A BILINEAR PROOF OF DECOUPLING FOR THE CUBIC
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ABSTRACT. Using a bilinear method that is inspired by the method of efficient
congruencing of Wooley [Woo016], we prove a sharp decoupling inequality for
the moment curve in R3.

1. INTRODUCTION

For an interval J c [0, 1], define an extension operator

(Er9)(x) = L 9(E)e(z - ~(€) de

where x = (21, 72,73) € R3, v(£) = (£,£2,€3) and e(2) := 2™ for a real number
z € R. For § € N71 let Ps([0,1]) denote the partition of [0, 1] into intervals of
length 6. Moreover, let D(8) be the smallest constant such that

I€o.n9lz2@n < DG Do €59l @s) (1.1)
JePs([0,1])

holds for all functions ¢ : [0,1] — C. From Drury [Dru85], both sides are finite
at least for smooth ¢g. An inequality of this form is called an ¢*L'? decoupling
inequality. Our goal will be to show the following result, which proves a sharp
(*L*? decoupling theorem for the moment curve t — (t,t2 ¢3).

Theorem 1.1. For every e > 0 and every § € N=1, there exists a constant C. > 0
such that )
D) < Co717¢. (1.2)
The constant C. depends only on €.
By a standard argument (see Section 4 of [BDG16]), Theorem 1.1 implies that

< - 2 gy |44FD ded+1) |
f[ y E e(x1j + x2j° + -+ + x4 )‘ dridxs...deg < C. X7 2 "¢, (1.3)
0143

for d = 3, every positive integer X, every ¢ > 0 and some constant C. depending
on £. Indeed, (1.1) implies that if F = ZJEP(g([O,l]) F; where 1/7; is supported in a
4% neighborhood of the image of J under v, then
|Flie@ey S DO D, |Fsle@s)
JePs([0,1])
which implies (1.3) for d = 3 upon setting 6 = 1/X and

Fi(x) = ¢(a/X?)e(z - (5/X))
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for every J = [j/X,(j + 1)/X) € P5([0,1]); here ¢ is a Schwartz function on R?
with ¢ > 1 on [0,1]3, and qAS supported on the unit ball centered at the origin.
Therefore, we recover the sharp Vinogradov mean value estimate in R3, which was
first proven by Wooley [Woo016], using the method of efficient congruencing. Later,
Bourgain, Demeter and Guth [BDG16] recovered (1.3) at d = 3 and proved it for
every d = 4, by using the method of decoupling. We also refer to Wooley [Woo018]
for a proof of (1.3) for every d > 3 using the method of efficient congruencing.

In order to prove (1.3) at d = 3, Bourgain, Demeter and Guth first proved a
stronger version of the decoupling inequality (1.2). To be precise, by Minkowski’s
inequality, the main result of [BDG16] gives rise to

[€019lz@s) <C67°( D) [€s9l72s)) ">, (1.4)
JePs([0,1])

for every € > 0. By Holder’s inequality, it is not difficult to see that (1.4) implies
(1.2). Moreover, by using the standard argument in Section 4 of [BDG16], (1.4)
implies (1.3) at d = 3 just like (1.2). In other words, (1.2) and (1.4) have the same
strength when deriving exponential sum estimates of the form (1.3).

The proof of (1.4) in [BDG16] relies on multilinear methods, in particular multi-
linear Kakeya estimates (see for instance [BCT06], [Guth15] and [BBFL17]), while
ours relies on a bilinear method, which involves only elementary geometric obser-
vations (see (3.14)).

The methods of efficient congruencing and decoupling use different languages:
One uses the language of number theory, while the other uses purely harmonic
analysis. It is a very natural and interesting question to ask whether understanding
one method better could enhance our understanding of the other method. The
relation between decoupling for the parabola and efficient congruencing was studied
by the second author in [Lil8]. The goal of this paper is to study the relation
between these two methods in the case of the cubic moment curve. In particular,
we provide a new proof of the decoupling inequality (1.2) by using a method that is
inspired by the method of efficient congruencing. Unfortunately, the new argument
does not fully recover the slightly stronger decoupling inequality (1.4). This will
be explained later in Remark 1 in Section 4.1. One significant difference between
the proof here and the proof in [BDG16] is that the lower dimensional input for
our proof comes from a sharp “small ball” ¢4L* decoupling for the parabola rather
than a sharp ¢2L° decoupling for the parabola as in [BDG16].

The authors benefited very much from the note [HB15] written by Heath-Brown.
In the note, Heath-Brown simplified Wooley’s efficient congruencing in R3. In the
current paper, we follow the structure of [HB15]. We will also point out (in Section
2) the one-to-one correspondence between main lemmas that are used in [HB15]
and those used in the current paper.

After the submission of this manuscript, the authors in collaboration with Pavel
Zorin-Kranich were inspired by nested efficient congruencing [Woo18] and found a
proof of sharp ¢2LF(*+1) decoupling for the moment curve (t,t2,...,t*) and k = 2,
see [GLYZK19] for more details. This gives a much shorter and technically simpler
proof of decoupling for the moment curve than the one in [BDG16].
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Organization of paper. In Section 2, we will introduce the main quantities
that will play crucial roles in the later proof, list the main properties of these
quantities, and prove a few of them that are simple. The two key properties (Lemma
2.6 and Lemma 2.7) will be proven in Section 3 and Section 4 respectively. After
proving all these lemmas, we will use them to run an iteration argument and finish
the proof of the main theorem. This step will be carried out in Section 5.

Notation. Give two nonnegative expressions X and Y, by X <Y and Y 2 X
we mean that there is some absolute constant C' such that X < CY. If C' depends
on some additional parameters we will denote this dependence using subscripts, so
for example X <g Y means that X < CgY for some constant Cr depending on
E. Welet X ~Y tomean that X <Y and Y < X.

For a frequency interval I, we will use |I| to denote its length. We use Ps(I) to
denote the partition of I into intervals of length 6. This implicitly assumes |I|/d € N.
If I = [0,1], we usually omit [0,1] and just write Ps rather than P5([0,1]). For a
spatial cube B < R?, we also use Pg(B) to denote the partition of B into cubes of
side length R. By B(c, R), we will mean a square (or cube depending on context)
centered at ¢ of side length R. For a parallelpiped T in R? and a constant ¢, we let
I’ be the dilate of T" where the side lengths are ¢ times larger but has the same
center as 7T

Let E > 103 be a large integer. Let T be a parallelepiped where T' = A[0,1]3 + ¢
for some 3 x 3 invertible matrix A and some vector ¢ € R3. In the current paper,
the columns of A will be almost at right angles to each other, but can have different
lengths. We write

wr p(z) =1+ |A "z —c))"F.
for a weight that is comparable to 1 on T and decays like the (non-isotropic) distance
to the power E outside T'. Also write

wrp(r) = wrsp(z) = (1+]A7 (z —c)|)
for a weight with a faster decay. One key property we will use about these weights

is that, if {T'} is a collection of parallelepipeds that tiles a spatial cube B < R?,
then

—3FE

ZUJTJ; <E WB,E, (1.5)
T
with a constant that depends only on E. The volume of T is |T| = |det A|, and we
write )
¢r.p(x) = m(l +AT @ - o))"

for an L' normalized version of wr g, that is essentially supported on 7.
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2. MAIN QUANTITIES AND THEIR PROPERTIES

For an interval I < [0,1], let ¢; denote the center of I. Let 70’1 denote the
parallelepiped that is centered at the origin, of dimension |I|=! x [I|72 x |I|73,
given by

Tr={zeR%: |z -+ () < 17" ey (el < 172,z -y (en)] < 17}

For an extremely small number § and 0° « v « 1 (throughout the paper we will
assume that 1, =1 € N), define the following two bilinear decoupling constants.
For a,be N, let My 4(0,v, E) and Ms q,(0,v, E) be the best constant such that

fRS (I€rgl? « ¢7°“1,E) (I€rg]"™ = ¢%1/7E) < Miap(6,v, E)?

