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Abstract
We obtain the exact analytical solution for the continuously driven qutrit in the V and Λ
configurations governed by the Lindblad master equation. We calculate the linear susceptibility
in each system, determining regimes of transient gain without inversion, and identify exact
parameter values for superluminal, vanishing, and negative group velocity for the probe field.
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1. Introduction

The driven qubit, or two-level system, subject to decoherence
via contact with a Markovian bath is a well-known, exactly
analytically solvable problem in quantum computing [1, 2],
including e.g. T1 and T2 decoherence times [3]. However,
despite the known advantages for quantum computing with
qutrits [4–6], the three-level system in a similar configura-
tion has only been solved approximately. These approximate
investigations of the qutrit have nonetheless revealed many
intriguing and unconventional phenomena brought about by
quantum coherence and interference not witnessed in the qubit
[7]. For example, in coherent population trapping, the system
becomes trapped in a ‘dark state’ superposition of states which
cannot be excited by incident light [8, 9]. This paradigm is
one of several that give rise to lasing without inversion (LWI)
[10–13], in which light amplification can be achieved despite
the ground state population exceeding that of the excited states.
Underlying these effects is the phenomenon of electromagnet-
ically induced transparency (EIT) [14–16], in which a light
pulse can be transmitted through an otherwise opaque medium
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that is effectively rendered transparent. Experimental demon-
strations of these effects [17–20] have testified to the utility
of quantum coherence generated in three- and higher-level
systems. Although these particular results have been success-
fully predicted and demonstrated without the exact solution
for the dynamics of the driven qutrit in contact with a reser-
voir, the advantages of qutrits in quantum computing reveal
the desirability of this solution. Here, we develop a method
for exactly solving the dynamics of the doubly-driven qutrit
in contact with a reservoir as modeled by the Lindblad master
equation and report solutions for the V and Λ configurations
in particular.

The V- and Λ-systems we analyze are schematically shown
in figure 1. We take the open dynamics of these systems to be
governed by the Lindblad master equation, making the Markov
and secular approximations relevant e.g. for large reservoirs.
We then transform the Lindblad master equation into super-
operator form [21]. This allows us to solve for the time depen-
dence of each element of the density matrix. Using this density
matrix solution, we explore regimes of transient and steady-
state absorption and light propagation through a calculation of
the linear susceptibility.
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Figure 1. The (a) V and (b) Λ configurations for the three-level
system. In the V-system, the lower state |b〉 is coupled to upper
states |a〉 and |c〉, which decay to the ground state with rates γp and
γs respectively. In the Λ-system, the lower states |a〉 and |c〉 are
coupled to the upper state |b〉, which decays to each lower state. In
each configuration, the |a〉 ↔ |b〉 transition is driven by a probe field
with Rabi frequency Ωp, and the |b〉 ↔ |c〉 transition is driven by a
control field with Rabi frequency Ωs.

Most schemes for achieving LWI and EIT rely on more
complex multilevel systems than we consider here [19, 20].
Theoretical consideration of these systems, however, neces-
sitates many approximations or a numerical approach. Even
in strictly three-level systems, the usual approach for deriving
the EIT phenomenon involves finding steady-state conditions
for equations of motion obtained within approximations of the
zeroth order in atomic populations or of the first order in the
probe field [7, 16]. These approximations only hold on small
time scales and therefore the solutions they yield differ vastly
from our results. More generally, one may apply techniques
of quantum regression [21] or perturbation theory [22], both
of which require strict approximation unlike the method we
develop here.

Related problems to quantum decoherence, such as photon
dissipation, have been studied using exact analytical methods
[23], entanglement-preserving methods [24], and computa-
tional methods [25]. Exact results, which afford arbitrary pre-
cision, can have major advantages over numerical approaches,
especially in high precision applications such as quantum
information. In particular, the analytical results we develop
here offer insight into the physics of qutrits interacting with
environments, enabling, e.g., expansions in key parameters to
arbitrary order. Although our exact results are obtained within
the Lindblad approximation, this also enables exact quantifica-
tion of a system’s deviation from Lindblad conditions, leading
to an improved understanding of when and to what extent the
Lindblad approximation is valid.

This paper is organized as follows: in section 2, we develop
a method for solving the general qutrit; in section 3 we present
the solution of the V-system along with relevant physical
implications; in section IV, we do the same for the Λ-system.
Finally, in section 5, we make some concluding remarks on the
potential applications of our findings.

2. Analytical treatment

We develop here an analytical framework to exactly solve the
dynamics of the density matrix for the doubly-driven qutrit and
apply this method to the V- and Λ-systems. For each of these
systems, we allow the |a〉 ↔ |b〉 and |c〉 ↔ |b〉 transitions to

be driven by a probe field with Rabi frequencyΩp = |μab|Ep/h̄
and control field with Rabi frequency Ωs = |μcb|Es/h̄ respec-
tively. Here, μab and μcb are the dipole matrix elements asso-
ciated with each transition, and Ep and Es are the amplitudes
of the driving fields. The fields have angular frequencies of
νp and νs which are detuned from the resonant frequencies
of the transitions ωab and ωcb by amounts Δp = ωab − νp and
Δs = ωcb − νs. In the V and Λ configurations, the |a〉 ↔ |c〉
transition is dipole forbidden. Additionally, to represent the
open dynamics of the system, we introduce decay rates γp

and γs along each transition due to environmental coupling,
with directions appropriate to the energy configurations. See
figure 1 for a level scheme of each system. Though a weak
probe limit is generally taken (i.e. Ωp � Ωs) [22], we make no
such restriction here.

We obtain the time-independent Hamiltonian for the V-
and Λ-systems within the rotating wave approximation and
through a transformation into a co-rotating frame:

H =
h̄
2

⎡
⎣±2Δp −Ωp 0
−Ωp 0 −Ωs

0 −Ωs ±2Δs

⎤
⎦ . (1)

For the V-system, diagonal elements are positive, while for the
Λ-system, they are negative.

Making the Markov and secular approximations, we take
the dynamics of the system to be governed by the Lindblad
master equation [21]:

∂ρ(t)
∂t

= − i
h̄

[H, ρ(t)]

−
∑
n=p,s

γn

2

(
{L†

nLn, ρ(t)} − 2Lnρ(t)L†
n

)
, (2)

where Lp and Ls are Lindblad operators corresponding to
decay transitions. In the V-system, we use the operators Lp =
|b〉〈a| and Ls = |b〉〈c|, while in the Λ-system, we use Lp =
|a〉〈b| and Ls = |c〉〈b|. In order to convert (2) into a tractable
form, we perform a transformation into superoperator space
[26], in which our 3 × 3 density matrix transforms into a
9 × 1 superket by ρ(t) → |ρ(t)〉〉. Defining the Liouville super-
operator L by the equation L = −i/h̄ · (H ⊗ 1 − 1 ⊗ H	) −∑ γn

2 (L†
nLn ⊗ 1 + 1 ⊗ (L†

nLn)	 − 2Ln ⊗ (L†
n)	), where 1 is the

3 × 3 identity matrix, the general solution to (2) in superoper-
ator space is

|ρ(t)〉〉 = exp (Lt) |ρ(0)〉〉, (3)

where t = 0 is chosen to be the initial time. We can bring this
solution into a closed form by performing the Laplace trans-
form [21] on |ρ(t)〉〉, which yields the density matrix |ρ̃(s)〉〉 in
the complex frequency domain as

|ρ̃(s)〉〉 =
∫ ∞

0
|ρ(t)〉〉e−st dt

= (s · 1 − L)−1 |ρ(0)〉〉. (4)

Here, 1 is the 9 × 9 identity matrix. We perform the matrix
inversion in (4) symbolically, then take the inverse Laplace
transform to return the density matrix to the time domain.
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We perform the transform on each nonzero term by finding
the residue about each of its poles and employing Cauchy’s
residue theorem. This method allows for analytic computation
of all elements of the density matrix.

By proper modification to the Hamiltonian in (1) and the
Lindblad operators in (2), one could apply this method to the
qutrit with any decay structure under any time-independent
Hamiltonian. However, the fully general case involves solving
for the roots of a ninth-degree polynomial, and the solution
may elide a closed form. Nonetheless, by restricting ourselves
to only the V and Λ configurations and making the simplifi-
cations Δp = Δs = Δ and γp = γs = γ, with the system ini-
tially occupy the |b〉 state, we reduce the problem to solving
third and fourth degree polynomials for the V- and Λ-systems
respectively. Thus, in all following discussion and plots, Δ
represents the simultaneous detuning of both fields, and γ rep-
resents the decay rate of both transitions. These simplifications
allow us to present the solutions for these systems in a closed
form. Other simplifications may similarly allow for closed-
form results for the three-level ladder system or for higher level
systems, such as the N-type four-level system, but we leave
these question for future consideration.

3. V-system

3.1. Analytical solution

For the V-system initially in the |b〉 state, we find the following
results for the time-dependence of the population elements of
the density matrix:

ρaa(t) =
Ω2

p

Ω2 +

3∑
k=1

(
Ak exp(λkt)∏3

l �=k(λk − λl)

)
(5a)

ρcc(t) =
Ω2

s

Ω2
p

ρaa(t) (5b)

ρbb(t) = 1 − ρaa(t) − ρcc(t), (5c)

with the definitions

Ω =
√

4Δ2 + γ2 + 2(Ω2
p +Ω2

s ) (5d)

Ak = Ω2
p(γ + 2λk)/4λk, (5e)

and the λk as the three roots to the polynomial (γ + λ)
((γ + 2λ)2 + 4Δ2) + 2(γ + 2λ)(Ω2

p +Ω2
s ). These roots can be

solved exactly, but their expressions are unwieldy, so we do
not reproduce them here. We additionally find the coherence
elements

ρab(t) =
Ωp

Ω2 (2Δ+ iγ) −
3∑

k=1

(
Bk exp(λkt)∏3

l �=k(λk − λl)

)
(6a)

ρbc(t) =
Ωs

Ωp
ρ∗ab(t) (6b)

ρac(t) =
1

2ΩpΩs
(Ω2

sρaa(t) +Ω2
pρcc(t)), (6c)

with
Bk = iΩp(γ + λk)(γ + 2λk − 2iΔ)/4λk. (6d)

Note that each term of the density matrix consists of a sin-
gle constant term and several time-dependent terms. In the
steady state, the time-dependent terms vanish (as Re(λk) < 0
for each k), and we are left with only the constant term. The
density matrix in the steady-state represents a mixed state with
Tr(ρ2) < 1.

We now compare our exact results with previous approx-
imate results where available. We note a conservation law
between the excited states and the coherence between them,
expressed as

ρaa(t) + ρcc(t) −
Ω2

p +Ω2
s

ΩpΩs
ρac(t) = 0. (7)

In the case of matching driving parameters, i.e., Ωp = Ωs, (7)
reduces to results in [27], where a factor of 2 appears in the
third term, though Kozlov et al consider incoherent pump rates
in contrast to our coherent driving fields.

In the steady state, under conditions that Δ = 0 and γ �
Ωp,Ωs, we find as a zeroth order approximation that for any
driving intensity, half of the population will become locked
in an excited state, with the ratio ρaa/ρcc = Ω2

p/Ω
2
s . This is

again in congruence with the predictions in [27], where the
interpretation and physical mechanism of such a phenomenon
are discussed at length. By contrast, for a large detuning,
i.e. Δ � γ,Ωp,Ωs, we find that, as expected, excited popu-
lations are small in the steady state, with ρaa,cc ≈ Ω2

p,s/(4Δ2).
Finally, in the steady state, we find that the weak probe limit, in
which ρab ≈ Ωp(2Δ+ iγ)/(4Δ2 + γ2 + 2Ω2

s ), performs quite
strongly as an approximation for the coherence term ρab (see
figure 2). Other such limiting cases to previous approximate
results are reproducible from our more general results, as the
reader may verify. We find no steady-state population inversion
under any set of parameters.

3.2. Physical implications

Generalizing our single system into a collection of three-level
systems, we now investigate optical effects of this collection
on the driving field. The frequency-dependent complex linear
susceptibility of the medium in response to the probe field is
calculated by

χp =
2μ
Ωp

ρab(t), (8)

where μ is a scaling factor dependent on the physical imple-
mentation of the three-level medium. While qutrits may be
realized by a variety of physical systems [28] and we stress
that our solution applies generally, for the purposes of a con-
crete example we consider the atomic gas, a common con-
text in which EIT experiments are performed [19, 20]. For an
atomic gas, the factor isμ = 	|μab|2/h̄ε0, where 	 is the atomic
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Figure 2. (a) Exact solution of the real (solid) and imaginary (dashed) parts of the probe coherence terms ρab in the steady state, along with
(b) the same term expanded to first order in Ωp (i.e. the weak probe limit), and (c) the error between the two, calculated as log|(ρab,exact −
ρab,appx.)/ρab,exact|. The weak probe limit performs strongly even when Ωp is less than a full order below Ωs. Here and in all following plots,
Δ represents the simultaneous detuning of both the probe field and the control field. Parameters: Ωp = 3 × 105, Ωs = 106, γ = 106.

density. In all plots, we give parameters in terms of μ, but
scaled according to experimental values in [19], where a sys-
tem of rubidium 87 is assembled [29]. Assuming a atomic
density of ∼109 cm−3 such that μ ∼ 1 kHz, we ensure Ωp,Ωs,
and γ are O (MHz) and ωab is O (THz). Higher atomic densi-
ties such as those employed in [30] move the poles in the group
velocity to larger detunings (see below) but do not qualitatively
change the results. Note that in deriving (8), we have chosen
the convention that Im(χp) > 0 corresponds to net absorption
of the probe field, while Im(χp) < 0 corresponds to net gain
[31]. In figures 3(a) and (b), we have plotted the transient
real and imaginary parts of χp, which represent the disper-
sion and absorption spectrum of the medium. As we compare
(b) with the transient population inversion along the |a〉 ↔
|b〉 transition plotted in (c), we note instances of both gain
without inversion and inversion without gain under these
parameters.

Turning our attention toward the real part of the suscepti-
bility, we now analytically calculate index of refraction and
the group velocity of a light pulse propagating through the
medium via the dispersion relation. For a small susceptibil-
ity (i.e. |χp| � 1), we approximate the index of refraction as
n ≈

√
1 + Re(χp), valid in the three-level medium near reso-

nance [7]. In this regime, we find an index of refraction very
close to unity due to the low atomic density. However, with a
larger density, the index can be extremely large, as n ∝ √

	 for
|χp| � 1.

For example, we once again consider the rubidium
87 atomic gas assembled in [19], which employed the
52S1/2 → 52P1/2 transition. Along this transition, μab =

2.538 × 10−29 C m and γ = 36.129 MHz [29]. In a gas of such
atoms with an atomic density of 	 = 1014 cm−3 with driving
parameters as in figure 3, we predict the real part of the index
of refraction to reach a maximum of 3.934.

Returning to our analytical results, we next calculate the
steady-state group velocity (in units of the speed of light c) via

the usual relation vg/c =
(
n + ωab∂n/∂νp

)−1
, obtaining

vg

c
=

(4Δ2 + Γ2)(4Δ2 + Γ2 + 4μΔ)

(4Δ2 + Γ2)2 + 8μΔΓ2 + 2μ(Δ+ ωab)(4Δ2 − Γ2)
,

(9)

where Γ =
√
γ2 + 2(Ω2

p +Ω2
s ). We note that the group veloc-

ity diverges with poles identifiable by the denominator in (9).
In figure 4(a), we plot the calculated steady-state group veloc-
ity. Near resonance, the figure displays both subluminal and
superluminal group velocities, the latter found near the poles.
We even predict negative group velocities as the detuning nears
exact resonance. Also plotted in figure 4(b) is the same quan-
tity calculated by a numerical simulation. In figure 4(c), we
compare the precision our analytical solution compared to that
of a numerical solution, from which we see that the numerical
solution is especially weak near the poles. We also find that
our expression for group velocity in (9) has potential zeroes at
detunings given by

Δ = −1
2

(
μ±

√
μ2 − Γ2

)
. (10)

Thus, we predict the vanishing of the group velocity in the
steady state at these detuning values. Note, however, that these
values are only real for μ > Γ, i.e. high atomic densities, and
are thus not visible in figure 4(a), where μ � Γ.

However, there is a difficulty in measuring these steady-
state effects experimentally. The three-level system does not
support continuous EIT, which we observe by inspecting the
imaginary part of the susceptibility. Under any parameters,
we find a steady-state absorption spectrum with a Lorentzian
lineshape in Δ given by

Im(χp,SS) =
2μγ

4Δ2 + γ2 + 2(Ω2
p +Ω2

s )
. (11)

Thus, the near-resonance refractive effects determined above
will be met with large near-resonance absorption. Experimen-
tal realizations of anomalous propagation in a V-system there-
fore have two options to avoid this difficulty. First, one could
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Figure 3. Transient (a) real and (b) imaginary parts of probe susceptibility representing the dispersion and absorption spectra, along with
(c) transient population inversion, defined as ρaa − ρbb, all for the V-system. Im(χp) > 0 corresponds to net absorption, and Im(χp) < 0
corresponds to gain. In (b) and (c) we observe instances of gain without inversion and inversion without gain. Here, parameters have been
chosen to mirror the rubidium 87 system assembled in [19] and are given in terms of the scaling term μ, which is set to 1 kHz: Ωs = 103μ,
Ωp = 3Ωs, γ = 103μ, ωab = 109μ.

measure group velocity before the steady state is reached, mak-
ing use of the transient transparency windows found when
γ is on or below the order of the driving parameters Ωp,Ωs

(see figure 3(b)). We leave the calculation of transient group
velocity for later consideration, though it is likely to yield sim-
ilar behavior to the steady-state velocity due to the relative
homogeneity of Re(χp). As an alternative, one could make
use of a more complex multilevel system which contains a
three-level subsystem, such as the atoms used in [19, 20].
These experiments utilized incoherent pumping into the auxil-
iary levels, enabling continuous EIT behavior, though they did
not attempt to simultaneously observe the dispersive effects
described here. Slow-light experiments generally make use
of systems in the Λ configuration [30, 32, 33] to avoid these
difficulties.

4. Λ-system

4.1. Analytical results

For the Λ-system initially in the |b〉 state, we obtain the
following results for the density matrix populations:

ρaa(t) =
Ω2

s

Ω2 +
4∑

k=1

(
Ak exp(λkt)∏4

l �=k(λk − λl)

)
(12)

ρbb(t) =
1
2

4∑
k=1

(
Bk exp(λkt)∏4

l �=k(λk − λl)

)
(13)

ρcc(t) = 1 − ρaa(t) − ρbb(t), (14)

where the λk are the roots of the fourth degree polyno-
mial λ(2γ + λ)(2Δ2 + 2(γ + λ)2) +Ω2(γ + λ)(γ + 2λ), and
we define

Ω =
√
Ω2

p +Ω2
s (15)

Ak =
γλk

(
2Δ2 +Ω2 + 2(γ + λk)2

)
+Ω2

pλ
2
k +Ω2

sγ
2

2λk

(16)

Bk = 2Δ2λk +Ω2(γ + λk) + 2λk(γ + λk)2. (17)

For the coherence elements, we find

ρab(t) =
Ωp

2

4∑
k=1

((
Δ(γ − λk) + i(λ2

k − γ2)
)

exp(λkt)

2
∏4

l �=k(λk − λl)

)

(18)

ρbc(t) =
Ωs

Ωp
ρ∗ab(t) (19)

ρac(t) = −ΩpΩs

Ω2 +
4∑

k=1

(
Ck exp(λkt)∏4

l �=k(λk − λl)

)
, (20)

with Ck = ΩpΩs(λ2
k − γ2)/2λk. Again, the density matrix ele-

ments consist of both constant terms and time-dependent
terms. In the steady-state, these time-dependent terms vanish,
leaving only the constant terms.

4.2. Physical implications

We first note that under any parameters, the population of |b〉
eventually decays to zero, and the only nonzero terms in the
steady state are

ρaa =
Ω2

s

Ω2 ρcc =
Ω2

p

Ω2 ρac = −ΩpΩs

Ω2 . (21)

Somewhat counter-intuitively, the ratio of populations in the
|a〉 and |c〉 states is ρaa/ρcc = Ω2

s/Ω
2
p, i.e. stronger driving on

the |c〉 transition increases the final population of |a〉. In con-
trast to the mixed state we reach in the V-system, (21) repre-
sents a pure state, and we conclude that the final quantum state

of the system is a multiple of (Ωs |a〉 − Ωp |c〉)/
√
Ω2

p + Ω2
s .
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Figure 4. (a) Calculated exact steady-state group velocity for the probe field in units of c, with (b) the same calculated numerically and
(c) the error of that numerical solution, calculated as log|(vg,exact − vg,num.)/vg,exact|. We observe superluminal group velocity near the poles
at a detuning of � ±2γ; the poles move by parameter choice (see (9)). Our numerical results are obtained by performing the matrix
exponential in (3) numerically, then using MATLAB’s gradient function with a resolution of 2 × 104 to compute the derivative. Parameters
are identical to those in figure 3.

Figure 5. Transient (a) real and (b) imaginary parts of the linear susceptibility in response to the probe field, along with (c) population
inversion along the probe transition, defined as ρbb − ρaa, all in the Λ-system. Comparisons between (b) and (c) display intense gain where
inversion is present, and again display regimes of gain without inversion and inversion without gain. Parameters are identical to those in
figure 3.

This state is identical to the non-coupled ‘dark state’
superposition identified in [8]. Absorption and consequent
excitation of atoms from this state is not possible, and the pop-
ulation is effectively trapped in this coherent state, even under
continuous driving.

A direct consequence of this is that there is no coher-
ence supported along the probe transition in the steady state.
Although the susceptibility will vanish and the index of refrac-
tion will approach unity in the steady state, we still observe
interesting transient effects. In the Λ system, the susceptibility
in response to the probe field is given by

χp =
2μ
Ωp

ρba(t) (22)

(note the difference from the susceptibility in the V-system in
(8)). In the transient regime, we again find instances of anoma-
lous dispersion and gain without inversion (see figure 5). In
particular, the real part of the susceptibility in figure 5(a) is
highly irregular, with the derivative at Δ = 0 reversing signs
near γt = 1. While this should make for intriguing transient

group velocity behavior, we leave this calculation for future
consideration.

5. Conclusions

We found the exact analytical form of the dynamics of the
driven qutrit in the V and Λ configurations using the Lindblad
master equation. This exact solution gave us new insight into
transient regimes of LWI and EIT in these systems through a
calculation of the linear susceptibility; identified parameters
for steady-state superluminal, vanishing, and negative group
velocities in the V-system; and found an inevitable decay into
the population trapped state in the Λ-system.

These exact solutions allow for precise preparation of three-
level subsystems of the complex multilevel quantum systems
required for supporting continuous LWI and EIT, as well as
for observing the dispersive effects we have identified here.
Beyond these demonstrative optical effects, precise prepara-
tions of multilevel atoms is a crucial step in the quantum
computing process. Using our solution, under Lindblad condi-
tions, a V-type atom can be prepared in nearly any mixed state

6



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 065501 Z C Coleman and L D Carr

superposition by precise selection of the system parameters,
and a Λ-type atom can be prepared in any pure state superpo-
sition of its lower states.

In future work, the methods of our solution may be extended
to other three- or higher-level systems. Moreover, our exact
solution can be leveraged to determine qutrit decoherence
under various quantum control strategies for quantum comput-
ing and other quantum technology applications. Trapped ion
quantum simulator [34] and quantum computing [35] architec-
tures in particular, as well as quantum testbeds at Berkeley [28,
36] and Sandia National Labs [37] have taken advantage of
qutrit quantum computing scenarios [5] and may benefit from
the results of this work.
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