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A SHORT PROOF OF /> DECOUPLING FOR THE MOMENT CURVE

SHAOMING GUO, ZANE KUN LI, PO-LAM YUNG, AND PAVEL ZORIN-KRANICH

ABSTRACT. We give a short and elementary proof of the £2 decoupling inequality for the
moment curve in R¥, using a bilinear approach inspired by the nested efficient congru-
encing argument of Wooley [Woo19].

1. INTRODUCTION

The sharp #2 decoupling inequality for the moment curve, proved by Bourgain, Demeter,
and Guth [BDG16], implies Vinogradov’s mean value theorem with the optimal exponents.
The optimal exponents in Vinogradov’s mean value theorem have also been obtained by
Wooley [Woo19], using a nested efficient congruencing argument. Efficient congruencing
is a method of counting the number of solutions to Diophantine systems, and counting
arguments do not usually imply decoupling inequalities. Nevertheless, in this article, we
borrow insights from [Woo19] (see also Heath-Brown [Heal5]), to give a short proof of the
22 decoupling inequality for the moment curve, namely Theorem 1.2 below.

Let k € N and I': [0,1] — R* be the moment curve in R¥ (the Pontryagin dual of R,
which is itself isomorphic to R¥), parametrized by

F(g) = (57 §2’ ttt 7£k)'
For ¢ > 0, let P(d) denote the partition of the interval [0, 1] into dyadic intervals with length
2Mloe> 671 For a dyadic interval J, let Uy be the parallelepiped of dimensions |J|! x [J|2 x
- x| J|¥ whose center is T'(c;) and sides are parallel to 0'T'(cy), 0*T'(cy), ..., o*T'(cs), where
cy is the center of J. We write py, := k(k+1) for the critical exponent, and ||-||, := ||| L» (r¥)-

Definition 1.1. For 6§ € (0, 1), the £2LP* decoupling constant D (J) for the moment curve
in R¥ is the smallest number for which the inequality

5 \1/2
(L.1) | X o) <@ X 1403,)
JeP(S) JeP(S)
holds for any tuple of functions (f7) jep(s) With suppj/‘; c Uy for all J.

Theorem 1.2 ([BDG16]). For every k € N and every € > 0, there exists a finite constant
Ch,e such that

(1.2) Dy (0) < Cy 0™ ¢, for every § € (0,1).
Strictly speaking, Theorem 1.2 was stated in [BDG16] in a superficially weaker form, but
the proof given there also yields the result as stated in Theorem 1.2, see [GZ20] or [Dem?20,

Chapter 11] for more details. It is now well-known that Theorem 1.2 implies the following
Vinogradov’s mean value estimates (see [BDG16, Section 4] for a proof):

Corollary 1.3 ([BDG16], [Wool9]). Let k =1 and s > 1. Then, for every e > 0 and every
N =1, we have

(1.3) /Mk

Here e(t) := exp(2mit) is the unit character.

N 2 N
Z ane(nzy+---+nFzp)| dzy ... day Sk.s.e N€(1+N5_k(k+1)/2)(2 |an|2)s.

n=1 n=1

The proof of Theorem 1.2 in [BDG16] uses a multilinear variant of the decoupling inequal-
ity, whose proof relies crucially on (multilinear) Kakeya—Brascamp—Lieb type inequalities.
On the contrary, we will use a bilinear variant of the decoupling inequality. In our proof, the
transversality that was captured in [BDG16] by Kakeya—Brascamp-Lieb type inequalities
is instead exploited via introducing certain asymmetric bilinear decoupling constants. Such
bilinear decoupling constants are carefully designed to facilitate an efficient way of induction
on the dimension k. In fact, an averaging argument involving Fubini’s theorem allows us to
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apply very neatly the uncertainty principle, and gain access to lower degree decoupling. To
sum up, instead of using Kakeya—Brascamp—Lieb type estimates, we will rely only on lower
degree decoupling and Hoélder inequalities in the induction step.