1/2
(3 temlbegn) (X il

JePs(I) J'ePs(I')

>5/2 (2.1)

and

J]R (|glg‘4 * ¢121,E) (|€I’g‘8 * ¢’12117E) < MQ,a,b((S, v, E)12

3
2 (2.2)
( 3 8J9|‘212<Rs>)( v |5J/9|i12(ne3))

JePs(I) J'ePs(I')

hold separately, for all functions ¢ : [0,1] — C, and all pairs of intervals I €

P,.([0,1]), I € P, ([0,1]) with d(I,I’) = 2v. Note that expressions such as

|Erg|? * ¢z, above are constant (up to a Og(1) multiplicative factor) on any
I,

|[I|=1 x [I|72 x |I|~3 parallelpiped parallel to 7071.

In this section and the next two sections (but not in the last section, Section 5),
Cy is a large absolute constant whose precise value is not important and may vary
from line to line.

Lemma 2.1 (Affine rescaling, cf. Lemma 1 of [HB15]). Let 0 < d < o < 1 be such
that §/o € N=1. Let I be an arbitrary interval in [0,1] of length o. Then
5
1€29] 12 rs) < D()( Y I€rgltee )
JeP5(I)

for all g :[0,1] — C.

The proof of this lemma is standard so we omit the proof (see for example [BD15,
Propositon 4.1], [BD17, Proposition 7.1], or [Lil7, Section 3.1]).

One corollary of affine rescaling is almost multiplicativity of D(d). This allows
us to patch together the various integrality constraints that appear throughout our
argument.
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Corollary 2.2 (Almost multiplicativity). Suppose 01,92 € N71, then

D(6102) < D(61)D(02).
Lemma 2.3 (Bilinear reduction, c¢f. Lemma 2 of [HB15]). If § and v were such
that v6~! e N, then

D(6) Sk 1/_1/4D(§) +v " Mo 1 (6,1, E).

Proof. We have
I€0glz@s) =1 Y Es9€r9] s,
J,J'eP,
< ( Z H5J9H2L12(R3))1/2 +vt Jm%); H5J95J'9H1L/e2(R3)-
Jeby d(J.0) =20

For the first term, affine rescaling shows that it can be bounded by

0
D(;)( 2 ( 2 HgJ’QHiH(W))l/z)l/%
JeP, J'ePs(J)
Applying Holder in the sum over J, this is bounded by
_ )
v 1/ZLD(;)( 2 Hg.lfg\|i12(uz3))1/4~
J'ePs

This gives the first term of our desired result. The second term follows from the
observation that

| 1esgtlengt < (| tesaltiensPy 2 leslleral 2,
R3 R3 R3
and the pointwise estimate
Ergl? = €19 % nz [P < (€19l #ng, PP S5 |Exgl % Ins, | S |Exgl? 5 65 (2.3)

for an interval I < [0,1] and for every p > 1. Here 3 is a Schwartz function
I

whose Fourier transform is equal to 1 on a (say) 10|I] x 10|1]? x 10||® parallelpiped
containing the Fourier support of £7g and decays rapidly outside this parallelpiped.
Note that this is a rigorous instance of the uncertainty principle. Combining the
above two centered equations it follows that

1/2 4 3 1/12
o 1€59E 591 6 (gsy S A [fw (|€59]* = QS%J?E) (I€5g]® = (bf,,,E)] :
d(J,0")>2v A(J,J")>2v

In light of the definition of My ; 1, this completes the proof of the lemma. O

Lemma 2.4 (cf. Lemma 3 of [HB15]). If a and b are integers and & and v were
such that v~ 1, 167! e N, then

Mo b (5,0, E) Sp Moy (8,0, E/Co) P M 01 (5,v, B/Co)??,

for some large absolute constant Cy.
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Proof. The proof of Lemma 2.4 is essentially via Holder’s and Bernstein’s inequal-
ities.

Suppose I € P,.([0,1]), I’ € P ([0,1]) with d(I,I") = 2v. We first recall a
version of Bernstein’s inequality. Following the proof of Bernstein’s inequality as
in [BD17, Corollary 4.3] shows that for every p > 1,

1

([ ea@Po;, @ o) 5o [ ler9@lo , @dn. )

Applying (2.4) shows that there is an absolute constant C such that

4, _ 4, \1/3 4, \2/3
| tenattog, = (| teattoy, )| teralte;, )

3.4.1 3.4.2
<u ([ lew o P lel ey i

T1,E/Cy
Since
4 _ TN 4. _ 4,
(el » o5, ) = [ (@l —l'y, )y = [ €m0, W)y

where h, (&) = g(&)e(—&x1 — 225 — E3x3), from (2.5) it follows that

4 8
[Erg|* + 5, , SE (I€1g]7 = ¢70’1,E/Co) (I€1g]% = ¢T°I7E/CO)

where we used 1 = % -4 % = % -4 % Similarly,

20 4
|€I/g|8 * ¢7011/,E SE (\Epg\ o ox ¢7211,E/Co) (|5pg\ ok ¢%1/,E/Co)

where we used 1 = 3 -8-2 = 3 .8.1 This shows

20 6 4°°%"
J.Rs (|5Ig|4 * ¢7011,E) (|51/g|8 * ¢70“1,,E)

4 8

: 3 2.
sE J]Rs (g1 = 05, 0, ) (€197 * 05, 1y, )% (2.6)

(|€I’g|% * ¢’IO’I/,E/CO) (‘gllg|% * q[)’IO’I/,E'/CO).

By convexity and Holder, the last display can be bounded by

(fRS (|(€[g|2 * ¢70’1,E/Co) (‘5pg|10 * ¢7011/.,E/Co)) 3 %

<JR3 (|519|8 * qz)%IaE/Co) (|€I/g|4 * ¢721/,E/C'0)) 3

Recalling the definitions of My 4, and M 43, this finishes the proof of the lemma.
O

(2.7)

Lemma 2.5 (cf. Lemma 4 of [HB15]). If a and b are integers and § and v were
such that v~ V6~ e N, then

]

M0 (0, E) S Mapa(8,v, B/Co)/* D(- )

)

for some large absolute constant Cy.
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Proof. Suppose I € P,.([0,1]), I' € P, ([0, 1]) with d(I,I") = 2v. We start with an
estimate that is similar to (2.6) and (2.7):

J]Rs (|519|2 * ¢TOI,E) (|51/g|10 * (bﬁ/,E)

SE fn@ (|5Ig|2 s (ZSJO“I,E) (\51/g| * ¢TOI/,E/CO) (|5I’g|9 * (;570“1/715/00)

1 3
4 1 2
SE (J}RS (|glg|8 * d)?o“l,E) (|51/g| ¥ ¢f}uE/Co)) (JRB |51/g|12 ¥ d)%zuE/Co) ’

Since ¢ is L'-normalized,

Ty ,E/Co
Erg|' « b < | |Erg2
fRs (gl *d)TI/,E/Co) JRg' 9l

We finish the proof by applying affine rescaling. O
The proofs of the following two lemmas will be given in Sections 3 and 4.

Lemma 2.6 (cf. Lemma 5 of [HB15]). Let a and b be integers such that 1 < a < 3b.
Suppose § and v were such that v3*6~' € N. Then

Ml,a,b(57 v, E) sa,b,E V_ﬁ(gb_a)_coMl,?)b,b(dv v, E/CO) (28)
for some absolute constant Cy.

Lemma 2.7 (cf. Lemma 6 of [HB15]). Let a and b be integers such that 1 < a < b.

Suppose § and v were such that v**=251 e N and v € 22" A (0,1/1000). Then for
every € > 0,

Moo (8,0, E) S v 8WFOO=0=Congy o (8,0, E/Cy),
for some absolute constant Cy.
3. THE FIRST BILINEAR CONSTANT M 4
We break the proof of (2.8) into the following three different lemmas.

Lemma 3.1 ((2L? decoupling). If 1 < a < b, then for any pair of frequency
intervals I,1' < [0,1] with |I| = v®, |I'| = vb, d(I,I") > 2v, we have

2 10
| Qs w0y ) (eral® <0 )
2 10
<o N[ (el co, po) (Erol® 0y 40)
JeP ()
for large enough E and for some absolute constant C.

