AN [? DECOUPLING INTERPRETATION OF EFFICIENT
CONGRUENCING: THE PARABOLA

ZANE KUN LI

ABSTRACT. We give a new proof of 12 decoupling for the parabola inspired
from efficient congruencing. Making quantitative this proof matches a bound
obtained by Bourgain for the discrete restriction problem for the parabola.
We illustrate similarities and differences between this new proof and efficient
congruencing and the proof of decoupling by Bourgain and Demeter. We
also show where tools from decoupling such as I1?L? decoupling, Bernstein’s
inequality, and ball inflation come into play.

1. INTRODUCTION

For an interval J < [0,1] and ¢ : [0,1] — C, we define

(E19)(x) = Lg@)e(m T ) de

where e(a) := €2™. For an interval I, let P;(I) be the partition of I into intervals
of length ¢. By writing P,(I), we are assuming that |I|/¢ € N. We will also similarly
define Py(B) for squares B in R%. Next if B = B(c, R) is a square in R? centered
at ¢ of side length R, let

wp(z) = (1+ %)_100- (1)

We will always assume that our squares have sides parallel to the z and y-axis. We
observe that 15 < 2'%uwg. For a function w, we define

v o= (| Fa)ute) de)' .
For § e N7! = {n~!:ne N}, let D(5) be the best constant such that

I€0 gl < DO Y 1€191 s wp) " (2)
JePs([0,1])

for all g : [0,1] — C and all squares B in R? of side length §72. Let D,(d) be
the decoupling constant where the L5 in (2) is replaced with LP. Since 15 < wg,
the triangle inequality combined with the Cauchy-Schwarz inequality shows that
D,(8) <p 672 for all 1 < p < 0. The I? decoupling theorem for the paraboloid
proven by Bourgain and Demeter in [4] implies that for the parabola we have

D, (6) < 07° for 2 < p < 6 and this range of p is sharp.
Decoupling-type inequalities were first studied by Wolff in [24]. Following the
proof of {2 decoupling for the paraboloid by Bourgain and Demeter in [4], decou-
pling inequalities for various curves and surfaces have found many applications to
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analytic number theory (see for example [2, 3, 5, 7, 8, 10, 11, 14, 15, 17]). Most no-
tably is the proof of Vinogradov’s mean value theorem by Bourgain-Demeter-Guth
using decoupling for the moment curve ¢t — (t,¢2,...,t") in [8]. Wooley in [26]
was also able to prove Vinogradov’s mean value theorem using his nested efficient
congruencing method.

This paper probes the connections between efficient congruencing and 12 decou-
pling in the simplest case of the parabola. For a slightly different interpretation of
the relation between efficient congruencing and decoupling for the cubic moment
curve inspired from [16], see [12]. See also [13] for an interpretation of [26] in
the decoupling language which provides an alternative proof of decoupling for the
moment curve in R? different from the proof in [8].

Our proof of I? decoupling for the parabola is inspired by the exposition of
Wooley’s efficient congruencing in Pierce’s Bourbaki seminar exposition [21, Section
4]. This proof will give the following result.

Theorem 1.1. For § e N7! such that 0 < 6 < 6_200200, we have
log %
log log% '

In the context of discrete Fourier restriction, Theorem 1.1 implies that for all N
sufficiently large and arbitrary sequence {a,} < [, we have

2mi(nz+n2t) log N 2\1/2
3 a0 ) < exp(O( e X lanf)
In|<N In|<N

D(8) < exp(30

which rederives (up to constants) the upper bound obtained by Bourgain in [1,

Proposition 2.36] but without resorting to use of a divisor bound. It is an open
log N
loglog N

problem whether the exp(O( )) can be improved.

1.1. More notation and weight functions. We define

1
g = (7 [ 1F@P )2, 1 flagany = (o [ 11Pwn)

and given a collection C of squares, we let

Ave /&) =1 Azecf
Finally we will let n be a Schwartz function such that n > 1p(g,1) and supp(7) =
B(0,1). For B = B(c, R) we also define np(z) := n(*z¢). In Section 2 we care
about explicit constants and so we will use the explicit 1 constructed in Corollary
6.7. In particular, for this n, np < 10**®wg. For the remaining sections in this
paper, we will ignore this constant. The most important facts about wg we will
need are that

Wpo,R) * WE0,R) < R2Wp(0,R)
and

15(0,r) * Wa(0,R) = R*W0p(0 R)
from which we can derive all the other properties about weights we will use such
as given a partition {A} of B, >}, wa < wp and

P
W) & |, 1V o 00 )
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We refer the reader to [6, Section 4] and [19, Section 2.2] for some useful details and
properties of the weights wp and np. To keep the paper relatively self contained,
we have also included proofs of these estimates in Section 6 with explicit constants.

1.2. Outline of proof of Theorem 1.1. Our argument is inspired by the discus-
sion of efficient congruencing in [21, Section 4] which in turn is based off Heath-
Brown’s simplification [16] of Wooley’s proof of the cubic case of Vinogradov’s mean
value theorem [25].

Our first step, much like the first step in both efficient congruencing and decou-
pling for the parabola, is to bilinearize the problem. Throughout we will assume
d~teNand ve N1 n(0,1/100).

Fix arbitrary integers a, b > 1. Suppose 6 and v were such that %61, %6~ ! € N.
This implies that § < min(v®, %) and the requirement that v™2x(@b)§=1 ¢ N is
equivalent to having v*6~*, v?6~! € N. For this ¢ and v, let M,.(6,v) be the best
constant such that

[ tergPlenslt < Mas6.0°C S 1€0 ) X IErslBan ) )
B JePs(I) J'ePs(I)

for all squares B of side length 62, g : [0,1] — C, and all intervals I € P, ([0, 1]),
I' e P, ([0,1]) with d(I,I") = 3v. We will say that such I and I’ are 3v-separated.
Applying Hélder’s inequality followed by the triangle inequality and the Cauchy-
Schwarz inequality shows that M, ;(d,v) is finite. This is not the only bilinear
decoupling constant we can use (see (28) and (32) in Sections 4 and 5, respectively),
but in this outline we will use (3) because it is closest to the one used in [21] and
the one we will use in Section 2.

Our proof of Theorem 1.1 is broken into the following four lemmas. We state
them below ignoring explicit constants for now.

Lemma 1.2 (Parabolic rescaling). Let 0 < § < o < 1 be such that 0,8,5/0 € N71.
Let I be an arbitrary interval in [0,1] of length o. Then

0
[€r9llLe () = D) D €59l Teqws)?
JePs(I)
for every g : [0,1] — C and every square B of side length §=2.

Lemma 1.3 (Bilinear reduction). Suppose § and v were such that v6~—' € N. Then
1)
D((S) $ D(;) + V71M171(5, l/).

Lemma 1.4. Let a and b be integers such that 1 < a < 2b. Suppose § and v were
such that v?*6~1 e N. Then

Ma,b(é, Z/) < l/_l/ﬁMgb’b((S, l/).

Lemma 1.5. Suppose b is an integer and § and v were such that v**6~' € N. Then
)
Moy p(6,v) S My 21(0, V)1/2D(T,)1/2-
’ v
Applying Lemma 1.4, we can move from M;; to M>; and then Lemma 1.5
allows us to move from My to Mj o at the cost of a square root of D(d/v). Ap-
plying Lemma 1.4 again moves us to Mj 4. Repeating this we can eventually reach

Myn—1 on paying some O(1) power of =1 and the value of the linear decoupling
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constant]\s[ at various scales. This combined with Lemma 1.3 and the choice of
v = 642" leads to the following result.

Lemma 1.6. Let N € N and suppose 6 was such that V2 eNand 0 < § <
1002". Then
N—1
D(5)$D(5 )+(5 32¥ D 51/2 321N D(6 ~av7 231“.
=0

u

This then gives a recursion which shows that D(d) <. 67¢ (see Section 2.3 for
more details).

The proof of Lemma 1.2 is essentially a change of variables and applying the def-
inition of the linear decoupling constant (some small technical issues arise because
of the weight wg, see [19, Section 2.4]). The idea is that a cap on the paraboloid
can be stretched to the whole paraboloid without changing any geometric prop-
erties. The bilinear reduction Lemma 1.3 follows from Holder’s inequality. The
argument we use is from Tao’s exposition on the Bourgain-Demeter-Guth proof
of Vinogradov’s mean value theorem [22]. In general dimension, the multilinear
reduction follows from a Bourgain-Guth argument (see [9] and [6, Section 8]). We
note that if @ and b are so large that v%,1* ~ § then M, ; ~ O(1) and so the goal
of the iteration is to efficiently move from small ¢ and b to very large a and b.

Lemma 1.4 is the most technical of the four lemmas and is where we use a
Fefferman-Cordoba argument in Section 2. We can still close the iteration with
Lemma 1.4 replaced by Mgy < Mpp for 1 < a < band My < V_l/GMQb’b. Both
these estimates come from the same proof of Lemma 1.4 and is how we approach the
iteration in Sections 3 and 4 (see Lemmas 3.3 and 3.5 and their rigorous counterparts
Lemmas 4.7 and 4.8). The proof of these lemmas is a consequence of I2L? decoupling
and ball inflation. Finally, Lemma 1.5 is an application of Hélder’s inequality and
parabolic rescaling.

1.3. Comparison with efficient congruencing as in [21, Section 4]. The main
object of iteration in [21, Section 4] is the following bilinear object

II(X;G/7 b)

—  max J | 2 ez + anz?)?| 2 e(any + azy?)|* da.
(0,1]%

&40 (mod p) 1<z<X 1<y<X
z=¢{ (mod p*) y=n (mod p?)

Lemma 1.2-1.5 correspond directly to Lemmas 4.2-4.5 of [21, Section 4]. The ob-
servation that Lemmas 4.2 and 4.3 of [21] correspond to parabolic rescaling and
bilinear reduction, respectively was already observed by Pierce in [21, Section §].

We think of p as v, J(X)/X3 as D(§), and p®+2°[1(X;a,b)/X? as M, (3, v)°.
We have the expressions J(X)/X? and p®*2°I,(X;a,b)/X? because heuristically
assuming square root cancellation (ignoring X¢ powers) we expect J(X) ~ X3 and
I,(X;a,b) ~ X3/p220. This heuristic explains why

Il (Xv a, b) < p2b—a11 (Xv 2b7 b)
from [21, Lemma 4.4] becomes (essentially, after ignoring the v=! ~ §¢)
Ma’b(é, I/)6 < Mgbyb((s, V)6.

