

pubs.acs.org/JACS Communication

Synthesis of a Bench-Stable Manganese(III) Chloride Compound: Coordination Chemistry and Alkene Dichlorination

Ananya Saju, Justin R. Griffiths, Samantha N. MacMillan, and David C. Lacy*

Cite This: J. Am. Chem. Soc. 2022, 144, 16761–16766

ACCESS

Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: The complex [MnCl₃(OPPh₃)₂] (1) is a bench-stable and easily prepared source of MnCl₃. It is prepared by treating acetonitrile solvated MnCl₃ (2) with Ph₃PO and collecting the resulting blue precipitate. 1 is useful in coordination reactions by virtue of the labile Ph₃PO ligands, and this is demonstrated through the synthesis of {Tpm*}MnCl₃ (3). In addition, methodologies in synthesis that rely on difficult or cumbersome to prepare solutions of reactive MnCl₃ can be accomplished using 1 instead. This is demonstrated through alkene dichlorinations in a wide range of solvents, open to air, and with good substrate scope. Light-accelerated halogenation and radical sensitive experiments support a radical mechanism involving stepwise Cl-atom transfer(s) from 1.

INTRODUCTION

In this report, we detail our investigation of the chemical properties of the complex $[MnCl_3(OPPh_3)_2]$ (1), a bench-stable blue compound easily prepared in gram quantities open to air (Scheme 1). After its first preparation by a cumbersome low-temperature route in 1976, 1 was lost to obscurity. Now, nearly half a century later, our serendipitous rediscovery led us to the current study. The importance of 1 is found in the simple fact that it enables access to MnCl₃, which itself is not

Scheme 1. Preparative Routes to MnCl₃(OPPh₃)₂ (1)

original 1976 low-temp synthesis

Transition Met. Chem., 1976, 1, 122

$$\begin{array}{c} \text{Mn}^{\text{III}}\text{Cl}_3(\text{dioxane})_2 \\ \text{thermally sensitive} \end{array} \xrightarrow{\begin{array}{c} 2 \text{ Ph}_3 \text{PO} \\ \hline \text{Et}_2 \text{O}, -50 \text{ °C} \end{array}} \begin{array}{c} \text{[Mn}^{\text{III}}\text{Cl}_3(\text{OPPh}_3)_2] \\ \end{array}$$

two-pot synthesis (Route A)

pot 1 - *Inorg. Chem.* **1991**, *30*, 1665 pot 2 - **this work**

$$\begin{array}{c} \text{Mn}^{\text{II}}(\text{OAc})_2 \cdot 4\text{H}_2\text{O} & \longrightarrow & \text{Mn}_{12} \\ & \text{water/HOAc, r.t.} & \longrightarrow \\ & 1.\ 36\ \text{Me}_3\text{SiCl} \\ & 2.\ 24\ \text{Ph}_3\text{PO} \\ & \boxed{\text{MeCN, r.t.}} & 12\ [\text{Mn}^{\text{III}}\text{Cl}_3(\text{OPPh}_3)_2] \\ & \text{(gram-scale, 79\%)} & \text{(1)} \end{array}$$

KMnO₄

one-pot synthesis (Route B) this work

4 Mn^{II}(OAc)₂

4 Mn^{II}(OAc)₂

MeCN, r.t., 1 h (gram-scale, 77%)

1. KMnO₄
2. 16 Me₃SiCl
3. 8 Ph₃PO

4 [Mn^{III}Cl₃(OPPh₃)₂]
(1)

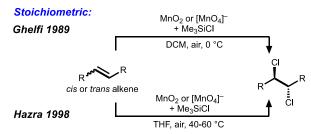
thermally stable.^{2,3} The lack of Mn(III) starting materials (Chart 1) is unfortunate since it is synthetically useful in a variety of applications including alkene dichlorination,⁴ and the Mn³⁺ ion is biologically important.⁵

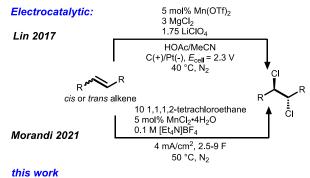
Chart 1. Commercially Available Mn(III) Compounds

molecular precursors	<u>oxides</u>	<u>complexes</u>	
 Mn(acac)₃ Mn(acetate)₃•2H₂O MnF₃ 	• Mn ₂ O ₃ • Mn ₃ O ₄	Jacobsen's catalyst tetrapheynylporphyrin Mn(III)	
new molecular precursor: this work		[Mn ^{III} Cl ₃ (OPPh ₃) ₂] (1)	

The challenge with using "MnCl₃" is that solutions need to be prepared *and* used immediately and the speciation is often ill-defined precluding precise stoichiometry. Preparation of "MnCl₃" is commonly carried out by reduction of MnO₂ or permanganate with gaseous HCl at low temperature, and the compounds prepared this way must be manipulated and stored below -30 °C. ^{1,6–8} An alternative and more practical preparation of "MnCl₃" was developed by Christou and coworkers. ⁹ Specifically, [Mn₁₂O₁₂(OAc)₁₆(H₂O)₄]·2HOAc·4H₂O (Mn₁₂) can be treated with Me₃SiCl to afford deep purple solutions of nominally MeCN solvated MnCl₃ (2). ⁹ Albeit, 2 is also thermally unstable ($t_{1/2} \approx 1$ h, air and moisture free), is not isolable or separable from reaction byproducts and by virtue of these has imprecise stoichiometry. 2 is nonetheless synthetically useful and has been used to prepare coordination

Received: August 10, 2022 Published: September 6, 2022





compounds such as [MnCl₃(bipy)]_n and [Mn^{VII}Cl-(NtBu)₃].^{9,10} Likewise, we found (vide infra) that 2 is useful in preparing 1, which we envisioned to be more useful in chemical synthesis of novel Mn(III) complexes because (i) the stoichiometry of reagents can be precisely controlled and (ii) labile Ph₃PO ligands are easily exchanged through ligand substitution.

Furthermore, use of 1 affords access to a much wider range of conditions that can be employed in dichlorination reactions used in previous methodologies (Scheme 2). For example,

Scheme 2. Alkene Dichlorination Methods with Mn

simple method 1 (2.2 equiv.) high stereoselectivity DCM, air good functional group cis or trans alkene 40 °C

"MnCl₃" prepared from Me₃SiCl and Mn(II) + high-valent Mn (e.g., MnO₂ or permanganate salts) has been used for alkene dichlorination. 11 However, these methods require low-temperature in situ preparation of the ill-defined MnCl₃ species, which needs to be used immediately. Also, electrochemical means of generating $MnCl_3$ as a catalytic reagent in dichlorination has been accomplished, $^{12-14}$ but such methodologies are not accessible for many contemporary synthetic laboratories and often employ rigorous air and moisture free conditions and/or require acid.

Hence, in this report, we disclose a convenient synthesis of 1 (Scheme 1) and demonstrate its usefulness toward preparation of MnCl₃ complexes through a ligand substitution reaction to form $\{Tpm^*\}MnCl_3$ (3) $\{Tpm^* = tris(3,5-dimethyl-1$ pyrazolyl)methane). We demonstrate the synthetic utility of 1 in alkene dichlorination reactions using a variety of solvent conditions and substrates including those with acid labile functional groups. The reaction appears to be light accelerated, indicating that LMCT charge transfer mediated reactivity avenues are possible.

Synthesis and Characterization of 1. 1 was originally prepared by treating Ph₃PO with MnCl₃(1-4-dioxane), the latter of which was prepared at -50 °C and isolated and

manipulated at -30 °C, all under air-free conditions (Scheme 1). We have instead prepared 1 by treating 2 with Ph₃PO and isolating the resulting blue precipitate (Scheme 1, route A). All of the steps leading to the isolation of 1 can be conducted open to air with a reagent grade solvent, and in our experience 1 is indefinitely stable under ambient conditions in transparent glass vials. Additionally, a convenient one-pot synthesis of 1 can be accomplished by combining Mn(OAc)2, KMnO4, and Me₃SiCl in a 4:1:16 ratio and treating the resulting mixture with eight equivalents of Ph₃PO (Scheme 1, route B). MnCl₂ and/or SiCl₄ can be used instead of Mn(OAc)₂ and/or Me₃SiCl, respectively, but with diminished yields. Samples of 1 prepared with the improper stoichiometry of reagents leads to contamination of 1 with the known compound $[Mn^{II}Cl_2(OPPh_3)_2]$ (4). 15

Although **1** is a known compound, the only characterization available is CHN analysis and solid-state magnetic moment. Thus, herein we provide the full characterization details. Crystals of 1 suitable for X-ray diffraction were obtained from the blue/green filtrate after synthesis of 1 via route A open to air. XRD analysis revealed square pyramidal geometry (τ_5 = 0.09) with two Ph₃PO groups occupying nonequivalent positions (Figure 1). Since Mn(III) chloride structures

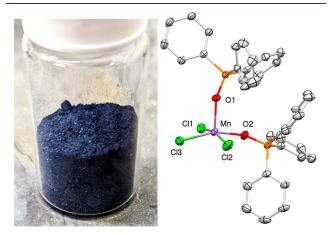


Figure 1. (Left) Air-stable crystalline 1 on the bench. (Right) Molecular structure (ellipsoids 50%) of 1 determined with XRD (H atoms not shown for clarity). Selected bond distances (Å) and angles (deg): Mn-Cl1 = 2.274(1); Mn-Cl2 = 2.263(1); Mn-Cl3 =2.244(1); Mn-O1 = 2.051(3); Mn-O2 = 1.959(3); Cl3-Mn-O2 = 159.32(9); Cl1-Mn-Cl2 = 164.91(4); O1-Mn-O2 = 97.8(1).

often adopt 6-coordinate octahedral geometries, 17,18 the structure of 1 is rare. 1 dissolves in most polar organic solvents to form intensely colored solutions. Despite the airstability of 1 in the solid state, solutions are not air stable and lose their color upon standing open to air (SI). Evans-method calculations in DCM are consistent with a high spin Mn(III) center ($\mu_{\text{eff}} = 4.83 \, \mu_{\text{B}}$) in the solution-state. UV-vis spectra of 1 in different solvents indicate the major transitions are LMCT, a property that can be leveraged for light-induced chlorine atom transfer. The difference in color of 1 in THF (purple) or MeOH (pink) compared to MeCN and DCM (blue) may indicate changes in coordination.

Applications in Coordination Chemistry. The Ph₃PO ligands in 1 are labile toward ligand substitution (Scheme 3). For this report, we demonstrate this by preparation of the green complex {Tpm*}MnCl₃ (3), which can be prepared directly from 1 or 2. X-ray crystallography of 3 reveals its six-

Scheme 3. Use of 1 in Coordination Reactions

coordinate coordination geometry with one elongated Mn-Cl distance (2.45 Å) indicative of the Jahn-Teller effect predicted for an S = 2 complex in a pseudo-octahedral ligand field (Figure 2).

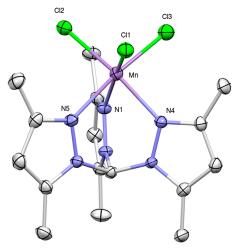


Figure 2. Molecular structure (ellipsoids 50%) of 3 determined with XRD (H atoms and two MeCN solvent molecules not shown). Selected bond distances (Å) and angles (deg): Mn-Cl1 = 2.4510(7); Mn-Cl2 = 2.2465(7); Mn-Cl3 = 2.2748(8); Mn-N1 = 2.321(2);Mn-N4 = 2.101(2); Mn-N5 = 2.138(2); Cl1-Mn-N1 =168.76(5); Cl2-Mn-N4 = 171.92(6); Cl3-Mn-N5 = 168.70(6).

To our knowledge, 3 is the only MnCl₃ complex with a facially coordinating ligand characterized by X-ray crystallography, and it is the first ever prepared using a MnCl₃ starting material. The only other comparable compounds are [(tacn)-MnCl₃], which was prepared by HCl induced condensation of a multinuclear Mn(III)-oxide complex, ¹⁹ and homoleptic "bis" complexes like $[Tp_2Mn]^{+,20,21}$ There is significant interest in the $N_1N_2N_2/O$ facial coordination of Mn(III) ions because of its relevance in a variety of nonheme metalloproteins. 5,22 The lack of compounds like 3 in the literature serve to indicate the difficulty in coordination chemistry with reactive Mn(III). Indeed, 3 exhibits thermal instability.

Applications in Alkene Dichlorination. We also wished to demonstrate the applicability of 1 in alkene dichlorination methodology, which may have advantages compared to other methods (Scheme 2). Optimization of dichlorination with 1 was evaluated using indene as the model substrate (Table 1). Use of less than 2 equiv of 1 resulted in incomplete conversions (e.g., 1 equiv resulted in ~50% conversion). The reaction can be performed in essentially any common laboratory solvent except water; water caused precipitation of insoluble brown material. The impact of solvent on reaction time is tentatively attributed to solubility (e.g., hexane vs

Table 1. Reaction Optimization

time	yield b
5 m	85°
5 m	93
20 m	99
20 m	99
25 m	95
120 m	77 ^c
150 m	77 ^c
120 m	95
20 m	93
120 m	96
22 h	83
	5 m 5 m 20 m 20 m 25 m 120 m 150 m 120 m

^aReactions were deemed complete when blue color no longer persisted. bYields determined with 1H NMR. Isolated yields. ^dReaction at r.t. required 180 m for same conversion. ^eACS grade, open to air.

DCM) or a change in composition due to solvent coordination (e.g., THF and MeCN vs DCM). The best results were obtained in DCM or CHCl3.

The scope of the reaction revealed good chemoselectivity, high stereoselectivity, and broad functional group tolerance in appreciable yields (Table 2). 1-Phenylcyclohexene yields a high d.r. for the anti-dichloride 7 (>19:1), which is an improvement over Mn-electrocatalysis with a d.r. of 8:1 for the same substrate. 12 Internal and terminal alkenes were successfully chlorinated (8-10). Allyl ether and oxidatively sensitive functional groups are also tolerated (11-15). Cyclohexenone furnished the α -halogenated cyclohexenone 16 as the major isolated product. We emphasize that an important facet of 1 is its ability to be accessed and used *without* acid coadditives that are often used in the generation of "MnCl₃" methodologies. ^{11,12} This enabled us to chlorinate silyl protected alcohol alkene 17 without a loss of a silyl functional group and was accomplished on the gram scale. Additionally, substrates 18-20 having N-containing protecting groups were tolerated. For substrates that did not go do completion in refluxing DCM, CHCl₃ and 3 equiv of 1 were used to take the reaction to completion (e.g., 11, 19, 20).

Some shortcomings of 1 are noted. Some reducing functional groups including thioethers, dialkyl sulfone, trialkyl amines, and phosphines are problematic, causing solutions of 1 to decolorize rapidly (≤ 1 m). The deleterious side reaction(s) is slow enough with thioether 14 that we were successful at isolating the product in ~20% yields, although outcomes varied. Finally, it appears that 1 can engage in aryl CH halogenation. This was systematically confirmed for naphthalene (Table 2), but it was not observed for any of the other aryl containing substrates used in this study and did not appear to affect yields of aryl containing substrates.

The first report that described 1 indicated sensitivity in daylight. Although we have not observed such sensitivity, 23 there are many examples of light-induced halogen atom extrusion from high-valent metal centers through LMCT

Table 2. Use of 1 in Alkene Dichlorination

"Reactions were set up open to air and blanketed with Ar without purging. "Reaction time was taken when blue color of 1 was gone. "Isolated yields (yields in parentheses determined by 1H NMR). "From trans-alkene." a equiv. 1 and CHCl₃. "Yield determined using GC.

excitation.^{24,25} Therefore, we tested light-accelerated chlorineatom transfer for ((allyloxy)methyl)benzene. The parent conditions of refluxing DCM afforded 68% conversion after 5 h (Table 2, Table 3, entry 5). