PuzzleMe: Leveraging Peer Assessment for In-Class
Programming Exercises

APRIL YI WANG?, University of Michigan, USA

YAN CHEN", University of Michigan, USA

JOHN JOON YOUNG CHUNG, University of Michigan, USA
CHRISTOPHER BROOKS, University of Michigan, USA
STEVE ONEY, University of Michigan, USA

Peer assessment, as a form of collaborative learning, can engage students in active learning and improve their
learning gains. However, current teaching platforms and programming environments provide little support
to integrate peer assessment for in-class programming exercises. We identified challenges in conducting
such exercises and adopting peer assessment through formative interviews with instructors of introductory
programming courses. To address these challenges, we introduce PuzzleMe, a tool to help Computer Science
instructors to conduct engaging in-class programming exercises. PuzzleMe leverages peer assessment to
support a collaboration model where students provide timely feedback on their peers’ work. We propose two
assessment techniques tailored to in-class programming exercises: live peer testing and live peer code review.
Live peer testing can improve students’ code robustness by allowing them to create and share lightweight
tests with peers. Live peer code review can improve code understanding by intelligently grouping students
to maximize meaningful code reviews. A two-week deployment study revealed that PuzzleMe encourages
students to write useful test cases, identify code problems, correct misunderstandings, and learn a diverse set
of problem-solving approaches from peers.

CCS Concepts: « Computer systems organization — Embedded systems; Redundancy; Robotics; « Net-
works — Network reliability.

Additional Key Words and Phrases: peer assessment, live programming, synchronous code sharing

ACM Reference Format:

April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve Oney. 2021. PuzzleMe:
Leveraging Peer Assessment for In-Class Programming Exercises. Proc. ACM Hum.-Comput. Interact. 5, CSCW2,
Article 415 (October 2021), 24 pages. https://doi.org/10.1145/3479559

1 INTRODUCTION

Collaborative learning actively engages students to work together to learn new concepts, solve
problems, and provide feedback [58]. Programming instructors often use various collaborative

“Both authors contributed equally to this research.

Authors’ addresses: April Yi Wang, University of Michigan, Ann Arbor, Michigan, USA, aprilww@umich.edu; Yan Chen,
yanchenm@umich.edu, University of Michigan, Ann Arbor, Michigan, USA; John Joon Young Chung, jjyc@umich.edu,
University of Michigan, Ann Arbor, Michigan, USA; Christopher Brooks, University of Michigan, 105 S State St., Ann Arbor,
ML, 48103, USA, brooksch@umich.edu; Steve Oney, University of Michigan, 105 S State St., Ann Arbor, MI, 48103, USA,
soney@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2573-0142/2021/10-ART415 $15.00

https://doi.org/10.1145/3479559

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

https://doi.org/10.1145/3479559
https://doi.org/10.1145/3479559

415:2 April Yi Wang et al.

learning activities in teaching, such as group discussion, project-based work [41], pair program-
ming [48], code debugging [26], and peer assessment [59]. In particular, peer assessment through
reviewing and testing each other’s solutions can improve students’ motivation, engagement, and
learning gains [38, 39, 53, 59], while reducing the effort required for instructors to provide scalable
personalized feedback [39].

Despite the benefits of peer assessment, current programming and teaching environments
provide little support to conduct peer assessment for in-class programming exercises—small
scale programming exercises for students to practice during lectures or labs. As a result, peer
assessment is typically conducted asynchronously rather than in a live classroom setting [59]. Prior
research has made it easier for instructors to share and monitor code with multiple students in
real time [8, 28]. However, designing real-time systems to enable both student-student interactions
and student-instructor interactions in a live setting is still a challenge [10]. Moreover, students
often struggle to give each other high-quality feedback or even start a fruitful conversation without
proper moderation and effective grouping [7, 43]. In a needs analysis, we also found that it is
difficult for instructors to effectively break students up into groups with appropriate balances of
expertise in physical classroom situations. Further, because of the overall lack of expertise, peers
can find it difficult to assess whether a given piece of code would fail unknown edge cases even if
it generates the desired output for the test cases given by instructors.

In this paper, we present PuzzleMe, a web-based in-class programming exercise tool to address the
challenges of peer assessment. PuzzleMe consists of two mechanisms: live peer testing and live
peer code review. Live peer testing helps learners assess their code through moderated collection
of test cases from peers. Inspired by the notion of the “sweep” [46], live peer testing seeks essential
examples only for illustrating common and interesting behaviors rather than writing comprehensive
test suites. PuzzleMe automatically verifies valid test cases by referencing an instructor-provided
solution and shares valid test cases with the whole class. Live peer code review aims to provide
personalized feedback at scale. It does this by automatically placing students in groups where
they can discuss and review each other’s code. PuzzleMe introduces several features to encourage
meaningful code review, including a matching mechanism to balance student groups based on the
number of correct answers and the diversity of those answers. PuzzleMe also includes mechanisms
that allow instructors to create improvised in-class programming exercises, monitor students’
progress, and guide them through solutions. Our design is inspired by formative interviews where
we investigated the obstacles instructors face when conducting in-class programming exercises
and encouraging peer activities.

To validate PuzzleMe’s effectiveness, we deployed it to an introductory programming course
for two weeks and conducted several exploratory studies. Our results show that the peer testing
feature can motivate students to write more high-quality tests, help identify potential errors in their
code, and gain confidence in their solutions. Further, the peer code review feature can help students
correct misunderstandings of the course materials, understand alternative solutions, and improve
their coding style. We also report on the use of PuzzleMe in an online lecture' and demonstrate
its potential to be used at scale in synchronous online education. We found that PuzzleMe is
perceived to be useful in a wide range of programming classes, reducing the stress of providing
near-immediate feedback, helping instructors to engage students, and providing opportunities to
explore different types of pedagogy.

The key contribution of this work is the design lessons learned from a series of mixed methods
studies, which add to the body of work on personalized feedback, peer assessment, and in-class
exercises. We believe these lessons can guide future interface design exploration in similar contexts

!During our deployment, this course migrated to a fully online setting due to the outbreak of COVID-19.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:3

(e.g., live workshops and programming education via live streaming [10]). PuzzleMe shows the
potential for increasing learning outcomes via in-class peer support without increasing teaching
costs. Specifically, our contribution includes:

(1) an articulation of the needs and challenges that instructors have when conducting in-class
exercises for introductory programming courses based on formative interviews with five
instructors,

(2) two techniques—Ilive peer testing and live peer code review—that enable peer assessment
during in-class exercises, and

(3) PuzzleMe, a web-based system for instructors to carry out in-class programming exercises
with the support of live peer testing and live peer code review.

2 RELATED WORK

Our work builds on three threads of research: (1) peer assessment as collaborative learning, (2)
real-time code sharing in educational settings, and (3) scaling feedback.

2.1 Peer Assessment as Collaborative Learning

Collaborative learning enhances the learning experience by involving multiple learners together in
collective pedagogical activities [58]. Peer assessment is a form of collaborative learning [36, 60]
where students critique and provide feedback to each other’s work. Previous work has shown
that peer assessment can reduce the time required for assessment activities while maintaining
quality. For instance, Kulkarni et al. have shown that the majority of students can evaluate their
peers’ work fairly [38] and that rapid peer feedback can be helpful for mastering open-ended
tasks [39]. However, students may find it difficult to construct high-quality feedback due to a lack
of expertise [7, 38, 66]. They often need prompting, structured guidance, proper moderating, and
effective grouping [7, 49, 66]. Prior work has also demonstrated the benefits of peer assessment
in programming education. Sitthiworachart et al. [57] found that peer feedback in programming
courses can be helpful for both the students providing help and those receiving it. Denny et al. [16]
demonstrated that by reviewing others’ code, students benefit from exposure to a wider diversity
of solutions. Denner et al. [15] studied the mechanisms of pairing students to encourage positive
influence. Hundhausen et al. [32] proposed a pedagogical code review that can promote positive
attitude and train students in critical review skills. Moreover, Dave et al. [12] found that by providing
“in-flow peer review”—peer review while a problem is in progress—reviewers and reviewees can
gain greater motivation.

2.1.1 Peer tests. Creating and sharing test cases is a popular form of peer review in programming
education. However, in prior work, the process of sharing test cases has had to be manually per-
formed by instructors. Smith et al. [59] incorporated peer testing into a lower-division programming
course. They found that peer testing improved students’ engagement and their self-efficacy as
software testers [59]. However, the timescale for these peer testing exercises is not appropriate for
in-class exercises; tests and reviews were submitted through web forms and distributed by email,
and the assignment schedule had to be modified (adding approximately five days) to include time
for students to submit and review peer tests.

Code Defenders [53] encourages software testing through gamification; students write test suites
that are assessed by running them against a series of variants of a working codebase produced
by others (a form of mutation testing). An evaluation of Code Defenders found that through
gamification, participants wrote better test suites. Like PuzzleMe, Code Defenders engages students
in the testing process by giving them real-time feedback on the tests they write. Code Defenders uses
a more formal evaluation framework than PuzzleMe. Further, Code Defenders relies on mutation

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:4 April Yi Wang et al.

testing in pairs, meaning that students are (1) not testing their own code (but instead are testing
variants of an existing codebase) and (2) the testing mechanism relies on splitting students into
groups where one student writes code variants and the other tests them. By contrast, PuzzleMe
does not rely on a pairing mechanism for peer testing and allows students to write tests for each
other’s code, which makes it appropriate for a much wider variety of in-class exercises.

2.1.2 Peer review of peer tests. The tests that students write can also be useful peer review artifacts.
Politz et al. [47] found that in-flow peer review can improve the quality of test suites and engage
students early and thoughtfully. However, writing and reviewing comprehensive test suites can
be burdensome for students, particularly those in lower-level programming courses [20]. Politz et
al. [46] further proposed the idea of “sweep”—to help students explore a programming problem
through interesting and representative examples. They found that sweep is very useful for students
in introductory Computer Science (CS) courses to write tests and engage in peer review. However,
Politz studied in-flow peer review of tests and the sweep mechanism outside of the classroom (e.g.,
for take-home assignments). The effect of providing rapid peer feedback in class remains largely
unknown. PuzzleMe builds upon previous work and enables scalable real-time feedback for in-class
coding exercises by allowing students to easily exchange test cases and perform code reviews.

2.2 Real-Time Code Sharing in Educational Settings

One challenge in supporting peer assessment for in-class programming exercises is sharing code in
real time between students and instructors, and among students. Thus, we reviewed prior work on
real-time code sharing in educational settings.

2.2.1 Real-time code sharing between students and instructors. Real-time code sharing is used for
teaching programming via live coding, where instructors broadcast their programming activities
in front of the classrooms or through recorded and live-streamed videos. To facilitate teaching
programming via live coding, Chen and Guo proposed Improv, an IDE extension that integrates
the presentation system directly in programming environments [8] where code edits in the IDEs
are synced with slide presentations in real time. Chen et al. studied the experience of learning
programming through live streaming [10]. They found that existing platforms do not adequately
support interactions between viewers and streamers, which leads to a low level of engagement
during the streaming sessions. Real-time code sharing between students and instructors also benefits
instructors to mentor students’ code and provide scalable help. For example, Codeopticon enables
instructors to monitor multiple students’ coding progress in real time [28]. In addition, real-time
code sharing can be potentially useful for providing remote assistance and personalized support
[9, 44].

2.2.2 Real-time code sharing among students. Real-time code sharing among students can increase
social translucence in online programming courses. For example, Cocode presents students with the
real-time code editor activities of others to improve social awareness [6]. Real-time code sharing
among students can help support collaborative work. The Codestrates system follows the structure
of a common notebook interface to allow block-like code representation for reprogrammable
applications [50]. It shares the code and the applications across multiple users and devices, making
it possible to support collaborative programming practices [4]. Relevantly, Codechella facilitates
help-seeking and peer tutoring through real-time code sharing and program visualization [29].
PuzzleMe builds on these works by designing a real-time interface to support the sharing of test
cases and code reviews.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:5

2.3 Scaling Live Feedback

Providing timely and personalized feedback is crucial to help students engage with and learn
from programming exercises [2, 61]. However, it can be prohibitively difficult, particularly in large
classes [56]. Prior work has explored different approaches for scaling feedback: clustering and
monitoring similar solutions to enable instructors to write feedback, and generating feedback
automatically by synthesizing students’ solutions.

2.3.1 Scaling instructors’ effort. In large university classes where many students interact with
a small number of instructors, giving high-quality feedback is challenging. Previous work has
explored different approaches to scale instructors’ effort. OverCode shows high-level patterns
to instructors by clustering students’ solutions, which helps them provide feedback at scale [24].
Similarly, MistakeBrowser and FixPropagator [30] help instructors scale feedback by using code
synthesis to propagate bug fixes from one student to the rest of the class. TeacherASSIST scales
instructor hints by crowdsourcing them from instructors in the learning platform [45]. While
these tools alleviate the instructor’s workload, it is difficult to apply these approaches in real-time,
in-class settings as they are still limited by the instructor’s bandwidth, particularly in classes with
many students. Intelligent Tutoring Systems (ITSs) have proven effective in improving students’
performance in programming learning [3]. However, building an effective ITS for a programming
curriculum can be complex—it requires expert knowledge [52] and the ratio of tutor construction
time to student interaction time can be as high as 100:1 [21]. PuzzleMe leverages peer assessment
to alleviate the instructor’s feedback load.

2.3.2 Synthesizing student solutions for feedback generation. Another approach to scaling feedback
is to leverage prior student activity. For instance, Rivers et al. [51, 52] use student activity data to
model the solution space and learning progress for programmers. This model was then used to
provide students with personalized feedback. Gulwani et al. [27] introduced a system that could
automatically repair incorrect programs based on correct solutions from students. They found
that students perceived the automatic repair function to be useful. However, these approaches are
difficult to use in real-time, in-class settings where the problems being given to learners are novel
and historical data has not yet accumulated.

A complementary approach to synthesizing feedback is through learnersourcing [35], which
engages students to leverage their learning efforts to create materials for future learners. For
instance, in the video-learning setting, Weir et al. [62] leveraged learners’ work to generate sub-
goal labels for videos, which reduced the cognitive load of future students. Researchers have
also shown that learnersourcing can be leveraged to scale feedback in math [63] and computer
architecture education [23]. By synthesizing the effort of previous students, learnersourcing systems
could assist students even when the lecturer is not available. Edwards et al. [18] introduced a similar
approach of allowing students to create questions and share those with others. These approaches
may not only lower the instructors’ workload but also allow students to practice the subject with
different types of feedback. PuzzleMe builds on this work of learnersourcing in a novel and task-
specific way by sourcing not just student explanations or solutions but also a collection of test
cases that are shared among students as learners explore the bounds of the problem.

3 IN-CLASS PROGRAMMING EXERCISE CHALLENGES

To better understand the current practices and challenges for conducting in-class programming
exercises, we conducted formative interviews with instructors of introductory programming courses.
We chose to focus on introductory programming courses because (1) they typically have larger
enrollments, (2) students in introductory courses often need more support, and (3) large knowledge

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:6 April Yi Wang et al.

Table 1. Instructors’ course demographics in formative interviews.

PID Size Name Language(s)

S1 260 Intro.to Prog.1(G) Python

S2 250 Intro. to Engr. (U) MATLAB
S$2,S3 300 Intro. to Prog. II (U) Python

S4 260 Intro. to UI Prog. (G) HTML,CSSJS

S5 260 Intro. to Prog. I (U) Python

gaps between students are more likely, making it difficult for instructors to accommodate all
students’ needs.

3.1 Method

We recruited five instructors from different introductory programming courses at the authors’
university. Table 1 presents an overview of the courses that the five interviewees taught. They
include three undergraduate- and two graduate-level courses across three departments, with the
same session time (80 minutes, twice per week). Each interview lasted 30 minutes. We asked
instructors to recall the most recent introductory programming courses they had taught and
explain what types of in-class exercises they conducted and what processes and tools were involved
to facilitate the exercises. In addition, instructors were encouraged to tell us about any challenges
they had encountered with conducting in-class programming exercises. Two authors separately
conducted iterative coding to identify reoccurring themes using inductive analysis. We then merged
similar codes to infer important findings. During the process, the codes of common practices for
conducting in-class exercises, such as the types of exercises and tools, were merged smoothly.
However, those of challenges in conducting programming exercises were rather difficult because of
the authors’ different perspectives (e.g., process vs. roles involved). By dividing the in-class exercise
activity into different stages and identifying the major roles of each party, the authors discussed
and finalized the codes.

3.2 Findings

3.2.1 In-class exercises are common. On average, interviewees spent a third of the lecture time on
programming exercises. Interviewees often conducted two types of in-class exercises: multiple-
choice questions (where students respond using audience response systems such as i-clickers) and
programming exercises (where students write code on their laptops). In some cases, students needed
to download starter code from code collaboration applications [25, 65]. None of the interviewees
mentioned using assessment tools to collect and validate students’ solutions. Instead, they often
provided an example of an acceptable solution (e.g., on a projector) and asked students to self-check
their code. All interviewees mentioned asking students to discuss with their peers or providing
personalized help during office hours.

3.2.2 Impromptu exercises are valuable. To conduct effective exercises, instructors get feedback
from students on what they understand and then improvise exercises based on that feedback. Some
instructors would live code in class and call on students to verbally describe what code they should
write (S2, S5). They encountered cases of “a lot of people making similar misconceptions that I did
not expect” (S1), so they would often choose to let students vocally explain them to the rest of
the class (S1, S4). Although vocal feedback has a low overhead cost, interviewees were concerned
that “you always get the same people participating” (S4). S1 wished to leave more lecture time

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:7

for students to “share their thoughts”, or “learn from the person sitting 20 feet away.” Additionally,
vocal communication is often not accessible (e.g., hard to hear) for students and is not archived for
students to revisit.

3.2.3 Hard to scale support for exercises. When conducting the exercises, all interviewees reported
that they would walk around the classroom to observe students’ progress (S1-S5), provide help
(S1-S5), “get teaching feedback” by asking students “what’s hard about this” (S1), or “hearing about
low level problems that we might not have thought about” (54). Four interviewees emphasized the
physical challenge of navigating the classroom and interacting with students sitting in hard-to-
reach spots: “there are 130 people, you're going to run into backpacks, walking between different
chairs. It’s not the best way of walking around” (S4). Moreover, because exercises were often short,
instructors did not have time to gauge students’ mistakes and adapt their teaching later on: “I want
to get a sense for how everyone is reacting so I can decide what I'm going to talk about next” (S1).

3.2.4 Difficulty in connecting students with each other. All interviewees encouraged students to
talk to each other while performing exercises: “I don’t care if they get the answer right. As long
as you have the discussion you learn from it” (54). Four interviewees applied peer instruction [14]
to multiple-choice questions in their lectures (S1, S2, S3, S5) and found it encourages students
to monitor themselves in learning and build connections with each other. However, instructors
reported a lack of intrinsic motivation for students to interact with their peers (S1-3). Instructors
reported ineffective grouping as an important reason. Due to the physical distance between students
in classrooms, instructors often pair students with their neighbors. Pairs are matched without
regard to their diverse backgrounds, solutions, and levels of knowledge, which does not ensure
that students in a pair would have meaningful conversations with each other (S3, S5). In addition,
instructors mentioned the social hurdle for nudging peer interactions. Students would feel hesitant
to engage with others socially without proper prompting. This corresponds to prior work on
structuring roles and activities for peer learners to increase student engagement and process
effectiveness [37, 55]. Instructors also reported that students would feel less comfortable asking for
help from peers than instructors (S3, S4).

3.3 Summary of Design Goals

Driven by the findings, we formed three design goals for tools that scale support for in-class
programming exercises:

o Improvising in-class exercises and synchronous code sharing (3.2.1, 3.2.2): Instructors
need a synchronous code-sharing platform for improvising in-class exercises. Tools should
support various teaching needs, including creating and sharing exercises, verifying students’
solutions, monitoring students’ progress and activities, and walking through answers.

e Scale student support (3.2.3): Students need to get timely and on-demand support during
in-class programming exercises.

e Encourage live peer interaction (3.2.4): Tools should encourage students to interact with
their peers in real time to engage them and motivate active learning.

4 PUZZLEME DESIGN

We designed PuzzleMe as a platform to improve in-class programming exercises for instructors
and students. PuzzleMe allows instructors to easily create and share exercises, monitor students’
progress, improvise exercises as needed, and demonstrate correct solutions through live coding.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:8 April Yi Wang et al.

PuzzleMe[gains] Bob (a.k.a. & Chocolate Otter)

H
Leader Board:
#1. R Denim Kiwi (1 solved) #2 AP Flame Hippo (0 solved) #2. 4 Fuchsia Tree (0 solved) #2 #2. *+#% Chocolate Otter (0
solved)**

1. Write code to rearrange the strings in the list names so that they are in alphabetical order by last name from A to Z. Save then A
list as names_sorted.

B G
My Solution Instructor My Group
D
names = ["Yann LeCun", "Yoshua Bengio", + Test ['Yoshua Bengio®, ‘Geoffrey Hinton', 'John
"Geoffrey Hinton", "David Patterson", INSTRUCTOR L. Hennessy', 'Yann LeCun', 'David
f i B1) E
John L. Hennessy"] o Patterson']
STUDENTS
1 # code here c) Error while running our tests:
X middle name

AssertionError: on line 2
names_sorted = sorted(names, key = lambda
x: x.split()[1])

print(names_sorted) v
: v

test assertions (assert ...)

assert names_sorted == ['Yoshua Bengio'

'John L. Hennessy', 'Geoffrey Hinton',

'Yann LeCun', 'David Patterson']

R |

Fig. 1. PuzzleMe is a peer-driven live programming exercise tool. The student view shows: (A) a problem
description; (B) an informal test that consists of the given conditions (see B1) and the assertion statement
(see B2); (C) a code editor where students can work on their solutions; (D) a test library that contains valid
tests shared by instructors and other students; (E) the output message of the current solution; (F) access
to the instructor’s live coding window; (G) access to peer code review; (H) a leaderboard of the number of
problems that students have finished; and (I) the number of students who have finished the current problem.

On the student side, PuzzleMe supports live peer testing and live peer code review to scale support
and encourage peer interaction.

4.1 In-Class Programming Exercises

PuzzleMe supports the types of exercises that instructors described in our interviews: programming
exercises?, multiple-choice questions, and free-response questions. For a programming exercise,
an instructor can provide a problem description (Fig.1.A) and starter code (Fig.1.C) for students
to build on. The editor includes a read-only code area with instructor-specified input variables
(Fig.1.B1) and assertions to evaluate program output (Fig.1.B2). Fig.1.E shows the code output and
error messages.

PuzzleMe also supports creating impromptu exercises in response to students’ feedback and
performance. Instructors can import exercises they prepared in advance or improvise and modify
exercises during class. As soon as the instructor modifies existing exercises or creates a new exercise,
their modifications are propagated to students. PuzzleMe propagates character-by-character edits,
as we found in pilot tests that these more frequent updates kept students engaged if they had to
wait as instructors wrote the exercise.

4.1.1 Live coding for answer walkthrough. Prior work has found that students prefer when instruc-
tors write out solutions in front of the class—known as “live coding” [54]. Live coding also allows
instructors to teach through experimentation (for example, by demonstrating potential pitfalls as

2PuzzleMe currently supports Python but could easily be extended to other programming languages.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:9

1. Write code to rearrange the strings in the list nanes so that they are in alphabetical order by last name from A to Z. Save the new
list as names_sorted.

My Solution | Instructor | My Group 1. Write code to rearrange the strings in the list names so that they are in alphabetical order by last name from A to Z. Save the new

list as names_sorted.
names = ["Yann LeCun", "Yoshua Bengio”, — [*Yoshua
Geatfrey Hi , "David Patterson", 7 ‘Geoffre My Solution Instructor My Group
t Patterso B

live code demo 7 LR
names_sorted = sorted(names, key = lambda
: Chocolate Otter (me) | | Goldenrod Jet | | Flame Hippo | | Fuchsia Tree
x: x.split(){C1])
print (names_sorted)
code here £ Chocolate Otter
@Denim Kiwi, you can use lambda function to simplify the
def last(full name): code
return full name.split()[-1]
A # Denim Kiwi
names_sorted = sorted(names, key = last) Thanks!
Denim Kiwi
S O (et (T vl Btw, you should use (1] instead of (1] because a name may
S o contain middie name -- see the second test case
assert names_sorted == ['Yoshua Bengio',
John L. Hennessy', 'Geoffrey Hinton', P
‘Yann LeCun', 'David Patterson']
@ Anonymous @

Fig. 2. The live code view and the peer code review view. (A) Instructor can enable live coding mode to
demonstrate coding in real-time, and use the built-in sketching feature to assist their demonstration; (B) Live
peer code review allows students to check other group members’ solutions and provide reviews in a chat
widget (as shown in C).

they go along), narrate their thoughts, and engage students by asking questions [54]. PuzzleMe
enables live coding and propagates instructor’s code changes to students (Fig.2), which allows
students to easily copy and experiment with the instructor’s code. PuzzleMe also enables free-form
sketches and annotations to allow instructors to draw explanatory diagrams to augment their code.

4.1.2 Monitoring class progress. To monitor students’ progress, similar to Codeopticon [28], Puz-
zleMe allows instructors to examine an individual student’s response in real time. In addition,
PuzzleMe presents an anonymous leaderboard (Fig.1.H) based on exercise completion time. Puz-
zleMe also displays how many students have written working solutions, to give a sense of progress
relative to their peers (Fig.1.I).

4.2 Live Peer Testing

To give students timely feedback during in-class programming exercises, we designed live peer
testing—a practice of writing and sharing lightweight tests in real time—in PuzzleMe.

4.2.1 Conceptual model of testing. One of the challenges of enabling live peer testing in introduc-
tory programming courses is that many testing frameworks require advanced knowledge [20]. For
example, Python’s unittest module requires an understanding of classes, inheritance, user-defined
functions and more. By contrast, students in introductory courses often do not learn how to define
functions or intermediate control flow mechanics until several weeks into the course. Students in
introductory courses benefit more from identifying interesting and representative examples rather
than constructing comprehensive test suites [46]. We thus designed a model for live peer testing
that would be flexible enough to test any number of configurations while still being conceptually
simple enough for students in introductory classes. In our model, the code editor is split into three
parts: 1) setup code that specifies pre-conditions, 2) the student’s code, and 3) assertion code that
tests whether the student’s code produces the correct output given the pre-conditions. The setup
(Fig.1.B1) and assertion code (Fig.1.B2) are “paired”, independent of the student’s code (Fig.1.C).

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:10 April Yi Wang et al.

This can be visualized as a “flipbook” that flips through pairs of pre-conditions and expected
post-conditions.

4.2.2 Creating test cases. Students can create a new test case by clicking the “+ Test” button
(Fig.1.D) and editing the setup code and assertion code. Instructors can specify whether tests are
disabled, enabled, or enabled and mandatory. In addition, instructors can choose to require that
students write a valid test case before they can start writing their solution, which can be useful for
adapting different types of pedagogy like test-driven learning [33].

4.2.3 Verifying and sharing test cases. To help guide students to create effective test cases (and
avoid sharing invalid test cases), PuzzleMe includes mechanisms for verifying test cases. For this
to work, instructors write a reference solution that is hidden from students. To be considered
acceptable, a student test must pass the reference solution (to prove that it is valid) and fail an
empty solution (to prove that it is non-trivial, such as empty tests).

PuzzleMe notifies students of their test case status and students can always update and resubmit
their unverified test cases. PuzzleMe shares verified test cases with all students as a test library
(Fig.1.D). When students execute their code (pressing the ‘Run’ button), PuzzleMe uses all the cases
in the library to examine their answers.

4.3 Live Peer Code Review

Live peer testing provides feedback on students’ test cases and creates a test library to help them
write more robust code. However, passing test cases does not ensure high-quality code. Valid
solutions may contain unnecessary steps or bad coding practices. This might not affect the output
of the program but may harm students’ long-term coding ability [22, 42]. Thus, it is important
for students to get feedback on both the correctness and the quality of their solutions. Prior work
suggests that providing comparisons can help novice learners better construct feedback [7, 49].
PuzzleMe supports live peer code review, a feature that allows students to see and discuss each
other’s code. As Fig.2 shows, students can check other group members’ solutions and provide
reviews in a chat widget.

We originally designed the discussion widget (Fig. 2) as a “peer help” tool where students could
press a “help” button to request assistance from another student. However, in pilot testing, we found
that struggling students were hesitant to ask for help, even when they could do so anonymously.
By framing this discussion as peer code review rather than peer help, however, PuzzleMe removes
students’ stigma around asking for help while still enabling valuable discussions between students.

4.3.1 Matching learners. By forming students into groups after working individually on the prob-
lem, our goal is to encourage meaningful conversations around everyone’s solutions—for students
who have incorrect solutions to clarify misconceptions and for students who have correct solutions
to learn from others who use a different approach to solve the problem. Therefore, matching
learners effectively is crucial for encouraging meaningful discussions among group members. Based
on instructors’ needs in the formative study to leverage peer help and match peers with diverse
solutions so that they could learn from each other, we propose two heuristics for matching learners.
First, students who have incorrect solutions should be paired with at least one student who has a
correct solution. Second, if a group has multiple students who have correct solutions, they should
have different approaches to or implementations of the problem. We determine group sizes by the
proportion of students with incorrect solutions so that students who have incorrect solutions are
paired with at least one student who has a correct solution. Next, we calculate the Cyclomatic
Complexity Number (CCN) of the correct solutions as a proxy measure for approach. We then
allocate the correct solutions by as many different approaches as possible. In addition, students may

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:11

feel hesitant to start conversations because of social barriers or feel stressed when their solutions
are put together with others [19]. To address this issue, PuzzleMe keeps students anonymous [43]
when sharing their solutions and reviews.

4.4 Implementation

We implemented PuzzleMe as a web application. We used ShareDB [17], a library that uses Op-
erational Transformations (OTs) to keep instructors’ and students’ data updated in real time. To
ensure that it can scale to large numbers of students, PuzzleMe executes all code client-side, using
Skulpt [1], a library that transpiles Python code to JavaScript. We have published our source code®
for researchers to evaluate and build on.

5 EVALUATION

In total, we conducted three studies to evaluate the effectiveness of PuzzleMe for scaling support
(Studies 1 and 2) and its general applicability (Study 3). To evaluate its effectiveness, we deployed
PuzzleMe in an introductory programming class for two weeks. For the first week, we compared
students’ performance with and without the support of PuzzleMe in four lab sessions. For the
second week, we collected and analyzed the PuzzleMe usage data for an online lecture. We then
conducted an interview study with teaching staff from other programming classes to understand
the broader applicability of PuzzleMe.

5.1 Course Background (Studies 1 and 2)

The introductory programming course consisted of a weekly lecture and two weekly lab sessions
where students were assigned to one of nine smaller lab sections for hands-on practice of coding.
There were 186 undergraduate students enrolled in the class, one full-time instructor (Professor)
and five Graduate Student Instructors (GSIs). Most students did not have prior experience in
programming. Each GSI individually led one or two lab sections with 10-30 students. The class
format changed to online with optional participation in lectures and lab sessions during the second
week of the deployment.

5.2 Study 1: Using PuzzleMe in Face-to-Face Lab Sessions

To gain a holistic understanding of how PuzzleMe can be used to improve students’ learning
experience in in-class programming exercises, we conducted a user evaluation in four lab sections
during the first week of the deployment. In particular, we aimed to answer the following questions:

Q1 Compared to conventional methods, would live peer testing encourage students to write
higher quality test cases? Are test cases shared by peers helpful for students to assess their
code?

Q2 Compared to conventional methods, how would live peer code review affect students’ willing-
ness to seek feedback from others? Would live peer code review yield more meaningful and
constructive feedback?

We chose self-assessment and face-to-face discussion as a representation of conventional methods

because they were widely applied by instructors in our formative studies.

5.2.1 Study setup. The GSIs gave students a set of problems to work on based on the material
they were learning at the time. We used one of the programming exercises to evaluate live peer
testing (noted as E1 for answering Q1) and another programming exercise to evaluate live peer
code review (noted as E2 to answer Q2). For E1, the GSIs gave students 8-10 minutes to work

3https://github.com/soney/puzzlemi

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:12 April Yi Wang et al.

Table 2. The four lab sections were randomly assigned into the treatment condition or the control condition.

Session ID Condition GSI Total Students

T1 Treatment 11 16
T2 Treatment 12 16
C1 Control 12 12
C2 Control 11 19

individually and encouraged them to create additional test cases. For E2, the GSIs gave students
around 5 minutes to work on the solution individually before placing them into groups. They then
gave another 5 minutes to discuss with peers and continue working on their solutions. We used a
between-subjects design where the four lab sections were randomly assigned to use PuzzleMe with
or without the live features.

(Treatment) Using PuzzleMe with the Live Features: For E1, students were encouraged to
write, verify, and share test cases using PuzzleMe, and use others’ test cases to assess their code.
For E2, PuzzleMe assigned students into groups to perform live peer code review after working
individually on the problem.

(Control) Using PuzzleMe without the Live Features: Both live features in PuzzleMe were
disabled in this case. Instead, students were encouraged to write test cases in their standard code
editor for E1. For E2, students were asked to show their computer screens to people sitting next to
them and discuss each other’s solutions after working individually.

5.2.2 Data collection. We gathered the usage log of PuzzleMe (which tracks and timestamps every
student submission attempt), the test cases students created in live peer testing, and the feedback
students sent one another through live peer code review. In addition, we engaged in a follow-
up interview with two GSIs and six students, where we asked about their learning or teaching
experience of the lab sections and how they perceived the usefulness of PuzzleMe. Finally, we
made observational notes during the lab sessions, where two of the authors sat at the back of each
lab session and collected data on students’ participation in the class, overall performance on the
programming exercises, and usability issues with PuzzleMe.

5.2.3 PuzzleMe encourages students to create and share test cases. Table 3 shows that with the
live features, students wrote 0.72 test cases on average (o = 0.73). Otherwise, students wrote 0.26
test cases on average (o = 0.44). In both conditions, students wrote less than one test case on
average. We believe this reflects realistic use of the tool with novice programmers in an in-class
setting where students were given less time and were less motivated to engage in the exercises as
compared to writing test cases as an assignment. To evaluate test quality, two authors manually
coded student-written test cases into three levels (Figure 3), assigning a 0 if the test case was
invalid or duplicated the default case, a 1 if the test case only performed additional checks on the
output without changing the given conditions, or a 2 if the test case checked assertions under new
conditions. We found that the average quality of the test cases in the treatment condition was 0.96
(o = 0.71). The average quality of the test cases in the control condition was 0.63 (o = 0.74). We did
not find any incorrect tests that slipped through the validation procedure. We also found that 37.5%
of students improved the code quality after the group discussion in the treatment condition, while
only 12.9% improved the code in the control condition.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:13

Table 3. The number and quality of test cases students wrote in E1 (mean: X, standard deviation: ¢). The
number of students who improved code (calculated by completion status) after group discussions in E2 (total:
N). Our comparison suggests that the number of test cases is significantly different in the two conditions
(p = 0.002, Mann-Whitney U test with power = 0.98); the number of students who improved code is also
significantly different in the two conditions (p = 0.02, proportions z-test given the binary data type).

E1 Writing Test Condition X o

Treatment 0.72 0.73
Control 0.26 0.44

Number of Test Cases*

Treatment 096 0.71

Test Quality Control 0.63 0.74

E2 Code Discussion Condition N Total

Treatment 12 32

Number of Students Who Improved Code Control 4 31

Our comparison suggests that the number of test cases (p = 0.002, Mann-Whitney U test with
power = 0.98) is significantly different in the two conditions. We do not find significant differences
between the test quality in the two conditions (p = 0.13, Mann-Whitney U test with power = 0.353).

In the follow-up interviews, the students and instructors explained why they felt the live peer
testing feature was useful. Live peer testing gives students feedback on their test cases, ensuring
the quality of the shared test pool because PuzzleMe verifies the test cases against a known correct
solution before sharing across the student body. In contrast, students in the control condition were
hesitant to write new tests because they “don’t know if my code is being tested correctly” (C2). Second,
the participants felt that writing tests improved their understanding of the learning materials overall.
Students commented that the “writing test was helpful to practice the new coding skill learned from
class readings” (T2). Similarly, 12 mentioned that “I think [writing tests] might be helpful for students
to think about what they should expect from their program”. Lastly, both students and instructors

1 names = ['Alice', 'Bob', 'Charlie'] Score: 0
code here

assert names_sorted == ['Charlie', 'Alice', 'Bob']

names = ['Alice', 'Bob', 'Charlie'] Score: 1
2 # code here

assert len(names_sorted[0]) > len(names_sorted[1])

names = ['Alice', 'Bob', 'Mark'] Score: 2

2 # code here

4 assert names_sorted == ['Alice', 'Mark', 'Bob']

Fig. 3. An example of three different levels of test cases for one exercise (Problem description: alphabetically
sort the given array, names, and assign the output to a variable named, names_sorted). Test cases were
manually coded into three levels: 0 if the test case was wrong, meaningless, or duplicated the default case; 1 if
the test case did not create new examples of names but added additional checks on the output names_sorted;
2 if the test case contained new examples of names and names_sorted.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:14 April Yi Wang et al.

reported that the live peer testing feature helped the former gain confidence in their solutions,
and both instructors indicated that PuzzleMe might help identify problems in students’ solutions.
Moreover, the instructors reported that the live peer testing feature reduced their teaching stress
as students gained confidence:

(PuzzleMe) takes off some stress from me to check students’ code. A lot of times students
don’t have a lot of questions, but they want me to check their code and make sure their
code is correct. Students always have more faith in other students than themselves. If
they pass their own assertion, they will still be unsure. If they pass others’ assertions,
they will be definitely more sure. (12)

5.24 PuzzleMe scaffolds group discussions. 'We observed that the face-to-face group discussions
were largely affected by the layout of the classroom in the control condition—“(Face-to-face dis-
cussion) depends on the physical setting and how many people are sitting. One of my lab session[s] is
smaller while the other session is more spread out” (12). In addition, some students found it difficult
to have meaningful conversations with their neighbors in the classroom setting. One student men-
tioned in the follow-up interview, “Sometimes, neither of us know the solution. It’s a little awkward”
(a student from C2). Instructors reported that the matching mechanism overcomes the physical
limitation of face-to-face discussion:

In my class, students who sit in the front always finish their code, so talking to neighbors
didn’t really work. I like the matching in PuzzleMe because it can really pair students
based on their solutions. (I12)

5.2.5 PuzzleMe encourages students to explore alternative solutions. PuzzleMe encourages students
to explore and discuss alternative solutions, which may help them better apply the concepts they
learned. For example, one session covered sorting and advanced functions. Students could solve
a problem by either passing a lambda expression or a traditional named function to the sorted
function. Students found it useful to see others’ solutions and understand both ways to solve the
problem—“PuzzleMe is very helpful especially my classmates ask questions that I didn’t think to ask”
(a student from T1); “Live peer code review is good because we get to see the other ways people do
their code.” (a student from T2).