Lemma 3.2 (Ball inflation). Ifb < a < 2b, then for any pair of frequency intervals
I,I' = [0,1] with |I| = v, |I'| = v°, d(I,I') = 2v, we have

J]Rs (|ng‘2 * (b’lzhE) (|€I/g|10 * ¢70“117E)

$E VﬁCO Z J (|5Jg|2*¢quJ E/CO)(|gI/g|1O*¢701/ E/Co)
JEeP 5 (1) VB 7 B

(3.2)
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for large enough E and for some absolute constant Cj.

Lemma 3.3 (Ball inflation). If2b < a < 3b, then for any pair of frequency intervals
I,I' < [0,1] with |I| = v, |I'| = b, d(I,T") = 2v, we have

J]Rs (|gfg‘2 * (ZS’ZQI,E) (|5pg|10 * ¢%1/,E)

<o N [ (sl g, ) (Enl® w0z )
JeP, 3, (1) R 7 B

(3.3)

for large enough E and for some absolute constant Cj.

Combining the three lemmas, we see that if 1 < a < 3b and v?°6~! € N, then for
any pair of frequency intervals I, I’ < [0,1] with |I| = v*, |I'| = v°, d(I,I') = 2v,
we have

J]Rs (|glg|2 * (b'IOWI,E) (|gllg|10 * (b’ZO“[/,E)

SE V_CO Z ‘[ (|5Jg|2*¢701J E/CO)(|8I/g|1O*¢’ZO“/ E/Co)
JeP, 3, (I) R 7 B

which is further bounded by
<pv~ M (6, v, E/Co)*?

1/2 5/2
3 ( 3 |5J~g||‘zm) ( D |5J/gim)
)

JeP 3, (I) ~J"ePs(J J'ePs(1)

SEV7007(31)70‘)(17%)-/\/11,3!1,1)(5’ v, E/CO)12

1/2 5/2
( 3 ||afg|iw) ( Y smgrzu) |

JePs(I) J'ePs(I')
It is clear that (2.8) now follows from the definition of M 44(d, v, ).

First we prove a small technical lemma that will be used in the proof of Lemma
3.1.

Lemma 3.4. For J c I < [0,1],
[E191 x b5 < |Esgl # 2. 5/Co

for some sufficiently large Cy.

Proof. First it suffices to instead show that for J < I < [0,1], we have
HngH%ﬁ(qﬁ%bE) S HngH%Q(d?J,E/C ) (3.4)

0

Suppose |J| = 1/R’ and |I| = 1/R with R’ > R. It suffices to only show the case
when I = [0,1/R]. Since J < [0,1/R], the angle between Ty and T is O(1/R).
Therefore T} is contained in a rectangle that is a O(1) dilation of Ty but pointing
in the same direction as 7| 7. Furthermore this dilate of 70} is contained in a O(1)
dilation of IO“J. Thus there exists a sufficiently large absolute constant C' such that
70} c C]O}. The same reasoning gives that for k£ > 0, 2’“10} c CQkf] where C is an
absolute constant.



A BILINEAR PROOF OF DECOUPLING FOR THE CUBIC MOMENT CURVE 9

We first prove an unweighted version of (3.4). Fix k > 0. Then
1

- 2 2

i Bty < 1090, e
£ <p 2%%|E9|? :
H JgHL2(¢c2k79J)E/mo) E [ J9HL2(¢2MQJ)E/1OO)

Next, observe that

S Q2 (@).
TI’ l;o |2kT| 2y
Therefore
2 k(E-3) 2" 1 o
a9l = B2 |10, ) de
k=0 I
<o 02 [ @), gl do
k>0 '
o N2 | (@ G, () da
k>0 ’
< .
<E ‘|5J9HL2(¢79J1E/100)
This completes the proof of Lemma 3.4. ]

We now move on to the proofs of Lemmas 3.1-3.3.

Proof of Lemma 3.1. Let {{1} be a partition of R? into cubes of side length v~°
We write the left hand side of (3.1) as

We bound the above expression by

Z (ilellg |Erg|*0 % (bﬂ/,E(x)) JD (|51g|2 . ¢7°11,E)- (35)

O
‘We write the latter factor as
2
[L UL teotRartos, pwan (56)

where [J, := [J—y. By L? orthogonality (see for instance Appendix of [GZo18]),
we have

LR f [ ], tlsgte)Pus, cotente]s, iy

JEP,

D) f JRs|5Jg(:E—y)Igwg,an(m)dx]qﬁTol’E(y)dy (3.7)

JeP ,(I)

e ), f (€917 % 62 e Jwmicom,
JeP,,(I)
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where in the last step we have used Lemma 3.4. This, combined with the definition
of the weight wr ¢, g, implies that (3.5) can be bounded by

SN Tl O (swplena v oy @) [ (€ op ).

O JeP,, (1) nez? O-v,

(3.8)

In the end, we just need to observe that

2 o < E/Co : 2 o /
(80l 0, o () S P I (g ey @), (39)
and
10 . 10

ilelglfpg\ * ¢z p(@) ~g W [Ergl " x 05 (@) (3.10)

both of which follow from the definition of the weight ¢. Inserting (3.9) and (3.10)
into (3.8) and using that |[J,-s,| = || shows that (3.8) is bounded by

(D (1 |al) =P || P/)

KEZ3

3N Cint lagP « 0z e (@0 [Erg® x6p (@)D

O JEP,,b (I)
2 10
<N X [l eog o el ® oy )
O JeP,, (1) ~0
This finishes the proof of the lemma. O

Proof of Lemma 3.2. Suppose b < a < 2b. Let [] be a spatial cube of side length
v=2 Let v(€) = (&,€2,63) and &, & be the centers of the intervals I and I’. For
oy, o, a3 € N with o < ja for j = 1,2, 3, consider a parallelepiped

{zeR%: o€l < v |z 9" () < w72 o 2" (&) < v

Note that |Erg| is morally locally constant on every translate of this parallelepiped.
Tile R? with essentially disjoint translates of this parallelepiped and let 7o, ay.a5 (1)
be the parallelepipeds in this tiling. Similarly we tile R? with essentially disjoint
translates of the parallelepiped

{:L‘ e R3: |x . ’Y,(§2)| < V_ﬂl, |.%' . ’7”(62” < V_’BQ, |$L' . 7///(52” < V_’B?’}
and define 73, g, 3, (') to be the parallelepipeds in this tiling whenever 81, 82, 3 €
N with §; < jb for j = 1,2,3. Consider

fD (€9l + 05, ) (Eral = 05, ). (3.11)

Since b < a, notice that there exists cp,cps for every T € Ty ap.25(I) and every
T € Ty,o,26(1") such that for all z € R3,

(€19 % 63, ,)(@) ~& >, Glr(x)
T€Ta,26,26(1)

(1€rgl™ x 6z p)@) ~p >, ().
T'€Tp,26,26(1")

(3.12)
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Since if T € Tg2p,26(1) and T € Ty 2.2 (I") then T, T" < 27, it follows that (3.11)
can be bounded by

f (Y &) D A1) (3.13)
O TeTa,20,26(1);T<20] T'€Tp,26,26 (I');T’ <207
For such T and T”, we have a crucial geometric inequality
TAT| _ |||
- g 1% - ,
(m (m{ym

(3.14)

because
ITAT|<{zeR: x4 ) sv ey (&) sv "z v (&) s v

the latter of which is comparable to

¥'(&1)

—a,,—2b,,—2bY(;,~b,,—~2b,,—2b
Ijiayibljim) det 7/(52) ~ (l/ v v )Q(by v )(El o 52)72
7" (€2) (e)?
ol
(]
This implies
v? 2 10
(3 13) = ||:|| <JD CT]]-T) (JD Z CT']]-T’)

TeTa 20,20 (1);T<2[] T'€Ty,20,20(1');T'<2(] (3 15)

—2
~E1|’D|(fm|&gz*¢ )(f Eral =05 ).

By L? orthogonality and an argument that is essentially the same as that in (3.7),
we have

f 19l « b < J (1€s91° %62 1 e )wmcon (3.16)
JeP 2}]([

By the definition of the Welght W, oy E, the term (3.15) can be bounded by

_ (14 [s))" >
D D N (f . €591 % 63 1) fmepmw*asﬁ,ﬂ)

JEP o4 (I) kEZ? U, 20,

Applying (3.9), with b replaced by 2b shows that the above is bounded by
v D (U RDTOER O Y (nf (€091 6 40 (@) j Erg" % by )

KEZ3 JEPyzb (I)

D Y N T P (= T !
JeP 5, (1) V0 w

Summing up over {[J}, a partition of R? into cubes of side length 2%, then finishes
the proof of Lemma 3.2. O

Proof of Lemma 3.3. Suppose 2b < a < 3b. We may follow line by line the proof

of Lemma 3.2, except that

e the side length v 2% of the spatial cube [] replaced by v—3?;

o Ta.2p26(I) replaced by Tg 3p.36(1); and
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® Tp20,20(1") replaced by T 26 36(1").
This is because when 2b < a < 3b, the uncertainty principle asserts that morally
speaking, |£;g| is locally constant on all tubes in T, 34.35(1), and |Ej+g]| is locally
constant on all tubes in Tp 25.35(I’). This shows that (3.12) holds with Ty 25 25 (1) re-
placed by T 36.3(1), and Ty 2p,25(I") replaced by Ty 25,35(I"). The crucial geometric
inequality (3.14) now follows since we still have

TaT|<|{zeR’: oy (&) Sv e v (&) v lz-7"(&) v}

the latter of which is comparable to
-1

7' (61) —a,,—3b,,—3b\(,,~b, —2b, —3b
vty |det yl’l(ég)) N G u(y)gby)?) — >(€1 — &)
7 (&2
L
= (]

In lieu of (3.16), since now [] is a cube of side length v 3%, and |I| = v* > %%, we
may apply ¢?L? decoupling, and bound instead

fl:l €19l + ¢TDI’E < Z 09 fks (191" = (bTO“J,E/Co)wD’COE'

JePugb

This completes the proof of Lemma 3.3. (]

4. THE SECOND BILINEAR CONSTANT Mj 4

We will now prove the following result.

Lemma 4.1. Let 1 < a <b and v € 22 A (0,1/1000). Let I be an interval of
length v® and I' be an interval of length v° such that d(I,I') = 2v. Then for every
€ > 0 there exists an absolute constant Cy such that

JRS (|Erg|* = ¢T°,,E) (IErgl®+ ¢T°I,,E)

—(1+4¢€)(2b—2a)—C 4 8
Sepv WROOG S (eglteoy V(g e g )
JEP, gy_q (1) VR

(4.1)

Once we prove this, by applying the definition of My 45, we obtain that
4 8
| Gerslt oy, ) eval o5, )
Sep v ITE20=C My o 08,0, B/Co) 2 x

2
( 3 |e,]gim(R3>)( 3 |6J/g||im(Rs))-

JePs(I) J'ePs(I')
This concludes the desired estimate in Lemma 2.7.
The proof of Lemma 4.1 consists of two steps. In the first step, we will prove

a decoupling inequality for the parabola at a “small” spatial scale. In the second
step, we will combine this decoupling inequality with an (rigorous) interpretation
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of the uncertainty principle and a few changes of variables to finish the proof of
Lemma 4.1.

In addition to the weight functions defined in the notation section, we will also
need to consider weight functions adapted to squares in R? and intervals I — R. In
particular, such weight functions will appear (and only appear) in the statement
and proofs of Lemmas 4.2 and 4.6. To this end, given a square B — R? centered at
¢ = (c1,¢2) of side length R, define

|1 — a1

R

|22 — o

)

Wp,p(r) == (1+ ) ¥

and

‘JZ — C‘ )—E
R
for & = (w1, 22) € R%. This is a slight abuse of notation from wp,r where B is a
cube in R? but we hope the distinction will be clear from context.
Next, for an interval I < R centered at c¢ of length R, we let

wp,g(x) =1+

|$ — cl)—E

’LU[}E(.%‘) = (1+ R

for x € R.

4.1. ¢*L* decoupling on small spatial scales.
Lemma 4.2. Let
(Erg)(@) = | g(©)c(enr +E202) de

I
be the extension operator for the parabola associated to a dyadic interval I < [0,1].
Then for every € > 0, every § € 27N and every square Bs—1 < R? of side length
571, we have the decoupling inequality

1 1/4
1Boigl s, o) Sz 655 Y} 1Baglbaus ) (4:2)
JeP5([0,1]) ’

for every function g: [0,1] — C.

If Bs-1 is replaced by Bg-2 in (4.2), then this estimate would be a trivial con-
sequence of the 2 decoupling inequality of Bourgain and Demeter [BD15, BD17].
Also, if we were to prove (4.2) with the constant §~1/4 replaced by §~/2, then this
would follow easily by interpolation between L? and L*; see Lemma 4.4 below. It
is worth mentioning that in (4.2), the power of 6! is optimal. This can be seen by
taking the function g to be the indicator function of [0, 1].

Lemma 4.2 is also a special case of Demeter, Guth and Wang [DGW19, Theorem
3.1]. We provide a proof in our simpler special case.

Proof of Lemma 4.2. For readers familiar with the Bourgain-Guth iterations in
[BG11], we first sketch a possible proof by making free use of the uncertainty
principle and ignoring all Schwartz tails. This should make clear the ideas behind
the rigourous proof, which will follow immediately after.

Let ¢ > 0 and K € 2" to be chosen depending only on ¢. Let 6 € 27N be such that
6! > K. Then the Bourgain-Guth dichotomy classifies each square Bx < Bs-1
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of side length K as either broad or narrow, and summing the resulting estimates
gives

2
HE[O,l]QH%AL(BE,I) <10 Z HEagHiﬂBé,l) +Ck Z H H |Eaj9‘1/2
j=1

OéEPK71 al,QQEPK71
dist(a1,a2)=4/K

4
L4(B;_1)

The second term on the right hand side can be bounded by

<t (S |Esql? C<orit Y Bl
s Uk Jg L2(Bs_1) s Uk Jg L4(Bs_1)
JePs JePs

where in the first estimate we used bilinear restriction followed by local L? orthog-
onality, and in the second estimate we used Holder’s inequality. As a result, we
obtain

HE[0,1]9H%4(35_1) <10 Z HEaQHZiAI(Bé_l) +COgd! Z HEJQHZLI(B&_I)- (4.3)
aEPK_l JEP5

We will rescale (4.3) as follows. Let o € 27N be such that ¢ > (K§)/?, and
I < [0,1] be a dyadic interval of length 0. We apply (4.3) to g, in place of g
on squares of side length 026~!, where g, is the composition of g with an affine
map that maps I bijectively onto [0, 1]. Since HEIgHi‘l(Bé,l) = O'QHE[OJ]QUH%‘*(R;71)

where Rj_, is a parallelogram of size 06~ x 62671, which in turn can be covered
by a union of ~ ¢! squares of side lengths 026!, we obtain

HEIQ||%4(BS_1) <10 Z \|Eag||%4(35_1) +Cgo?6! Z HEJ9H%4(35_1)~
aeP,x (I) JeP, 1,(I)

By interpolating a trivial bound at L* with the inequality at L? obtained via
orthogonality, we can decouple the second term above from frequency scale o~1§
down to ¢, and obtain

[Eralas, <10 ) [Baglhas, )+ Cxo™ Y [Esglbas, ) (44)

a€Pqr (I) JePs(I)

We may now apply (4.4) repeatedly, for 0 = 1, K~1, K=2,..., K~ (M=1 where
M is the unique positive integer so that K~(M~1 > (K§)/2 > K=M (so0 roughly
K—M ~ §1/2) and obtain

HE[0,1]9||%4(38_1) <10 Z HEa!JH%Al(Bé_l) +Cg Mo 2 HEJQ||%4(BS_1)~

OLEPK_JM JEP5

Finally, again by interpolating a trivial bound at L* with the inequality at L?
obtained via orthogonality, the first term above can be estimated by

