2

ď Avg
∆1PP

ν´2b pBq

Avg
∆PP

ν´b p∆1q

p
ÿ

JPP
νb pI1q

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2
L6´s

# pw∆q
q

6´s
2

Àε ν
´1´bε Avg

∆1PP
ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2
L6´s

# pw∆1 q
q

6´s
2

where the first inequality is from Hölder’s inequality and the second inequality is
from ball inflation. We now use how θ and φ are defined to return to a piece
which we control by l2L2 decoupling and a piece which we can control by parabolic
rescaling. Hölder’s inequality (as in the definition of θ and φ) gives that the average
above is bounded by

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2θL2
#pw∆1 q

}EJg}2p1´θq

L6
#pw∆1 q

q
s
2ˆ

p
ÿ

J 1PP
νb pI2q

}EJ 1g}2φ
L2

#pw∆1 q
}EJ 1g}

2p1´φq

L6
#pw∆1 q

q
6´s
2 .

Hölder’s inequality in the sum over J and J 1 shows that this is

ď Avg
∆1PP

ν´2b pBq

ˆ

p
ÿ

JPP
νb pI1q

}EJg}2L2
#pw∆1 q

qθp
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆1 q

q1´θ

˙
s
2

ˆ

ˆ

p
ÿ

J 1PP
νb pI2q

}EJ 1g}2L2
#pw∆1 q

qφp
ÿ

J 1PP
νb pI2q

}EJ 1g}2L6
#pw∆1 q

q1´φ

˙

6´s
2

.
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Since θs “ 3´ s
2 and φp6´ sq “ s

2 , rearranging the above gives

Avg
∆1PP

ν´2b pBq

ˆ

p
ÿ

JPP
νb pI1q

}EJg}2L2
#pw∆1 q

q
1
2 p3´

s
2 qp

ÿ

J 1PP
νb pI2q

}EJ 1g}2L2
#pw∆1 q

q
1
2 ¨

s
2

˙

ˆ

ˆ

p
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆1 q

q
1
2 ¨3p

s
2´1qp

ÿ

J 1PP
νb pI2q

}EJ 1g}2L6
#pw∆1 q

q
1
2 ¨3p2´

s
2 q

˙

.

Applying the Cauchy-Schwarz inequality in the average over ∆1 then bounds the
above by

ˆ

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L2
#pw∆1 q

q
6´s
2 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2L2
#pw∆1 q

q
s
2

˙
1
2

ˆ

ˆ

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆1 q

q
3ps´2q

2 p
ÿ

J 1PP
νb pI2q

}EJ 1g}2L6
#pw∆1 q

q
3p4´sq

2

˙
1
2

.

(34)

After l2L2 decoupling, the first term in (34) is

À M
psq
2b pδ, νq

3p
ÿ

JPPδpI1q

}EJg}2L6
#pwBqq

1
2 ¨

6´s
2 p

ÿ

J 1PPδpI2q

}EJ 1g}2L6
#pwBqq

1
2 ¨

s
2 . (35)

Hölder’s inequality in the average over ∆1 bounds the second term in (34) by

p Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆1 q

q
6
2 q

s´2
4 p Avg

∆1PP
ν´2b pBq

p
ÿ

JPP
νb pI1q

}EJg}2L6
#pw∆1 q

q
6
2 q

4´s
4 .

Applying Minkowski to interchange the l2 and l6 norms shows that this is

À p
ÿ

JPP
νb pI1q

}EJg}2L6
#pwBqq

3ps´2q
4 p

ÿ

J 1PP
νb pI2q

}EJ 1g}2L6
#pwBqq

3p4´sq
4 .

Parabolic rescaling bounds this by

Dp
δ

νb
q3p

ÿ

JPPδpI1q

}EJg}2L6
#pwBqq

1
2 ¨

3ps´2q
2 p

ÿ

J 1PPδpI2q

}EJ 1g}2L6
#pwBqq

1
2 ¨

3p4´sq
2 . (36)

Combining (35) and (36) then completes the proof of Lemma 5.4. �

With Lemma 5.4, following the same steps in how we derived Lemma 2.8 and
Corollaries 2.9 and 2.10 gives the following.

Lemma 5.5 (cf. Corollary 2.10 and Lemma 4.10). Let N be an integer chosen

sufficient large later and let δ be such that δ´1{2N P N and 0 ă δ ă 100´2N . Then

Dpδq Àε Dpδ1´
1

2N q ` δ´
4

3¨2N
´ Nε

6¨2N

N´1
ź

j“0

Dpδ1´
1

2N´j q
1

2j`1 .

To finish, we proceed as at the end of the previous section. Let λ P r0, 1{2s be
the smallest real such that Dpδq Àε δ

´λ´ε. Suppose λ ą 0. Choose N such that

1`
N

2
´

4

3λ
ě 1.

Then for δ such that δ´1{2N P N and 0 ă δ ă 100´2N , Lemma 5.5 gives

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´ 1

2N
p1`N

2 ´ 4
3λ qq´εp1´ 1

2N
q` Nε

2¨2N
´ Nε

6¨2N Àε δ
´λp1´ 1

2N
q´ε.
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Almost multiplicativity gives that Dpδq ÀN,ε δ
´λp1´ 1

2N
q´ε for all δ P N´1, contra-

dicting the minimality of λ.

6. Discussion on explicit constants

A close inspection of the proof of Theorem 1.1 reveals that there are two sources
of explicit constants, one from the various weight functions adapted to B and
another from parabolic rescaling (Lemma 2.1). To keep the paper as self contained
as possible, we expand upon where the various explicit constants come from. Some
details will only be briefly sketched as they can be found with explicit constants in
[19, Sections 2.2-2.4]. The argument we present here for the explicit argument in
Lemma 2.1 is very slightly simpler and a bit different from that in [19, Section 2.4]
but follows the same general philosophy. We claim no optimality in any explicit
constant.

6.1. Polynomial decaying weights wB,E. For x P R2 and B a square centered
at c P R2 of side length R, let

wB,Epxq :“ p1`
|x´ c|

R
q´E .

In this notation, the weight function wB defined in (1) is equal to wB,100. We
include the dependence on E to distinguish between absolute constants and the
dependence on the decay rate of wB,E and later in Lemma 6.11 we will need to use
two different E. We also let Dpδ, Eq be the same definition as Dpδq in (2) except
wB on the right hand side is replaced with wB,E .

First we have an easy observation in how wB,E interacts with shear matrices.

Lemma 6.1. Let S “ p 1 a
0 1 q with |a| ď 2. Then wBp0,Rq,EpSxq ď 3EwBp0,Rq,Epxq.

Proof. Since |a| ď 2, }S´1} ď
?
6. Then p

1`|S´1y|
1`|y| qE ď

?
6
E
. The lemma follows

by setting y “ Sx{R. �

Next, we have the following key property of wB,E .

Lemma 6.2. Let E ě 10. For 0 ă R1 ď R,

wBp0,Rq,E ˚ wBp0,R1q,E ď 4ER12wBp0,Rq,E . (37)

We also have

R2wBp0,Rq,E ď 2E1Bp0,Rq ˚ wBp0,Rq,E . (38)

Proof. We first prove (37). We would like to give an upper bound for the expression

1

R12

ż

R2

p1`
|x´ y|

R
q´Ep1`

|y|

R1
q´Ep1`

|x|

R
qE dy

depending only on E. A change of variables in y and rescaling x shows that it
suffices to give an upper bound for

ż

R2

p1` |x´
R1

R
y|q´Ep1` |y|q´Ep1` |x|qE dy (39)

depending only on E. If |x| ď 1, then (39) is

ď 2E
ż

R2

p1` |y|q´E dy ď 2E .
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If |x| ą 1, then we split (39) into

p

ż

|x´R1
R y|ď

|x|
2

`

ż

|x´R1
R y|ą

|x|
2

qp1` |x´
R1

R
y|q´Ep1` |y|q´Ep1` |x|qE dy. (40)