In addition, the results suggest that the live peer code review feature helps students improve
their completion status. As shown in Table 3, the number of students who improved code (p = 0.02,
proportions z-test given the binary data type) after group discussions in E2 significantly improved
with the live peer code review feature. However, we suspect that multiple factors may lead to
an improvement in completion status. For example, students may directly copy and paste peers’
solutions without thinking, which is not our intention when designing live peer code review. To
understand how the live peer code review feature helps students complete the code exercise, we
continued with Study 2 to collect the PuzzleMe usage logs from an online lecture.

5.2.6 Limitation. Although we designed the experiment to balance the multiple confounds (e.g.,
instructors, room size, as shown in Table 2), it is difficult for us to conduct a rigorous comparison
between the two conditions given that we deployed PuzzleMe in an authentic usage scenario.
Factors like total students who showed up to each session were hard to control and may reduce the
external validity of the results. Thus, we focused on empirical evidence of how PuzzleMe can be
used to conduct in-class programming exercises. A well-controlled exhaustive study—including use
of the application during a complete course and evaluation of the students’ grades or the instructors’
perceived workload—will be needed to explore the pedagogical benefits of PuzzleMe.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:15

Discussion Edit Answer
Started Allowed Revealed
0 . . e e
+ . 3 eoe 3 3 3 ® > - ° e
c —
[7)
kel ———— =]
2 s e R —— Correct after discussion
0 - . - T . AT CRERTY F— Check peers' code
SNl L. S e e o e . Send messages
cee o T 3 See o " Receive messages
REPEPRRTY Ye I « Incorrect execution
o . Seee— e = - Correct execution
0 200 400 600 800 1000

time (seconds)

Fig. 4. Usage logs from the online lecture. With the help of peers, 10 students who had incorrect solutions
were able to pass the problem (as indicated in green horizontal lines). Live peer code review helps students
identify cavities in their code and inspires them to explore alternative approaches.

5.3 Study 2: Integrating PuzzleMe in an Online Lecture

Study 1 indicates that the live peer code review feature is related to the improvement of code
completion. To further explore whether students were using the tool as we expected, we collected
and analyzed the PuzzleMe usage data for a lecture. By the time of the deployment, the class
was changed to an online format where students attended lectures synchronously using video
conferencing tools. This allows us to additionally test the benefits of using PuzzleMe in online
classrooms.

5.3.1 Study setup. During the live-streamed lecture, the instructor gave students an in-class
programming exercise through PuzzleMe to practice the concepts they learned about that week
(higher order functions—map, filter, and list comprehensions). There were multiple ways to solve
the problem and students were encouraged to explore and find the most concise solution. After
initial exploration for about five minutes, the instructor turned on live peer code review mode and
asked students to discuss with their peers. We collected and analyzed the events log from the usage
data. In total, we collected data from N=48 students who participated in the programming exercise.

5.3.2 Results overview . Figure 4 shows the event logs where each row represents a student and
the x-axis represents the timeline. We sorted students based on the first time they passed the default
test. On average, each student had 13.75 attempts with incorrect solutions (meaning they ran their
code and failed at least one test case) and 2.63 attempts with correct solutions.

PuzzleMe connected students who were struggling with the problem with their peers for help.
Before the live peer code review started, 17 students passed the problem. After the peer code review
activity, an additional 10 students were able to pass the problem. Finally, 6 students passed the
problem after the instructor revealed the correct solutions, and the remaining 15 students did not
finish the problem within the given time (1000 seconds). We observed an additional 8 students
passing the problem after the given time.

5.3.3 Code review is correlated to better completion status. For students who were not able to
complete the problem before peer code review, we ran a proportions z-test to identify whether
there is a correlation between using the code review feature (as indicated by blue and orange dots in

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:16 April Yi Wang et al.

common_words = ['of', 'a', 'the', 'an'] Solution A

def acronymBuilder(sentence, to_ignore = common_words):
return ''.join([i[0] for i in sentence.split() if i not in common_words])

common_words = ['of', 'a', 'the', 'an'] Solution B

def acronymBuilder(sentence, to_ignore = common_words):

return ''.join([i[0] for i in sentence.split() if i not in to_ignore])
common_words = ['of', 'a', 'the', 'an'] Solution C
def acronymBuilder(sentence, to_ignore=common_words):

words, acro = [], []

for word in sentence.split():

if word not in to_ignore:
words . append (word)
for word in words:

acro.append(word[0])
return ''.join(acro)

Fig. 5. Three example solutions that pass the default test. Solution A is a false positive because students did
not use the function arguments correctly. Solution B is the most elegant way to solve the problem. Solution C
is correct but does not demonstrate an understanding of advanced list operations.

Figure 4) and solving the problem. The result shows that there is a strong correlation between using
the code review feature and eventually solving the problem (p = 0.02). We examined the editing
histories of the code and did not observe students directly copying and pasting others’ solutions.
Our interpretation is that students are self-motivated to work out their own solutions rather than
having a correct solution since the programming exercise is voluntary and not associated with
grades. This corresponds to the observation that students who failed to improve the code were
inspired by their peers’ code while continuing to work on their original solutions.

5.3.4 Who initiates the talk? Conversations need nudging. Although students reported in Study
1 that they felt more comfortable talking to peers in PuzzleMe, we observed that there was no
discussion going on in 8 of the 16 groups. Most members in the 8 groups “shied away” from
talking to peers, though they still actively engaged with the tool to check their peers’ code or
make code execution requests. In half of the other groups, students who already had the correct
solutions (in the helper role) initiated the conversation; in the other half, students who sought help
initiated the conversation. This result corresponds with the general challenge of nudging peer-
driven conversations in formative study. Next, we looked into the content of the conversations and
found that the common topics included making comparisons between various solutions, providing
suggestions on variable naming and formatting, seeking help on debugging, and clarifying the
lecture content. In addition, we examined the group discussions and did not find any propagation
of misconceptions through peer code review.

5.3.5 Code sharing improves engagement. Lastly, we observed that students who used the live peer
code review feature tended to stay engaged with the exercise. For students who passed the default
test, PuzzleMe inspired them to explore alternative approaches and think about issues in their code
that they might have missed. We manually examined students’ code and found some solutions
contained a similar bug that the default test case did not catch (as shown in Figure 5, Solution
A). This bug was caused by students’ misunderstanding of a critical concept in previous lecture
sessions—using default values for function arguments. Among the 17 students who initially passed
the problem, 8 students made this mistake. Through talking to peers and checking their code, three
students were able to identify the bug in their original code. In addition, several students passed the
problem with correct yet naive solutions (as Figure 5, Solution C shows). PuzzleMe informed these

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:17

students of the existence of other solutions and encouraged them to explore them further. In total,
we found 13 students who had additional attempts after they passed the problem the first time.

5.4 Study 3: The Practical Applicability of PuzzleMe

To explore the practical applicability of PuzzleMe, we conducted an exploratory study with four
programming course instructors from the authors’ university. Participants had varied experience
teaching a wide range of programming topics in both in-class and online settings (as Table 4 shows).
We first gave participants a walkthrough of PuzzleMe and asked them to interact with the features.
Then we asked them to brainstorm the possible use cases of PuzzleMe in their courses. We also
encouraged participants to envision other features they would like to have in a future design.

5.4.1 The use case of PuzzleMe in various programming topics . Table 5 summarizes the use cases
for PuzzleMe. For live peer testing, most of the use cases (6/7) relate to specific topics (e.g., User
Interface (UI) testing), and the rest (peer challenge) are class activities that can increase students’
engagement (P3). The six specific topics are categorized as the functionality of a system (e.g.,
security testing, Ul testing, data visualization), different modalities (e.g., in-circuit testing, design
feedback), and more generic topics (e.g., algorithm design).

In particular, P1 listed a series of topics in computer security that could use the live peer testing
feature, including fuzz testing, side channel attacks, and cross-site scripting attacks. Analogous
to the test-driven learning approach [34], P1 envisioned that the live peer testing feature could
help students learn programming concepts by writing test cases to “break the instructors’ program”
(with respect to data security), as prior work has proposed [59]. Instructors (P1, P2) also suggested
peer design feedback in which students can benefit from diverse responses from their peers.

More than half of the use cases (3/5) for the live peer code review feature related to team
collaboration (e.g., guided peer support, working in groups, group competition), and the other two
related to team matching. P1 suggested that rather than showing each other’s code immediately,
which may cause students to “lose the motivation to work on your own implementation”, a future
design of PuzzleMe could allow one student to guide others to complete the problem first, and
then unlock each other’s code for further review. P3 mentioned that using a leaderboard among
individuals or groups would motivate students to be more engaged with the exercise.

Participants also envisioned a set of use cases for other subjects. P2 mentioned that students in
graphical design or creative writing courses could get peer support and feedback on their artifacts
without solely relying on and waiting for their instructors’ feedback. P3 suggested that PuzzleMe
could be used for coding interviews (e.g., “it’s kind of similar to hackerrank (a coding interview site)”),
where one student plays the role of the interviewee to write the program and the other students
are interviewers writing test cases to challenge their peer.

Table 4. Participants’ background in Study 3.

PID Course Name Course Size
P1 Intro to Computer Security 300
P1,P2 Intro to UI Development 150
P2 Intelligent Interactive System 50
P3 Applied Data Science (Online) 145
P4 Natural Language Processing 100
P4 Data Mining 80

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:18 April Yi Wang et al.

Table 5. Use cases of two PuzzleMe features—live peer testing and live peer code review—in various program-
ming topics.

Live Peer Testing

Computer security-related testing: Test the security level of others’ programs (e.g., login systems).

UI testing: Navigate each other’s Ul (e.g., the responsiveness effect).

Data visualization: Interact with each other’s viz. systems (e.g., missing value, different input data).
Algorithm: Test edge cases for others’ algorithms (e.g., regular expression to extract domain from a URL).
In-circuit testing: Test each other’s circuits (e.g., virtual probe for breadboard testing).

Physical and digital artifact design feedback: Write feedback on each other’s designs.

Peer challenge: One student writes a program, the other writes tests to challenge (break) it.

Live Peer Code Review

Working in a group: Students can work in groups to solve problems.

Roleplay: Students can choose to be a helper or a help seeker based on their interests.

Guided support: Students can provide hints to other students in their group.

Different matching mechanism: Match students by their process (similar/different), or engagement level.
Group competition: Students are divided into groups and compete with other groups.

5.4.2 PuzzleMe lowers the effort for setting up in-class exercises. Besides use cases, participants also
pointed out the potential benefits of using PuzzleMe for lowering the effort involved in setting up
in-class exercises. For example, in a UI development class, students can take a UI front-end-related
exercise on PuzzleMe without the effort of configuring the environment (P3). Similarly, for exercises
that require external resources (e.g., libraries, data sets), PuzzleMe could provide a resource hub to
which the students can easily connect (P4). More generally, PuzzleMe could support instructors to
create new exercises by modifying the previous ones, making it easier for students to practice on
the same topic iteratively (P1, P4).

6 DISCUSSION

Our evaluation studies demonstrate that the design of PuzzleMe allows instructors to improvise
in-class programming exercises, while effectively leveraging peer feedback through live peer testing
and live peer code review. In particular, PuzzleMe motivates students to write more test cases,
identify gaps in their code, and explore alternative solutions—all important pedagogical goals
of an introductory programming course. We reflect on the design of PuzzleMe and discuss the
implications for future Human-Computer Interaction (HCI) and Computer-Supported Cooperative
Work (CSCW) research.

6.1 Design Lessons

6.1.1 The benefits of learnersourced test creation. Learnersourced test case creation benefits multiple
stakeholders. Although individual students’ test case coverage might not be as thorough as those
written by instructors, they save time and effort and enable improvised programming exercises.
More importantly, the process of creating test cases helps learners verify their understanding of
the problem and of test-driven development while simultaneously contributing to a larger pool of
verification instruments to be used by the whole class. Writing tests also helps learners practice
the ability to predict the outcomes of a given input by manually walking through their code (either
in their mind or by writing intermediate results on paper), a critical strategy for scaffolding novice
programmers [64]. Finally, the test cases themselves provide additional diagnostic material that

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:19

might be used by instructors post-hoc, allowing them to reflect on the misconceptions students
formed and aiding in the design of future learning activities.

6.1.2 The social and cultural value of building collaborative learning platforms. The live peer testing
and live peer code review features in PuzzleMe scaffold peer interactions in programming classes.
We observed that students used topics related to their interests when creating test cases (e.g., in
the name-sorting exercise, students created test cases using names that are popular nationally,
regionally, and culturally), which shed light on the unique social and cultural aspects of students’
backgrounds [13]. We believe that the opportunity to create test cases related to their interests adds
additional motivation for students to engage in the test creation process. In addition, our evaluation
indicates that through sharing tests and discussing code with peers, students feel more engaged
and connected with the class. Particularly in online classrooms, students would largely benefit
from a stronger degree of social presence [40] by interacting with their peers in various learning
activities. Designers of future collaborative learning platforms may learn from our design and
leverage synchronous technologies to build social and structured activities [7, 10, 43] in platforms
that connect students.

6.1.3 The challenges of connecting students. We designed PuzzleMe as a platform for easily creating
and distributing programming exercises while engaging students through live peer testing and live
peer code review. As we found when designing PuzzleMe, students might feel shy or hesitant to
talk to each other, especially in situations that might expose their lack of understanding of the
material to their peers, such as asking for help. We proposed various design decisions to create an
encouraging collaborative space, such as providing real-time feedback on test cases so that students
are comfortable sharing them with others, keeping students anonymous when sharing code and
reviews, and allowing instructors to monitor and intervene in group conversations. However, our
evaluation suggests that prompting conversations between students is still challenging. Compared
to live peer code review, students might feel more comfortable with non-conversational interaction
with peers (e.g., sharing and using test cases created by others). Future research could look into the
reasons that students fail to connect with their peers and address the challenge from both social
and technical perspectives. For example, it is worth exploring the effect of the pairing mechanism
on students’ self-efficacy and power dynamics in group discussions.

6.2 Future Work

6.2.1 Towards test-driven learning. As participants in Study 3 mentioned, PuzzleMe can be useful
in supporting test-driven learning, a pedagogical approach that can improve comprehension of
concepts but requires extra learning effort in creating test cases, particularly in early programming
courses [34]. PuzzleMe can help address these challenges by reducing the barriers and learning
costs for students to write test cases. PuzzleMe introduces a straightforward design that maps the
given variables, solution code, and assertion statement in a linear order so that even students who
have no experience in testing frameworks can easily pick up how to create tests. PuzzleMe ensures
that students can get immediate feedback on the test by running it against the instructor’s standard
solution. This mechanism increases students’ confidence in their test cases, and thus the problem
formulation, before even starting to write a solution. Finally, peer-driven test creation provides
the opportunity for HCI and CSCW researchers to further explore different implementations of

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

415:20 April Yi Wang et al.

test-driven learning. For example, the instructor can provide a solution with intentional bugs and
ask students to identify edge cases to catch these bugs or misconceptions.

6.2.2 Peer assessment beyond introductory programming. Adopting PuzzleMe’s approach beyond
introductory programming might require further design exploration regarding aspects such as
assessment format or content presentation. Prior work has explored ways to improve peer assess-
ment quality in open-ended tasks, such as providing comparisons [7], framing task goals carefully
[31], and using expert rubrics [67]. Future work could explore the use case of live peer testing and
live peer code review in open-ended assessment on programming-related topics (e.g., providing
feedback for system architectural design, code review). Content-wise, P3 from Study 3 suggested a
“top down camera view” for in-circuit live peer testing. Prior work also introduced a representation
of Graphical User Interface (GUI) test cases that is more readable than a standard textual log [11].
Future work could explore the appropriate design for exercises that require more than a text
exchange between peers [5].

6.2.3 Towards matching peers intelligently. PuzzleMe leverages the correctness of students’ code
for peer matching, but future work could use different criteria. For example, one could extract code
fixes from students who have achieved the correct solution after multiple attempts and apply them
to students who have incorrect solutions [30], capturing conceptual pathways through the problem
space. One could also connect students who make similar mistakes, where one has resolved the
problem and others have not, ensuring the help giver has experience in addressing their peers’ issues.
The matching criteria may also depend on the deployment context. For instance, in Massive Open
Online Courses (MOOCs), creating culturally diverse groups of learners may provide additional
learning opportunities—students may be able to not only learn a given programming concept but
gain intercultural competencies while doing so.

6.3 Limitations

The design of PuzzleMe was tailored for introductory programming courses, and the design of the
live peer testing component was focused on simple programs made up of a pair of given conditions
and expected outputs. Advanced testing techniques like exceptions, callbacks, and dynamic tests
are not implemented in the current system but may represent additional opportunities for learner
collaborations. PuzzleMe’s current design cannot be used directly for non-text-based programming
and testing, like UI testing or Printed Circuit Board (PCB) testing. In addition, our evaluation was
done on a small scale with fewer than 50 subjects. Future work should explore the effectiveness of
peer assessment mechanisms in larger classrooms or MOOCs.

7 CONCLUSION

This paper presents PuzzleMe, an in-class programming exercise tool for providing high-quality
peer feedback at scale. PuzzleMe achieves this by two peer assessment mechanisms: live peer
testing, which allows students to identify and share test cases for assessing the robustness of
programming work, and live peer code review, which groups students intelligently to improve code
understanding. Our evaluation study demonstrates the usefulness of PuzzleMe in helping students
identify cavities in their code and explore alternative solutions, and in reducing the teaching load
for instructors. PuzzleMe opens up possibilities for HCI and CSCW researchers to further study
learnersourced test creation and test-driven learning in introductory programming courses.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:21

8 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant Nos
IIS 1755908 and DUE 1915515.

REFERENCES

[1] 2020. Skulpt. https://skulpt.org/ Accessed: April, 2020.