A related bilinear argument has been developed by Wooley in the context of Vinogradov
mean value estimates; see [Woo19] and references therein. For a comparison between Woo-
ley’s efficient congruencing approach and Bourgain-Demeter-Guth’s decoupling approach,
we refer the reader to [Piel9]. In the context of decoupling inequalities, the bilinear ap-
proach was previously implemented for the parabola (case k = 2 of Theorem 1.2) in [Li21]
and the cubic moment curve in [GLY21]. Note, however, that the decoupling theorem proved
in [GLY21] is weaker than the k = 3 case of Theorem 1.2; it follows from Theorem 1.2 by
estimating the ¢ sum on the right-hand side of (1.1) by an £* sum times 6~/%. Moreover,
the method in [GLY21] does not seem to work for degree k > 4. The reason is exactly the
same as why the arguments in [Heal5] and [Wool6] do not generalize to the cases k > 4,
which was explained at the end of Section 3 of [Heal5]. In short, if one follows the approach
of [Heal5] and [Wool6] in the case k > 4, then “singular” solutions to the Vinogradov
system will start dominating and prevent an optimal estimate on the number of solutions.
Notation. For a sequence of real numbers (A4p)geco, we write (3.5 Ag := (2966|A9|2)1/2.
For C' > 0 and a parallelepiped U, we will denote by CU the parallelepiped similar to U,
with the same center but C' times the side lengths. For a dyadic interval I, we let P(I,0)
be the partition of I into dyadic intervals with length 201082 N Ifs e (0,1), I is a dyadic
interval of length > §, and a family of functions (f;) has been chosen so that supp J/‘; c Uy
for every J € P(1,9), then we will write f; := ZJEp(Lé) fr.
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2. PASSAGE FROM LINEAR TO BILINEAR DECOUPLING

The main reason allowing for the proof of decoupling inequalities in [BD15] is that they
can be reduced to multilinear inequalities by an argument introduced in Bourgain—Guth
[BG11]. Since the moment curve is one-dimensional, and we are able to treat bilinear,
rather than multilinear, inequalities, we managed to use a simpler argument based on a
Whitney decomposition of the square [0, 1]? around the diagonal.

Definition 2.1. For § € (0,1/4), the symmetric bilinear decoupling constant B(d) for the
moment curve I' in R¥ is the smallest constant such that, for any pair of intervals I,1' €
P(1/4) with dist(I,I') > 1/4 and any tuple of functions (fs)jep(r,5)up(17,5) With supp 3‘; -
Uy for all J, the following inequality holds:

P /4 pr/4
N -0 D SO TN W I SR V2 [
RE JeP(I,5) JeP(I',5)
Lemma 2.2 (Bilinear reduction). If § = 27, then
1/2

N
(22) Dk(é) < (1 + Z B(2—N+TL—2)2)

The proof of this lemma relies on affine rescaling, an idea that already underpinned the
arguments in [BG11], [BD15], and [BDG16]. The idea is based on the observation that, for
any interval I = [a,a + k], the affine map A;: R* — R*, defined by

k .
(Ar(m,-om); = D, <j.,>aj‘fn-j'nj,, 1<j<k,

i"=0
where, by convention, ny = 1, satisfies A;T'(t) = I'(a + tx) for all ¢ € R, and hence
(DA;)O'T(t) = k*(0'T)(a + tk) foralli>1andteR.
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It follows that, for dyadic intervals I, J with J < I < [0, 1], we have
AI_IZ/{J = UJI7
where J; := k71(J — a) if I = [a,a + £]. This implies

Lemma 2.3 (Affine rescaling). Let I € P(27™) Jor some integern > 0. For any é € (0,27™)

and any tuple of functions (f1)jep(1,5) with supp f] c Uy for all J, the following inequality
holds:

/
(2.3) Wil <De@)( Y 15%)"

JeP(1,5)

Similarly, let I, I' € P(27™) for some integer n = 2 with 2™ dist(I,I') € {1,2}. For any
§ € (0,27") and any tuple of functions (fr)jep(r.5)upr,5) with supp f; S Uy for all J, the
following inequality holds:

(2.4) L g < szl S 1nR S i
Rk

JeP(1,5) JePI',8)

Proof. To prove (2.3), suppose that I = [a,a +27"]. For J € P(I,d) and K = J; € P(2"9),
let the function gk be such that f; o A; = gx. Applying (1.1) to (g ) in place of (fy), and
changing variables on both sides, we obtain (2.3). A similar argument proves (2.4), which
we omit. g