In the definition of I, the max¢., (mod p) condition can be thought of as corre-
sponding to the transversality condition that I; and I are v-separated intervals of
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length v. The integral over (0,1]? corresponds to an integral over B. Finally the
expression

| Z e(arz + asz?)|,

1<z<X
rz=¢ (mod p%)

can be thought of as corresponding to |Erg| for I an interval of length v* and so
the whole of I1(X;a,b) can be thought of as § |£1, g|*|Er,9|* where £(I1) = v* and
((Iy) = v with I; and I are O(v)-separated. This will be our interpretation in
Section 2.

Interpreting the proof of Lemma 1.4 using the uncertainty principle, we reinter-
pret I;(X;a,b) as (ignoring weight functions)

Aepu_éavi‘[)) (B)I\Efg\\i;(A)Hé’z'g\l‘i;@) (4)
where I and I’ are length v* and v°, respectively and are v-separated. The uncer-
tainty principle says that (4) is essentially equal to ﬁ S l€91?1Erg|*.

Finally in Section 5 we replace (4) with

Avg  ( Z HngH%i(A))( Z H&I'ﬂ%i(mf
A€P,—1(B) jep (1) JEP,, (1)

where I and I’ are length v and v-separated. Note that when b = 1 this then is
exactly equal to ﬁ SB |€19]%|Erg|*. The interpretation given above is now similar

to the A, object studied by Bourgain-Demeter in [6].

1.4. Overview. Theorem 1.1 will be proved in Section 2 via a Fefferman-Cordoba
argument. This argument does not generalize to proving that D,(d) <. 0~ except
for p = 4,6. However in Section 3, by the uncertainty principle we reinterpret a key
lemma from Section 2 (Lemma 2.7) which allows us to generalize the argument in
Section 2 so that it can work for all 2 < p < 6. We make this completely rigorous in
Section 4 by defining a slightly different (but morally equivalent) bilinear decoupling
constant. A basic version of the ball inflation inequality similar to that used in [6,
Theorem 9.2] and [8, Theorem 6.6] makes an appearance. Finally in Section 5,
we reinterpret the argument made in Section 4 and write an argument that is
more like that given in [6]. We create a 1-parameter family of bilinear constants
which in some sense “interpolate” between the Bourgain-Demeter argument and
our argument here.

The three arguments in Sections 2-5 are similar but will use slightly different
bilinear decoupling constants. We will only mention explicit constants in Section 2.
In Sections 4 and 5, for simplicity, we will only prove that D(J) <. d=°. Because
the structure of the iteration in Sections 4 and 5 is the same as that in Section 2,
we obtain essentially the same quantitative bounds as in Theorem 1.1 when making
explicit the bounds in Sections 4 and 5.

Finally, in Section 6, we include some discussion on the explicit constants for
various estimates that we need for the proof of Theorem 1.1.
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and his advisor Terence Tao for encouragement and many discussions on decoupling.
The author would also like to thank Kevin Hughes and Trevor Wooley for a fruitful
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conference held by the Clay Math Institute at the University of Oxford in September
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2. PROOF OF THEOREM 1.1

We recall the definition of the bilinear decoupling constant M, ; as in (3). The
arguments in this section will rely strongly on the fact that the exponents in the
definition of M, ; are 2 and 4, though we will only essentially use this in Lemma
2.7.

Given two expressions x1 and xo, let

eom x--—x2/6x4/6
g 2,4Li = Ly Lo -

Holder’s inequality gives | geomy 4 74|, < geoms 4 |74,

2.1. Parabolic rescaling and consequences. The linear decoupling constant
D(6) obeys the following important property.

Lemma 2.1 (Parabolic rescaling). Let 0 < § < o < 1 be such that 0,8,5/0 € N71.
Let I be an arbitrary interval in [0, 1] of length o. Then

1)
I€1gllLs () < 101600017(;)( DU 1Ergl e ()

JePs (I)
for every g : [0,1] — C and every square B of side length §=2.

Proof. The proof without explicit constants is standard, see [6, Proposition 7.1] or
[20, Lemma 3.2]. The derivation of the constant 101690 is given later in Section
6.3 (and a similar proof can also be found in [19, Section 2.4], see also that section
for a minor clarification of parabolic rescaling with weight wp and the argument in
[6, Proposition 7.1]). O

As an immediate application of parabolic rescaling we have almost multiplica-
tivity of the decoupling constant.

Lemma 2.2 (Almost multiplicativity). Let 0 < § < o < 1 be such that 0,6,0/c €

N1, then
D(3) <102 D(5)D(5/0).

Proof. From the definition of D(o), we have
1€10,119] s (By < D(o)( Z HngH%ﬁ(wB))l/Z'
JeP,([0,1])

For each J € P,([0,1]), combining Lemma 2.1 with Corollary 6.5 gives

]
1595 (ws) < 8'°°10MP D) > Er0] )

J'ePs(J)
O

The trivial bound of O(v(*+20)/65=1/2) for M, (8, v) is too weak for applications.
We instead give another trivial bound that follows from parabolic rescaling.

Lemma 2.3. If§ and v were such that v*6~',v°6~ ' € N, then

4] ]

M,y p(d,v) < IOQUOOOD(7)1/3D(T)2/3.
v v
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Proof. Fix arbitrary I) € P,a([0,1]) and Iy € P,+([0,1]) which are 3v-separated.
Holder’s inequality gives that

| geomy 4 |€1,9 ||6L6(B) < thgH%G(B)\\5129”%6(3)-

Parabolic rescaling bounds this by
) )
;)2D(ﬁ)4( 2 HEJQHZLfi(wB))( 2 |‘€J'9H%6(w3))2'

JePs(I1) J'ePs(I2)

10120000D(

Taking sixth roots then completes the proof of Lemma 2.3. O

Holder’s inequality and parabolic rescaling allows us to interchange the a and b
in Ma,b-

Lemma 2.4. Suppose b>1 and § and v were such that v**6~' € N. Then
Moy p(8,v) < 10"°00N 1y 5, (8,0) 2 D(5/10) /2.

Proof. Fix arbitrary I; and I, intervals of lengths 2* and v?, respectively which
are 3v-separated. Holder’s inequality then gives

I1En g1 g2 8 ) < (fB Enl 1Enal)2( fB E1,gl%).

Applying the definition of M, o, and parabolic rescaling bounds the above by

)
(102000) 3 My, 20 (8,1)* D (5 ) Y 1Es9liewm)C D) 1€r9T6 )
JePs(I) J'ePs(I2)
which completes the proof of Lemma 2.4. ([

Lemma 2.5 (Bilinear reduction). Suppose § and v were such that v6~—! € N. Then

D(d) < 103°°°°(D(é) + v M 1 (6,v)).

14

Proof. Let {I;}*_; = P,([0,1]). We have

1/2
lEongloe =1 Y Englom <l Y (EngliEnall2n,
1<igp—! 1<i,j<v—1
1/2 1/2
<va(l X lenslienelliZn t1 X Ienalinall} )
1<ij<v™?! 1<ij<v™?!
l[i—7]<3 [i—7]|>3

()

We first consider the diagonal terms. The triangle inequality followed by the
Cauchy-Schwarz inequality gives that

I >0 EngllEngllas < Y 1€nglom) €L gl ).
1<ij<v™?! 1<i,j<v™?!
li—j|<3 li—j|<3
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Parabolic rescaling and the Cauchy-Schwarz inequality bounds this by

)
1040000D(;)2 Z ( Z HSJQH%G(wB))l/Q( Z Hng”%G(’ujB))l/Q

1<i,j<v~! JePs(1;) JePs(I;)
li—jl<3

5
<10°D(=) > €907 6 (wm)-
Y Jeps(o.1))
Therefore the first term in (5) is bounded above by
5
10300001)(;)( Z H5J9H%6(w3))1/2- (6)
JePs([0,1])

Next we consider the off-diagonal terms. We have

1/2 _
> lEngllEnglliss <v ! _max IErgllEnall o,
.. — INESZE
QR iz
Holder’s inequality gives that
1/2 1/2 1/2
lELglEr gl s s < NEnglPIE a2 15 m € g P lEL g 1 sy (7)

and therefore from (3) (and using that v6~! € N), the second term in (5) is bounded
by
V20T M, (6, v)( Z HngH%G(wB))l/Z-
JePs([0,1])

Combining this with (6) and applying the definition of D(d) then completes the
proof of Lemma 2.5. O

2.2. A Fefferman-Cordoba argument. In the proof of Lemma 2.7 we need a
version of M, with both sides being LG(wB). The following lemma shows that
these two constants are equivalent.

Lemma 2.6. Suppose § and v were such that v*6~', 1’6~ € N. Let M}, ,(6,v) be
the best constant such that

f\519|2|51'9|4w8<M;,b(5,1/)6( D0 gl 2 156l Ts ()
JePs(I) J'ePs(I')

for all squares B of side length 672, g : [0,1] — C, and all 3v-separated intervals
IeP,([0,1]) and I' € Ps([0,1]). Then

L p(0,v) < 12806 D1, 4 (8,v).

Remark 1. Since 1p < wp, we find M, ,(0,v) < M(’L’b(é, v) and hence Lemma 2.6
implies M, ~ M, ,.

Proof. Fix arbitrary 3v-separated intervals I € P,a([0,1]) and I € P, ([0,1]). It
suffices to assume that B is centered at the origin.
Corollary 6.4 gives

100 6
| geomy 4 11,9150y < 3 j I geoms 4 [€1,9115 (53y.5-2)) 0B (y) dy-
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Unraveling the definition of Lf/; and applying the definition of M, ; gives that the
above is

< 31005917, (6, )0 J geomy a( Y 1Es0l30 o) w(v) dy
R2 JePs(I:) ’

1,
<30 M, (0.0 geomyy | (X [EsslBece,,, o) Cwn()dy
JePs(I;)

<89N0, geoma (D) ([ 1Esoll

ywp(y) dy)'?)?
JePs(1;) *R?

