DECOUPLING FOR FRACTAL SUBSETS OF THE PARABOLA

ALAN CHANG, JAUME DE DIOS PONT, RACHEL GREENFELD, ASGAR JAMNESHAN,
ZANE KUN LI, AND JOSE MADRID

ABSTRACT. We consider decoupling for a fractal subset of the parabola. We reduce studying
I2LP decoupling for a fractal subset on the parabola {(t,#?) : 0 < t < 1} to studying
12LP/3 decoupling for the projection of this subset to the interval [0,1]. This generalizes the
decoupling theorem of Bourgain-Demeter in the case of the parabola. Due to the sparsity
and fractal like structure, this allows us to improve upon Bourgain-Demeter’s decoupling
theorem for the parabola. In the case when p/3 is an even integer we derive theoretical
and computational tools to explicitly compute the associated decoupling constant for this
projection to [0,1]. Our ideas are inspired by the recent work on ellipsephic sets by Biggs
[1, 2] using nested efficient congruencing.

1. INTRODUCTION

Fix an integer ¢ > 3, not necessarily a prime, and let 6(7) := 1/¢*, i = 0. Let Cy := [0, 1].
To construct level i, we partition C;_; into intervals of length §(i), remove some of them, and
denote by N (i) the number of unremoved intervals. We associate C' = ;5 C; with its levels
C;. For an interval I with |I| = (7), 6(i) > 0(j), Ps¢)({ n C;) will denote the collection of
intervals that make up C; which are contained in I. We also let Ps;)(C;) = Py ([0,1] n C;)
be the collection of intervals of length §(¢) that make up C; and so N (i) = #Ps;)(C;).

We call C' = (5, Ci a generalized Cantor set and C; a generalized Cantor set of level i,
when the following three conditions are satisfied:

e N(i+j)=N()N().

° Cl C Cifl.

e The level C; is similar to level C;_;. More precisely, for every interval I € Py;_1)(C;-1),
the set I n C; is a translate of ¢~ 1C;_;.

By multiplicativity of N(-), given an I € Pj;)(C;) and ¢ < j, the number of intervals in
P5(j)(C;) that are contained in I is N(j — 7). Additionally,

8(1)~ ™ = N (i) (1)

where dim(C') is the Hausdorff dimension of C'. Note that in our definition, it is possible to
let N(i) = ¢ and so C; is the partition of [0, 1] into intervals of length 1/¢".

The traditional middle-thirds Cantor set has ¢ = 3 and N(i) = 2'. To avoid writing
generalized Cantor set repeatedly, we will just call the above constructed set C', a Cantor set
and C}, a level of Cantor set. A simple modification of our argument also allows it to work
with asymmetric Cantor sets, however in order to simplify the arguments notation-wise, we
do not pursue such a goal here.

Given a level of a Cantor set Cj, for each interval I € Ps;)(C;), let ¢; denote the left
endpoint of I and

Q] = {f S R2 . f[ < 51 < g] + 5<Z>7 ’52 - (261 + 5(2))(51 - 61) - fﬂ < 5(2)2}
1
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Note that Q7 is a O(8(i)) x O(5(i)?) parallelogram that covers and is covered by a O(6(i)?)
neighborhood of the piece of parabola above I. A

For an interval I and f: R — R, let f; be defined such that f; = f1;. Next for a region
0 and f : R? - R, let fy be defined such that f, = fls.

Finally, throughout this paper, for two nonnegative expressions X and Y we use the
notation X <Y or Y = X to denote the bound X < CY for some absolute constant C' > 0.
If there are subscripts, for example, X <, Y, then we mean that there exists a constant
C, > 0 depending only on p such that X < C,Y. Additionally X ~ Y means that X <Y
and Y < X.

1.1. Decoupling for C; on the parabola. Fix a Cantor set C' and its levels C;. For p > 2,
let D,(0(i)) be the best constant such that

I 20 Jaslwe < DyO@)C Y, 1oy ltoge)"

JEPs(1)(Ci) JePs(3(Cy)

for all Schwartz functions f which are Fourier supported in [ J, Py (C2) Q.

In the case when the Cantor set C' is the whole interval [0, 1] and C; is the partition of
[0, 1] into intervals of length (i), we see that D,(4(i)) is just the regular I?LP decoupling
constant for the parabola considered by Bourgain-Demeter in [4, 5] and so we immediately

have D, (0(7)) <. 6(¢)~°(1 + 5(2’)7(%7%)). Our main result is the following generalization of
Bourgain-Demeter’s parabola decoupling theorem.

Theorem 1.1. Fiz p > 2 and a Cantor set C' and its levels. Let k,(C) be the smallest
number such that

I Filoe Speameva NOTOEC 30 1filiw)" (2)
JePs((Ci) JePs iy (Cs)

for all Schwartz functions f : R — R and all i. Then the I?L* decoupling constant for C is
such that for every ¢ > 0,

Dgp(é(,l)) SP,&,dim(C)}N(l) N(Z')K/P(C)‘FE.

This theorem is proven in Section 2. The case of p = 2 is just an immediate application
Bourgain-Demeter’s result on the parabola and (1). For p > 2, due to the sparsity and
fractal structure of C, we can do better than directly applying Bourgain-Demeter (see the
examples summarized later or alternatively written in more detail in Section 3.3).

In the case when C'is the whole interval, Theorem 1.1 gives a sharp theorem for decoupling
for the parabola. However, whether Theorem 1.1 is sharp for arbitrary Cantor sets C' is an
area to be explored. Note that even if the <, aim(c),na) can be replaced with <, (as is the
case with our examples in Section 3.3), the proof of Theorem 1.1 adds in implicit constants
that depends on dim(C') and N(1).

The proof of Theorem 1.1 is inspired from [2], in particular one can think of [2, (1.2)] as
an [2L* decoupling theorem on the line for which we then upgrade to an [2L% decoupling
theorem on the parabola. However, Theorem 1.1 is more general than [2] since it is valid for
arbitrary Cantor sets as defined on the first page rather than ellipsephic sets. Additionally,
similar to the relation between [1] and [2], given a Cantor set C' and its levels, one can use
ideas from [11] to write a version of Theorem 1.1 which upgrades [>L? decoupling on the line
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to I2LF*+DP/2 decoupling on the moment curve & — (&,£2,...,€%). However in this paper
we only consider the case of the parabola.

Analogous to how [2] is related to Wooley’s nested efficient congruencing [20], the proof of
Theorem 1.1 is similar in style to the proof of decoupling for the parabola found in [11, 16]
though here we more closely follow Tao’s exposition [18] based off these two papers. For more
discussion on decoupling interpretations of efficient congruencing, see [10, 11, 16] which are
decoupling interpretations of the efficient congruencing papers [14], [20], and [17, Section
4.3], respectively.

Demeter in [7] generalized decoupling for the parabola in a different way. He considered
the partition that arises from the set C,,, = {0,a} + {0,0%} + - + {0,a"} for 0 < @ < 1/2
and proved [?LP, 2 < p < 6 decoupling estimates for the parabola decoupling question
associated to this partition. The case @ = 1/2 corresponds to the uniform partition of
[0,1] into intervals of length 27™. More precisely, he showed that the decoupling constant
is O.(2"¢) uniform in «. The difference between Demeter’s result and our work here is that
he starts with the whole interval [0, 1] and decouples into a self similar partition of [0, 1]
built from C,, while in our work we start with a sparse subset of [0, 1] and decouple into
its individual pieces. Additionally, the intervals in his partition have varying lengths while
here our intervals all have the same length. See also [13] for a much stronger square function
estimate for a lacunary partition of [0, 1], the same comments on [7] also apply here.

1.2. Decoupling for C; on [0,1]. Theorem 1.1 reduces studying Ds,(d(¢)) to studying (2).
We accomplish this in Section 3 for even integer p and specific Cantor sets C' related to
ellipsephic sets.

1.2.1. Discrete restriction and decoupling. First we define a discrete restriction for subsets
S < Z™ and decoupling constants for Q < [0,1]. For S < Z™, let A, ,,(S) be the best

constant such that
||Z E x HLP ([0,1]™ < Z|a 1/2
leS lesS

for all a : S — Ryp. Next for a subset {2 < [0, 1] partitioned into intervals I of equal length,
let K,(€2) be the best constant such that

|25 Fillzo) < Kp(@ Q) If1lZo@)
I I

for all Schwartz functions f : R — R.