Proof of Lemma 2.2. Suppose that 6 = 27V, Set W) := ¢#. For integers n > 2, define
iteratively

W, = {(11,12) eP@ ") |2 dist(l, ) e (L2} and L x L& | ) I x 1;}.
(I1,15)EWn 1

These are the squares of scale 27" in the Whitney decomposition of the unit square around
the diagonal. Let also

Wi, = {(I1, I2) € P(27") | dist(I1, Is) = 0}
be the squares of scale 27" that touch the diagonal. For N = 2, let
N ~
V= W oWy,
n=2

so that the squares Iy x Iy with (I, 1) € WA form an essentially disjoint (up to boundaries)
covering of [0,1]%. Let (f7)Jep(s) be as in Definition 1.1 for Dx(d). Then

_ /
IS flo=l Y T < (X UiTrle)

JeP(5) (I,I'YeWN (I, I’)eWN
(2.5) o 12
(% Ul Y, Y 1T s)
(I,I"eWn n=2(I,I")eW,,

We estimate the first term by

SO ey <6 >0 e,

(I,1"eWn IeP(2-N)

since each I appears at most 6 times in the pairs WN. In the second term, by affine rescaling
(2.4), for every (I,1') € W,,, we have

12 Frllpse < BRT2 (Eepr o) | follon) (Grepara-n) 1 £57loi)
—Nen— 2 2
< BN 22 (B p ) ln)* + Breprs 1 l)?)-
Since each I € P(27™) appears at most 8 times in W, it follows that

Z Lf1Fellps2 < BN (Ccp -y | frllon) ™
(IINEW,

Inserting these bounds in (2.5), we obtain the desired estimate. (]
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3. LOWER DEGREE DECOUPLING

In this section, we first introduce k& new asymmetric bilinear decoupling constants for
the moment curve in R¥, and relate them to the symmetric ones in Section 2 (Lemma 3.4).
We then show how these new asymmetric bilinear constants can be bounded efficiently via
decoupling for moment curves of degrees < k (Lemma 3.9). The key is certain transversality
as displayed in Lemma 3.5. Lemma 3.9 will allow us to prove Theorem 1.2 in Section 4, by
induction on k.

3.1. Asymmetric bilinear decoupling constants. For a dyadic interval I, let /7 denote
the parallelepiped centered at the origin polar to U;, that is,

Uj = {w e R* | K, 0 (en)| < 1171 < i < ).
It is a parallelepiped of dimension ~ |I|=% x [I|72 x --- x |[I|~ ’“. Let
or(x) = U |7 inf{t = 1| 2/t € Uy} 1O,
This is an L' normalized positive bump function adapted to usz.

Definition 3.1. For I € {0,...,k — 1}, a,b € [0,1] and § € (0,1), the (asymmetric) bilinear
decoupling constant By qp(0) for the moment curve I' in R* is the smallest constant such
that, for all pairs of intervals I € P(62), I’ € P(6°) with dist(Z,I’) = 1/4 and all tuples of
functions (f7)jep(r,5)up(1,5) With supp ?} < U for all J, the following inequality holds:

[ s son) (e s on)

(31) l/ (k— l)
<G| X I X ]

JeP(I,5) JeP(I',5)

Remark 3.2. In the case | = 0, the bilinear decoupling constant By q5(0) clearly does not
depend on a, and in fact, by affine rescaling (2.3), we have

(3.2) Bo,a,0(8) ~ D(6 7).

In order to avoid case distinction in (4.1) and thereafter, we do not require a in the notation
Bo,a,5(9) to be well-defined.

Our choice of the left hand side of (3.1) is partly motivated by the following uncertainty
principle.

Lemma 3.3 (Uncertainty Principle). For p € [1,00) and J < [0,1], we have
19517 <p |9s1? = &7,
for every g; with supp gy < ClU;.
Proof. Let 1 be a Schwartz function adapted to U§ such that 1Z =1on ClUy and [|Y| ~
Then gy = g * 1, so
p/p
(3:3) 0P @ < ([loste = 2Pz ([ 1w(ld)
< (lgsl? = [ () < (lgs 17 = ¢u)(). O

The first application of Lemma 3.3 is that the symmetric bilinear decoupling constants
(2.1) can be bounded (rather crudely) by the asymmetric ones (3.1).

Lemma 3.4. For every l € {0,. —1}, a,be [0,1] and é € (0,1/4), we have

(3.4) B(6 ) <o am/ma bpr=pl/Pe ) | 1(5).

Proof. Let I,1'" € P(1/4) with dist(,I') > 1/4. Let (fx)kep(r.5)upr,s) be a tuple of
functions with supp fx € Uk for all K. By Holder’s inequality, we have

1/2 1/2
(3.5) / | felPe2 | f P2 < (/ |fllpl‘f1,‘Pk—Pl> (/ |fI|pk—Pl‘fI,‘Pl)
Rk RF RF

By symmetry, it suffices to estimate the first bracket. Assume that [ # 0; the case [ = 0 is
similar, but easier, since the term with power p; disappears. We have

/Rk‘fl‘ l|fI’| k=Pl S/k( Z |fJ|) ( Z ‘fJ/l)

RY jep(1,50) J'eP(I,5%)

<[P, s PP et Y Y / FalP PP,

JeP(I,6%) J'eP(I',5°)
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By Lemma 3.3 and Definition 3.1, we have
L1 igal s [ e on) Ul o)
Rk Rk

Pr—P1

D1
< Bras®) [ Ckepual o] | ooy

Inserting this into the previous display, and using £2 < P!, ¢Px—Pt_ e obtain

/k‘f1|pz|f1,|prpz < (ra(pz*1)5*b(prpz*1)3l7a7b(5)pk
R

2 P 2 Pr—Pp1
NGeraa il | Beeru il

Together with a similar estimate for the second factor in (3.5), we obtain the desired estimate.
O

3.2. Transversality. Let V(Z)(f) denote the [-th order tangent space to the moment curve
T" at the point &, that is,

V(€)== lin(0'T(€),...,d'T(E)).
The main geometric observation that makes our inductive argument work is that the spaces
V(&) and VE=D (&) are transverse for any [ € {1,...,k — 1}, as long as & # &. This
transversality is made quantitative in the following result. It follows from the generalized
Vandermonde determinant formula in [Kal84, Equation (14)]; we include a proof for com-
pleteness.

Lemma 3.5. For any integers 0 <1 < k and any &1, € R, we have
(3.6)  |0'T(&1) A A IT(E1) A OT(E) A -+ A FTITD(E)| 2ay |61 — &' *D.

Proof. We Taylor expand I'(§3) around &;: for 1 <i <k —1,
k
, 1 , o
OT(&) = ), Wajf(&)(ﬁz —&) "
j=i '

We plug this back to the left hand side of (3.6), and obtain an k — [ fold sum. If 07T is
chosen for the i-th summand, then (ji, ..., jx—;) has to be a permutation of (I +1,...,k) in
order for the term to be non-zero, in which case the power of £, — &1 is

k—1

MNGi= i) = (U + 1) 4 k) = (L4t (k=1) = Uk —1).

i=1
Thus the left hand side of (3.6) is equal to

| O'T (1) A+ 1 FT(E)| 62 — & ¢

for some constant c; > 0. Setting & = 0 and & = 1 shows that c;; > 0; indeed then
the left hand side of (3.6) is (IZ“) (Hizl z')(ﬂj;i j!), as can be seen by column operations
and the classical Vandermonde determinant formula. See also [GZ19], [GZ20] for similar
calculations. O

3.3. Decoupling for curves with torsion. It is an observation going back to [PSO07,
Proposition 2.1] that decoupling inequalities for model manifolds self-improve to similar
decoupling inequalities for similarly curved manifolds. We need the following version of
Theorem 1.2 for more general curves with torsion, which is proved by the argument given
in [BD15, Section 7).

Suppose [ € N and v : [0,1] — R is a curve such that

(3.7) [V[lci+r 1 and  [8'y(&) A -+ A d'y(E)] 2 1.

For dyadic intervals J, let U, be the parallelepiped of dimensions |J|! x --- x |J|' whose
center is y(c;) and sides are parallel to 0*y(cy),...,d"y(cs), and let Uj ., be polar to Uy .