WB(y,56-2)

where the second inequality is by Holder’s inequality and the third inequality is by
Minkowski. Since B is centered at the origin, wp * wp < 41996 *wp (Lemma 6.2)
and hence

o J;m Hg‘]guie(ws(y,afz))wB(y> dy < 4100“‘("Jg”%6(w5)'

This then immediately implies that M; ,(d,v) < 12109601, (8, v) which completes
the proof of Lemma 2.6. (]

We have the following key technical lemma of this paper. We encourage the
reader to compare the argument with that of [21, Lemma 4.4].

Lemma 2.7. Let a and b be integers such that 1 < a < 2b. Suppose 6 and v was
such that v?*6~1 e N. Then

Ma,b((;a l/) < 1010001/71/6]\/[257})((5, I/).

Proof. Tt suffices to assume that B is centered at the origin with side length 6—2.
The integrality conditions on § and v imply that § < v?® and v25~1, 6~ € N. Fix
arbitrary intervals I} = [a, a + v%] € P,a([0,1]) and Iy = [3,8 + *] € P,+([0,1])
which are 3v-separated.

Let gs(x) := g(z + B), Ts = (}*F), and d := a — . Shifting I to [0, "] gives
that

f 1(61,9) (@)1 (€, 9) (@) da = f (s v198) (T2) | (Epp.mgs) (Tsa)| do
B B
:J |(Eld,asve198) (@) P (Epo,198) ()| dz. (8)
Ts(B)

Note that d can be negative; however since g : [0,1] — Cand d = a— 3, £q,a414198
is defined. Since |5] < 1, T3(B) < 100B. Combining this with 11005 < n1008 gives
that (8) is

< .[Rz |(g[d,d+ua]95)($)\2|(5[0,ub]9ﬁ)($)|4771003($) dx

- Z JR2 (5J196)($)m|(5[0,Vb]gﬁ)(a?)|4771003(3;) de.  (9)

']17J26P1/2b ([d,d+Ua])

We claim that if d(Jy, J2) > 100271 the integral in (9) is equal to 0.
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Suppose Ji, Jo € P, ([d,d + v]) such that d(Jy, Jo) > 1002*~1. Expanding the
integral in (9) for this pair of Jy, Jo gives that it is equal to

J (J ngﬁ £)98(Eivale dez> Moo (w)dr  (10)
R2 J1x[0,0°]2 x Jo x[0,00]2

where the expression inside the e(---) is

(=& + (§ —EDpa) + (Lo + & — & — &o)or + (&5 + &5 — & — &) w2).

Interchanging the integrals in £ and x shows that the integral in z is equal to the
inverse Fourier transform of 71995 evaluated at

3
—&iv3), }]5—fH3

A
I
8¢
A%

Since the inverse Fourier transform of n190p is supported in B(0,4§2/100), (10) is
equal to 0 unless

(& — &ivs)| < 6°/200

Kb_ﬂ“

@
I
-

(6 713)] < 6°/200. (11)

E@

-
Il

Since § < % and ¢&; € [0,0] for i = 2,3,5,6, (11) implies

& — &llér + &l = 167 — &3] < 5™ (12)

Since Iy, I are 3v-separated, |d| = 3v. Recall that & € Ji, £, € Jo and Jp, Jo are
subsets of [d,d + v®]. Write §&; =d + r and & = d + s with r, s € [0,v*]. Then

|61 +&| =12d + (r +s)| = 6v — |r + 5| = 6v — 20" > 4v. (13)

Since d(Jy,J2) > 1002271 |& — &] > 1002~ Therefore the left hand side of
(12) is > 400%*, a contradiction. Thus the integral in (9) is equal to 0 when
d(Jl,J2> > 100201,

The above analysis implies that (9) is

< Y s @R @ o) @)l s (o) d

J1,J2€P 2y ([d,d+1v°]) VR
d(J1,J2)<1002b71

Undoing the change of variables as in (8) gives that the above is equal to

JRQ (€n9)(@)[(E2.9)@)|(Er.9) (@) moos(Tsz) dz.  (14)

J1,J2€P 25 (I1)
d(Jy,J2)<1002b71

Observe that
HIOOB(TB-T) < 102400w1003(T5:E) < 102600w1003($> < 102800’11}3(1')

where the second inequality is an application of Lemma 6.1 and the last inequal-
ity is because wp(z)lwigop(r) < 102°°. An application of the Cauchy-Schwarz



AN [> DECOUPLING INTERPRETATION OF EFFICIENT CONGRUENCING 11
inequality shows that (14) is

<107 N (| lenoPlensun) ([ l€ngPlensl o)

J1,J2€P,2p (I1)
d(J1,J2)<1002b71

Note that for each J; € P, (I7), there are < 10000v ! intervals Jy € P2 (I7) such
that d(J;,J2) < 100?°~1. Thus two applications of the Cauchy-Schwarz inequality
bounds the above by

102802,,-1/2( Z J 2,917 [Eng| wp) "/ x
J1€P, 25 (I1)

(XX Pt

J1EP 24 (I1)  J2€P, 24 (I2)
d(Jl,Jz)<10u2” !

Since there are < 10000v~! relevant J5 for each J;, the above is

<1001 ) f €59 P1En gl ws
JEP, 25 (I1)

< 10701210 Moy, (5,0)°C DT 1€590T00wp) (YL 1€5GlF ()’
JePs(Iy) J'ePs (1)

where the last inequality is an application of Lemma 2.6. This completes the proof
of Lemma 2.7. O

Iterating Lemmas 2.4 and 2.7 repeatedly gives the following estimate.

Lemma 2.8. Let N € N and suppose § and v were such that 12" 61 e N. Then

6 5 N—-1 (S ;
My 1(5 l/) < 1060000, _1/3D( v )3211\’ D( =N )3221\’ 1_[ D(7)1/2 H'
1% _ 14

Proof. Lemmas 2.4 and 2.7 imply that if 1 < a < 2b and § and v were such that
v265=1 e N, then

M, (5,v) < 1020000,V g, o,(5, y)1/2p(%)1/2. (15)
1%

Since 12" 671 € N, vi6~t e N for i = 0,1,2,...,2N. Applying (15) repeatedly
gives

1

N—
M 1(6,v) < 1070000, =180, s an(6,v)2N 1_[ I/QJH

VQJ
Bounding Myn~-1 ov using Lemma 2.3 then completes the proof of Lemma 2.8. [

Remark 2. A similar analysis as in (11)-(13) shows that if 1 < a < b and § and v
were such that ¥°6~1 € N, then M, ;(6,v) < My (d,v). Though we do not iterate
this way in this section, it is enough to close the iteration with M, ;, < My for
1<a<b,and My < v~ Y5 Mayp, and Lemma 2.4. We interpret the iteration and
in particular Lemma 2.7 this way in Sections 3-5.
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2.3. The O.(67¢) bound. Combining Lemma 2.8 with Lemma 2.5 gives the fol-
lowing.

Corollary 2.9. Let N € N and suppose 6 and v were such that 12”51 e N. Then

1/2J +1
1/2]

Choosing v = 62" in Corollary 2.9 and requiring that v = §/2" € N=1
(0,1/100) gives the following result.

4]

VQN—I ) 2N

D(5) < 101 (D(i) + v B3 D(

Corollary 2.10. Let N € N and suppose § was such that 612" ¢ N and § <
1002". Then

D(5) < 10105( (517 3F) Jh ~37 +>

Corollary 2.10 allows us to conclude that D(d) <. §~ 5. To see this, the trivial
bounds for D(8) are 1 < D(§) < 67Y/2 for all § € N . Let X be the smallest
real number such that D(§) <. 6~ for all 6 € N~1. From the trivial bounds,
A € [0,1/2]. We claim that A = 0. Suppose A > 0.

Choose N to be an integer such that

5 N 4

—+ =5 =1L 1
6+2 3\ (16)

Then by Corollary 2.10, for 612" € N with § < 100_2N
D((S) SE 67 177N) N -I-(S_W_W_Z;V 01(1 2N J)2J+1 —€

D o e N R o R G O

~NeE

where in the last inequality we have used (16). Applying almost multiplicativity of
the linear decoupling constant (similar to [19, Section 2.10] or the proof of Lemma
2.12 later) then shows that for all § € N=1

D(§) $N_’5 5_)\(1_7) E
This then contradicts minimality of A. Therefore A = 0 and thus we have shown

that D(0) <. 6 for all § e N71.

2.4. An explicit bound. Having shown that D(§) <. §7°, we now make this
dependence on € explicit. Fix arbitrary 0 < ¢ < 1/100. Then D(d) < C.6~¢ for all
§eN-L

Lemma 2.11. Fiz arbitrary 0 < ¢ < 1/100 and suppose D(§) < C.67¢ for all
8§ e N71. Let integer N > 1 be such that

R
6 2 3¢ '

Then for & such that 612" €N and § < 100*2N, we have

D(s) <2101 Cr g,
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Proof. Inserting D(§) < C.0~¢ into Corollary 2.10 gives that for all integers N > 1
and & such that 6—/2" ¢ N, § < IOO_QN, we have

D(6) < 101 (CL67% 4+ ¢ 52Y gar (B E—i))5—<

Thus by our choice of N,

2
D(8) < 10'0°(C.05% + G 727 )5<. (17)
There are two possibilities. If § < C!, then since 0 < & < 1/100, (17) becomes
_ e __2_ _ e
D) <10'°(C: ¥ 4 ¢ V)5 <2.100° 0 N g (18)

On the other hand if § > C!, the trivial bound gives
D(5) < 2100/65-1/2 < 9100/61/2

which is bounded above by the right hand side of (18). This completes the proof
of Lemma 2.11. O

Note that Lemma 2.11 is only true for ¢ satisfying 612" €N and § < 100-2" .
We now use almost multiplicativity to upgrade the result of Lemma 2.11 to all
§eN-L

Lemma 2.12. Fiz arbitrary 0 < ¢ < 1/100 and suppose D(§) < C.67¢ for all
§eN"L. Then

17 1

D((S) < 1010624-8 06_81%678
for all § e N~1,

Proof. Choose

8 5

N:=[3- =3l (19)

and § € {272"n}0_  — {00} ;. Then for these d, 512" e Nand § < 100-2". If
§ € (07,1 nN~1 then

D(5) < 9100/6 5—1/2 < 2100/622’“?7_

If § € (Op+1, 0n] for some n > 7, then almost multiplicativity and Lemma 2.11 gives
that

D(d) < 1020000D(6”>D<?)
e )

< 1020000(9  1(10° 51 2N §—€)(9100/6 (On \1/2

00002 100" 02T 5, %) (2100022 1)

<1090°22" 't

-
2N §¢

where N is as in (19) and the second inequality we have used the trivial bound for
D(6/0y).
Combining both cases above then shows that if N is chosen as in (19), then

oN—-1 1

D(5) < 101°272" " ol TN 5
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for all § € N~'. Since we are no longer constrained by having N € N, we can
increase N to be 3/¢ and so we have that

1/e

C;islﬁéfE
for all § e N~!. This completes the proof of Lemma 2.12. [l

D(5) < 10'0°248

Lemma 2.13. For all 0 < ¢ < 1/100 and all § € N™!, we have
D(5) < 22007 5=

Proof. Let P(C,\) be the statement that D(§) < Cd~> for all § € N™!. Lemma
2.12 implies that for € € (0,1/100),

e 1——f—
P(C.,e) = P(10"°248" 07517 o).
Tterating this M times gives that
e = )]M

P(Cere) = P([0°2+8 25 05w 57 o).
Letting M — oo thus gives that for all 0 < e < 1/100,

1/e

D(d) < (1010624'81/5)81/5/6576 < 21001/5/55*8 < 2200 576

for all § e N~!. This completes the proof of Lemma, 2.13. O
Optimizing in € then gives the proof of our main result.

Proof of Theorem 1.1. Choose A = (log, 200)(log%)7 n = log A — loglog A, and
€= %log 200. Note that nexp(n) = A(1 — %) < A. Then from our choice of
,'7’ A7 57
1
200'/¢log 2 < elog 5

and hence

€ 1
9200V 5—¢ o exp(2¢ log 5) (20)

Since n = log A — loglog A, we need to ensure that our choice of ¢ is such that
0 < & < 1/100. Thus we need

. log 200 - 1
~ log((log, 200)(log 1)) — log log((log, 200) (log £)) ~ 100°

4

1/2 and hence for all 0 < § < e &2 200

Note that for all z > 0, loglogz < (log x)

tog((log, 200) log; 5)) ~ log log(logs 200) log 5))

)
1 1
> log((log, 200) (log ) — [log((log, 200) (log )]
1 1 1 1
>3 log((logy 200)(log 5)) >3 log log 5 (21)

e4
Thus we need 0 < § < e 82200 {0 also be such that
2log 200 1
71 < —_—
loglog 5 100
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and hence § < 290" Therefore using (20) and (21), we have that for § €
(0 6—200200) A N-!
log %
log log% '
This completes the proof of Theorem 1.1. O

D(6) < exp(30

3. AN UNCERTAINTY PRINCIPLE INTERPRETATION OF LEMMA 2.7

We now give a different interpretation of Lemma 2.7, making use of the uncer-
tainty principle. We will pretend all weight functions wg are indicator functions
1p in this section and will make the argument rigorous in the next section. In this
section, B will denote an arbitrary square of side length 2.

The main point was of Lemma 2.7 was to show that if 1 < a < 2b, § and v such
that v26~1 € N, then

f EngPlEngt <v Y j €59 Engl* (22)
B

JEP 217 Il)

for arbitrary Iy € P,a([0,1]) and Iy € P,+([0,1]) such that d(I1,I2) 2 v. From
Lemma 2.8, we only need (22) to be true for 1 < a < b. Our goal of this section is to
prove (heuristically under the uncertainty principle) the following two statements:

(I) For 1 <a <b, Myu(6,v) < Myp(6, V) in other words

| ensienalt s 3| lerllenl (23)
B JeP,, (I1)

for arbitrary I) € P,a([0,1]) and Iy € P, ([0, 1]) such that d(Iy, I2) 2 v.
(I1) My (6, v) < v~/ My (6, v); in other words

| enstiengt <ot | lesalienel (24)
B JEP 25 (I1)
for arbitrary I, Is € P, ([0, 1]) such that d(I, 1) 2 v.
Replacing 4 with p — 2 then allows us to generalize to 2 < p < 6.

The particular instance of the uncertainty principle we will use is the following.
Let I be an interval of length 1/R with center c. Fix an arbitrary R x R? rectangle
T oriented in the direction (—2¢,1). Heuristically for € T, (€;g)(x) behaves
like ar je?™7.1% Here the amplitude az depends on g, T, and I and the phase
wr,; depends on T and I. In particular, |(€7g)(x)]| is essentially constant on every
R x R? rectangle oriented in the direction (—2c,1). This also implies that if A is a
square of side length R, then |(€rg)(z)| is essentially constant on A (with constant
depending on A, I, g) and | &g L7(A) is essentially constant with the same constant
independent of p.

We introduce two standard tools from [6, 8.

Lemma 3.1 (Bernstein’s inequality). Let I be an interval of length 1/R and A a
square of side length R. If 1 < p < q < o0, then

H519||Lq (A) Hf’:IQHLP (A)-

We also have
1€rg] L (a) S ||519HL§;(A)~
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Proof. See [6, Corollary 4.3] or [19, Lemma 2.2.20] for a rigorous proof. O

The reverse inequality in the above lemma is just an application of Holder’s
inequality and so ignoring weight functions, H&gHL;(A) ~ ||519HL;(A) for any 1 <
p,q < 0. In other words, HSIQHL;(A) is essentially constant independent of p.
Therefore we can view Bernstein’s inequality as one instance of the uncertainty
principle.

Lemma 3.2 (I2L? decoupling). Let I be an interval of length > 1/R such that
R|I| e N and A a square of side length R. Then
€] z2(a) < ( 2 H5J9H2L2(A))1/2~
JePyp(I)

Proof. See [6, Proposition 6.1] or [19, Lemma 2.2.21] for a rigorous proof. O

The first inequality (23) is an immediate application of the uncertainty principle
and [2L? decoupling.
Lemma 3.3. Suppose 1 < a < b and § and v were such that v*°6~' € N. Then

| enstienat s X | lesaPlenat
B JeP (1)

for arbitrary Iy € P,a([0,1]) and Iy € P,([0,1]) such that d(I,I2) 2 v. In other
words, Mg p(0,v) < Mp (9, v).
Proof. Tt suffices to show that for each A’ € P, (B), we have

| enaPlenat s X | lessPienl

JEP (1)

Since I is an interval of length 1, |€5,¢| is essentially constant on A’. Therefore
the above reduces to showing

| enats X el

JEP b Il)

which since a < b and I; is of length v* is just an application of 2L? decoupling.
This completes the proof of Lemma 3.3. (]

Inequality (24) is a consequence of the following ball inflation lemma which
is reminiscent of the ball inflation in the Bourgain-Demeter-Guth proof of Vino-
gradov’s mean value theorem. The main point of this lemma is to increase the
spatial scale so we can apply [2L? decoupling while keeping the frequency scales
constant.

Lemma 3.4 (Ball inflation). Let b > 1 be a positive integer. Suppose I and I
are intervals of length v° with d(Iy,Iy) = v. Then for any square A" of side length
v we have

Ae}éi’bg( H&JH%;(MHSIQQHZE;( S 1H5119HL2(A/)HgIggHi;(A')'
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Proof. The uncertainty principle implies that |Er, g| and |€;,g| are essentially con-
stant on A. Therefore we essentially have

1 1
Ave | 1€ngll sl ~ [ € f EngliEngl’
AEP —b Li(A) Li(A) |PIJ7!’ (A/)‘ A P%(A’) |A| A

1
= m JA/ |5119|2|5129\4~

Cover A’ by disjoint rectangles {11} of size =% x v~2® pointing in the direction

(—2¢y,,1) where ¢y, is the center of ;. Similarly form the collection of v~ x
v~2 rectangles {Ty} corresponding to I. From the uncertainty principle, |£7,g| ~
2o, laz, [17, and [Er,9] ~ X7, |ar, |17, for some constants
and A’.

Since I; and Iy are O(v)-separated, for any two tubes T7,T5 corresponding to
I, I, we have |T} n Ty| < v~!172>. Therefore

iy

1 l/72b
A7 |£11«g|2|5[2g|4 < V71 Z |aT1|2|a’T2‘4'
|A] L/ |AT] 3
1,12
Since
11,9172 (an 1€ 78 a0y ~ |A/|2 Z laz, |lar, |*
T1,T%
and |A’| = =4 this completes the proof of Lemma 3.4. O

We now prove inequality (24).
Lemma 3.5. Suppose § and v were such that v**6~' € N. Then
| tensPizngt < v | respienar

B JEP 217 Il)

for arbitrary I € P, ([0,1]) and Iy € P ([0,1]) such that d(I1,1I2) 2 v. In other
words, My p(0,v) < u_l/GMgb,b((S, V).

Proof. This is an application of ball inflation, 12 L? decoupling, Bernstein’s inequal-
ity, and the uncertainty principle. Since 1?6~ € N, v*6~! € N and ¢ < v?*. Fix
arbitrary I, Iy € P,+([0,1]). We have

1 1
o1 | lenensl - 3| lenaPlenl
B AeP,_4(B)

S & €L g IErgl7-
Bl J Fee)

1
<1 (—j En9®)|Enal!
IPu—b<B>lAepV2b(B> ] J, EnoEnaliy o)

= Avg |&n9|? Englt 25
AePV,b(B)H 1 HLQ#(A)H 2 HL;(A) ( )

where the second inequality is because of Bernstein’s inequality. From ball inflation
we know that for each A’ € P,-2(B),

4 - 4
Avg /)thgﬂii(mHgfngL;;(A) Sv 1thgHii(A’)”‘c"fngLj%(A’)'

AGPV,Qb (A
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Averaging the above over all A’ € P,—2 (B) shows that (25) is

<v !t Ave [€L9l32 an €l T (an-
AIEPV—zb(B) ! Li(A) 2 L#(A)

Since I is of length ©°, I2L? decoupling gives that the above is

S Z Avg ||5J9|‘ii(A/)||5129Hi;(m)
JeP (1) A’eP,_5;(B)

1
_ -1 A ,
=y ﬁ Z Z H&zgllm(A,)H&gHLi(A,)

JEP 2, (I1) A’€P, 21 (B)

11
- DD N NG e

JGPUQb (11) A/EPU_Q}) (B)

Since |€¢| is essentially constant on A’, the uncertainty principle gives that essen-
tially we have

([ tensNesnlty w ~ [ 1€saPlEnal’
A’ A/

Combining the above two centered equations then completes the proof of Lemma
3.5. O

Remark 3. The proof of Lemma 3.5 is reminiscent of our proof of Lemma 2.7. The
|€r, 9l (a) can be thought as using the trivial bound for &;, i = 2,3,5,6 to obtain
(12). Then we apply some data about separation, much like in ball inflation here
to get large amounts of cancelation.

Remark 4. After the submission of this manuscript, the author along with Shaoming
Guo, Po-Lam Yung, and Pavel Zorin-Kranich were able to interpret Wooley’s nested
efficient congruencing paper [26] in terms of decoupling which gave a new rather
short proof of 12 decoupling for the moment curve in R [13]. Restricting our paper
to k = 2 gives a third proof of Lemma 3.5 that just uses Plancherel’s theorem.
In [13] we use the Fourier supported in a neighborhood formulation of decoupling,.
In what follows we give a heuristic sketch of the argument using the formulation
of decoupling with an extension operator. See [13] or [23, Proposition 19] for a
rigorous proof. One can also make the argument rigorous using the methods in
[12].

By affine invariance of the parabola, we may assume that I, = [-1*/2,1/2]
and I; = [d,d + v*] where d 2 v. From the uncertainty principle, since Iy =
[—1°/2,v%/2], |(Er,9) ()] is essentially constant on any vertical % x =2 rectangle.
Partition B into vertical »~% x =2 rectangles []. It suffices to prove that for each
[, we have

f|shg\2|ebg\4sfl S [ eseliena
D JEPVQb(Il)

Since |€r,9| is essentially constant on [] and appears on both sides, it suffices to
prove

fmm?swl 3 f ErgP.
U JEP, 3 (I1) VU
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We may assume that [J = [0,27°] x [0,v72"]. It is enough to prove that each fixed
z € [0,v7], we have

—2b —2b

LV (Er9) ()2 dy < v f (Era)(ey)Pdy.  (26)

JEPVQb (11) 0

We claim that this follows from Plancherol’s theorem. Observe that |(£rg)(z,y)| =

(d+v*
15, 9(©)e(€)el€y) el = |47 Galnelm) dil for Galn) 1= s=g(yiely/io).
Let P([d?, (d + v ) ]) be the partition of this interval into intervals [d?, (d + v?*)?],
[(d+v?)2, (d + 2v2%)?], [(d + 2v2%)2, (d + 3v?")? ] etc. Let vy, 2] be a Schwartz

function such that ¢y ,-20) = 1jg ,-2) and Supp(’(/J[Oy,j—%]) [— 217/27V2b/2]. Then
by Plancherel’s theorem,

l/_2b V—Qb (d+Va)2
j \(Erg) ()P dy = f | Goo(m)e(yy) dnf? dy
0 0 dz2
J | ). Gl s (W) 0,201 ()] dy
R jep
J | D) Gl 4y, |
R JeP

Since the | J| = 2dv?® + O(v?**%), the G,1; *1/)[0’,,7213] have almost pairwise disjoint
support, and so the above is (essentially)

*Zf LRy = Y f (E19) (@) dy.

JeP JEP 25 (I)

This proves (26) and hence proves Lemma 3.5.

4. AN ALTERNATE PROOF OF D(§) <. 0°¢

The ball inflation lemma and our proof of Lemma 3.5 inspire us to define a new
bilinear decoupling constant that can make our uncertainty principle heuristics from
the previous section rigorous.

The left hand side of the definition of D(J) in (2) is unweighted, however observe
that Corollary 6.5 implies that

10,19l ows) S DO Do 1€59176 ()" (27)
JePs([0,1])

for all g : [0,1] — C and squares B of side length 6 2.
We will assume that 6~! € N and v € N7! n (0,1/100). Let M, ;(d,v) be the
best constant such that

Avg 1€1911% 2 (w0 |IE 9]l 72
AP iy (B) 0 Faelwa)

< Map@)C D) 18030 ) D) 1€091 g un)?

JePs(I) JePs(I')

(28)

for all squares B of side length 672, g : [0,1] — C and all intervals I € P, ([0,1]),
I'e P,([0,1]) with d(I,I") = v
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Suppose a > b (the proof when a < b is similar). The uncertainty principle
implies that

A 2 4
e B)thgHLi(A) 1€r90%s, (a)

1 1
- o (| el ensli o

AeP,_,(B)
1 2 4
~ @ 5 |5119| |5129|

where the last ~ is because |€7, g is essentially constant on A. Therefore our bilinear
constant M, p is essentially the same as the bilinear constant M, ; we defined in

(3).

4.1. Some basic properties. We now have the weighted rigorous versions of Lem-
mas 3.1 and 3.2. Note that we will only need the L* version of Lemma 3.1.

Lemma 4.1 (Bernstein’s inequality). Let I be an interval of length 1/R and A a
square of side length R. Then

[€19]L=(a) S €190 L2, (wa)-

Lemma 4.2 (I2L? decoupling). Let I be an interval of length > 1/R such that
R|Il e N and A a square of side length R. Then

I€rglzcoa) S C D 1€59132a)) -
JEPl/R(I)

We now run through the substitutes of Lemmas 2.3-2.5.

Lemma 4.3. Suppose § and v were such that v*6~1, v’6~' € N. Then
0 0
Ve b

Proof. Let I € P,o([0,1]) and I € P, ([0, 1]). Holder’s inequality gives that

May(6,v) S D(—)Y3D(=)3.

Avg 1€, 9122 o IELTILL (o
Aepyfmax(a,b)(B)‘ ! Li( A) 2 ‘L;L%( A)

< Avg 1€1,91%6 ()l €1907
AP, e (B) tINLE, (wa) 142 91LE, (wa)

v

<O A 10l wa) P Ave €5 )
A€EP _ nax(a,b) (B) 1INLYG (wa) A ) 2J1LY, (wa)

., ,— max(a,b)

2 4
S HSHQHL;(MB) HSI2gHLg£(u)B)
where the last inequality we have used that ), wa < wp (see for example Corollary

6.3). Finally applying (27) with parabolic rescaling then completes the proof of
Lemma 4.3. 0

Lemma 4.4. Suppose v*6~ ', 06 1 € N. Then
1)

Map(8,v) € Myo(8,0)/2D() ">,
1%
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Proof. Let I € P,a([0,1]) and I € P,+([0,1]). We have

A 2 4
AEPy*lIl:c%a,b) (B)thg”Li(wA) HgIngLi(wA)

< A £ 2 £ £ 3
AePu-m:x%a,b)(B)H 19012, 0 1€9012 (wa) [€:9 118, (1)

< ( Avg I€ngl3 |€1,917 )V3( Avg |€5,915 )2
A€P _ max(a,b) (B) HG (wa) IR (0a) A€EP _ ax(a,b) (B) 2 (wa)

4 2 1/2 3
S(Aepffili’b)(B)H&IQHL;(wA)HEIQQHLi(wA)) HgIQgHL%(?UB)

where the first and second inequalities are because of Holder’s inequality and the
third inequality is an application of Hélder’s inequality and the estimate ), wa <
wp. Applying parabolic rescaling and the definition of M, then completes the
proof of Lemma 4.4. O

Lemma 4.5 (Bilinear reduction). Suppose 6 and v were such that v~ € N. Then

1)
D) £ D(5) + v M (6,v).
Proof. The proof is essentially the same as that of Lemma 2.5 except when analyzing
(7) in the off-diagonal terms we use

1
H|51¢9\1/3|5Ij9\2/3“i%(3): Avg W.L E1,911E1,9]*

AGPV_l (B)
< Avg l€n9l7z gl
ek gyl L4 (a) Il 9llLe(a)
< A ql3 ql4
- AePl,Ylg(B)”gllg Ly (wa) Hglﬂg”Li(wM
where the second inequality we have used Bernstein’s inequality. ]

4.2. Ball inflation. We now prove rigorously the ball inflation lemma we men-
tioned in the previous section.

Lemma 4.6 (Ball inflation). Let b > 1 be a positive integer. Suppose Iy and Is
are v-separated intervals of length v°. Then for any square A' of side length v=2°,
we have

Aeészgm/)||5hg\\ii(wa)H5129Hi3¢(m) Sv 1\|5119H2L3¢(%,)\\5129||i;;(%,)~ (29)
Proof. Observe that if ¢ = (¢1,c¢q), then (Erg)(z + ¢) = (£19.)(x) where g.(§) =
g(&)e(€cy + £%¢2). Therefore we may assume that A’ is centered at the origin. Fix
intervals I; and I, intervals of length ® which are v-separated with centers ¢; and
ca, respectively.

Cover A’ by a set T; of mutually parallel nonoverlapping rectangles Ty of dimen-
sions 7% x v~2% with longer side pointing in the direction of (—2¢;, 1) (the normal
direction of the piece of parabola above I;). Note that any such v=% x v=2 rec-
tangle outside 4A’ cannot cover A’ itself. Thus we may assume that all rectangles
in 77 are contained in 4A’. Finally let T} (x) be the rectangle in 77 containing x.
Similarly define 73 except this time we use I5.
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For x € 4A’, define

Fi(z):= SUPye2t (z) H5119|\Li(w3(y,rb)) if v€Uper, T
0 it z € 4A\ U e Th

and

0 it 2 € 4A\ Up,er, T

Given a A € P,—»(A'), if x € A, then A < 2T;(x). This implies that the center of
A, ca € 2T;(z) for x € A, and hence for all z € A,

H(‘:IlgHL2 (wa) Fl( )

Fala) i- {Supym“”) Jerdliy a7 € Unen T

and
1€1,90 14, (ws) < Fa()-
Therefore

01 €0l ) < 57 [, P2 Fale) d (30)

By how F; is defined, F; is constant on each T; € T;. That is, for each x € UTi er. Lis
33) = Z ar; lTi (l‘)
Ti€7;
for some constants ag, > 0.
Thus using (30) and that the T; are disjoint, the left hand side of (29) is bounded
above by
1

_— 2 4 —
. Fi(x)*Fy(z)* de =

aT2

Z ay ap|Th N Ty <
T, T T17T2

\A’I
(31)

where in the last inequality we have used that since I; and Iy are v-separated, sine
of the angle between T} and T is Z v and hence |T; N Ty| < v~172%. Note that

2 yo % 2
[E1l22 (anry = AT ;aﬂ
1
and
4 v? 4
HF2HL;(4A/) = [4A] ZaTz'
T>
Therefore (31) is
< V_1||F1H%i(4A/)HF2||L4 (4A7)
Thus we are done if we can prove that
|17 aary < H5119H2L;&(%,)
and

1ol vy < €818

but this was exactly what was shown in [6, Eq. (29)] (and [19, Lemma 2.6.3] for
the same inequality but with explicit constants). ([l
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Our choice of bilinear constant (28) makes the rigorous proofs of Lemmas 3.3
and 3.5 immediate consequences of ball inflation and I2L? decoupling.
Lemma 4.7. Suppose 1 < a <b and § and v were such that v*°6~' € N. Then
Ma,b(57 I/) < Mb,b(é, l/).

Proof. For arbitrary I € P,«([0,1]) and Iy € P,+(]0, 1]) which are v-separated, it
suffices to show that

A 2 4
AePyY%(B)HgIlgHL%(wA) ”gfngLj%(wA)

A

Ave  1€19072 (wa) €91 14 (ua)-
JeP%:(Il)AEPub(B) %(wa) w(wa)

But this is immediate from [2L? decoupling which completes the proof of Lemma
4.7. |

Lemma 4.8. Let b > 1 and suppose 6 and v were such that v*°6~1 € N. Then
My (5,v) S v Y5 Moy 4 (8,v).
Proof. For arbitrary I) € P,a([0,1]) and I € P,+([0,1]) which are v-separated, it

suffices to prove that

A 2 4
AePyYf(B) Hgll g”Li(u;A) ”gfngL;l#(wA)

svt Ave €197z () I€L9IT4 0y

JGPE(A) AEP, 5, (B) L4 (war) 1512 F N LY, (war)
But this is immediate from ball inflation followed by {2L? decoupling which com-
pletes the proof of Lemma, 4.8. O

Combining Lemmas 4.4, 4.7, and 4.8 gives the following corollary.

Corollary 4.9. Suppose & and v were such that v**6~" € N. Then

1)
Mb,b((s, V) < V_l/ﬁMQb,gb((S, V) 1ﬂl)(;

)1/2.
This corollary should be compared to the trivial estimate obtained from Lemma
4.3 which implies M, ;,(8,v) < D(5/v°).

4.3. The O.(07¢) bound. We now prove that D(J) <. 0°°. The structure of
the argument is essentially the same as that in Section 2.3. Repeatedly iterating
Corollary 4.9 and following the same steps in how we derived Lemma 2.8 and
Corollaries 2.9 and 2.10 gives the following result.

Lemma 4.10. Let N be an integer chosen sufficiently large later and let § be such
that 6~Y/2" € N and 0 < § < 100-2" . Then
N—1
D(5) < D(5' 737 ) 4 6 528 [] e~ VT )3T
j=0

Trivial bounds for D(§) show that 1 < D(§) < 6~ /2 for all 6 € N~'. Let X be

the smallest real number such that D(5) <. 6~*7¢ for all § € N=1. From the trivial
bounds A € [0,1/2]. We claim A = 0. Suppose A > 0.
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Let N be a sufficiently large integer > 5. This implies
N 4
14 ———2>1
T2

Lemma 4.10 then implies that for § such that 6~ %2" e N and 0 < § < 100~2", we
have

D(5) <. 67,\(172%)75 _~_57,\(172LN(1+%75))—5 <. 5—/\(1—2%)75

where the last inequality we have applied our choice of N. By almost multiplicity
we then have the same estimate for all § e N™! (with a potentially larger constant
depending on N). But this then contradicts minimality of A. Therefore A = 0.

5. UNIFYING TWO STYLES OF PROOF

We now attempt to unify the Bourgain-Demeter style of decoupling and the style
of decoupling mentioned in the previous section. In view of Corollary 4.9, instead
of having two integer parameters a and b we just have one integer parameter.

Let b be an integer > 1 and choose s € [2,3] any real number. Suppose § € N~1
and v € N~ ~ (0,1/100) were such that v*§~1 € N. Let Ml()s)(é, v) be the best
constant such that

s 6—s
Avg (D] 1€191%2 wa))? ( > 1€59172 (wa))
AEP, v (B) jep (1) J'eP o (I') (32)
s s 6—s
<M@EC Y €9l Tgwp) P D €017y (un)
JePs(I) J'ePs(I)

for all squares B of side length 672, g : [0,1] — C, and all intervals I, I’ € P,([0,1])
which are v-separated. Note that left hand side of the definition of Ml()?’) (6,v) is the
same as Ag(g, B",q)® defined in [6] and from the uncertainty principle, Mf) (0,v)
is morally the same as M 1(d,v) defined in (3) and M 1(d, v) defined in (28). The
[? piece in the definition of Ml(f) (8,v) is chosen so that we can make the most out
of applying {?L? decoupling.

We will use Mz(;S) as our bilinear constant in this section to show that D(d) <.
0~¢. The bilinear constant Ml(,s) obeys essentially the same lemmas as in the pre-
vious sections.

Lemma 5.1 (cf. Lemmas 2.3 and 4.3). If § and v were such that v*6~* € N, then
s 4]
M (5.v) < D(=5).

Proof. Fix arbitrary I, I € P,([0,1]) which are v-separated. Moving up from Li
to Lfﬁy£ followed by Hélder’s inequality in the average over A bounds the left hand
side of (32) by

Ave (3 1€l wa) D Ave (3T 1Esgligwa) )T

AEPU_}](B) JGP,,b(h) GPy_b(B) J/EPVb(I2)

Using Minkowski to switch the {? and [ sum followed by >, wa < wp shows that
this is

s 6—s
SC Y Esgliewe)C D0 IErgligun) = -
JEPVb(Il) J/GPVb(IQ)
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Parabolic rescaling then completes the proof of Lemma 5.1. ([

Lemma 5.2 (Bilinear reduction, cf. Lemmas 2.5 and 4.5). Suppose 6 and v were
such that v6~' € N. Then

D(5)$D(é) v M (5,0).

14

Proof. Note that the left hand side of the definition of M (5 v) is

Ave  [€9]7s ) €R0175

AeP, 1 (B) (wa)’

Proceeding as in the proof of Lemmas 2.5 and 4.5, for I;,I; € P,([0,1]) which are
v-separated, we have

1/2 1 2 1/2
lI€r.gll€1, 915 ) < | 15 |€1.9]' 8 S (33)
We have
6 _ 6—s
lig e = Aeﬁfim |
< Avg 5 (A) H‘SI Q‘Loo(A)

AGPV71 (B

S Ave [€ngl1z s 1€19175

AeP,_(B) a)

where the last inequality we have used Bernstein’s inequality. Inserting this into

(33) and applying the definition of Mgs)(& v) then completes the proof of Lemma
5.2. O

Lemma 5.3 (Ball inflation, cf. Lemma 4.6). Let b > 1 be a positive integer.
Suppose I and I> are v-separated intervals of length v. Then for any square A’ of
side length v=2* and any € > 0, we have

Ave (Y 1912 wa)FC D) Erg e )T
Aepu*b(A/) ,]EPV},(II) 7 ° J'eP },(Iz) # (UA)
6—s

S0 Y 1€l ) O Y €, )
JeP, (I1) J'ePp (I2) ’

Proof. The proof proceeds as in the proof of ball inflation in [6, Theorem 9.2] (see
also [19, Section 2.6] for more details and explicit constants in the specific case of
the parabola).

From dyadic pigeonholing, since we can lose a v, it suffices to restrict the
sum over J and J’ to families 71 and F» such that for all J € Fi, \|5Jg||Ls#(wA,)
are comparable up to a factor of 2 and similarly for all J’ € F,. Holder’s inequality
gives

Avg (3] 1€591% 5 wa)E( 35 1€r0176 )

AeP, o (A) jeF, JIeF,
Ly (u}A) Z IE.r QHLG o )

<S@HF)FTHR)T T Ave (Y €l

A€eP, _b(A JeF, J'eFs

s
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The proof of Lemma 4.6 shows that this is

TR )T Y €093y ) 2 1Erglet, )

JeFy J'eFs

Since for J € F; the values of |€¢]
the above is

L, (w,) AT€ comparable and similarly for J' € Fs,

— s 6—s
1( Z “5Jg‘%;(wA/))2( Z HEJ’QHQLG*S(H}A/)) 2
JeF JEF, #
This completes the proof of Lemma 5.3. ]

Lemma 5.4 (cf. Corollary 4.9). Suppose § and v were such that v?*6=' € N. Then
for every e > 0,

0

M, (6.v) se v 5 CHIMG) (6,0) 2 D( ).

Proof. Let 6 and ¢ be such that § + % =1and £+ 1_T‘p = . Then Hélder’s

inequality gives || s < || f15" and | flzo-e < |£172]f175%-
Fix arbitrary I, I € P,([0,1]) which are v-separated. We have

s 6=s
Avg ( Z HngH%i(wA))Q( Z HgJ’gH%i(wA)) 2
A€P,—(B) jep ,(Iy) J'€P, (I2)

< Avg Ave () €l

s

s 2 6—s
Ly u)A))2( Z Hg‘]/g”L;’s(wA)) 2

A'EP, -2y (B)ACP, —v(A) jep ,(Iy) J'€P,b(I2)
vt Avg 1€59175 (wan) 2 ( 1Erg12e ey )"
A’eP,_2;(B) Jepg(h) #wa) J/eg(lg) b (0ar)

where the first inequality is from Hélder’s inequality and the second inequality is
from ball inflation. We now use how 6 and ¢ are defined to return to a piece
which we control by (2L? decoupling and a piece which we can control by parabolic
rescaling. Holder’s inequality (as in the definition of § and ¢) gives that the average
above is bounded by

Avg  ( 1€591%% (0o 1 Ergl 2070 YEx
A'eP, 2 (B) JePl,Zh(h) b (0a) L (war)

6—s
(> lErgli 2 wa /)|\5J,gHi(61(5,) 7.
J'eP y, (I2)

Holder’s inequality in the sum over J and J’ shows that this is
3
< mw (CF Jemlu, O Y 6t s
A'€P, 2 (B)\ jep (1) JEP,, (1)
6—s

(2 lerolyuC T lersliyu,)™)

J/EPVb(IQ) J/GPVb(IQ)
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Since 0s = 3 — 5 and ¢(6 — s) = 5, rearranging the above gives

lg_s 1. s
T (U YN =7 A R TR VN 7 R B

A'EPV*HJ(B) JEPVb (11) JlEP,,b (12)
1l.3s_ 1.a(o_s
(( 2 €00l @y )FPETIC X 1Erglig ) 2))
JePuz,(Il) J/ePl,b(Iz)

Applying the Cauchy-Schwarz inequality in the average over A’ then bounds the
above by

1

6=s 5)°
(LA (% )T X Erly)f)

A’eP,_2,(B) JEP 1, (I1) J'eP,p (I2) (34)

1

3(s—2) 3(4—s) 2
(v (5 lemlyu) ™ X Iy, ")

A’EPU_2b(B) JeP,jb(Il) JlePl,b(IZ)

After [2L? decoupling, the first term in (34) is

s 1. 6—s 1l.s
SME G Y 1008w T C Y Jergliywy) i (39)

JePs(I1) J'ePs(I2)

Holder’s inequality in the average over A’ bounds the second term in (34) by

s—2 6. 4—s
( Avg ( 1€5917 5 wa))®) T ( Avg  ( 1€590 8, (0 p))?) T -
A’eP, 2, (B) JePg(h) #wa) A'eP, 2, (B) JePg(h) #lnar)

Applying Minkowski to interchange the [ and I norms shows that this is

3(s—2) 3(4—s)
SC Y 18algwn) ™ C 2 1ergligwn)

JeP , (I1) J'eP, i, (I2)
Parabolic rescaling bounds this by

) 1,3(s=2) 1,
D(;)?’( > HEJgHQL;(wB))Z Y IISJ/QI\QL;(WB)V
JePs(Iy) J'ePs(I2)

Combining (35) and (36) then completes the proof of Lemma 5.4. O

3(4—s)

(36)

With Lemma 5.4, following the same steps in how we derived Lemma 2.8 and
Corollaries 2.9 and 2.10 gives the following.

Lemma 5.5 (cf. Corollary 2.10 and Lemma 4.10). Let N be an integer chosen
sufficient large later and let & be such that 512" e N and 0 < § < 10072". Then

N—-1
D(6) <. D(8' 75 ) + 67527 5oy || D(8' "7 )me,
§=0

To finish, we proceed as at the end of the previous section. Let A € [0,1/2] be
the smallest real such that D(8) <. 6~*~¢. Suppose A > 0. Choose N such that

N 4
14 ——-—2>1
T2
Then for § such that 6~%/2" e N and 0 < § < IOO’ZN, Lemma 5.5 gives

D(8) 5. 5-0=3)= | g0 g 0+ F ==+ B~ < g 0-g)<,
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Almost multiplicativity gives that D(d) <y 5 A=) for all § e N~!, contra-
dicting the minimality of .

6. DISCUSSION ON EXPLICIT CONSTANTS

A close inspection of the proof of Theorem 1.1 reveals that there are two sources
of explicit constants, one from the various weight functions adapted to B and
another from parabolic rescaling (Lemma 2.1). To keep the paper as self contained
as possible, we expand upon where the various explicit constants come from. Some
details will only be briefly sketched as they can be found with explicit constants in
[19, Sections 2.2-2.4]. The argument we present here for the explicit argument in
Lemma 2.1 is very slightly simpler and a bit different from that in [19, Section 2.4]
but follows the same general philosophy. We claim no optimality in any explicit
constant.

6.1. Polynomial decaying weights wp g. For x € R? and B a square centered
at c € R? of side length R, let

|IC - C| )7E'

R .

In this notation, the weight function wg defined in (1) is equal to wp 100. We
include the dependence on E to distinguish between absolute constants and the
dependence on the decay rate of wp g and later in Lemma 6.11 we will need to use
two different E. We also let D(d, E') be the same definition as D(d) in (2) except
wp on the right hand side is replaced with wg g.

First we have an easy observation in how wpg g interacts with shear matrices.

wB,E(l’) = (1 +

Lemma 6.1. Let S = (§¢) with |a| < 2. Then wpo,ry,r(St) < 3Fwp(o,r),£(2).

Proof. Since |a| < 2, |S7Y| < /6. Then (%W)E < /6", The lemma follows

by setting y = Sx/R. O
Next, we have the following key property of wg g.
Lemma 6.2. Let £ > 10. For 0 < R' < R,
WpB(0,R),E * WB(0,R'),E S 4ER/2wB(O,R),E~ (37)
We also have
R*wpo.ry,r < 2"1p(0,r) * Wp(0,R),B- (38)
Proof. We first prove (37). We would like to give an upper bound for the expression

1 |z — 1y -E lyl -FE |2] E
— 1+ —= 1+ = 1+ —)"d
R? R2( + R N R’) (1+ R) 4

depending only on E. A change of variables in y and rescaling x shows that it
suffices to give an upper bound for

R | _ _
|l = oD B ) B o) dy (39)
R2
depending only on E. If |z| < 1, then (39) is

< QEJZ(l + y)) " dy < 2F.
R
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If |z| > 1, then we split (39) into
R/
([ e T ) F )P 0
o—Zy<lgl o—Zy|> 15

In the case of the first integral in (40), (R'/R)|y| = |z| — |z — (R'/R)y| = |z|/2 and
hence

R _ _
|l Tl P ) P )
o=yl

(L+|a)” R , y
< T e 1 b ™5y < (R R (R R)? < 4

In the case of the second integral in (40),

R | _ _
[, oD B D o
x yl>5

1+ |z

< (—
(1 + |z|/2

7 [ sy < 2",

This then proves (37).
To prove (38) it suffices to give a lower bound for

1 2=yl g,y |2l

— 1+ —=)""1+—=

R? Jpo,r) R R

which depends only on E. As before, rescaling x and a change of variables in y
gives that it suffices to give a lower bound independent of = for

1+ |z 1+ |x _
B0, 1+ [z —yl 2 + ||

)E dy

This shows (38) and completes the proof of Lemma 6.2. O
We have the following immediate corollaries.

Corollary 6.3. Let B be a square of side length R and let B be a disjoint partition
of B into squares A with side length R’ < R. Then for E = 10,

Z WAE S 16 WRB,E-

AeB
Proof. 1t suffices to prove the case when B is centered at the origin. Since B is
a disjoint partition of B, > ,.31a = 1. Convolve both sides by wp(,a),g. For
the left hand side use (38) and for the right hand side use that 15 < 2F wp, g and
(37). O

Remark 5. The only property we needed in the above proof is that >,z 1a < Clp
for some absolute constant C. In particular, the same proof will work with finitely
overlapping covers and when R/R’ ¢ N.

Corollary 6.4. For 1 <p <o and £ > 10
B ) < 25 | 11 1y 000,000 .

Proof. Expanding the right hand side, we see the expression %1 B(0,R) * WB(0,R),E
and then we use (38).
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Corollary 6.5. Let I  [0,1] and P be a disjoint partition of I. Suppose for some
2 < p < o0, we have

I€19llLr(5) < C(Z H5J9||2Lp(w5,E))1/2
JeP

for all g : [0,1] — C and all squares B of side length R. Then for each E = 10, we
have

”g]gHLP(wBE) < 8E/p0(z HngH%P(wB,E))l/Q
JepP
for all g : [0,1] — C and all squares B of side length R.

Proof. The hypothesis and Corollary 6.4 imply that

(1] S 2ER_ZCPJ (2 nggH%p(wB(y‘R)YE))p/Q’lUB,E(y) dy.
JeP

Since p > 2, applying Minkowski’s inequality shows that this is
Ep—2 2 2
<2°R Cp(z HngHLP(wB(O,R),E*wB,E))p/ :
JeP
Applying (37) then finishes the proof. O

6.2. Schwartz weight 7. Given B = B(c, R), in this section we explicitly con-
struct a Schwartz function np such that ng > 1 and supp(z) < B(0,1/R). It
is easy to justify existence of such a function, but we desire explicit quantitative
estimates. A different Schwartz function was constructed in [19, Section 2.2.2] but
the construction we provide here is slightly simpler in exposition.

Lemma 6.6. Fix E = 100. There exists a Schwartz function ¥ on R such that
Y = 1_12,1/2), supp(¥) < [—1/2,1/2] and

9F [2E
< P —
¥l < T
Proof. For € € R, let H,(§) := %1[0,,1] (&) and define the sequence a; := (;:/_77;)2 for

j = 0. From Theorem 1.3.5 of [18], the function
U(§) == kli_)r%O(Hao % Ho, ) (6)

is a smooth function supported on [0,1/2] obeying the bounds

ok w2 272
UBE) < —— = T (-
Hj:O a; 3° 3

for £ € [0,1/2]. Observe that H,(z) = ™S00 514 hence

mTra

ik + 1)1

[e0]
_ 1—[ riza, S mcaj)

T
ol xa;

Let
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Note that ¢ > 0 and for |z| < 1/2, () > 1(1/2) > 1. Expanding |U|?> = UU,
) = 2(U * U) where U(y) := —U(—y). Since U is supported on [0,1/2] and U is
supported on [—1/2,0], then ¢ is supported in [—1/2,1/2].

Finally we derive some bounds on the decay of 1. The support of U and inte-
gration by parts gives that for any j > 1,

. 1 - LAY ~
i T TNi(s 2J"
T@I < Gapapi IV e q0ar) < G GV G+ D5

and hence applying this bound to j = [E/2] gives

72, Moo E (3E/5)2E+4 ¢ 37 E?P E?F
<oy (My2 g+ (L g4 < SMypps® BT
19 ()] () (5)72 (5 +2) BE 1250(25) BE |2|E

6 3 2

For |z| = 1, then (1+|z|)®|¢(z)| < 2PE?F and for |z| < 1, (1+|z|)Flp(x)] < 2-2F.
This completes the proof of Lemma 6.6. ([l

Corollary 6.7. For x = (x1,x2), let n(x) = (x1)Y(x2). Fiz a square B =
B(c, R) of side length R. The functionnp(x) = n(*z°) satisfies np = 1p, supp(np) <
B(0,1/R), and for any E > 100,

ne(x) < 22EE4EwB7E(:c).