Since we plan to discuss multiple different S and S will be related to €2, we have chosen
to emphasize the dependence of A4, ,,(S) and K,(€2) on S and 2 rather than just the scale
that comes naturally with €. This is different from what we did in the definition of D,(d(7))
above with C; being associated naturally with the scale (7).

1.2.2. Arithmetic Cantor sets and ellipsephic sets. We define an arithmetic Cantor set of
base ¢ with digits 0 < d; < ... < dx < q € N to be the set of fixed points of the iterated

function system generated by the functions {f4, = (z — ¢7'(z + dj))}j:1 - This is a self-

similar compact subset of [0, 1] with Hausdorff dimension 102 z. We will denote it by CA% %3,

lo
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Denote by [C’édl""’d’“}]j the j—th level of C{* %) that is
[Cédlw"dk}]j = U (foy 000 fsj)([07 1]).

(8150585 )E{d1se0sdic }I

For brevity of notation, the intervals of length ¢~/ in quj([Cédl’"”dk}] ;) will be denoted by
[%q{dl""’d’“}] ;. In particular, observe that

[cgq{dl,m,dk}]j = {(fs, 0 ofsj)([(), 1]) : (s1,... ,Sj) € {d1,..-,dk}j}-

The standard middle thirds Cantor set is the arithmetic Cantor set Cgo’z}. Note also that

C’éo’l} and C?EO’Q} are dilated copies of each other.
There is also a close connection between arithmetic Cantor sets and ellipsephic sets defined
in [2]. An ellipsephic set of base ¢ with digits 0 < d; < -+ < dy < ¢ € N is the set of integers

of the form Zg;é asq® (with as € {dy, ..., dy}) for some j = 1. We will denote it by &;dl"“’d’“}.
We will use [Sédl"“’d’“}]j to mean the set E1 M A [0,¢7). Comparing the definitions of an

arithmetic Cantor set and an ellipsephic set, we easily observe that
(Gt = g (L1 4 [0,1]).

Using the convenience that 2n is even and expanding the L?" norm (Proposition 3.1),
allows use to show Proposition 3.4

Ko ([ %);) ~ Agpa([EL753]) (3)

(where the implied constant is absolute) which connects decoupling and discrete restriction
constants.

When we study Agn,l([é'}dl""’d’“}]j), we will say £} has no carryover if nd; < ¢. In
particular, this definition depends on the n in question. Additionally note that we will say
that Sédl’""d’“} has carryover if ndy > ¢g. This terminology was inspired from the proof of
[2, Lemma 2.2]. Using Freiman isomorphisms, we have the following nice proposition which
simplifies greatly discrete restriction for ellipsephic sets when we have no carryover (see
Proposition 3.5 for a more precise statement).

Proposition 1.2. If Sédl’””d’“} 1s an ellipsephic set without carryover, then
Agn 1 ([E1];) = Agpa ([ELM M),

Remark 1. Laba and Wang in [15] consider a restriction estimate for a certain kind of fractal
measure in R?. The main ingredient in the proof of their main theorem is a decoupling
estimate for a particular type of Cantor set on the line built out of a A(p)-set (see Lemma
5, Section 4, and Proposition 1 of [15] for more details, see also [3] for the existence of A(p)
sets). The techniques by which they upgrade a A(p) set to a Cantor set multiscale decoupling
theorem on the line can probably also be applied in our case, though here the point of view
we take is more algebraic and is closer in spirit to the number theoretic side of things.

1.3. Examples. As an illustration of the the tools developed above we can consider the
case when n = 2 and then very explicitly study A4,1([5q{dl""’d’“}]j) as Proposition 3.1 turns
such study into an optimization problem subject to a quadratic constraint which we can very
explicitly compute. This combined with (3) allows us to upgrade I2L* discrete restriction for
an ellipsephic set to [?L* decoupling for an arithmetic Cantor set. In particular, below is a
summary of Examples 1-5 we derived in Section 3.3.
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C; (7) N(7) K4(Cy)
[C’éo’l}]i, q>2 q—i 91 N (2i)ilog2(3/2)
[03{0,2}]i 3-i oi - (21')%10@(3/2)
[030’1’2}]“41 - 4 q—i 3 - (3i)§1og3(15/7)
[050,1,3}]“ q>6 q—i 3 - (31’)%10;53(5/3)
[C VI g = exp(exp(O(2) | 0 | (lval + 1) | <. NG)*

Note that from the proof of these examples in Section 3.3, the implied constants do
not depend on dim(C) or N(1). We only studied the n = 2 case out for convenience to
demonstrate our methods but it is not a serious constraint.

Remark 2. The ellipsephic set associated to the Cantor set in the last row of the table above
was considered by Biggs in [2, Corollary 1.4]. The result in that row should be read as
follows: Fix an arbitrary ¢ > 0. Choose an integer ¢ = exp(exp(O(1/¢))) and consider

[6’502’12""’1*@2}]1-. Note that here the Cantor set depends on ¢ and so also . Then we
showed that the [*L* decoupling constant for level i of this Cantor set is <. N(7)° where

N(i) = (lg] + 1)".

Remark 3. The example in the second row of the table above is associated to the ellipsephic
set [8§0’2}]j which does have carryover. However, the map = — z/2 is a Freiman isomor-

phism between [5;0’2}] ; and [5;0’1} ]; and the latter ellipsephic set does not have carryover.
Since Freiman isomorphisms do not change numerology (see the equality case of (25)), the
numerology of the second row is the same as that of the first row.

Remark 4. Note that 050,1,2} and 030,1,3} for ¢ > 6 have the same Hausdorff dimension
but their associated [2L* decoupling constants are different. In Proposition 3.6 we show
that given a Hausdorff dimension d = log,r with 0 < d < 1 and 7, s € N, there exists an
arithmetic Cantor set C' such that the associated decoupling exponent ks, (C) as defined in
(2) is as large as possible. This means that for arbitrary arithmetic Cantor sets K5, (C') does
not just depend on the Cantor set, but rather also on arithmetic properties of the set.

Remark 5. A careful look at the proof of Example 3 (the third row in the table above)

5{0,1,2}

shows curiously that the optimizer of discrete restriction for [€; "' ]1, ¢ > 4 (and hence also

[8;0’1’2}] ; by Proposition 3.5 because of lack of carryover). This is different from the other
examples in Section 3.3 and the observation that the choice of a : {1,... , N} — R, being
the constant function below witnesses the case of equality of the estimates

| > alOe(a)| ooy < N27w( Y] la(0)])?
1<<N 1<U<N

and
| am)ena +n’t) oo S N°( Y, la(n)?)

1<n<N 1<n<N

for all {a(n)} € ¢*(N). This example suggests potential differences between discrete restric-
tion and solution counting problems in certain cases.



6 A. CHANG, J. DE DIOS, R. GREENFELD, A. JAMNESHAN, Z.K. LI, AND J. MADRID

In the table below we feed our results into Theorem 1.1. Each row should be compared
to the estimate that D15(8(7)) <. 6(i) /4~ obtained from a direct application of Bourgain-
Demeter’s decoupling theorem for the parabola.

Ci 0(7) N(7) Applying Theorem 1.1
(5" ivq > 2 |2 | D) Seame) (2)10RED
[C?EO,Z}]i 3 i D12((5(i)) <. (zi)ilog2(3/2)+e
[030’1’2}]1'7(1 < 4 q—i 3i D12<5(l~)) Se dim(C) (3z‘)ilog3(15/7)+e
[C8 g > 6 ¢t 3 D12(8(1)) Seaimioy (3)7'8a0/Dte
{02,12,...,l\/aJ2} 1 —3 i . N\ e
[Cq lisg = exp(exp(O(3))) | ¢ | (lval +1) D12(0(2)) Sevy N()

Note that in the first four rows we have N(1) ~ 1 while in the second and last row we
have dim(C) ~ 1. Whether our estimates for Di5(d(i)) above are sharp remain an area to
be explored (in other words, for example, is there an f Fourier supported in | J e[, Q;

O3 i

such that Dyo(8(i)) = (27)7°82(3/2). Continuing the discussion in Remark 2, the last row in
the table above should be compared to [2, Corollary 1.4].