In the case of the first integral in (40), pR1{Rq|y| ě |x| ´ |x´ pR1{Rqy| ě |x|{2 and
hence

ż

|x´R1
R y|ď

|x|
2

p1` |x´
R1

R
y|q´Ep1` |y|q´Ep1` |x|qE dy

ď
p1` |x|qE

p1` pR{R1q|x|{2qE

ż

R2

p1` |x´
R1

R
y|q´E dy ď p4R1{RqEpR{R1q2 ď 4E .

In the case of the second integral in (40),
ż

|x´R1
R y|ą

|x|
2

p1` |x´
R1

R
y|q´Ep1` |y|q´Ep1` |x|qE dy

ď p
1` |x|

1` |x|{2
qE

ż

R2

p1` |y|q´E dy ď 2E .

This then proves (37).
To prove (38) it suffices to give a lower bound for

1

R2

ż

Bp0,Rq

p1`
|x´ y|

R
q´Ep1`

|x|

R
qE dy

which depends only on E. As before, rescaling x and a change of variables in y
gives that it suffices to give a lower bound independent of x for

ż

Bp0,1q

p
1` |x|

1` |x´ y|
qE dy ě p

1` |x|

2` |x|
qE ě 2´E .

This shows (38) and completes the proof of Lemma 6.2. �

We have the following immediate corollaries.

Corollary 6.3. Let B be a square of side length R and let B be a disjoint partition
of B into squares ∆ with side length R1 ă R. Then for E ě 10,

ÿ

∆PB
w∆,E ď 16EwB,E .

Proof. It suffices to prove the case when B is centered at the origin. Since B is
a disjoint partition of B,

ř

∆PB 1∆ “ 1B . Convolve both sides by wBp0,R1q,E . For

the left hand side use (38) and for the right hand side use that 1B ď 2EwB,E and
(37). �

Remark 5. The only property we needed in the above proof is that
ř

∆PB 1∆ ď C1B
for some absolute constant C. In particular, the same proof will work with finitely
overlapping covers and when R{R1 R N.

Corollary 6.4. For 1 ď p ă 8 and E ě 10,

}f}pLppwBp0,Rq,Eq
ď 2E

ż

R2

}f}p
Lp

#pBpy,Rqq
wBp0,Rq,Epyq dy.

Proof. Expanding the right hand side, we see the expression 2E

R2 1Bp0,Rq ˚wBp0,Rq,E

and then we use (38). �
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Corollary 6.5. Let I Ă r0, 1s and P be a disjoint partition of I. Suppose for some
2 ď p ă 8, we have

}EIg}LppBq ď Cp
ÿ

JPP
}EJg}2LppwB,Eqq

1{2

for all g : r0, 1s Ñ C and all squares B of side length R. Then for each E ě 10, we
have

}EIg}LppwB,Eq ď 8E{pCp
ÿ

JPP
}EJg}2LppwB,Eqq

1{2

for all g : r0, 1s Ñ C and all squares B of side length R.

Proof. The hypothesis and Corollary 6.4 imply that

}EIg}pLppwB,Eq
ď 2ER´2Cp

ż

R2

p
ÿ

JPP
}EJg}2LppwBpy,Rq,Eqq

p{2wB,Epyq dy.

Since p ě 2, applying Minkowski’s inequality shows that this is

ď 2ER´2Cpp
ÿ

JPP
}EJg}2LppwBp0,Rq,E˚wB,Eqq

p{2.

Applying (37) then finishes the proof. �

6.2. Schwartz weight ηB. Given B “ Bpc,Rq, in this section we explicitly con-
struct a Schwartz function ηB such that ηB ě 1B and supppxηBq Ă Bp0, 1{Rq. It
is easy to justify existence of such a function, but we desire explicit quantitative
estimates. A different Schwartz function was constructed in [19, Section 2.2.2] but
the construction we provide here is slightly simpler in exposition.

Lemma 6.6. Fix E ě 100. There exists a Schwartz function ψ on R such that

ψ ě 1r´1{2,1{2s, suppp pψq Ă r´1{2, 1{2s and

|ψpxq| ď
2EE2E

p1` |x|qE
.

Proof. For ξ P R, let Hapξq :“
1
a1r0,aspξq and define the sequence aj :“ 3{π2

pj`1q2 for

j ě 0. From Theorem 1.3.5 of [18], the function

Upξq :“ lim
kÑ8

pHa0
˚ ¨ ¨ ¨ ˚Hak

qpξq

is a smooth function supported on r0, 1{2s obeying the bounds

|U pkqpξq| ď
2k

śk
j“0 aj

“
π2

3
p
2π2

3
qkpk ` 1q!2

for ξ P r0, 1{2s. Observe that |Hapxq “ eπixa sinpπxaq
πxa and hence

qUpxq “
8

ź

j“0

eπixaj
sinpπxajq

πxaj
.

Let

ψpxq :“ 2|qUpxq|2 “ 2
8

ź

j“0

p
sinpπxajq

πxaj
q2.
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Note that ψ ě 0 and for |x| ď 1{2, ψpxq ě ψp1{2q ě 1. Expanding |qU |2 “ qU qU ,
pψ “ 2pU ˚ rUq where rUpyq :“ ´Up´yq. Since U is supported on r0, 1{2s and rU is

supported on r´1{2, 0s, then pψ is supported in r´1{2, 1{2s.
Finally we derive some bounds on the decay of ψ. The support of U and inte-

gration by parts gives that for any j ě 1,

|qUpxq| ď
1

p2π|x|qj
}U pjq}L1pr0,1{2sq ď

π2

6
p
π

3
qjpj ` 1q2

j2j

|x|j
.

and hence applying this bound to j “ rE{2s gives

|ψpxq| ď 2p
π2

6
q2p

π

3
q2p

E
2 `1qp

E

2
` 2q4

p3E{5q2E`4

|x|E
ď

π6

1250
p
3π

25
qEE8E

2E

|x|E
ď
E2E

|x|E
.

For |x| ě 1, then p1`|x|qE |ψpxq| ď 2EE2E and for |x| ď 1, p1`|x|qE |ψpxq| ď 2 ¨2E .
This completes the proof of Lemma 6.6. �

Corollary 6.7. For x “ px1, x2q, let ηpxq :“ ψpx1qψpx2q. Fix a square B “

Bpc,Rq of side length R. The function ηBpxq “ ηpx´c
R q satisfies ηB ě 1B, supppxηBq Ă

Bp0, 1{Rq, and for any E ě 100,

ηBpxq ď 22EE4EwB,Epxq.

6.3. Explicit proof of Lemma 2.1. We now discuss how we arrived at the explicit
constant 1016000 in Lemma 2.1. The argument we present here is slightly simpler
than the one for the last centered equation in [19, Page 58], but the argument is
essentially the same.

We will need a few more different decoupling constants. First we have a global
decoupling constant.

Definition 6.8. For J P Pδpr0, 1sq, let

θJ,δ :“ tps, s2 ` tq : s P J, |t| ď δ2u

and Θδ :“
Ť

JPPδpr0,1sq
θJ,δ “ θr0,1s,δ. Let Dglobalpδq be the best constant such that

}f}L6pR2q ď Dglobalpδqp
ÿ

JPPδpr0,1sq

}fθJ,δ}
2
L6pR2qq

1{2

for all f with Fourier support in Θδ.

This decoupling constant is the easiest to use when wanting to prove various
functional properties of the decoupling constant like monotonicity and parabolic
rescaling.