—M o
ClOM(KT) D) I1Baglias, )

QGP,;
Since K—M /5 < (K6)Y?/§ = K'/26=1/2 we then obtain

|Broglias, o) < (CLOMES™ + CxMs™) 3 | Esglbags, )
JEP(S

which via [BD17, Lemma 4.1] implies (4.2) because M < (1 + l(l’ogg‘;;) and K can
be chosen sufficiently large depending on e.
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Now that the idea of the proof is laid out, we will give a proof with more details,
that proves a slightly more general statement and allows us to later deal with a
general C® curve with curvature in place of the parabola. To state this slightly
more general statement we need some notations. Suppose § € 27N and J € P5. We
denote by T'; the parallelogram {(£,n) € R?: £ € J, |n — (a% + 2a;(§ —ay))| < 0}
here ay is the left endpoint of J. Note that {T;}sep, is a family of essentially
disjoint parallelograms of sizes ~ § x §. We will denote by f; the inverse Fourier
transform of 17, f , where 17, is the indicator function of T;. We will prove that
for every € > 0,if § € 27N and f = Y. sep; f7, then

. 1/4
sy <= 675752 Iolbs) - (45)

JePs

Indeed, let K = K(e) to be chosen depending only on e. For each square
Bg < R? of side length K and each o € Pg—1, define

olBr) = (5 Ifa|4>l/4-

|Bk| Jpy
We will use the following form of uncertainty principle:

catpi) <€ ng ([ 11ue—pPuntiay) (4.6

wEBK

where wg (y) := K~2(1 + K~ y|)71°°, which can be justified rigorously by noting
that f, is left unchanged by a Schwartz Fourier multiplier that is 1 on a ball of
radius ~ K ! containing the Fourier support of f,,, and then applying the Cauchy-
Schwarz inequality (note that wg (y) ~ wi (y") whenever |y — /| < K).

Now given such a square By, either there exists a* € Py -1 such that ¢, (Bg) <
ﬁca* (Bk) for all @ € Pg—1 with dist(a, a®) > 4/K, or there exists o*, a** €
Py 1, with dist(a*, a**) > 4/K, so that co(Br) < (K'Y*cqx (Bx)casx (Bg))Y?.

In the first case,
|G IERTEE U Y AR
Bg Bg 1 Bk

QEP,

while in the second case, the uncertainty principle (4.6) gives

[ ar<e| (f |fa*<zy1>fa**<zy2>|2dx)wl<<y>dy
B R2xR2 \JBg

<o N [ (], el feato = )P vy

(Il,OZQGPK_l
dist(avy,a2)=4/K

where we have written wg (y) as a shorthand for wx (y1)wx (y2). Now let B < R?
be a square of side length §~!. Then summing the previous estimates over all
squares Bx < B with side lengths K, we obtain

<0 3 g

OLEPK71

voc N [ ([ e et - Pl ) wtian

al,QQEPK71
dist(av1,a2)=4/K

(4.7)
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To estimate the second term on the right, for each fixed (yi,12) € R? x R?, we
apply bilinear restriction estimate in R? to Fy := ng(z)fa, (x — y1) and Fy(z) :=
1B () fa, (z — y2) where np is a Schwartz function whose Fourier transform is sup-
ported in a ball of radius § centered at 0, and |n| = 1 on B:

Lemma 4.3. If0 < § < K~' <1 and S1, Sy be §-neighborhoods of two arcs of
the parabola (&,&2) that are of lengths K= and at least 4/K apart, then for any
Iy, Fy: R? — C whose Fourier transforms are supported on S1 and So respectively,

we have
2
f IFF? < Ckd® | ] U |Fj|2> .
R2 R2

J=1

The second term on the right hand side of (4.7) is then bounded by

Cké® )] fszRQj]j (fw n5(2) fo, (x — yj)|2> wi (y)dy.

a1 ,OCQEPK_l
dist(aq,a2)=4/K

By local L? orthogonality,
J n(2) fo,(x —y)P <C ) f e (@) f1(x —y;)|
R2 R2
JGPg(a]‘)

for j = 1,2. Tt follows that

1/2
f]RQ 05 (%) fa, (@ — y;)|* < C2 ( > JRZ |fo(z — yj)|4UJB($)>

J€P5

where we applied Cauchy-Schwarz to both the sum in J and the integral over x. In-
tegrating against wg (y;), and using Cauchy-Schwarz again, we see that the second
term on the right hand side of (4.7) is bounded by

2 1/2
ens ([, 35 [ 1t wtnostuinis) . o

? JePs

Summing (4.7) over all squares B = R? of side lengths §~!, and applying Cauchy-
Schwarz to the sum over B of (4.8), we obtain

4 4 —1 4
[Lar<10 3 | gt Ons ) L@ )

aEPK,l
We may now rescale (4.9) and obtain, for every o € 27N with o > (K6)/? and
every dyadic interval I < [0, 1] of length o, that

[nlt<i0 3 [ il roeest S [ nl
R? aePy (1) VR Jep, (1) VB

The second term on the right hand side can be bounded by the following lemma
(with N = ¢~1), which is obtained by interpolation between L? orthogonality and
a trivial bound at L*:
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Lemma 4.4. Let {Fj}j-vzl be a family of functions on R? whose Fourier supports
are contained in disjoint rectangles with sides parallel to coordinate axes. Then

N L , 1/4
|25 ey < OV (B 1B )

We then get

[nr<w0 3 [ iglroest B[ nn @)

a€Py k(1) JePs(I)

We may now apply (4.10) repeatedly, for o = 1, K~1 K2 ... K~ (=1 where
M is the unique positive integer so that K~(M-1 > (K 5)1/2 > K‘M and obtain

| st <20 > f falt + Codts 3 [ 111"

aeP, JePs

A final application of Lemma 4.4 allows us to bound the first term on the right
hand side above. Since (K~ /8)? < ((K6)'/?)/6)? = K6, we obtain

J F[4 < (CLOMKS—1 + Cpe Mo~ ZJ 1[4,

JePs

(4.5) then follows because M < 3(1+ l(l’fgéK ) and K can be chosen sufficiently large
depending on €.

It is well-known that this implies (4.2), because we can pick a Schwartz function
1 whose Fourier transform is compactly supported in a ball of radius § centered at
the origin, and use (4.5) to decouple nEjy 119 = ZkP& nE jg; each nE ;g has Fourier
support contained in a d-neighborhood of the parabola over J. O

For completeness, we include the short proofs of Lemma 4.3 and 4.4.

Proof of Lemma 4.3. By Plancherel, it suffices to prove that

2
[Fy * Follp2mey < CK5H IF5] 22 (m2)-
j=1
Let T be the bilinear operator given by
T(Gy,Gy) := (15,G1) * (15,G2)

where 1g; is the indicator function of Sj;, for j = 1,2. Then by Young’s convo-
lution inequality, T is bounded from L!(R?) x L}(R?) to L'(R?) with norm < 1.
Furthermore, since ||1g, * Lg,|r=®2) < Ck0?, we see that T is bounded from
L*(R?) x L*(R?) to L*(R?) with norm < Cgd?. Thus by interpolation, T is
bounded from L?(R2?) x L%(R?) to L?(R?) with norm < Ckdé. Since Py« Fy =
T(ﬁl, ﬁg), our claim follows. O

Proof of Lemma 4.4. Let Ry, ..., Ry be disjoint rectangles with sides parallel to
the axes containing the Fourier supports of Fy, ..., Fiy. Let T be the N-linear
operator so that T'(G1,...,Gy) is the inverse Fourier transform of Zévzl ]le(/?;-.
Then by Plancherel, T is bounded from (L?(R?))Y to L?(R?) with norm 1, and
T is bounded from (L*(R?))¥ to a product BMO(R?) with norm < CN. By
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interpolation between L? and L*, we see that T is bounded from (L*(R?))V to
L*(R?) with norm < CN2. Since Z;V=1 F;, =T(F,...,Fn), our claim follows. O

Finally, we state and prove the following generalization of Lemma 4.2:

Lemma 4.5. Let v: [0,1] — R? be a C? curve with

1 =

V(&) <100 and |7/ (§) A +"(&)] =
Let
(Brg)a) = | a(@e(ae) ) de
be the extension operator for vy associated to a dyadic interval I < [0,1]. Then for

every € > 0, every § € 27N and every square Bs—1 < R? of side length 61, we have
the decoupling inequality

1 1/4
[Boaigl s, ,.e) Sz 655 ) 1Baglbsu, ) (4.11)
JePs([0,1]) °

for every function g: [0,1] — C.