Finally the above methods are very efficient in studying the case when the ellipsephic set
does not have carryover and some cases with carryover but which are Freiman isomorphic
to a case which has no carryover. To study the case when the ellipsehic set has carryover
we develop an approximation (Proposition 3.7) which allows us to numerically approximate
the [?L*" decoupling constant on [0, 1] for a given arithmetic Cantor set (see Section 3.4 for
more details).

1.4. Application to solution counting. We end with some applications of our estimates
to number theory, in particular to solution counting in Vinogradov systems.

1.4.1. The Cantor set C’;O’l}. Consider [Céo’l}]j and the associated ellipsephic set [Sgo’l}b.
Note #[E1%1]; ~ 21, We first obtained that Ky([Ci*"];) ~ Au([€1%M];) ~ (3/2)3/*. This
immediately implies that the number of 4-tuples to
T1+ To=T3+ T4

with 1 < #; < 3 and z; € [E{Y]; is (3/2)72% = 67. This should be compared to solving
21 + T9 = x5 + x4 where 1 < ; < 27 which would give 8 such 4-tuples. The 6 in 6 can be
explained by the fact that since Ego’l} in this case has no carryover (2 -1 < 3), we can look
one digit at a time and there are 6 solutions to a + b = ¢ + d where a, b, c,d € {0, 1}.

Next we obtained that Di5(0(5)) <. (3/2)7/**¢ where §(j) = 377. Using the standard
reduction from decoupling estimates to solving Vinogradov [6] we see that the number of
solutions to the system

Ty +Te+ - +Te=Yr+Y2+t -+ Yo ()
pibay b tag =yl byt Y

where 1 < x5,y < 3 and a;,y; € [E°Y]; is <. (3)39te26i = ¢%+OE). This should be
compared to the lower bound of O(2%) coming from the diagonal solutions.
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{02,12,....|va]*} . . .
1.4.2. The Cantor set Cy . Fix arbitrary £ > 0. Choose ¢ an integer (not necessar-

1 . . . . {0212, lval*hy
ily prime) such that ¢ > exp(exp(O(1/¢))) and consider the ellipsephic set [&; 1

associated to the Cantor set [0502’12""’lﬁj2}]j. Then the estimate that Di2(6(j)) <cna)

N(j)¢ implies that the number of solutions to the system (4) where 1 < z;,9; < ¢’ and
212 2

T, Y; € [&;{0 A%l }]j is <cnay N(7)°". This rederives the implication obtained in [2,

Corollary 1.4] (where our N(j) is her Y).

Remark 6. In the system considered in Section 1.4.1, our upper bound is quite large compared
to the lower bound of 25V which come from the diagonal contribution. In the following, we
argue that given an ellipsephic set (whose associated Cantor set has dimension d), then
when the number of variables is sufficiently large depending on d, then the contribution of
the non-diagonal solutions will be greater than that of the diagonal solutions.

More precisely, fix an arbitrary arithmetic Cantor set Cédl"“’d’“ } with Hausdorff dimension

d € (0,1) and consider the associated ellipsephic set Ex := [Eédl"“’d’“ }] ; where we have written
X = ¢’. Then #Ex ~ X< We consider the question of how many solutions are there to the
system

ZE1+JI2+"'+J]5=$5+1+J]5+2+"'+ZE25

(5)

where z; € Ex. The contribution from the diagonal solutions is O(X*?). We claim that for
sufficiently large s there will always be more than O(X*?) many solutions.
Consider the map

2 2 2 2 2 2
x1+x2++$5—xs+1+m5+2++$25

Y (Ex) — [-5X,sX] x [-sX?, 5X7?]
(al,ag,...,as).—>(a1+...+as7a%+...+a§)

The map ¥ goes from a set of cardinality O(X?*?) to a set of cardinality O(s>X3). For
notational convenience let Ax = [—sX, sX] x [-sX?, sX?]. The number of solutions J,(X)
to (5) is bounded below by:

J(X)= > (> 17

(n1,n2)€Ax ol 4. tal=n;
a;e gx)s,j=1,2

> Ax| Y >, 2

(n1,n2)€Ax of 4 tal=n;
a;€(Ex)®.j=1,2

=(0(82X3))_1 . (O(Xsd))Q _ O(XZSd—B/SZ)

Therefore the number of solutions to (5) is at least O(X?%?73/s%). Comparing this to the
number of diagonal solutions O(X*?) shows that for s sufficiently large (depending on Haus-
dorff dimension), the contribution of the off-diagonal solutions are more than the diagonal
solutions.
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2. PROOF OF THEOREM 1.1

Fix a Cantor set C' (and its levels). Much like the proof of decoupling for the parabola in
[16], the proof of Theorem 1.1 reduces to four lemmas: parabolic rescaling, bilinear reduction,
the key estimate, and Holder’s inequality.

2.1. Parabolic rescaling and bilinear reduction. We first start with the parabolic
rescaling lemma. The proof is fairly standard, but we include it here for convenience.
Lemma 2.1 (Parabolic rescaling). Suppose 0 < 6(j) < (i) <1 and I € Ps;(C;). Then

1/2

I > el < Dpl(8(G — 1)) > el | (6)

JEP(;(j)(IﬂCj) JEP(;(j)(IﬁCj)

Proof. Write I = [a,a + 6(i)]. Consider the “Galilean transform” S; : R? — R? represented

by the matrix
6(i)t 0 1 0
0 5@)2)\~2a 1)

The key geometric observation is that since C; is a level of a Cantor set (and Cantor set levels
are similar), we have a bijection Psj)(InC;) — Ps(j—i)(Cj—;) given by J — J' = (i)' (J—a),
and furthermore,

S[(QJ— (a,aQ)) = QJ/. (7)
Define g;(y) := f(S]y)e(=Si(a,a?) - ), so that Gi(n) = 6())*F(S7'n + (a,a?)). With J,J'
as above, we have

~

fa,(x) = . f(&)e(€ - ) dg

= ez (a>a2))f gr(me(n - (S74)"x)dn = e(x - (a,a*))(g1)a, ((S71) "x)

Qi

where in the second equality we made the change of variables n = Sr(¢ — (a,a?)) and used
(7). Therefore,

X fa@i=1 Y (9)e,(S)T)]
JEP(;(j)(IﬁC]') J’EP(;(]-_Z-)(C]'_Z')

and hence

I > fau e = 66)77| > (90), || Lrr2)

JEP(;(j)(IﬁC]') J’GP(;(]*,Z-)(CJ'_Z')

<O(@) DG i) )] 1(91) e, 70 2)) >
J'€Ps(j_4y(Cj—i)

Reversing all the change of variables then obtains the right hand side of (6). O]
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Parabolic rescaling implies the following immediate corollary.
Corollary 2.2 (Almost multiplicativity). We have
Dp(0(i + 7)) < Dp(6(4)) Dp(6())-

Next we define the following bilinear constant. Let 0 < 6(j) < 0(i1),0(i2) < d(k) < 1. Let
M, (7, k,i1,12) to be the best constant such that one has the estimate

| Z fQJI |p| Z 99, |2p

R2 J1€P§(j)([1ﬁ0j) JQEP(;(j)([QﬁCj)
< MGk i) Y oy R0 D0 190, [Forgs))
J16P5<j)(11ij) JQEP(;(J-)(IQGC]')

for all I € Py;,)(C,) and Iy € Py(;,)(Cl,) such that d(Iy, Iy) > 6(k) and all Schwartz functions
f with Fourier support on | J TPy (11 Cy) 2, and Schwartz functions g with Fourier support

on UJQePJ(j)(Iszj) Q,. Note that from Hoélder,

My (j, kv, ia) < Dyp(8() — 01))° Dap (85 — i2))*". (8)
Lemma 2.3 (Bilinear reduction). If 0 < §(j) < (i) < 1, then
Dyp(3(5)) < Dap(6(5 =) + N @)V My (5, ,0). (9)

Proof. Fix a Schwartz function f with Fourier support in (. Py (Cy) ;. We have

H Z fQJ“%3P(R2) = H Z Z fQJl Z f912 ”L?’P/Q(R?)

JEP(S(]'>(CJ’) I1,IQEP5(,L)(C¢) J1€P5(j>(11 ﬁCj) JQEP&(j)(IQﬁCj)
<l 20 CMlweany+ 1 D) G )lweeey  (10)
Ijh[QEP&(i)(Ci) [17]2€P6(i)(0i)
d(I1,12)<6(3) d(I1,12)=4(3)

By multiple applications of the Cauchy-Schwarz inequality, the first term of (10) is

< > D falmenl D, fan e

Il,IQEPL;(i)(Ci) J1€P5(j)(11ﬂ0j) J2€P5(j)(12ﬁ0j)
d([l ,IQ)S(s(i)

<C Y 1 o Bage)

IleP,;(z)(Cz) JleP(;(j)(Ilij)

(X X 01 Y falee)”

IlePg(l)(Cl) IQEP(;(Z)(CZ) JQEPg(J)(IQF\CJ)
d(I1,12)<6(i)

< Z [ Z fQJH%:”P(RZ)

IGPg(i)(Ci) JEPg(j)(IﬁCj)
< D3 (3(5 —14))? Z | foo, | Zom 2y -
JEPg(j)(Cj)

In the third inequality above, we used the fact that for a fixed I, the number of I, satisfying
d(I1,15) < 6(i) is < 1. In the last inequality above, we applied the definition of D, (6(j —1)).
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This gives the first term on the right hand side of (9). The second term of (10) is

SNOOO max Y fo) N fa e (D
(117([21,[25)<;)§(”L; J1€P5<j>(flﬂCj) J2€P5<j)([2ﬂ0j)
For any two nonnegative functions F, G, we have { F37/2G%/2 < ({ FPG%)V2({ F2PGP)Y? by
Cauchy-Schwarz. Using this observation and applying the definition of M,(j,1,4,1)* gives
that (11) is

< N()°DM,(4,4,,1)
max (> [faulwe) 0 D ey, lTaes) "

I1,12€ P53y (C;)
d(11712)(>)5(i) JleP(;(i)(Ilij) JQEP(;(,L)(IQK\CJ')

< N@OOOM,G,i,5,0°C D, [ foslFoe)-

JEP(;(J-)(C]')

This gives the second term of the right hand side of (9) and thus completes the proof of the
lemma. U

2.2. Key Estimate. The main idea of this section is that while the key estimate for the
proof of decoupling for the parabola in [16] follows from Plancherel (see [11, Lemma 3.8]
with k£ = 2, [16, Remark 4], or [18, Proposition 19]), the key estimate here will follow from

(2).
Lemma 2.4 (Key estimate). If 0 < §(5) < 6(i1),0(4}),0(i2) < 8(k) < 1 with §(i5)* < 6(z)) <
d(i1), then for any e > 0,
MPU? k: i1, 7;2> Spﬁ,dim(c')vN(l) 5(k)_O(I)Mp<j7 k? illv ZQ)N(le - il)np(C)/3+€/3
where k,(C) is defined in (2).

Proof. Fix arbitrary ¢ > 0 and arbitrary Iy € Ps;,)(C;,) and Iy € Py, (Ci,) such that
d(I1,I5) = 0(k). Next fix arbitrary Schwartz functions f and g with Fourier support in
UJlePg(j)(Iij) Qy, and UJQGPB(j)(Iszj) Qy,, respectively. We may normalize f and g so that

Z | f, [ Zov ey = Z l90,, 7o ey = 1. (12)

J1€P5(j)(11ﬁCj) JQEPé(]')(]QﬁC]')

Thus we need to show that

fR| S gl Y ey

2 J1€P§<j)([1ﬁ0j) JQEP&(j)(IQﬂCj)
gp,s,dim(C),N(l) 5(1{:)—0(;0)]\[(2/1 - il)pﬁp(C)-i_paMp(jv ka 2/17 i?)sp-

Write I := [a,a + 0(i1)] and Iy := [b,b + §(42)]. Assume that I3 is to the left of I; and so
a—b > d(k); the case when I, is to the right of I is similar.

We now essentially reduce to the case when b = 0. To see this, let 77, = ( _%, 9), ]?IQ(y) =
f(Thy)e(—y - T1,(b,0%)), and g, (y) := g(Ty)e(—y - Tr, (b, b%)). By a similar argument as in
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Slin) 3(ir)

FIGURE 1. Scheme of the key estimate. Since I; is away from the origin and
the parabola is Lipschitz on I; with Lipschitz constant = 6(k)~°®), we know
we can decouple vertically. The fact that we are multiplying by G2, on the
Fourier side amounts to convolving against GG = G, which adds an uncertainty
of size O(d(i2)?) on each vertical level. This is acceptable because, we can
cover the overlap by §(k)~' many copies of the orange sets (these copies are
in shades of blue, purple and maroon in the picture).

the proof of Lemma 2.1, it suffices to show that

| D SRR/ 1L B S A

J1€Ps(5)((11=b)n(C;j=b)) J2€Ps(5)([0,0(i2)]n(C;—b))
Spedim(@)N () 0(k) OPIN (i — iy )P O N (5, k1) i)
(13)
where
> |(Fr)es, | Zon ey = > 1(Gr)as, | Zon ey = 1
J1€P5(j)((11—b)ﬂ(0j—b)) JQEP(;(]-)([0,(5(i2)]ﬁ(0j—b))

since det 17, = 1.
Let

G = Z (§I2)QJ2'

J2€Ps(5)([0,6(i2)] N (Cj—b))

Then G (and hence G?) is Fourier supported in an O(d(is)) x O(8(i2)* + §(j)) rectangle
centered at the origin. For each J € Psqr)((I1 —b) n (Cy, — b)), let

Fy = Z (fb)QJl'

J1€P5(j) (Jﬁ(Cj*b))

The Fourier transform of F; is supported in the horizontal strip {(£1,&2) : & = v2+0(6(4}))}
where v, is the center of J and ~; is a distance 2 (k) away from the origin. Since
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5(j), (5(@'2)2 < (5(' ), F;;G? has Fourier transform supported in the horizontal strip {(&1, &) :

& =72+ 0(5(ih))} as well.
Using this notation, showing (13) is equivalent to showing that

J | > FiG?P <pedimeyn) 0(k) PN (i) — iy)P e O PN, (4, k, 07, i2) .
2 JePé(i’l)((Il_b)m(Cill —b))
(14)
We now claim that
I Z F;G?| 1o ey
JEPs (i1 (I1=)n(Cyy —b))
Spedim(@v() 0(k)TOWN (@) — iy OFe( > | FSG? |70 m2))
TPy () ((11=b)n(Cyy b))
(15)

which, as we will show, follows from an application of Cantor set decoupling for the line given
by (2). Let us see how to use (15) to prove (14). Reversing the change of variables used to
obtain (13) and applying the definition of M,(j, k, 4}, i2) along with the normalization of g
n (12) gives

| EsG2 o) < My(j, K, 17, 02)( 2 | foa, 2oz (16)
JlEPg(ﬂ((J'i‘b)ﬁCj)

for each J € Ps(ir)((I1—b) N (Cy —b)). Combining (15) with (16) and using our normalization
of fin (12) then proves (14). Thus it remains to prove (15).
First since p > 2, by Minkowski’s inequality, it suffices to prove that for fixed € R?,

f | Fy(,y)Glx,y)* P dy

R Jep . )(11 b)n(Cy b))

Spedim(©).v(1) 0(k)TOPIN (i — iy JPo(Oee( > (f |Fy (2, )Gz, y)*[” dy)*P)P.
JEeP; i1y (=) (Cy b)) 7
(17)

Indeed, once we obtain the above inequality, we can prove (15) by just integrating in x. For
fixed z, the Fourier transform in y of F(x,y)G(z,y)? is supported on an interval of length
O(d(i})) centered at v3 where v; 2 6(k) is the center of the interval J € Py (11 — b) n
(Cy —b)). Note that the implied constant in O(5(4})) is independent of .J.

Now suppose F;,G* and F;,G?* had overlapping Fourier supports. Then ~3 = ~3 +
O(6(i4)) and hence 5, = vz, + O(S5(#4)5(k)~°W) since 7,7, = d(k). Thus (17) now
follows if we can show that

| > fer()P dy

R JePé(ill)((Il—b)m(Oi/l —b))

Speamoy SE) OPNG - O S ([ Ll gy
JEPB(,L-/l)((I1 —b)ﬁ(cill —b)) R
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for 1 < ¢ < §(k)~°W and for arbitrary Schwartz functions f. Here, cJ denotes the interval
having the same center as J but of length ¢|.J|. By rescaling I; and using the fact that
decoupling constants are translation invariant, this then reduces to showing that

I >, fellrm Spedim@ ey eNETOEC S | falfom) (18)
JEPg(i) (Cz) Jep&(i) (Cl)

for ¢ = 1 and for arbitrary Schwartz functions f. (Here i =4} —i;.)

To show (18), we can assume that ¢ > 1 is an integer. We can find translations {7 :
1 < k < ¢} such that for any J € Py (C;), the interval ¢J is covered by the union of
{x(J) : 1 < k < ¢}. Therefore

[ Z chHLP —HZ Z (fer)mn | e )

JGP(;(Z)( k=1 JEPsy) (Cy)

gcsng Z (fer)mn L)

JePs(3)(Cy)

Spe,dim(C),N(1) CN(Z')'{”(C)HSUP( Z H(fCJ)Tk(J)”%p(R))l/z
JePs(3y(Cy)

Sp,a,dim(C),N( 1) CN( ) »(C )+€( Z HfCJH%P(R))1/2
JePs(3)(Ci)

where the third inequality is because decoupling is invariant under translation and (2), and
the last inequality is by boundedness of the Hilbert transform in LP(R), 1 < p < o0, (see for
example [8, p. 59]). This completes the proof of (18) and hence the proof of Lemma 2.4. [

2.3. The iteration. We first have the following lemma which allows us to interchange the
last two indices in M, (j, k, i1, ia).

Lemma 2.5. If 0 < 6(j) < 0(i1) < 0(i2) < (k) < 1, then
M, (j, kv, ia) < Mp(j, kyia, 1)/ Dsy (6(5 — i)'/

Proof. This lemma follows from { FPG* < ([ F*GP) 2( (fG*r) )12 and applying the definition
of M,(j,k,1is,11) and parabolic rescaling. O

We are now in a good position to conclude the proof of Theorem 1.1. After normalization,
the iteration is essentially the same as in [16]. The proof follows via a contradiction argument,
combining the previous lemmas and using an iteration argument. We start normalizing the
main objects that we have been considering in order to simplify our argument. Let

D3, (8(6)) == N (i)~ Dy, (8(3))
and
M, (4, k, i, 02) == My(j, ki1, i2) (N(j — i) N(j — ig)?) (O3,

With this definition, after multiplying both sides of Lemma 2.3 by N(j —i)™(©) we have
that if 0 < (j )<5()<1,then

D3, (0(7)) < N (@)™ DDy, (8(j — 0)) + N (@) 7V My (5, .4, 0). (19)
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The key estimate Lemma 2.4 now becomes that if 0 < (j) < 6(i1),d(2}),0(i2) < d(k) < 1
with 6(ig)? < §(i}) < &(4y), then for any € > 0,
M (5, k,i1,12) Spedim(©),N(1) 6(k) AN (i} — il)a/gMé(]} ki, iz) (20)
for some absolute constant A. Also, Lemma 2.5 above becomes
M (4, k,i1,i2) < MJ(j, k, i2,41) 2 Dy (5(j — i2)) /2. (21)
Proof of Theorem 1.1. Let X be the least exponent for which the following statement is true:
D (6(5)) <pedim@yna) NN forall j >0 and e > 0. (22)

1

Trivially, Dj,(6(i)) < N(i)2 ") and so (22) is equivalent to the statement that
Dgp(é(j)) Sp,e,dim(C),N(1) N(j)*e forall j > 1and 0 <e < 1.

If A = 0, then we are done, so we assume towards a contradiction that A > 0. Fix arbitrary
e > (0, we may assume that ¢ < 1.

Ifl<ac< 4%., then j > 4ai > 2ar > ai > i which imply that we can talk about
M, (j,i,2ai,7) and M)(j,1,4ai,2ai). Applying (21), (20), and (22) in that order obtains

.. L 1/2 1/2
M, (j,i,2ai,ai) < M)(j,1, ai, 2ai) 2Dy ,(0(] — ai)) /
Spedim(©) Ny My, i, 4ai, 2ai) *5(i )_A/QN(‘W ai)*° Dy, (8(j — ai))"
Spedim(@)N(1) M, (7,1, 4ai 26”)1/2 (1 ) N(4ai — )E/GN(j - ai)%Jr%
.. . 1/2 —_A/2 Ate a\ 2
= M, (j, i, 4ai, 20i) 26(i) 2N () "= N (i)=Y

Hence we have shown that for 1 < a < ﬁ

M (j, i, 2ai, ai) < G- gy vy ML, i, dai, 2ai)26(7) 2N (i)~ N ()3

for some constant Cp . gim(c),n(1) depending only on p,e, dim(C) and N(1) and A is an
absolute constant.

Then, we multiply both sides of the previous inequality by N(j)~
the 1/a power to obtain that for every integer a such that 1 < a <

(N(5)*M](5,i,2ai, ai)) "/
< (Cpeaim@ vy3(0) V2N (7)) N ()2 (N () My (5, 4, dai, 2ai)) 1 E).
Therefore, for all k € N with 2¥"! < j/i, the following inequality holds:
N(j) M), i, 23, 1)

—* and raise both sides to
g

437

k—1
c n N — N— . . A 1/2F
< (H(Cp,s,dim(C),N(l)(s( ) A/ZN( ) /2)1/2 ) N(Z) ka2 (N(j) )\M;I)(j7la 2k+1272kz))
n=0

Speam@n (000)” A/?N( )72) = 2 N (i) V2N ()

gpadlm(C' N(1) 5( ) N(l)_kA/zN(j)e (23>
where in the second inequality we have used that

My(5,3, 2544, 2) < Dy (8() — 210) Dy (05 — 240))*°

Sp,a,dim(C)7N(1) N(] - 2k+1 ))\+€ /3N( 2 ) 2(A+¢)/3 < N( ))\+€
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which follows from (8) and that N is increasing.
Suppose 4, j, and k are such that N(i) = N(j)¥2""" and so by multiplicativity of N(-),
2kl = 5. Using (1), (19), (20), (22) and (23) we conclude that

D5, (5(5)) Spedimeynw N@) DDy (87 — ) + (i) PN (i) M, (5,4, 24, i)
Spsdlm(c ( ) f@p(C ( )/\+a + 5( ) )N( )s k)\/ZN( )A—&—s
§p5d1m(c (])M_EN( ) + N( ) Oz c))+5 kA/ZN(j)A—hs

Spre.dim(C),N(1) N(J)A(l w4 NG G RN

Choose K so that K _ Olme) _ . > 1. We have then shown that if j = 25*!N, then for
every € > 0,

G Y2 R R
D3, (8(7)) Speaimeyv N() 77T
We now upgrade this to be a statement for all 7 > 0. We use almost multiplicativity,
Corollary 2.2. For n > 0 and j such that 28+1n < j < 25*1(n + 1). Note that

N5 n) < N(j) < N2F T (n+ 1))
and
525t n) = 8(j) = 025 (n + 1)).
From almost multiplicativity and the trivial bound,
Dy, (8(7)) < D3, (8(2°1n)) Dy, (5 — 257 n))
§p75,dim(c’)7N(1) N(2K+1TL>)\(1_W -‘rEN(j o 2K+1n)1/2
N(@2E+(n +1))
N(2K+1n)
)+€N(1>2K
Therefore we have upgraded this estimate to be that for all j = 0,
D3, (8(7)) Spedim@ v V()77
This contradicts the minimality of A. O

A1 L Ve
Spedim@y vy N(G) TR )12

A= 55

Spedim(c),N (1) NV (J)

Following the same ideas from the iteration in [16], if there is no dependence on dim(C)
and N(1) in (2) (as is the case for our examples in Section 3.3), the dependence on dim(C)
and N(1) in D3,(d(7)) is exp(exp(O(m))log N(1)). If there is some dependence on
dim(C') and N(1) in (2), then an examination of the proof above shows that this same exact
dependence shows up again in D3,(d(7)).

3. DECOUPLING FOR CANTOR SUBSETS OF [0, 1]

In Theorem 1.1, we reduced the study of decoupling for a Cantor set on the parabola to
that on the line. We now proceed to carefully study the case of [?L?" decoupling for a Cantor
subset of [0,1]. The use of 2n allows us to connect decoupling to number theory.

By rescaling a and f, we have that

Ap —sup{HZ e(l-x)|rqoaym | @ : S—>]R>0,Z|a =1}

leS leS
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and
K,(2) = sup{|| ZfIHLP(R) | f Schwartz,z HfIH%p(R) =1}
I I

Making use of that 2n is even, we have the following proposition.
Proposition 3.1. Let S < Z™. Then
2

Agpm(S)* = sup Z Z Ha a:S — Ry and Z la(O) =13 . (24)

teZ™ \ fq,..., lreS i=1 eSS
E1+ Al =t

Proof. This follows immediately from the observation that

2

HZ e(l-x HLG my = Z Z Ha p2mit

leS teZm l1,...,6n€S i=1
Ly+-+ln =t L£2([0,1]™)

and then applying Plancherel. O

3.1. Properties of Ay,(S). For S = Z™ and S’  Z™, we say that ¢ : S — S is a Freiman
homomorphism of order n if

n

forall z1,...,2,,y1,...,Yn €5, sz = Zyz = Zﬁb(%) = 2¢(yz)
i=1 i=1 i=1 i=1

(see, e.g. [19, Section 5.3]). We say that ¢ is a Freiman isomorphism of order n if ¢ is a
bijection and both ¢ and ¢! are Freiman homomorphisms of order n.

It follows immediately from Proposition 3.1 that if ¢ is a bijective Freiman homomorphism
of order n, then

A2n,m(S) < A2n,m’<S/)a (25>

and that (25) becomes an equality if ¢ is a Freiman isomorphism of order n. We also have
the following.

Proposition 3.2. Let S ¢ Z™ and S’ < Z™, and let ¢ : S — S’ be a bijection. Let

n

D = {Z ¢(Iz) - Z ¢(yi)

xla"‘axn7y17"'7ynesandinzzyi} (26>
i=1 i=1

Then
Aopm(S) < | D] Agy i (S'). (27)

Note that if ¢ is a bijective Freiman homomorphism of order n, then D = {0}, so (27)
becomes (25). Thus, Proposition 3.2 is a variant of (25) for when the bijection ¢ is not a
Freiman homomorphism of order n, but is “close” to being one (in the sense that D is small).
This proposition should also be compared to [2, Lemma 2.2].
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Proof. Let a : S — Ry such that >, .ga(f)> = 1. Define @’ : " — Rxg by @/ = ao ¢ .
Then by the definition of D,
2

S8 [Jew]- ¥ (nm)(ﬁm)

teZ™ \ x1,..., rnesS =1 T1,..., €S
JC1+ +Tn=t Y1,y Yn€S

Dy T2 Y=t
Define

n

ORI YR

’ ’ N /45—
T 5eeny x! €S i Tp=t T 1

so that the right-hand side of (28) is

— 2 B(s)B(t) < Z B(s)* + B(t)®

, , 2
s,teZ™ :s—teD s,teZ™ :s—teD
1 1
=3 > 3(3)2+5 > Bt <|D| ), B(t)
s,teZm’ s,tEZm/ tezZm’
s—teD s—teD
Thus,
9 2
S| X [aw| <o Y| X [ ot
teZ™ \ x1,..., €S i=1 tegm’ al,...xnes i
x1+ Frn=t e tl, =t
which by Proposition 3.1 implies (27). O

Proposition 3.3. For S c Z™, S' < 7",
Aoy (S % S") = Agyy i (S) Az (S7)
Proof. First, we will show that
Aopmam (S x 8") = Aoy (S) Agp e (7). (29)
Fora:S — Ry and @’ : S" — Ry, we define (a®ad’) : S x §" — Ry by
(a®ad)(,1") = a(l)d'(I').
Observe that

I D @)l L)e((6,) - (2,2)] ganzmenty

(1,1)eSx S’

= 1 Y alO)e(t- ) angeml 3 d (€)' )] angom

LeS eSS’
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and
la® d'|2sxsy = lalesales).

We therefore obtain (29).
It now remains to show the reverse inequality

A2n7m+m/(5 X S/) < AQmm(S)Agn’m/(S,). (30)
Fix 2’ € T™. Then we view b,/ (6) = ey a(l, )e(l" - 2') as a function of £ € S. We have

12502 alt.O)e(t - a)e(t - @) [Ty = HZb e(l - )| L (rm)

LeS t'esS’ lesS
2 2 2

ZES
Next integrating in T gives
| D0 alt.)el - a")e(l - )| pangrminty < Aonam (S X5 all, O)e(l - a)2) 2 oy -
teS res’ teS res

Since 2n > 2, applying Minkowski’s inequality allows us to interchange the L2 and the ¢
sum over { € S Thus the above is controlled by

Azn(S) Q1 D5 all. O)e(t - ') [y gmy) " < Arn(8) Az (S Y lall, €)Y

leS eSS’ LeSl'es’

from which (30) follows. O

3.2. Arithmetic Cantor sets and ellipsephic sets. Let

g{dl ----- dk} — 1 ) 31
can(Ef ) o= sy 2R &
and similarly let
log Ky, {d1,...,dp}
K2n<C{dl 77777 dk}) — hm Sup Og 2 ([ng i ].7) (32>

We call these the decoupling exponents of A2n71([5q{d1 """ d’“}] ;) and Kgn([%q{dl """ d’“}] ), respec-
tively.

In this section we will show that from a decoupling point of view the sets [Cy {1 }] ; and
[&;dl """ A }] ; have similar nature. Namely, we will prove the following proposition. This allows
us to upgrade results obtained from discrete restriction of ellipsephic sets to decoupling for
arithmetic Cantor sets. In particular, later in Proposition 3.5 when the ellipsephic set does

not have carryover, the discrete restriction problem has a particularly nice structure.
Proposition 3.4. For an integer n > 1,
Kan ([ %3);) ~ A ([E1753];) (33)

where the implicit constant is an absolute constant. In particular by (31) and (32), this
implies that
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Proof. Let E; := [Sédl"“’d’“}]j and Cj = [C’édl""’d’“}]j. For ¢ € E;, we will denote by I, the
interval [¢77¢, g7 (€ + 1)], so that Cj = Uy, Lo

First we show the < direction in (33). Let f(z) be a Schwartz function Fourier supported
on C; such that deEj I(f = 1IZ)||L2,1 ® = 1. Let fo = f= 17,. Note that for (1,....(, € Ej,

the Fourier transform of []7_, f;, is supported in [¢77 31, £i, ¢7 (3, € + n)]. Therefore,
by Plancherel and Holder,

J€§f|2"dx—f| ]_[fﬂdx—f > nfgfgdx

0, n€E; i=1 LLi—Ei|<n =1
@1, ,anE
21,...,t7neEj

< D [ Malewlf

[P 6—b;|<n =1
£1, Wln€l;
Zl, ,K EE

Then arguing as in the proof of Proposition 3.2, we have

Yo 2 IMalalfile <@+ D0 [TIalon

t=—nsm g f—pi=1 teZ \ t1,...bneE; i=1

=1

1, ln€E; b+ +Llp=t
Zl, ,E EE

< (2n T 1)A2n’1([gédh...,dk}]j)Qn

where the last inequality is by Proposition 3.1 and that Y, [ fe[ 7. ® = L
Next we show the 2 direction in (33). Let ¢ € CP(R) be a smooth nonnegative function

which is equal to cn on [22 %99] and vanishes outside [0,1/n] and where ¢ is an absolute

constant chosen so that |¢[; = 1. Then observe that |¢[s ~ n'/? and HQVSHOO < 1 which imply
that [, < n'/".

Define ® = ¢*", the n-fold convolution. Then ® > 0, ® is supported in [0,1] and
1= |®|; < |®|s. For £ e Z, define ¢y(x) = ¢?¢(¢’z — £). Also define ®y(z) = ¢/®(¢’x — {),
so that ¢y, = - * ¢y, = Py, 4...1p, and P, is supported on I,.