Lemma 6.9 (Parabolic rescaling for Dglobalpδq). Let I Ă r0, 1s be an interval of
length σ such that 0 ă δ ă σ ă 1 and σ, δ, δ{σ P N´1. Then

}fθI,δ}L6pR2q ď Dglobalp
δ

σ
qp

ÿ

JPPδpIq

}fθJ,δ}
2
L6pR2qq

1{2.
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Proof. Writing I “ ra, a` σs, we have

|pfθI,δ qpxq| “ |

ż a`σ

a

ż δ2

´δ2

pfps, s2 ` tqepsx1 ` s2x2qeptx2q dt ds|

“ σ3|

ż 1

0

ż p δ
σ q2

´p δ
σ q2

pfpσs1 ` a, pσs1 ` aq2 ` σ2t1qeps1pσx1 ` 2aσx2q

` ps12 ` t1qpσ2x2qq dt
1 ds1|.

Also observe that

pfpσs1 ` a, pσs1 ` aq2 ` σ2t1q “ σ´3 {

pF ˝ L´1
σ,aqps

1, s12 ` t1q

where F pxq “ fpxqe´2πix¨pa,a2q and

Lσ,a :“

ˆ

σ 2aσ
0 σ2

˙

.

Thus

|pfθI,δ qpxq| “ |pF ˝ L´1
σ,aqθr0,1s,pδ{σq2

pLσ,axq|.

Then we apply the definition of Dglobalpδ{σq and reverse the change of variables
which completes the proof of Lemma 6.9. �

Having proven Lemma 6.9 we are now almost done, essentially we just need
to apply f “ ηBEIg to the above lemma and use that Dglobalpδq ÀE Dpδ, Eq

(as mentioned in [4, Remark 5.2] and essentially follows as a corollary from [6,
Theorem 5.1]). There are two small but fixable problems with this argument.
The first is that ηBEIg is has Fourier support in a region slightly larger than θI,δ
and so pηBEIgqθI,δ is not necessarily equal to ηBEIg and so we will instead apply
Lemma 6.9 to f “ ηBEra`δ,a`σ´δsg. The second is that the ÀE in the estimate

Dglobalpδq ÀE Dpδ, Eq is not made explicit.

Remark 6. To avoid the use of any equivalence of decoupling constants, one can
instead just use Lemma 6.9 and suitably modify the Lemmas 2.2-2.7. This is the
approach taken in [12, 13] and in Tao’s 247B notes on decoupling [23] (whose proof
of parabola decoupling is based off the argument in this paper). We don’t take
this point of view here since it somewhat obscures the connection between efficient
congruencing and decoupling, in particular when comparing the proof of Lemma
2.7 with [21, Lemma 4.4].

Some equivalences between various decoupling constants were made quantitative
by the author in [19, Proposition 2.3.11] and we will use this result here as a black
box (the proof is quite similar to that of [6, Theorem 5.1]). To state the relevant
part of [19, Proposition 2.3.11] used here, we define two more decoupling constants.

Definition 6.10. For J “ rnJδ, pnJ ` 1qδs P Pδpr0, 1sq, let

θ1J,δ :“ tps, LJpsq ` tq : nJδ ď s ď pnJ ` 1qδ, |t| ď 5δ2u

where LJpsq :“ p2nJ ` 1qδs ´ nJpnJ ` 1qδ2 and 0 ď nJ ď δ´1 ´ 1. Here θ1J,δ
is a parallelogram that has height 10δ2 and has base parallel to the straight line
connecting pnJδ, n

2
Jδ

2q and ppnJ ` 1qδ, pnJ ` 1q2δ2q.
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Let Θ1
δ :“

Ť

JPPδpr0,1sq
θ1J,δ. Let Dglobal

par pδq be the best constant such that

}f}L6pR2q ď Dglobal
par pδqp

ÿ

JPPδpr0,1sq

}fθ1
J,δ

}2L6pR2qq
1{2

for all f with Fourier support in Θ1
δ.

Let Dlocal
par pδ, Eq be the best constant such that

}f}L6pBq ď Dlocal
par pδ, Eqp

ÿ

JPPδpr0,1sq

}fθ1
J,δ

}2L6pwB,Eqq
1{2

for all f with Fourier support in Θ1
δ and all squares B of side length δ´2.