Proof. This follows from (4.5) via an iteration that goes back to Pramanik and
Seeger [PS07]. The key is that on any interval I < [0,1], we may Taylor expand ~
around the left endpoint a; € I and obtain

V(&) =ylar) + 7' (ar)(§ — ar) + %”/’(So)(é —ar)® + O(|I]%).

An affine transformation on R? will transform the curve parametrized by the first
three terms of the above Taylor expansion to the parabola over [0, |I|]. The inverse
of this affine transformation is given by A;(¢,n) := v(ar) + L;(€,7n) where

7"(ar)
2

is a linear map on R? with determinant > 1/8. Hence the linear part of A;! has
norm bounded above independent of I, and the curve «(I) is transformed under
A;! to a curve whose distance from the parabola over [0,]1]] is O(|I%). So if
|I| ~ 6% and f; is a function on R? whose Fourier transform is supported in
an d-neighborhood of v(I), then Sy f; has Fourier transform supported in a O(4)-
neighborhood of the parabola over [0, |I|] where

Li(&n) =&Y (ar) +1n

Sif(x) 1= e 2@ b f( 7ty (4.12)

is defined so that E?(f, n) = (det LI)]‘A‘(AI(f7 7)). We may then use (4.5) to decou-
ple f; in L*(R?) from frequency scale §'/% down to frequency scale 4.

As a result, to decouple down to frequency scale ¢, it suffices to decouple down to
frequency scale /3. But then we may repeat this argument, and reduce ourselves
to decoupling down to frequency scale 61/, §1/27, . ... Hence it suffices to decouple
from frequency scale 1 down to §/3” for some large positive integer a. But that
can be done by a trivial decoupling, incurring only a §~¢ loss if a is sufficiently big.

To formalize these ideas, let 6 € 27N, For each J € Pj, let f; be a function on
R? whose Fourier support is contained in a d-neighborhood of 7(.J). If o € 2-N<{0}
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with ¢ > §, and I € P,, we write f; := ZJeP& jeg fi. Then the Fourier support of
f1 is contained in the o-neighborhood of v(I). We will prove that for every e > 0,

1 1/4
fromllzaee e 07572 ( X 1fslams)) - (4.13)
JePgs

First, we pick positive integer a so that 3% < /2, and write ¢ = 2-43" =7 for some
non-negative integers ¢ and r with » < 3% Then we trivially decouple down to
frequency scale 279:

1/4
Hf[o,1]\|L4(R2)<2q< Z HroH%‘l(R"’)) .

I(]€P27q
We are now at frequency scale o := 279 and will successively decouple down to
frequency scales §; := 279" for i = 1,2,...,a. Indeed, for i = 1,2,...,a and I,_; €

Ps, ,,if I; € P5,(I;_1), then the function Sy, , f1,_, defined by (4.12) has Fourier
transform supported in an O(4;)-neighborhood of the parabola over [0,d,_1]. So
we may apply (45) to decouple Sli—l fIi—l = ZliePa.(Ii,l) Sli—l fIi and obtain

1 £
5, \ 12 1/4
Ifroi sy <e <54_1) ( Z I.f1; Zi4(1R2)) :

Iq;EP(;i (Iifl)

Hence

1_ e 1/4
ooy Se 202 73 (0N Ufrlbas)
IQGP(;Q
Note that 2¢ < §73° < 02 and 6, = 293" < §~!. Finally we trivially decouple
from frequency scale 6, = 279" to frequency scale § = 279" ~": since 2" < 23" =
O(1), we obtain (4.13). This implies (4.11), in the same way that (4.5) implies
(4.2). O

Remark 1. The use of £* sum on the right hand side of (4.2) determines that the
current new argument that is used to prove Theorem 1.1, which is inspired by
[Wo016] and [HB15], cannot be used to recover (1.4).

4.2. The proof of Lemma 4.1. We can assume that a < b since when a = b,
there is nothing to show. By affine invariance, we may assume that I’ = [0,2°].
Notice that |I’| = 1, therefore the function |£5g|® is essentially constant on every
axis-parallel slab of dimension =% x v720 x =3, Here the short side of length v~°
is along the zi-axis and the side of medium length is along the xs-axis.

Since I' = [0, %], there are absolute constants ¢ < 1 and C > 1 such that Ty
contains the axis parallel rectangular box of dimension cv~° x cv =20 x cv =3 centered
at the origin and is contained in the axis parallel rectangular box of dimension
Cv=" x Cv=2" x Cv=3 centered at the origin.

Let [] denote an arbitrary axis-parallel rectangular box of dimension v~
v~=3b. To estimate left hand side of (4.1), we first consider

| Gralt e oz, ) (erol® w05, ) (4.14)

Notice that for every z,z’ € [J, we have

b —2b

XV X

Ergl s 65 (@) ~p Ergl* s 0z ().
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Therefore, we bound (4.14) by

(supleral® «o; () fD (€19l * 65, ,). (4.15)

We keep the former factor as is for a while and focus on the latter factor. We first
write it as

[ teritarog, @ (1.16)
R3 »

Yy

where [, := [J — y. We will prove the following.

Lemma 4.6. Let v € 272 ~ (0,1/1000), I = [d,d + v*] with |d| > 2v, and A a
square in the (x2,x3)-plane of side length v=2°. For every fized x1 € R, there erists
an absolute constant Cy such that

f \(519)(x)\4wA7E(m2, x3) dzo drs
R2

SeE p—(1+€)(20—2a)—Co Z J |(ng)(x)|4wA’E($27x3) dzy drs
JEP 5o (1) VR

for every e > 0.

First let’s see how to use Lemma 4.6 to finish the proof. By applying Lemma
4.6 (with F replaced by 100E) and Fubini, we can bound (4.16) by

Spv @ S [ [ g - ylunsds]oy o)y
JEP 5o (1) VR TR ’

§57E I/—(1+s)(2b—2a)—Co Z f \5Jg|4 *¢ ] woE-

JEP 2b— a(l
In light of Lemma 3.4, we have obtained that

(.15) 2o po-(F)E@-20-Co

(sup|51/g| * T/E() Z J |5J9‘4*¢ /CO]U’D,E-

JEP 2b— a(I)

It remains to prove that

Z (Sup |€I’g| * T E( )> J‘RS [|£Jg|4 * QS%J,E/CO]wD’E

O
$EJ (I€sg* *¢T E/Co )(‘5I'g|8*¢70“1,,E/Co)'

But the proof of this is essentially the same as that in the steps (3.8), (3.9) and
(3.10): one would bound the left hand side by

Mda+ |f<a|)*E(i1€1§ Ergl® + %IME(??)) J (€591 0 ) 510y ]

O kez3 Oo—box

b b 2b 3

where v ok 1= (V7 %k1, v ky, v K3) for k = (K1, Ko, k3), and use the following
inequalities: we use

sup  [Eg]* ¢

/
well, b, 70“JyE/Co(x )7

. < E/Cy 4
#,.2/0,() £ W7 b jEsgl = 6
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(here we used that the side lengths of Zo“_] are longer than those of [], which holds
because b > a), and that

8 : 8
Sup |Er gl * b5, p(@) ~p nf [Ergl b3 p(@)-

4.3. The proof of Lemma 4.6. In the proof, to avoid using too many subscripts,
we will use (z,v, 2) to stand for a point in R? rather than (z1, zo, x3).