6.3. Explicit proof of Lemma 2.1. We now discuss how we arrived at the explicit
constant 1016990 in Lemma 2.1. The argument we present here is slightly simpler
than the one for the last centered equation in [19, Page 58], but the argument is
essentially the same.

We will need a few more different decoupling constants. First we have a global
decoupling constant.

Definition 6.8. For J € P5([0,1]), let
015 :={(s,8* +t):s€ J,|t| <%}

and ©s := Ujepé([o’]_]) 055 = O[0,1),5- Let D9lobal(§) be the best constant such that

[flzo@ey < DU Y5 IfoyslTome)?
JePs([0,1])

for all f with Fourier support in ©g.

This decoupling constant is the easiest to use when wanting to prove various
functional properties of the decoupling constant like monotonicity and parabolic
rescaling.

Lemma 6.9 (Parabolic rescaling for D9°%!(5)). Let I < [0,1] be an interval of
length o such that 0 < § <o <1 and 0,9,6/0 € N™1. Then

oba g
| for.s o2y < D' l(;)( Y Mossliowe) .

JEP(;(I)
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Proof. Writing I = [a,a + c], we have
ato 62 .
|(fo,5)(x)] = | J J . f(s, s2+ t)e(sxy + 32x2)e(t$2) dt ds|
a -4

12
=0’ J f flos' +a, (058" + a)® + o*t)e(s' (ox1 + 2a029)
0 J—(2)?

+ (s + t')(0%x2)) dt’' ds'|.
Also observe that

S
~

flos' +a,(08' +a)> +0*t) =0 3(FolLsu)(s,s%+1)

where F(z) = f(z)e~2mie(a.0%) anq
o 2a0
Lo’,a = (0 0,2 ) .

|(f916)(x)| = |(F © L;,z)9[0,1]7(5/0)2 (Layax)"

Then we apply the definition of D9°%%(§/0) and reverse the change of variables
which completes the proof of Lemma 6.9. g

Thus

Having proven Lemma 6.9 we are now almost done, essentially we just need
to apply f = np&rg to the above lemma and use that D99 (§) <p D(4, E)
(as mentioned in [4, Remark 5.2] and essentially follows as a corollary from [6,
Theorem 5.1]). There are two small but fixable problems with this argument.
The first is that np&rg is has Fourier support in a region slightly larger than 0 5
and so (7B€19)s; ; is not necessarily equal to np€rg and so we will instead apply
Lemma 6.9 to f = nB&atsa+0-5]9- The second is that the <p in the estimate
D9tebal(§) < D(6, E) is not made explicit.

Remark 6. To avoid the use of any equivalence of decoupling constants, one can
instead just use Lemma 6.9 and suitably modify the Lemmas 2.2-2.7. This is the
approach taken in [12, 13] and in Tao’s 247B notes on decoupling [23] (whose proof
of parabola decoupling is based off the argument in this paper). We don’t take
this point of view here since it somewhat obscures the connection between efficient
congruencing and decoupling, in particular when comparing the proof of Lemma
2.7 with [21, Lemma 4.4].

Some equivalences between various decoupling constants were made quantitative
by the author in [19, Proposition 2.3.11] and we will use this result here as a black
box (the proof is quite similar to that of [6, Theorem 5.1]). To state the relevant
part of [19, Proposition 2.3.11] used here, we define two more decoupling constants.

Definition 6.10. For J = [n;d, (ny + 1)d] € Ps([0,1]), let
05 :={(s,Ly(s) +1t) :n;0 < s < (ny+1)d,t| <55}

where Ly(s) := (2ny + 1)6s —ns(ny + 1)6% and 0 < ny < 6~ ' — 1. Here 9&76
is a parallelogram that has height 1062 and has base parallel to the straight line
connecting (ny8,n%6%) and ((ny + 1), (ny + 1)%62).
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Let ©F := U jep (o)) 9,5- Let D3lobal(§) be the best constant such that

par

[fllzo@e) < DIP@B)( )] | for, N Fo r2)) ™2
JePs([0,1])

for all f with Fourier support in ©%.
Let Do (5, E) be the best constant such that

par
1flzsim) < Dy G EYC Y5 Mo I Zoquwmp)
JePs([0,1])

for all f with Fourier support in ©% and all squares B of side length §2.
Lemma 6.11. For E > 100,
Dpoletal(§) < FSE D (5, ).
Proof. This lemma is the consequence of the following string of inequalities:
E-7
2

from which the lemma immediately follows. The third inequality in (41) is the last
inequality in the statement of [19, Proposition 2.3.11] (written as E7Eﬁp,g(5) <
E™ED, £(0)).

For each J € Ps([0,1]), we have 65 < 85 5 and hence the first inequality follows.
To prove the second inequality, we let f be a function which is Fourier supported
in ©}. Partition R? into squares B of side length §=2. Then

£l zozy = Q11505
B

Dglobal (5) < Dqlobal (5) QEDlocal((s7 l

par par

1) < 2PE®FD(5, E) (41)

<DL DS N il o))

B JePs([0,1])

oca E-1
< Dy (6, [——I) > oG, w 5 Bm 7J))1/2

JePs([0,1])

where the last inequality is by Minkowskl s inequality. The proof of Corollary 6.3
(and (38)) shows that >, wp | Eo1) < 157 7JS (1 + |=|)~ “fldz < 2B, This
completes the proof of the second mequahty and the proof of Lemma 6.11. g

Remark 7. The proof of the last inequality in (41) is very similar to the proof
of Theorem 5.1 of [6] except all the estimates are made explicit and quantitative.
We illustrate heuristically the main idea of [6, Theorem 5.1] (and hence the last
inequality in (41)). We will ignore any weight functions wg g.

Define a decoupling constant D'°¢?(§) that is the same as the definition of
Diocal(§) except that 6 5 are replaced with 675. Then we show heuristically why we
expect D¢ (§) < D(8). Since f is Fourier supported in {(s,s?+t) : s € [0,1], ]| <
§2}. Ignoring any E dependence and weights wp g, we want to argue that

Ifllze(my < D(S)( Z I.fo, “%6(3))1/2

JePs([0,1])
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for all squares B of side length §—2. Without loss of generality we may assume that
B is centered at the origin. Using the Fourier support of f, we can write

1 087
flx) = J ( f(s,8 + t)e(txy) dt) e(szy + s2x2) ds.

0 J-s2
For 2 € B and since B is centered at the origin and |t| < 62, txy does not oscil-
late much and so we will pretend that €(t£L’2) 1. Then the above is essentially
equal to & 11 F where F(s S 52 f(s,8* + t)dt. We are done after applying
the definition of D(4), undomg the definition of £;F, and adding the e(tz3) back

in. The rigorous proof in [6, Theorem 5.1] involves expanding e(tzs) as a Tay-
lor series and to each term in the Taylor series we create an F; and show that

|€1F] Loy < exp(O()) [ fo, |o(B)-

Finally we will need a quantitative result about Fourier restriction to a parallel-
ogram.

Lemma 6.12. For each J € P5([0,1]) and2 <p < o0, | fo, [p < (%+%cot(%))4|\f|\p.

Proof. Let S denote the operator defined by @(n) g(n) w0y (n) f for 7 € R. If

H denotes the Hilbert transform, observe that ]?( )+ iH f( ) = 25 ( ) almost

everywhere. Since 2 < p < o, ||H\|p_,p < cot(2p) and so ||S|p—p < 3 + %cot( ).
Let R denote the operator defined by Rf(&) = f(f)lgfjé (&) for & = (&1,&2) € R2.

Each 9{,’ s is the intersection of four half planes in R?. The operator norm of Fourier
restriction to a half plane is the same as the operator norm for Fourier restriction
to the half plane [0,0) x R. By Fubini’s Theorem, this operator norm is bounded
above by the operator norm for S. Therefore |R|,—, < |S]5_, < (5 + 3 cot(%))4

which completes the proof of Lemma 6.12. (]
We now have all the ingredients to give an explicit proof of Lemma 2.1.
Proof. Write I = [a,a + o]. We have

€19 Le(B) < |E[a,ara19l6(B) + [1BE0+6,a40—519/ Lo (m2) + ‘|5[a+075,a+0]g“l16(?)'>
42

The Fourier transform of np&,4s.a+0-519 is supported in 075 and so combining
Lemma 6.9 with Lemma 6.11 shows that

)
In5Ea+s.a+0-89] L8 ®2) <E64ED(;aE)( D BEassaro—519)0,5 70 m2) "

JePs(I)
(43)
Observe that
(nt[a-Q—&a-&-o‘—é]g)@J,g
(1BE1,.9)0,.5 if J = [a,a + 0]
(nBEsg +1BEJ,9)0, s if J=[a+d,a+25]
= (mBEs9 +1BEsg +1BES.9)e,s if J € Ps(la+20,a+ 0 — 20])
nBEs,9+18E19)0, , ifJ=[a+o0c—25a+0c—1]
(

nB8E1,9)0,.5 if J=[a+0o—0d,a+ 0]
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where J; and J, denote the intervals to the left and right of J. Therefore for
J € Ps([a,a + o)),

‘|(77B5[a+5,a+075]g)‘9],6 H%G(RZ) < ( Z ” (T]Bg,]/g)a‘],(s ”LG(]R2))2
Je{de, d,J)
J'cla+6,a+0—35]
= ( > |(BEr9)e, , |1s@2))?
Je{Jo,d, T}
J'cla+6,a+0—35]
<3220 Y [Erglemm)?
Je{Te, 0}
J'cla+d,a+0—6]
<3. 322(22EE4E)1/3 Z ||Sj,g|\2L5(wB )
J/G{J€7‘]7J7‘}

J'cla+d,a+0—6]
where in the first equality we have used that 6; < 6, in the second inequality

we have used Lemma 6.12, and in the third inequality we have used Lemma 6.7.
Inserting this into (43) shows that the right hand side is

)
< EE(3-322 (2P EYF) ) PD(— B) (), >, 1€591 %6 ()
JePs(I)  J'e{Jy,J,Jp}
J'cla+é,a+0—6]
0

g
g

< EPED(B)( Y, €500 )"

JePs (I)

Inserting this into (42) and using that 15 < 2EwB’E then shows that

)
I€rgllze(m) < ESOED(?E)( Y €910 (wn )
JePs (I)
Taking F = 100 completes the proof of Lemma 2.1 with explicit constants. (Il
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