Lemma 6.11. For E ě 100,

Dglobalpδq ď E64EDpδ, Eq.

Proof. This lemma is the consequence of the following string of inequalities:

Dglobalpδq ď Dglobal
par pδq ď 2EDlocal

par pδ, t
E ´ 7

2
uq ď 2EE63EDpδ, Eq (41)

from which the lemma immediately follows. The third inequality in (41) is the last

inequality in the statement of [19, Proposition 2.3.11] (written as E7E
pDp,Gpδq ď

E70EDp,Epδq).
For each J P Pδpr0, 1sq, we have θJ,δ Ă θJ 1,δ and hence the first inequality follows.

To prove the second inequality, we let f be a function which is Fourier supported
in Θ1

δ. Partition R2 into squares B of side length δ´2. Then

}f}L6pR2q “ p
ÿ

B

}f}6L6pBqq
1{6

ď Dlocal
par pδ, t

E ´ 7

2
uqp

ÿ

B

p
ÿ

JPPδpr0,1sq

}fθ1
J
}2L6pw

B,t E´7
2

uq
q3q1{6

ď Dlocal
par pδ, t

E ´ 7

2
uqp

ÿ

JPPδpr0,1sq

}fθ1
J
}2L6p

ř

B w
B,t E´7

2
uq
q1{2

where the last inequality is by Minkowski’s inequality. The proof of Corollary 6.3

(and (38)) shows that
ř

B wB,t E´7
2 u ď 2t E´7

2 u
ş

R2p1 ` |x|q´t E´7
2 u dx ď 2E . This

completes the proof of the second inequality and the proof of Lemma 6.11. �

Remark 7. The proof of the last inequality in (41) is very similar to the proof
of Theorem 5.1 of [6] except all the estimates are made explicit and quantitative.
We illustrate heuristically the main idea of [6, Theorem 5.1] (and hence the last
inequality in (41)). We will ignore any weight functions wB,E .

Define a decoupling constant Dlocalpδq that is the same as the definition of
Dlocal

par pδq except that θ1J,δ are replaced with θJ,δ. Then we show heuristically why we

expect Dlocalpδq À Dpδq. Since f is Fourier supported in tps, s2`tq : s P r0, 1s, |t| ď
δ2u. Ignoring any E dependence and weights wB,E , we want to argue that

}f}L6pBq À Dpδqp
ÿ

JPPδpr0,1sq

}fθJ }
2
L6pBqq

1{2
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for all squares B of side length δ´2. Without loss of generality we may assume that
B is centered at the origin. Using the Fourier support of f , we can write

fpxq “

ż 1

0

p

ż δ2

´δ2

pfps, s2 ` tqeptx2q dtq epsx1 ` s2x2q ds.

For x P B and since B is centered at the origin and |t| ď δ2, tx2 does not oscil-
late much and so we will pretend that eptx2q « 1. Then the above is essentially

equal to Er0,1sF where F psq :“
şδ2

´δ2
pfps, s2 ` tq dt. We are done after applying

the definition of Dpδq, undoing the definition of EJF , and adding the eptx2q back
in. The rigorous proof in [6, Theorem 5.1] involves expanding eptx2q as a Tay-
lor series and to each term in the Taylor series we create an Fj and show that
}EJFj}L6pBq À exppOpjqq}fθJ }L6pBq.

Finally we will need a quantitative result about Fourier restriction to a parallel-
ogram.

Lemma 6.12. For each J P Pδpr0, 1sq and 2 ď p ă 8, }fθ1
J,δ

}p ď p 12`
1
2 cotp

π
2p qq

4}f}p.

Proof. Let S denote the operator defined by xSgpηq “ pgpηq1r0,8qpηq for η P R. If

H denotes the Hilbert transform, observe that pfpηq ` iyHfpηq “ 2xSfpηq almost
everywhere. Since 2 ď p ă 8, }H}pÑp ď cotp π

2p q and so }S}pÑp ď 1
2 ` 1

2 cotp
π
2p q.