Proof of Lemma 4.6. By the same reasoning as in Lemma 2.5 and Proposition 2.6
of [Lil7], it suffices to prove instead

[RCEEYS RN

(4.17)
S p—(1+€)(26—2a)—Co 2 f ' |(Er9)(z,y, Z)|46A,1OE(% 2)dydz
JEP 5o (1) VR

and furthermore, by shifting y and z, it suffices to show this only in the case
when A is centered at the origin. Let A be the square centered at the origin with
coordinates (v=2,0), (—v~2°,0), (0,r72"), and (0, —v~2). Since A = A, it suffices
to show (4.17) with 1a(y, z) on the left hand side replaced with 1x(y, z). This small
reduction will make the algebra later simpler.

Expanding the left hand side gives

d+v®
J]RQ f z)e(t?y + 32 )dt|4]lA(y, z)dydz.

Rescaling [d, d + v*] to [0, 1] shows that the above is equal to

(d+ ((d+ X
JRQ J v vit)e) (4.18)
e(v*t(2dy + 3d22) + 22 (y + (3d + vt)z)) dt[*1x(y, 2) dy d=.

Before we proceed, let us first describe the idea. It will become clear why we orga-
nize different terms in the phase function as above. Notice that v* is an extremely
small number. We will treat 3d + v%t as a small perturbation of 3d and end up
looking at the extension operator for a (perturbed) parabola.

To make this idea precise, we make the change of variables

v\ _ (2v°d 3v*d*\ (y
2]\ v 32ed) \z)

Denote the matrix above by T and let G(t,z) := g(d + v®t)e((d + v*t)x). Then
using that |d| > 2v, (4.18) is bounded by

o= 2 V 3 2 20 3 4 ot i
(4.19)

Ignoring the weight for the moment, we will now want a decoupling theorem for the
2a a

curve y(t) = (t — £55t3,¢> + 24-¢3) which is a small perturbation of the parabola.

But this comes from Lemma 4.5: indeed,

2a 2a 2

1— 202 22 ¢ vt

det ., 2, =1+ —t
<2t+2;t2 2+4gt)‘ ( d>

[ () A" ()] =
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which is obv1ously > 1for t € [0,1] if d = 2v; if on the other hand d < —2v, then
for t e [0,1], 1+ "d t>1- % > 150 |7/ (t) A9"(t)] = 1 and Lemma 4.5 will apply.

Note that T'(A) is the parallelogram centered at the origin with vertices at the
points

2dl/72b+a 72b+2a)

A:
B 2dV—2b+a _ —26+2a)
C - 3d2l/_2b+a 3dv —2b+2a)

(
(=
(
( 3d2 —2b+a —3dV_2b+2a).

We have two cases: either 2v < |d| < 1/1000 or 1/1000 < |d| < 1. We will only
focus on the former case. The latter case is slightly easier, as we have O(1) sepa-
ration. We split the former case into two further cases d > 0 and d < 0. Again we
only focus on the former case d > 0. The proof for the other case is similar.

We will want to cover T'(A) (a rotated thin parallelogram) by squares roughly of
side length v—20+2¢=1  To simplify working with the weight functions adapted to
each of these squares we rotate this parallelogram so that the longest diagonal is on
the y'-axis and then we cover this rotated parallelogram with axis-parallel squares.

Since d is sufficiently small, the longest diagonal is created by connecting the
points A and B which lies on the line 2/ = ;—;y’. Let 6 be such that tan§ = g—; and
let Ry be the rotation matrix that rotates by an angle 6 in the counterclockwise

direction. Therefore R;lT(A) is a parallelogram with the line connecting R;lA
and R, ' B on the y'-axis. The y/-coordinate of R, ' A is

v~ 2%+(2d cos § + 1% sin ).
and the z’-coordinate of R, 'C is
3dy= 2t (—dsin @ + v cosb).

We can find an integer N such that N | v=2+2¢ and -5 < d < &. Indeed write
v=22" for some « € N sufficiently large. Since we want N < é < 2N and know
1000 < L < 171, choose N from the set {2°,210,...,22°=2}. Then N | v~! and
since 2b —2a =2, N |y 2+

Therefore R, 1T (A) is contained in a rectangle A’ centered at the origin of length

6
20727 (2d cos 0 + v sin ) = 207207 /4d2 + v2e < 6dyT 2T < NV*%“
and height

2d
6dy 20" (—dsin @ + v cos§) = 3dy 202 < 6dv 22 < E1/*21”2“.

VAd® ¥ v N

Partition this rectangle into v~ squares {1} of side length %V*Qb”“. Thus in this
case we have shown that

Lo (v 2) < X In(Ry (Y, )
O

<p Y wm0os(Ry ' (4 2)) = D wpo, 4204200 1005 ((Y 2) — Rocp)-
0 0
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where the last equality we have used that wpo,r),1005() is a radial function.
Therefore (4.19)

Lo 20%
QZJ J G(t, ) t—@ﬁ) (t2+gt3))dt|4x
wB(RBCg,%V*%*?“),lOOE(y/a Z/) dy' dz'.

Since N | v=2b+22 and Np?*=2¢ ¢ 2N applying Lemma 4.5 shows that we can
decouple to frequency scale Nv2*=2¢. That is, the above is

} L~ (2b-2a)(14)~2
Nl+e

SN I Gt e 2

0O JePy, 2b—2a

SE,E

/ / / !/
wB(RgCD,%I/_m’*Q“),lOOE(y , 2 )dy dz'.

By undoing the change of variables, one controls the above by

d2
< —(2b—2a)(14¢)—2
Se B pire Y X

[ €2 Stk 00 T 0 2) dy
JEPy oy _a(D) VR

Since N ~ d~!, we can use the triangle inequality to decouple I from frequency
scale Nv?=9 to scale v2*~%, losing only a factor of O(N3). Therefore the above is

<. pr—(@—20)(1+e)-2,

Jo 3900 St s (T D)ty
JEP 2y (I)

Thus we will have proved (4.17) in the case when 2v < d < 1/1000 provided we can
show that

ZwB(Rch,%u*%*za),lOOE(T(ya 2)) SE Wa10E(Y, 2)- (4.20)
O
We have
sz(Rch Ly—2b+2ay, 10 (T'(y, ZU’D 100E(Ry T(y, z)).
O
Since (1 + |y|)(1 + |z]) < (1 +|(y, 2)])?, to show (4.20), it suffices to show that

ZQED,BOE(Rg_lT(yvz)) SE ’L’Z)JA’loE(y7Z). (421)
O

Writing the centers of the [ that partition A’ as (¢,1, ¢,2), we have
Z ]II(CDJ’%U?%H)L:)(y)]ll(c‘j’%%,,fzwza)(Z) = ]11(0’%1,7%“)(y)]lj(ov%fzbwa)(z)
O

where I(a, L) is the interval [a — L/2,a + L/2]. By the proof of Lemma 2.1 and
Remark 2.2 of [Lil7],

1

(Lp(emyy, Lo—2v+2a) * Wr(o, 4 y-2042a) 505) (Y) RE (NV_zb”a)

w[(cD,l7%u—2’>+%)750E(y)
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and similarly for the z-coordinate, the left hand side of (4.21) is

1 opionn
SE(NV 2b+2 ) 2><

(ly(o £V72b+a)]17(0 6 —2b+2a) wzj(oy%y—QbJrQa)’soEw;(O’%U72b+2a),50E)(R0_1T(y’ z))
where here we have used ]11(0 R) to be shorthand for 1;( ry(y) and similarly for
I(O)R), wI(O7R), and wI(O)R) Thus it suffices to show that
(wZII(O,%V72b+a),50Ew;(07%y*2b+2a)750E)(R;I (y,2)) B Da0E(Y; 2).
Rescaling y and z, it is enough to prove

(w?(o,%u*zbﬂl),50Ew§(0,%u—2"+2‘1)750E)( v PRy (y,2)) SE Wp(0,1),108(Y: 2)-

(4.22)
The left hand side of (4.22) is equal to
(1+[(Nv "Ry ' T(y,2)1) P (1 + [(Nv >Ry ' T(y, 2))2|) 7.
‘We observe that
_ _ 2d *a(2+ ) I/fa(?)d-l- §V2ad71)
N QaR lT = Nd - 2d2 2
v VAEZ 1+ % ( 0 3/2
2d
= Nd ———S
Vad? + v2a
and
1 2 2d
<Nd-— < Nd-—— < Nd<1. (4.23)