Lemma 3.6. Suppose that Theorem 1.2 is known with k replaced by l. Let v : [0,1] — R!
be a curve satisfying (3.7). Then for any e¢,C > 0, any § € (0,1), and any tuple of functions

(f1)aep sy with supp?} < CUy~ for all J, the following inequality holds:

(3.8) H Z fJ’ LoD <ec 576( Z ||fJH2Lp,(Rz))1/2~

JeP(9) JeP(6)
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Proof. Let (fr)jep(s) be a tuple of functions with supp ﬁ < CUy for all J. It suffices to
show that, for every x > 6+ and I € P(k), we have

(3.9) ||fIHLz>z (RY) Se “%@@P(LMHUN)Hff’ LPL(RL)

where we abbreviated fp := ZJep(I,ﬁ) fy for I' e P(I, s+ 1/ and similarly for f;.
Indeed, if (3.9) is known, then we can use a trivial decoupling inequality to reduce to the
case that f; # 0 only if J I for some I € P+ for a large integer A, and then
apply (3.9) A times. This will give (3.8) with power, say, (I/(I + 1))A(I + 1) + le in place of
€. Since A is arbitrary, this concludes the proof.
To see that (3.9) holds, observe that, on the interval I, we have

! C
1) = Aler) + 9 (er) - (€ — e+ -+ THD (e e poet,

By (3.7), the marked part of the above expression is, up to a uniformly non-singular affine
transformation, a moment curve of degree I. For every I’ € P(I, /i(l“)/l), we have supp f; c
CUr ., and the parallelepiped Uy  is contained in a similar parallelepiped associated to this
moment curve, since the shortest side of Uy -, is (k(+1/1)! > O(k!*1). Hence, the claim (3.9)
follows from a rescaled version of Theorem 1.2; see (2.3) and its proof. O

Corollary 3.7. In the situation of Lemma 8.6, for every ball B — R' of radius 67, we have
FI S 1] See 0 (Bepol llnion)
JeP(5)
where f, := |B|™! [ denotes the average integral and
ép(x) := |B|7 (1 + o' dist(x, B)) 1%
is an L' normalized bump function adapted to B.

Proof. Apply Lemma 3.6 to functions f;¢p, where g is a Schwartz function such that
|¥g| ~ 1 on B and supp s < B(0, ). O

3.4. Using the lower degree inductive hypothesis. The following two key lemmas
should be compared to Lemma 7.1 of [Wool9], which plays a similarly key role in nested
efficient congruencing. The results below improve upon those in [GLY21] by incorporating
sharp canonical scale decoupling inequalities of all degrees [ < k, whereas in [GLY21] small
ball decoupling, which is not yet known for higher degrees, was used in the case | = 2.

Lemma 3.8 (Lower degree decoupling). Letle {1,...,k—1} and assume that Theorem 1.2
is known with k replaced by [. Let § € (0,1) and (fx)keps) be a tuple of functions so that

suppff\( c Uk for every K. If0 < a < (k—14+1)b/l, then, for any pair of frequency intervals
IeP(6%), I' e P(6°) with dist(I,I') = 1/4, we have

/Rk (IfrP s or) (| frr PP # o)
st X (/Rk (£ 5 ) (e w 00)) 7).

JEP(I,5(k=1+1b/1)

(3.10)

The above lemma motivates our carefully chosen definition of asymmetric bilinear decou-
pling constants. It immediately implies the following result.

Lemma 3.9. Letl € {l,...,k — 1} and assume that Theorem 1.2 is known with k replaced
by l. Then, for any 0 < a < %b, e>0, and 6 € (0,1), we have

Biap(0) Se 5_1)65;,@@17(5)-

Proof of Lemma 3.8. Denote b := (k: — 1+ 1)b/l. Fix & € I’ and let H := R¥/VF~L(¢') be
the quotient space. Let P : R¥ — H be the projection onto H. For every & € I, it follows
from Lemma 3.5 that
X (P oT)(E) A~ A (PoT)E) 2 1.

Moreover, P(U;) € CUj por. Let H be the orthogonal complement of V*~!(¢’) in R¥, so
that H is its Pontryagin dual. Since the Fourier support of the restriction f J|H+- to almost
every translated copy of H is contained in the projection of the Fourier support of f; onto
H , we will be able to apply Corollary 3.7 on almost every translate H + z.
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To be more precise, by Fubini’s theorem, we write
Gany [ (P sen) (s reen) = [ f (a7 61) (1f2rlP 7 % 1),
RE 2€R* J By (2,6-%'1)

where By (z,07"") is the [-dimensional ball with radius 67 centered at z inside the affine
subspace H + z. Since B (0,67%) = By (0,6~ *~1+10b) < CUS,, we have

sup  (|fr[PEP x op) () S (| frr|Po7P  ¢rr) (2).

z€Bg (z,6~Y'1)

Applying this estimate in (3.11), we are led to bound

1,05
FrlP e ér) = | frlP # by v 00 /9251 ][ frl?
]éH(z,Jb/l) (171 ) =1l |Br (0,6~ bl BH(z/,(sfb’l)' |

where =g denotes convolution along H. By Corollary 3.7 with 8 in place of ¢ applied to
the curve v = P o T, the above is further bounded by

be pi
Se 0" / ¢1(z —2) JeP(I,ab’)”fJ”L”l (¢BH(2/,5—Z;’L))) :
Hence, the p;-th root of (3.11) can be bounded by

be _ iy 1/p0
(3.11)1/@ <e 1) b (/Z - (‘f]/‘pk Pi oy ¢1/)(Z)¢](Z - Z/) (giep(f,(;b’)||fJHLpl(Z/+H’¢BH(Z/,57b’l>)) )

<58 ([ (P s 60)Gen (e~ I )"
JeP(I,5") e I I 1 JllLe( (2/15717’1)) )

where we used Minkowski’s inequality in the form LPt¢? < ¢2LPt. The double integral inside
the brackets can be written as

/Rk(|f1’|pk_pl * ¢I’)(¢I * Ilepl *H ¢BH(0,5*b'l))
= /Rk(\fl'\pk_pl * 1 *H P,y 0,5-v1)) (1P % 61)
< [ el rmeon) (517 » on)
RF

where we used again that B (0,6%'") < CUy, ... This is in turn

< /Rk (1f11P" 5 ) (| fr [PE7P0 % p1),
because |f;|P xdr < |fs|P'xpy*¢r by Lemma 3.3, which is < |f|P' #¢y since Uy < CUS. O
4. BOOTSTRAP AND ITERATION
In this section, we will prove Theorem 1.2, using Lemma 3.9.
Lemma 4.1 (Holder). Forle{l,...,k—1}, ifa,be (0,1) and 6 € (0,1), then
(4.1) Bran(0) < Bit,,a(8) 77 Bi1,0,(8) F751.

Proof. For 1 < I < k, the points (p;,px — p1), (Pr — Pk—1,Pr—1) and (pj—1,pr — Pi—1) are
collinear, since their coordinates sum to px. Hence, there exists 6; € R such that

(4.2) (1, P — p1) = 01(pre — Pr—1, Pr—1) + (1 — 61)(Pi—1, Pk — Pi—1)-

Substituting p; = I(l + 1) yields ¢; = 1/(k — 1+ 1). Let f;, fir be as in Definition 3.1 for
Bi0.5(6). By Hélder’s inequality, we obtain

LHS(?)l) < /Rk (lf[‘pk_pk’l % ¢1)91(|f1|p171 " QS])I_OL(‘f]"p’“’l . ¢11)6l(|f[/|pk_pl*1 . ¢I,)
b 1-6,
S (\/]Rk (|f1|pk_pkil * ¢I) (|f1’|pkil * ¢I’)> (/]RI€ (|f]|pl*1 * ¢I) (|fI,|Pk—Pl71 % ¢I’)) )

The claim (4.1) then follows from the definitions of Bx_;p () and Bj_1,4.4(9). O

1-6,;

Lemma 4.2. Letl e {1,...,k — 1} and assume that Theorem 1.2 is known with k replaced

byl. Let e > 0. Then, for every b € [0, 1] such that b < mfgéﬂ%ﬂ) and, if | # 1, in addition
b <