Let R denote the operator defined by xRfpξq “ pfpξq1θ1
J,δ

pξq for ξ “ pξ1, ξ2q P R2.

Each θ1J,δ is the intersection of four half planes in R2. The operator norm of Fourier
restriction to a half plane is the same as the operator norm for Fourier restriction
to the half plane r0,8q ˆ R. By Fubini’s Theorem, this operator norm is bounded
above by the operator norm for S. Therefore }R}pÑp ď }S}4pÑp ď p 12 `

1
2 cotp

π
2p qq

4

which completes the proof of Lemma 6.12. �

We now have all the ingredients to give an explicit proof of Lemma 2.1.

Proof. Write I “ ra, a` σs. We have

}EIg}L6pBq ď }Era,a`δsg}L6pBq ` }ηBEra`δ,a`σ´δsg}L6pR2q ` }Era`σ´δ,a`σsg}L6pBq.
(42)

The Fourier transform of ηBEra`δ,a`σ´δsg is supported in θI,δ and so combining
Lemma 6.9 with Lemma 6.11 shows that

}ηBEra`δ,a`σ´δsg}L6pR2q ď E64EDp
δ

σ
,Eqp

ÿ

JPPδpIq

}pηBEra`δ,a`σ´δsgqθJ,δ}
2
L6pR2qq

1{2.

(43)

Observe that

pηBEra`δ,a`σ´δsgqθJ,δ

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pηBEJr
gqθJ,δ if J “ ra, a` δs

pηBEJg ` ηBEJr
gqθJ,δ if J “ ra` δ, a` 2δs

pηBEJℓ
g ` ηBEJg ` ηBEJr

gqθJ,δ if J P Pδpra` 2δ, a` σ ´ 2δsq

pηBEJℓ
g ` ηBEJgqθJ,δ if J “ ra` σ ´ 2δ, a` σ ´ δs

pηBEJℓ
gqθJ,δ if J “ ra` σ ´ δ, a` σs
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where Jℓ and Jr denote the intervals to the left and right of J . Therefore for
J P Pδpra, a` σsq,

}pηBEra`δ,a`σ´δsgqθJ,δ}
2
L6pR2q ď p

ÿ

J 1PtJℓ,J,Jru

J 1Ăra`δ,a`σ´δs

}pηBEJ 1gqθJ,δ}L6pR2qq
2

“ p
ÿ

J 1PtJℓ,J,Jru

J 1Ăra`δ,a`σ´δs

}pηBEJ 1gqθ1
J,δ

}L6pR2qq
2

ď 322p
ÿ

J 1PtJℓ,J,Jru

J 1Ăra`δ,a`σ´δs

}EJ 1g}L6pηBqq
2

ď 3 ¨ 322p22EE4Eq1{3
ÿ

J 1PtJℓ,J,Jru

J 1Ăra`δ,a`σ´δs

}EJ 1g}2L6pwB,Eq

where in the first equality we have used that θJ Ă θ1J , in the second inequality
we have used Lemma 6.12, and in the third inequality we have used Lemma 6.7.
Inserting this into (43) shows that the right hand side is

ď E64Ep3 ¨ 322p22EE4Eq1{3q1{2Dp
δ

σ
,Eqp

ÿ

JPPδpIq

ÿ

J 1PtJℓ,J,Jru

J 1Ăra`δ,a`σ´δs

}EJ 1g}2L6pwB,Eqq
1{2

ď E65EDp
δ

σ
,Eqp

ÿ

JPPδpIq

}EJg}2L6pwB,Eqq
1{2.

Inserting this into (42) and using that 1B ď 2EwB,E then shows that

}EIg}L6pBq ď E80EDp
δ

σ
,Eqp

ÿ

JPPδpIq

}EJg}2L6pwB,Eqq
1{2.

Taking E “ 100 completes the proof of Lemma 2.1 with explicit constants. �
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