NG NG VA e
4.23)

Therefore from (4.23) and that 2 < 2 + % < 3,

V2a 3y 2a C50E
ng)y +(3d + 57)4)

6d? + 302 _
4d? + v2e )2)7*"

(L + [(Nv™ Ry T(y, 2)1 )™ <p (1 +](2+

<E (1+\y+d(

and
(1 + [(Nv™2* Ry M T (y, 2))2)) 7% <p (14 ]2)) 70
Thus to prove (4.22), it remains to show that

(1 + ly|)

(1+y + d(§E25) 25 (1 + |2])4

(4.24)

is a bounded function independent of y, z, d, v, and a. To see that (4.24) is bounded,
we consider the following two cases:

e Suppose |y + d(64‘f12213y”22:)2| = ‘%I Then (4.24) is controlled by

1+ 1yl
(1+yl/2)°(X + [=])*
o Suppose |y + d(S43270)z| < W Then |y| < 2jdSE327||2] < |2| and
hence (4.24) is controlled by

<1

b
(1 +[2])°
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This then proves (4.22) and hence also (4.17) in the case when v < d < 1/1000. O

5. THE ITERATION

We now let Cy be the largest of any Cy that appears in the statements of Lemmas
2.4-2.7 in Section 2. It will no longer vary line by line as before and will now be
fixed.

Lemma 5.1. Let a and b be integers such that 1 < a < b. Suppose 6 and v were
such that V36~ € N and v € 272" A (0,1/1000). Then

Mo, b(é’ v, E) <. Eys—%(5+6e)a—%(7+6e)b—gco %
0

b

Mo 2b—a(8, v, E/CE)Y Moy 30(8,v, E/Cy) /O D(— ) /2.

Proof. We have
Mo ap(0,1,E) <c.p V_é(1+E)(b_a)_COMz,zbfa,b(& v, E/Cy)
Sep v 8OO O=Co Ngo o (8,0, EJC2)B My ap—ap (8,0, E/CZ)??  (5.1)
where here we have used Lemmas 2.4 and 2.7. Next, Lemmas 2.5 and 2.6 give that
M op—ap(0,0, EJC3) Sp v~ 21@tD=Co N 08,0, E/CS)
)

<p Vfﬁ(aer)fCo./\/127b,3b(57 v, E/Cg)1/4D(7)3/4
1%

Inserting this estimate into (5.1) and observing that
1 1 1
_6(1 +e)(b—a)— —=(a+b)=—

36 36
then completes the proof of Lemma 5.1. (]

1
(5 + 6e)a — %(7 + 6e)b

Let A = 0 be the smallest real number such that D(8) <. 6~/42~¢ for all
§ € N1, The trivial bound on D(§) shows that A < 1/2. If A = 0, then we are
done. We now assume A > (0 and derive a contradiction.

We will let C'(e) be the implied constant depending on ¢ in the estimate D(J) <.
6~1/4=2=¢ and C(e, E) the implied constant depending on &, E from Lemma 5.1.

Lemma 5.2. Let N > 0 an integer and 6 € N~1 be fized.
Suppose the following statement is true: If be N and v € 22" A (0,1/1000) s
such that 13" b6~ e N, then

Ms o p(0,v,E) < Cn(a,b,e, E)(T%*)‘*EV*O‘N“*BN"*%CO

for all a such that 1 < a < b.
Then the following statement is also true: Ifbe N and v € 272" (0,1/1000) s
such that v3" b5l e N, then

1 N _ — _10
M27a,b(6?V7E) <CN+1(a,b,5,E)5 amh 2 Praab 300

for all a such that 1 < a < b where
ON+1 —5/36 0 -1/3\ (an
<5N+1> = (5/72 . )\/2> + (1/2 7/6 ) <5N>
and

Cn41(a,b,e, E) := C(e, E)Cn(b,2b — a,e, E/CH)Y3Cn (b, 3b,e, E/CH)VOC () /2.
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Proof. Fix a and b such that 1 < a < b and let v € 272 ~ (0,1/1000) be such that
v3 61 e N. Then 1 < b < 2b— a and
VSN(2b7a)571 _ V3N+1b5711/73”(b+a) eN.

Therefore by hypothesis,
May2p-a(0,v, B) < On(b,2b — a, e, B)§ 5 A=y fra(ant20m)b=3Co

Next, since 371 = 3Bl e Nand 1 < b < 3b, by hypothesis, we have

Moy 3(8,1, E) < Cn(b, 3, e, B)§~ 1~ A5y~ (an+30m)b=3Co,
Finally we note that by our assumption on D(§) and since v®  6~! € N implies

v’ ! e N, we have

5

D(ﬁ) < C(e)§— i AepblatAbe,

Since 13§~ € N, Lemma 5.1 then gives that

1
13—
Mg,a,b(ts, v, E) < C’N+1(a,b,5,E)6 1 €x
135 (5+6e)a— 55 (T+6€)b—F Co , 38na—(5an+FBN)b+5b(5+N) ,5be

Rearranging the above equation and observe that the power of v° is veeatseb <
then completes the proof of Lemma 5.2. g

Lemma 5.3. If ag =0, 5y =0, and
QAN 4+1 _ A 0 —1/3 aN
</3N+1) B (B) - (1/2 7/6 ) <5N) ’ (52)

(aN) (A+2B)N <_1 + :Ssj(l B GLN) (A+§1B)N + 1*52(1 B GlN)(AEIQBB)N> .

then

By) 5 S 1O S A S
Proof. This is as in Section 4 of [HB15]. Let
(0 -1/3 (-1 =2 (10
M‘<1/2 7/6)’ P‘<3 1)’ and D‘(o 1/6)'
Then M = PDP~!. Tterating (5.2) gives
an) 1(-1 -2\ (N 0 1 2) (/4
Bv) 5\3 1) \0 fa1-%))\-3 -1)\B
(
1

36 1 A 12
(A+2B)N (1 + 351 — G—N)i(At%B)N +6?
5

68 /(A+2B)N

1 B
= 1- fTN) (A]—;ZB)N
6N/ (A+2B)N

This completes the proof of Lemma 5.3. (]

We derive a contradiction. Setting A = —5/36 and B = 5/72 — \/2, we observe
that A+ 2B = —\.

By trivially controlling the bilinear constant by the linear constant, if § and v are
such that v*6~! € N, then Msoap(0,,E) <c.p i A< forall<ac<b. Setting
ap = 0 and By = 0 and using that A + 2B = —\, Lemma 5.3 shows that

AN 6 1 1 25 1

an + By = -2+ (1= ex)(5y + 3)-
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Since A > 0, we can choose an Ny sufficiently large (depending on \) such that
an, + Bn, < —1001 — %CO. Lemma 5.2 then shows that if 6 € N™! and v €

2-2" 1 (0,1/1000) are such that v °6=! € N, then
M251:1(57 v, E) sNO,E,E 6_%_>‘_5V1001.

Now choose E > 1000 to be a sufficiently large power of Cy (depending on Npy).

Bilinear reduction (Lemma 2.3) then shows that if § € N~ and v € 2*2Nm(0, 1/1000)

are such that 13" °6~1 € N, we have

D(0) Sy Irip(g) + oA AmEy 1000

_1_ N J S
$N0,55 I—A €(V>\+E+V1000) SN0,55 I—A EV)\

where the last inequality is because A < 1/2. Choosing v = ¢ 1/ 3N°, then shows that
if § is such that 61/3™° € 2=2" A (0,1/1000), then

D(8) Sy 6 T N5,

Corollary 2.2 (almost multiplicity) then shows that D(4) <n, .« 571 M) for

all 6 € N7!. This contradicts the minimality of A\. Therefore we cannot have A > 0
and hence we must have A = 0. This completes the proof of Theorem 1.1.
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