Since Ej is finite there is a function @ : E; — R, which attains the supremum in (24). Let
a: E; — R attain the maximum in (24). For ¢ € E;, define f; by fg = a({)¢y. Observe that

SN et fa= Y (ﬁa(@)>@l+..%n=z > H

fl,...,anEj 51,...,Zn€Ej =1 teZ Z;ﬂ: L=t i=1

We note that the supports of ®; for t € Z are disjoint, and that ||®;]|? > ¢/, so using Plancherel
we obtain

2n 2 2

PIRZ I OISR BN DI [ CON I Pt
£;

teEj ||y, |Gtn€E; ) teZ \ X7, b=t i=1

(34)
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Next, | felan < n!/C]a(€)]g”/®"), so

(5 Ifel3)" < nd (3 lalO)P)" = ng’ (35)

fEE]' ZGEJ'
By comparing (34) with (35), we see that
A2n,1([g(§d1""7dk}]j) < nl/(2")K2n([‘é]{dlf"’d’“}] )

J
as desired. O

gédl,...,dk}]

Recall that given an n we say that | ; has no carryover if nd;, < ¢. In the

N0 carryover case, Agn,l([&]{dl""’d’“}]j) has a particularly nice structure and we are able to
characterize the extremizer of the associated discrete restriction estimate which will allow
us the compute the decoupling constant Ky, ( [%q{dl’”"d’“}] ;)

Proposition 3.5. Fiz n > 1. Let Sédl""’d’“} be an ellipsephic set without carryover. Let
Digits,, : [8,§d1""’d’“}]j —{0,...,q— 1} be the base q expansion of a number. Then

Agp 1 ([E053] ) = Agpy 1 ([E1M])7,

and there exists a function f:{0,...,q— 1} — Rxy (depending on q and {dy,...,d}) such
that, for all j € N the function

fi(@) = | [ F((Digits, (2)):) (36)

i=1

witnesses the value of Agml([gédl’”"dk}]j) where here we use the notation is that given a vector

(1, .., x5), (T1,...,25); = x; for 1 <i<j.

Proof. Since there is no carryover, the map Digits, : [Eq{dl""’d’“}]j — {dy,...,dp}’ defined
by Zi;é asq® — (ag,a1,...,aj_1) is a Freiman isomorphism of order n. Hence by (25) and

Proposition 3.3,
Azn,1([5q{d1"”’dk}]j) = A2n,j({d17 . ,dk}j) = A2n,1({d17 ceey dk})j-

Let f be the function which witnesses the value of

sup ooy ﬁa(a)f.

a:{didi}>Ro0 Gz gy pcldy, o dy) i=1
2te(dy,....dp} 0 =1 01+t b, =t

Such a function exists since {di,...,d,} is a finite set. Finally since Digits, is a Freiman
isomorphism of order n, following a proof similar to that of Proposition 3.2 shows that f; as

defined in (36) witnesses the value of Agml([gédl""’dk}]j). O

As an immediate application of having no carryover, we now use Proposition 3.4 and
Proposition 3.5 to show that the decoupling constant for a Cantor subset in [0, 1] not only
depends on the Hausdorff dimension but also arithmetic properties of the Cantor set.

More precisely we show the following.
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FiGUrRE 2. Tensor
procedure described
in Proposition 3.5.
Each digit in the
g-ary expansion

of [Eq{dl’“"d’“}] is

t
mapped to its own

axis in Z!. An
element, of each
[5;0’1’2}] in the

t
figure  has  been

.. {0,1,2} .. {0,1,2} . {0,1,2}

DlgltSE([C5 ]1) DlgltSS([C5 ]2) Dlgltss([Cﬁ ]3) hlghhghted bOth in

the digit expansion

and  the original

ellipsephic/Cantor

set.
Proposition 3.6. Fiz an integer n > 1 and fix a Hausdorff dimension d := igig with
0<d<1andr,seN. Then there exists an arithmetic Cantor set Cédl’""d’“} of dimension
d such that ) )

O{dl,.“,dk} 2 R —
Fan(Cy /=355
Proof. Let T be large chosen later. Let Dy := {1,...,7T} and ¢qr := s’. Then Cq[;T has
Hausdorff dimension equal to }gig; = igg ~. We can also choose T so large so that nr’ < s”
and so the associated ellipsephic set 5£T has no carryover. Then
log Aan,1([£5,7]7)
D - D 1 ) qr
KQTL(CqTT) - a2n((€qTT> - hI}le]jp ].Og(TT)J
. log Ag 1 ([E07]1)7  log Az 1 ([€57]1)
= lim sup =
T log(rT)” log rT

where the first equality is an application of Proposition 3.4, the second equality is by
(31), and the third equality is because of Proposition 3.5. Since if we choose a(¢) = 1,

Apn1({1,...,7T}) = (rT)2~2¢, the claim now follows. O

Note that ﬁgn(Cédl"“’d’“}) < 5 — 5. To see this, one can either interpolate the estimates
Dy(6(i)) = 1 and Do (6(i)) < N(i)"? (see [18, Exercise 10(iv)] for an interpolation theorem)
or alternatively one can follow the same proof as in [12, Proposition 1.12] for a direct proof.
Thus Proposition 3.6 says that even though our Cantor set has small Hausdorff dimension,
it can still have a decoupling constant that is as large as possible.
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We had particularly good structure when Eédl"“’d’“} did not have carryover, however the case
when one has carryover is much harder. In the general case, from a computational standpoint,

the following lemma tells us that we can obtain a good approximation on a%(gédl’“"dk}) by
estimating Ag, ; on the finite sets [8§d1""’d’“}]t.

Proposition 3.7. Let cS'édl""’d’“} be an ellipsephic set potentially with carryover. Let t >

log,n. Then agn(é'édl""’d’“}) can be approximated by computing Agml([&;dl"”’d’c}]t) with the
following bound:

log Az ([47™])) _ log(2n +1)
L (Eldndidy LAY < 37
[azn(&, ) log kt | 2ntlog k (37)
and therefore
(Elndidy — log A2n,1([5¢§d1""’dk}]t)
(0579 q - ti{g} log It .
Proof. Choose t € N such that ¢* > n and note that
[g{dl ,,,,, dk}]
a t _ di,...,d
[gqt ] = [&3ft]
J
Consider the bijection
S di,edy di,edi )19
Digit,: : [Sé "}]jt — [5; ’“}]t ) (38)
j—1
Z asqSt — (a'07 Ay, ... 7aj—1)
s=0

For this map, the set D in (26) satisfies
Dc {(qtal, thLQ — Q... ,qtaj_l — G52, —aj_l) A1y, 051 € {—n + 17 e, — 1}} (39)
To see this, note that the inverse of Digit . extends to a group homomorphism 7} — 7., so

D is contained in the kernel of this group homomorphism. Furthermore, the set [Sgdl"“’d’“ }]
t

is bounded above by ¢' — 1. These two observations together imply
j—1
D < {(bo,...,bj—1) € Z’: Z ¢*'bs = 0} N [-n(q" — 1),n(¢" — 1)].

s=0

To show (39), suppose (b, . ..,bj—1) € D. Then |bs| < n(¢" — 1) and

j—1
Z qStbs = 0. (40)
s=0

Taking (40) modulo ¢' gives by = 0 (mod ¢'), hence, by = ¢'a; for some a; € Z. Also
lbo] < n(¢® — 1) implies |a;| < n — 1. Then taking (40) modulo ¢* gives ¢'a; + ¢'by = 0
(mod ¢**), so by = —a;+q'ay for some |as| < n—1. By repeating this, we get b, = —as+q'as41
for s = 1,...,7 — 2. Finally, (40) gives us b;_1 = —a;_;. (We can think of the numbers
(a1,...,aj_1) as “carryover digits.”)
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Equation (39) implies |D| < (2n + 1)7. By Proposition 3.2 and Proposition 3.3, this tells
us that _
Agn 1 ([E75950) < (20 4 1)38 Ay ([E)7],)7.

Also, note that the inverse of the map (38) is a Freiman homomorphism of order n, so by
(25)

A2n,1 ([g;dl"“’dk}]t)j < A2n,1 ([gq{dl""’dk}]jt)'

Applying (31) to the above two inequalities then proves (37).
0]

Remark 7. Note that the right hand side of (37) is nondecreasing in ¢ (when n and k are kept
constant), so increasing ¢ gives strictly better and better approximations to agn(é'édl’”"d’“}).
3.3. Examples. The above results in this section allow for explicit computations (in rela-
tively simple cases) and numerical approximations (in the remaining, more complex cases)
of the I2L?" decoupling constant associated to an arithmetic Cantor set.

To demonstrate some examples, we consider the 2L* decoupling constant for the following
arithmetic Cantor sets. To study K4, we first use Proposition 3.4 to reduce to studying Ay ;.
Then we assume ¢ is sufficiently large so that we are in the no carryover case which allows
us to use Proposition 3.5 and Proposition 3.1 which reduces to an optimization problem.

Note that if we take a(¢) = 1 in the definition of A4, this amounts to studying the additive
energy. In the case of an ellipsephic set, one can apply for example, [9, Lemma 3.10]. However
this would only give a lower bound on A4; and the function defined by a(¢) = ¢ for some
¢ is not always the optimizer of the discrete restriction problem for ellipsephic sets (see for
example, Example 3 below).

Example 1 (The (0,1) (mod ¢) arithmetic Cantor set). Let k = 2 and {dy,da} = {0,1}. At
each level j, this Cantor set has 2/ many intervals. By Proposition 3.1,
3
A471([8€§0’1}]1)4 = sup {(a3)2 + (apay + arag)® + (a3)? ‘ ag +aj = 1} =3
It is easy to see that the maximum is attained when ag = a; = 272, If ¢ > 2, then there is
no carryover, so Proposition 3.5 implies that

K601 ~ Aua([E(D])* = (3/2)) = (7)),
This should be compared to the trivial bound that K,([%,*"];)* < 27.

Example 2 (The (0,2) (mod 3) arithmetic Cantor set). Let £ = 2 and {d;,d>} = {0,2}.
Then [C{*#] ; is the jth level of the middle thirds Cantor set. Since we are studying the (?L*
decoupling constant Kg.g([‘fq{m}] j), n =2 and so the associated ellipsephic set [53{0’2}] ; has

carryover. However, note for all levels j, the map ¢ : [5:;{0’2}]]- — [5§°’”]j given by x — x/2
is a Freiman isomorphism of order 2 and the latter set does not have carryover. Therefore
from Proposition 3.4,

Ei([6%7))* ~ Aa([E°7])F = Aa ([E°V]0)* = (3/2)7

where the first equality is because of (25) and the second equality is because of Example
1. Therefore we have computed precisely the I2L* decoupling constant for the middle thirds
Cantor set.
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Example 3 (The (0,1,2) (mod ¢) arithmetic Cantor set). Let k = 3 and {dy,ds,ds} =
{0,1,2}. At each level j, this Cantor set has 3/ many intervals. By Proposition 3.1,

A4’1([5§O,1,2}]1)4
15
=sup {(ag)® + (2a0a1)* + (2a0a2 + a})* + (2a1a2)* + (a3)° | af + af + a3 = 1} = 2

One can check that ag = ay = (2/7)"2,a; = (3/7)"/? attains the maximum.
If ¢ > 4, then there is no carryover, so Proposition 3.5 implies that

K62 ~ Aual[E0])" = (15/77 = ()09,
This once again should be compared to the trivial bound that K4([‘Kq{0’1’2}] <3

Example 4 (The (0,1,3) (mod ¢) arithmetic Cantor set). Let k = 3 and {dy,ds,d3} =
{0,1,3}. At each level j, this Cantor set has 3/ many intervals. By Proposition 3.1,
A4,1([€;O’1’3}]1)4
5)
= sup {(a3)* + (2a0a1)* + (a})* + (2a0a3)® + (2a1a3)* + (a3)* | af + af + a3 = 1} = 3
One can check that ag = a; = a3 = 372 attains the maximum.
If ¢ > 6, then there is no carryover, so Proposition 3.5 implies that

K4([<5q{0,1,3}]j>4 ~ A471([€;0’1’3}]j)4 = (5/3) = (37)les5/3),
As in the previous example, we trivially have that K4([ng{07173}]j)4 <3

Example 5 (Cantor sets generated by squares). Let ¢ > 2, S := {n? n € N} the set of
squares, and S, = S N [0, q) the squares less than ¢. Then:
lim oy (EJ7) = 0 (41)

q—0

By Theorem 1.1 and the definition of « in (31), this implies [2, Corollary 1.4] (note that in

2], ¢ is restricted to be a prime number, while here, this restriction is not needed).
Equation (41) will follow from Proposition 3.7 and a number-theoretic estimate about

sums of elements in S. Using (37) with ¢ = 1 (we can do so since ¢ > 2) and using that

H#[EX, = [\/q] + 1, one obtains
- 1ogA4,1([55q]1)| _ 1
log([v/a] +1)

Sy
au(E5) S o

where the implied constant is absolute. Thus (41) will follow from

lim 108 A ([&) _ 0
q—® log \/q
Since counting diagonal solutions shows that A4; = 1, it suffices to show that
Asa([E771) < ¢°. (42)
We in fact show that the left hand side above is < exp(O(log)ﬁ’) <)) where the implied constant

is absolute. Indeed, the divisor bound for Z[:] implies that

, log ¢
;N2 €5, +ng = Jf| < O
o2, [{n,ma € Sy np = | < exp(O( 5 0))



DECOUPLING FOR FRACTAL SUBSETS OF THE PARABOLA 25

Computational decoupling constants for (C{1:2})

0.40 A
0.35 A
L]
& 0.30 4 .
S)
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x
Wy 0.25
(0] °
a
0.20 A
—— Interpolation upper bound (3 — )
e Even integer computational lower bound
0.154 Computational upper bounds
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LP exponent p
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w1
o

FIGURE 3. Numerical estimation of azn(é’ém}). The optimization has been
performed using gradient descent using Torch. At stopping time the [? gra-
dients of the optimization where < 1078. There is no guarantee, however,
that the near-local-optimizers are in fact global optimizers of the problem at
hand. The upper bounds on the figure (red line) are the upper bounds from
Proposition 3.7 assuming the optimization problem resulted in a global opti-
mizer.

which leads to

SIS aa) <epO BN S ja(t)Plalt)

teZ 04 ,ngSqifl +lo=t IOg 10g 4 teZ 01 ,@265 A1 +la=t
log q
= exp(O( N a
log log q s

which proves (42). In fact the above proof gives quantitative control on the decoupling
exponent and shows

1

Sq -
|a4(5 )= log log ¢

where the implied constant is absolute.

3.4. Computational results. Proposition 3.7 hints of a way of estimating the decoupling
exponents of Cantor sets (or at least obtaining an upper bound) by computing the value

(d1,mdy}
of & AQ"'l(k[i"kt 1) for finite values of t. Since [£{"*], contains finitely many points,

one may attempt to numerically find the extremizers to the decoupling inequality, in other
words, to compute:
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Agp 1 ([E}# 4], = argmax > flar) ... f(an) - f(b1) ... f(bn)
FERES™ W) o) anefeld i)
[fll,2=1 b1,...bn€[5¢§d1 ,,,,, dk)]t
ai+-Fan=bi+-+bn
= argmax | fxfoox f Ry (43)
ferR(ef oty T
”sz2:1

or, as an unconstrained optimization problem,

[fx f e PG
A2n71([5(§d17~.‘,dk}]t) - arg max i (Z)
supp feleldt -k, ”fHZZ(Z)

We performed the numerical optimization problem in (44) for the (0,2) mod 3 Cantor set
and n = 1,2, 3,4 using gradient descent. The results can be seen in Figure 3. While there
are no a priori guarantees that the near-local-optimizers obtained from gradient descent are
in fact global optimizers of the problem at hand, this method was tested on the previous
examples in Section 3.3, and converged to the known decoupling exponent.

(44)

3.4.1. A conjectured fized point method. Studying equation (43), using Lagrange multipliers
one may extract information about the solution, more precisely that, at extremizers (which

must exist because l2([8¢§d1""’d’“ }]t) is a finite-dimensional space) the following equality holds:

n times

where V denotes the gradient with respect to f in 12([5,§d1""’d’“} ]¢)). Let

n times
The functional ® sends nonnegative functions to nonnegative functions, and by Cauchy-
Schwarz we know there exists an extremizer with nonnegative components. This suggests

the following numerical method to compute an extremizer:
Require: TOL > 0

n <« 0
do (fn)
D(fn
fort < @R
n<n-++1

while | f, — f.—1| >TOL

Convergence of this algorithm to an unique maximum would follow if f +— % was con-
tractive in some norm. Numerical experiments seem to indicate convergence of the algorithm

in all situations that were tested at a much faster rate than the gradient descent methods.

3.4.2. Code. A commented version of the code can be found at https://github.com/
jaumededios/Decoupling_Cantor.


https://github.com/jaumededios/Decoupling_Cantor
https://github.com/jaumededios/Decoupling_Cantor
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