[2] Susan A Ambrose, Michael W Bridges, Michele DiPietro, Marsha C Lovett, and Marie K Norman. 2010. How learning
works: Seven research-based principles for smart teaching. John Wiley & Sons.

[3] John R. Anderson and Edward Skwarecki. 1986. The automated tutoring of introductory computer programming.
Commun. ACM 29, 9 (1986), 842—-849.

[4] Marcel Borowski, Johannes Zagermann, Clemens N Klokmose, Harald Reiterer, and Roman Rédle. 2020. Exploring the
Benefits and Barriers of Using Computational Notebooks for Collaborative Programming Assignments. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. 468—474.

[5] Brian Burg, Amy J. Ko, and Michael D. Ernst. 2015. Explaining Visual Changes in Web Interfaces. In Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for
Computing Machinery, New York, NY, USA, 259-268. https://doi.org/10.1145/2807442.2807473

[6] Jeongmin Byun, Jungkook Park, and Alice Oh. 2020. Cocode: Co-learner Screen Sharing for Social Translucence
in Online Programming Courses. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems. 1-4.

[7] Julia Cambre, Scott Klemmer, and Chinmay Kulkarni. 2018. Juxtapeer: Comparative Peer Review Yields Higher Quality
Feedback and Promotes Deeper Reflection. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, Article 294,
13 pages. https://doi.org/10.1145/3173574.3173868

[8] Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching Programming at Scale via Live Coding. In Proceedings of the
Sixth (2019) ACM Conference on Learning @ Scale (Chicago, IL, USA) (L@S °19). Association for Computing Machinery,
New York, NY, USA, Article 9, 10 pages. https://doi.org/10.1145/3330430.3333627

[9] Yan Chen, Jaylin Herskovitz, Gabriel Matute, April Wang, Sang Won Lee, Walter S Lasecki, and Steve Oney. 2020.
EdCode: Towards Personalized Support at Scale for Remote Assistance in CS Education. In 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1-5.

[10] Yan Chen, Walter S Lasecki, and Tao Dong. 2021. Towards Supporting Programming Education at Scale via Live
Streaming. Proceedings of the ACM on Human-Computer Interaction 4, CSCW3 (2021), 1-19.

[11] Yan Chen, Maulishree Pandey, Jean Y Song, Walter S Lasecki, and Steve Oney. 2020. Improving Crowd-Supported GUI
Testing with Structural Guidance. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI
’20). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3313831.3376835

[12] Dave Clarke, Tony Clear, Kathi Fisler, Matthias Hauswirth, Shriram Krishnamurthi, Joe Gibbs Politz, Ville Tirronen,
and Tobias Wrigstad. 2014. In-Flow Peer Review. In Proceedings of the Working Group Reports of the 2014 on Innovation &
Technology in Computer Science Education Conference (Uppsala, Sweden) (ITiCSE-WGR ’14). Association for Computing
Machinery, New York, NY, USA, 59-79. https://doi.org/10.1145/2713609.2713612

[13] Diana Cordova and Mark Lepper. 1996. Intrinsic Motivation and the Process of Learning: Beneficial Effects of
Contextualization, Personalization, and Choice. Journal of Educational Psychology 88 (12 1996), 715-730. https:
//doi.org/10.1037/0022-0663.88.4.715

[14] Catherine H Crouch and Eric Mazur. 2001. Peer instruction: Ten years of experience and results. American journal of
physics 69, 9 (2001), 970-977.

[15] Jill Denner, Linda Werner, Shannon Campe, and Eloy Ortiz. 2014. Pair programming: Under what conditions is it
advantageous for middle school students? Journal of Research on Technology in Education 46, 3 (2014), 277-296.

[16] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011. CodeWrite: Supporting Student-Driven

Practice of Java. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)

(SIGCSE ’11). Association for Computing Machinery, New York, NY, USA, 471-476. https://doi.org/10.1145/1953163.

1953299

Collaborative editing library. 2020. ShareDB. https://github.com/share/sharedb Accessed: April, 2020.

Stephen H. Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: Short Programming Exercises with

Built-in Data Collection. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer

Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery, New York, NY, USA, 188-193.

https://doi.org/10.1145/3059009.3059055

[19] Carolyn D. Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow Hodges, Collin Green, Ciera Jaspan,
and James Lin. 2020. Predicting Developers’ Negative Feelings about Code Review. In 2020 IEEE/ACM 42nd International

[17
[18

[ter i

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

https://skulpt.org/
https://doi.org/10.1145/2807442.2807473
https://doi.org/10.1145/3173574.3173868
https://doi.org/10.1145/3330430.3333627
https://doi.org/10.1145/3313831.3376835
https://doi.org/10.1145/2713609.2713612
https://doi.org/10.1037/0022-0663.88.4.715
https://doi.org/10.1037/0022-0663.88.4.715
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/1953163.1953299
https://github.com/share/sharedb
https://doi.org/10.1145/3059009.3059055

415:22 April Yi Wang et al.

[20

[t

[21]
[22

—

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Conference on Software Engineering (ICSE "20). IEEE. https://doi.org/10.1145/3377811.3380414

Sebastian Elbaum, Suzette Person, Jon Dokulil, and Matt Jorde. 2007. Bug hunt: Making early software testing lessons
engaging and affordable. In 29th International Conference on Software Engineering (ICSE’07). IEEE, 688-697.

Jeremiah T Folsom-Kovarik, Sae Schatz, and Denise Nicholson. [n.d.]. Plan ahead: Pricing ITS learner models.

Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz: Variable Name Feedback for Student
Code at Scale. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte,
NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 609-617. https://doi.org/10.1145/
2807442.2807495

Elena L. Glassman, Aaron Lin, Carrie J. Cai, and Robert C. Miller. 2016. Learnersourcing Personalized Hints. In
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco,
California, USA) (CSCW ’16). Association for Computing Machinery, New York, NY, USA, 1626-1636. https://doi.org/
10.1145/2818048.2820011

Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller. 2015. OverCode: Visualizing
Variation in Student Solutions to Programming Problems at Scale. ACM Trans. Comput.-Hum. Interact. 22, 2, Article 7
(March 2015), 35 pages. https://doi.org/10.1145/2699751

Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-Time Collaborative Coding in a Web IDE. In Proceedings of
the 24th Annual ACM Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11).
Association for Computing Machinery, New York, NY, USA, 155-164. https://doi.org/10.1145/2047196.2047215
Scott Grissom and Mark] Van Gorp. 2000. A practical approach to integrating active and collaborative learning into
the introductory computer science curriculum. In Proceedings of the seventh annual CCSC Midwestern conference on
Small colleges. 95-100.

Sumit Gulwani, Ivan Radi¢ek, and Florian Zuleger. 2018. Automated Clustering and Program Repair for Introductory
Programming Assignments. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA,
465-480. https://doi.org/10.1145/3192366.3192387

Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for Computer Programming. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association
for Computing Machinery, New York, NY, USA, 599-608. https://doi.org/10.1145/2807442.2807469

Philip J Guo, Jeffery White, and Renan Zanelatto. 2015. Codechella: Multi-user program visualizations for real-time
tutoring and collaborative learning. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 79-87.

Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo, Loris D’Antoni, and Bjérn Hartmann.
2017. Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale (Cambridge, Massachusetts, USA) (L@S ’17). Association for Computing
Machinery, New York, NY, USA, 89-98. https://doi.org/10.1145/3051457.3051467

Catherine M. Hicks, Vineet Pandey, C. Ailie Fraser, and Scott Klemmer. 2016. Framing Feedback: Choosing Review
Environment Features That Support High Quality Peer Assessment. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery,
New York, NY, USA, 458-469. https://doi.org/10.1145/2858036.2858195

Christopher D Hundhausen, Anukrati Agrawal, and Pawan Agarwal. 2013. Talking about code: Integrating pedagogical
code reviews into early computing courses. ACM Transactions on Computing Education (TOCE) 13, 3 (2013), 1-28.
David Janzen and Hossein Saiedian. 2008. Test-Driven Learning in Early Programming Courses. In Proceedings of the
39th SIGCSE Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE °08). Association for
Computing Machinery, New York, NY, USA, 532-536. https://doi.org/10.1145/1352135.1352315

David S. Janzen and Hossein Saiedian. 2006. Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE
Curriculum. In Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education (Houston, Texas,
USA) (SIGCSE °06). Association for Computing Machinery, New York, NY, USA, 254-258. https://doi.org/10.1145/
1121341.1121419

Juho Kim et al. 2015. Learnersourcing: improving learning with collective learner activity. Ph.D. Dissertation. Mas-
sachusetts Institute of Technology.

Ingo Kollar and Frank Fischer. 2010. Peer assessment as collaborative learning: A cognitive perspective. Learning and
Instruction 20, 4 (2010), 344—-348.

Yasmine Kotturi, Chinmay E Kulkarni, Michael S Bernstein, and Scott Klemmer. 2015. Structure and messaging
techniques for online peer learning systems that increase stickiness. In Proceedings of the Second (2015) ACM Conference
on Learning@ Scale. 31-38.

Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos, Justin Cheng, Daphne Koller, and
Scott R. Klemmer. 2013. Peer and Self Assessment in Massive Online Classes. ACM Trans. Comput.-Hum. Interact. 20, 6,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

https://doi.org/10.1145/3377811.3380414
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1145/2818048.2820011
https://doi.org/10.1145/2818048.2820011
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/2858036.2858195
https://doi.org/10.1145/1352135.1352315
https://doi.org/10.1145/1121341.1121419
https://doi.org/10.1145/1121341.1121419

PuzzleMe: Leveraging Peer Assessment for In-Class Programming Exercises 415:23

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

Article 33 (Dec. 2013), 31 pages. https://doi.org/10.1145/2505057

Chinmay E. Kulkarni, Michael S. Bernstein, and Scott R. Klemmer. 2015. PeerStudio: Rapid Peer Feedback Emphasizes
Revision and Improves Performance. In Proceedings of the Second (2015) ACM Conference on Learning @ Scale (Vancouver,
BC, Canada) (L@S ’15). Association for Computing Machinery, New York, NY, USA, 75-84. https://doi.org/10.1145/
2724660.2724670

Patrick R Lowenthal. 2010. Social presence. In Social computing: Concepts, methodologies, tools, and applications. IGI
global, 129-136.

John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. 2008. Programming by choice: urban
youth learning programming with scratch. In Proceedings of the 39th SIGCSE technical symposium on Computer science
education. 367-371.

Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando Fox. 2015. AutoStyle: Toward Coding
Style Feedback at Scale. In Proceedings of the Second (2015) ACM Conference on Learning @ Scale (Vancouver, BC,
Canada) (L@S ’15). Association for Computing Machinery, New York, NY, USA, 261-266. https://doi.org/10.1145/
2724660.2728672

Thi Thao Duyen T. Nguyen, Thomas Garncarz, Felicia Ng, Laura A. Dabbish, and Steven P. Dow. 2017. Fruitful Feedback:
Positive Affective Language and Source Anonymity Improve Critique Reception and Work Outcomes. In Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW
’17). Association for Computing Machinery, New York, NY, USA, 1024-1034. https://doi.org/10.1145/2998181.2998319
Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating Guided Code Explanations with chat. codes.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 131.

Thanaporn Patikorn and Neil T. Heffernan. 2020. Effectiveness of Crowd-Sourcing On-Demand Assistance from
Teachers in Online Learning Platforms. In Proceedings of the Seventh ACM Conference on Learning @ Scale (Virtual
Event, USA) (L@S °20). Association for Computing Machinery, New York, NY, USA, 115-124. https://doi.org/10.1145/
3386527.3405912

Joe Gibbs Politz, Joseph M Collard, Arjun Guha, Kathi Fisler, and Shriram Krishnamurthi. 2016. The Sweep: Essential
Examples for In-Flow Peer Review. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
243-248.

Joe Gibbs Politz, Shriram Krishnamurthi, and Kathi Fisler. 2014. In-Flow Peer-Review of Tests in Test-First Programming.
In Proceedings of the Tenth Annual Conference on International Computing Education Research (Glasgow, Scotland,
United Kingdom) (ICER ’14). Association for Computing Machinery, New York, NY, USA, 11-18. https://doi.org/10.
1145/2632320.2632347

David Preston. 2005. Pair programming as a model of collaborative learning: a review of the research. journal of
Computing Sciences in colleges 20, 4 (2005), 39-45.

Thomas W. Price, Joseph Jay Williams, Jaemarie Solyst, and Samiha Marwan. 2020. Engaging Students with Instructor
Solutions in Online Programming Homework. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI "20). Association for Computing Machinery, New York, NY, USA, 1-7. https:
//doi.org/10.1145/3313831.3376857

Roman Rédle, Midas Nouwens, Kristian Antonsen, James R Eagan, and Clemens N Klokmose. 2017. Codestrates:
Literate computing with webstrates. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 715-725.

Kelly Rivers and Kenneth R. Koedinger. 2013. Automatic Generation of Programming Feedback; A Data-Driven
Approach. In AIED Workshops.

Kelly Rivers and Kenneth R Koedinger. 2015. Data-driven hint generation in vast solution spaces: a self-improving
python programming tutor. International Journal of Artificial Intelligence in Education (2015), 1-28.

José Miguel Rojas, Thomas D White, Benjamin S Clegg, and Gordon Fraser. 2017. Code defenders: crowdsourcing
effective tests and subtle mutants with a mutation testing game. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 677-688.

Marc J. Rubin. 2013. The Effectiveness of Live-Coding to Teach Introductory Programming. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery, New York, NY, USA, 651-656. https://doi.org/10.1145/2445196.2445388

Jeffrey Saltz and Robert Heckman. 2020. Using Structured Pair Activities in a Distributed Online Breakout Room.
Online Learning 24, 1 (2020), 227-244.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated Feedback Generation for Introductory
Programming Assignments. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA,
15-26. https://doi.org/10.1145/2491956.2462195

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

https://doi.org/10.1145/2505057
https://doi.org/10.1145/2724660.2724670
https://doi.org/10.1145/2724660.2724670
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/2998181.2998319
https://doi.org/10.1145/3386527.3405912
https://doi.org/10.1145/3386527.3405912
https://doi.org/10.1145/2632320.2632347
https://doi.org/10.1145/2632320.2632347
https://doi.org/10.1145/3313831.3376857
https://doi.org/10.1145/3313831.3376857
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/2491956.2462195

415:24 April Yi Wang et al.

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. Sitthiworachart and M. Joy. 2003. Web-based peer assessment in learning computer programming. In Proceedings
3rd IEEE International Conference on Advanced Technologies. 180-184. https://doi.org/10.1109/ICALT.2003.1215052
Barbara Leigh Smith and Jean T MacGregor. 1992. What is collaborative learning.

Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. 2012. Using Peer Review to Teach Software Testing. In
Proceedings of the Ninth Annual International Conference on International Computing Education Research (Auckland,
New Zealand) (ICER ’12). Association for Computing Machinery, New York, NY, USA, 93-98. https://doi.org/10.1145/
2361276.2361295

Stephan Trahasch. 2004. From peer assessment towards collaborative learning. In 34th Annual Frontiers in Education,
2004. FIE 2004. IEEE, F3F-16.

Anne Venables and Liz Haywood. 2003. Programming Students NEED Instant Feedback!. In Proceedings of the Fifth
Australasian Conference on Computing Education - Volume 20 (Adelaide, Australia) (ACE ’03). Australian Computer
Society, Inc., AUS, 267-272.

Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and Robert C. Miller. 2015. Learnersourcing Subgoal Labels for How-to
Videos. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing
(Vancouver, BC, Canada) (CSCW ’15). Association for Computing Machinery, New York, NY, USA, 405-416. https:
//doi.org/10.1145/2675133.2675219

Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z. Gajos, Walter S. Lasecki, and Neil
Heffernan. 2016. AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning. In Proceedings of
the Third (2016) ACM Conference on Learning @ Scale (Edinburgh, Scotland, UK) (L@S ’16). Association for Computing
Machinery, New York, NY, USA, 379-388. https://doi.org/10.1145/2876034.2876042

Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng Dong, Harrison Kwik, Alex Hui Tan,
Leanne Hwa, Min Li, and Amy J. Ko. 2019. A theory of instruction for introductory programming skills. Computer
Science Education 29, 2-3 (2019), 205-253. https://doi.org/10.1080/08993408.2019.1565235

Kimberly Michelle Ying and Kristy Elizabeth Boyer. 2020. Understanding Students’ Needs for Better Collaborative
Coding Tools. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems Extended
Abstracts (Honolulu, HI, USA) (CHI °20). Association for Computing Machinery, New York, NY, USA, 1-8. https:
//doi.org/10.1145/3334480.3383068

Alvin Yuan, Kurt Luther, Markus Krause, Sophie Isabel Vennix, Steven P Dow, and Bjorn Hartmann. 2016. Almost an
Expert: The Effects of Rubrics and Expertise on Perceived Value of Crowdsourced Design Critiques. In Proceedings
of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco, California,
USA) (CSCW ’16). Association for Computing Machinery, New York, NY, USA, 1005-1017. https://doi.org/10.1145/
2818048.2819953

Alvin Yuan, Kurt Luther, Markus Krause, Sophie Isabel Vennix, Steven P Dow, and Bjorn Hartmann. 2016. Almost an
Expert: The Effects of Rubrics and Expertise on Perceived Value of Crowdsourced Design Critiques. In Proceedings
of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing (San Francisco, California,
USA) (CSCW ’16). Association for Computing Machinery, New York, NY, USA, 1005-1017. https://doi.org/10.1145/
2818048.2819953

Received January 2021; revised April 2021; accepted July 2021

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 415. Publication date: October 2021.

https://doi.org/10.1109/ICALT.2003.1215052
https://doi.org/10.1145/2361276.2361295
https://doi.org/10.1145/2361276.2361295
https://doi.org/10.1145/2675133.2675219
https://doi.org/10.1145/2675133.2675219
https://doi.org/10.1145/2876034.2876042
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3334480.3383068
https://doi.org/10.1145/3334480.3383068
https://doi.org/10.1145/2818048.2819953
https://doi.org/10.1145/2818048.2819953
https://doi.org/10.1145/2818048.2819953
https://doi.org/10.1145/2818048.2819953

	Abstract
	1 Introduction
	2 Related Work
	2.1 Peer Assessment as Collaborative Learning
	2.2 Real-Time Code Sharing in Educational Settings
	2.3 Scaling Live Feedback

	3 In-class Programming Exercise Challenges
	3.1 Method
	3.2 Findings
	3.3 Summary of Design Goals

	4 PuzzleMe Design
	4.1 In-Class Programming Exercises
	4.2 Live Peer Testing
	4.3 Live Peer Code Review
	4.4 Implementation

	5 Evaluation
	5.1 Course Background (Studies 1 and 2)
	5.2 Study 1: Using PuzzleMe in Face-to-Face Lab Sessions
	5.3 Study 2: Integrating PuzzleMe in an Online Lecture
	5.4 Study 3: The Practical Applicability of PuzzleMe

	6 Discussion
	6.1 Design Lessons
	6.2 Future Work
	6.3 Limitations

	7 Conclusion
	8 Acknowledgements
	References