-1
= k—1427

we have

—be _; #
Bl,k—fﬂ b,b((s) Se 6 Bk_l,LJrTl k;zjﬁb’kf;ﬂ b((S)’C i+1 Bz-1,’“;j{2b,b(5)k i+1,
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Proof. Just apply Lemma 4.1:
k—1
Bl, k—f+1b’b(5) < kal,b, kLt b((s) o Blfl, k’f“b,b(é) F—1F1

and then estimate the two factors on the right hand side using Lemma 3.9. In the first
factor, we can apply Lemma 3.9 because

I+1k—-1+1

b ——b.
k—1 l
If 2<1<k—1, then we can apply Lemma 3.9 in the second factor because
k—1+1 k—1+2
< b.
l -1
If I = 1, the we do not have to do anything in the second factor, since By 4(d) does not
depend on a. ([l
Proof of Theorem 1.2. By induction on k. The case £ = 1 is a direct consequence of

Plancherel’s theorem. Fix k& > 2 and assume that Theorem 1.2 is already known with k&
replaced by [ for any [ € {1,...,k — 1}.

Let n be the infimum of all € for which the decoupling inequality (1.2) holds. For I €
{0,...,k—1} and 0 < b « 1, let A;(b) be the infimum of all exponents A such that we have
Bl’k7§+1b’b(5) < 54,

By (3.2), we have
(43) Ao(b) = n(1 —b).
The main recursive estimate for the exponents A;(b) is given by Lemma 4.2, which implies
that, for every [ € {1,...,k — 1} and sufficiently small b, we have
1 kE—1+1 kE—1
Ap_ A1 (b).
T A e I R

We extract the information on the asymptotic behaviour of bilinear decoupling exponents
A;(b) from the functional inequality (4.4) by introducing the quantities

(4.4) Ay(b) <

A= hmlnfn%fl(b) eRuU {£w}.
By (4.3), we have Ay = n. Moreover, from (4.4), it follows that
1 k—1
. Z s Ag— 1+ T A= <t r— 1L
(4.5) A lAkl+/€—l+1Al 1, 1<I<k-1

In order to solve this linear system of inequalities for n = Ap, we need to know that the
quantities A; are finite, so that we can perform algebraic operations. The finiteness of
these quantities is a manifestation of the equivalence between linear and bilinear decoupling
inequalities.

By Hélder’s inequality, similarly as in (3 3),forany le{1,....k—1}, Ie P(6" 7" ?), and
"e P(8%), if supp fI < CUy and supp f[/ < CUp, we have
P\ 2L Pl P =P
/ (sl < on) (ol wor) < ([ (s o0 )™ ([ (fuoresop) ) 7
RE RE RE

P —P|

< ([ eon) ([ 1l on)

5 Hffll I fr (5"
It follows that, for [ € {1,...,k — 1}, we have

B x-rs1y,,(0) < Dy(61

)pz/mD (51 b)(pk pL)/Pk

Hence,

k—1+1  p Pk — P k—l+1p  px—m
46) A <nl——>b—+nl-b)——=n—nd =+ .
(4.6)  Ai(b) <n( 7 )pk n( )pk 1= nb(— o o )
Using Lemma 2.2 and Lemma 3.4, we see that for every l € {1,...,k—1} and every b € [0, 1]
with b < = l+1, we have
(4.7) n < COb+ Ay(b).

The estimates (4.6) and (4.7) imply n < A, < Cforl € {1,...,k—1}, and in particular that
A; are finite numbers.
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Summing the inequalities (4.5) over [ = 1,...,k — 1, we observe that Ay, ..., Ax_1 cancel
out, and we are left with

k—1 k—1
0> Ag = -

This shows that the decoupling exponent is 1 = 0. O

Remark 4.3. The fact that all A; with 1 <1 < k—1 cancel out when we sum the inequalities
(4.5) can be more abstractly stated by saying that (1,...,1) is a left eigenvector of the
(k—1) x (k—1) coefficient matrix

0 0 0 0 0 1
k=2 1
= 00 0 3 0

0 k3 100

1 2

0 5= 0 s U0

20 0 0 % o0

where the entry at the position (I,1") is the coefficient of Ay on the right-hand side of the
[-th inequality in (4.5). We refer to [Heal5] and [GZ20, Section 3.6] for a discussion of the
role of such (Perron—Frobenius) eigenvectors in iterative procedures that are used to prove
decoupling inequalities.
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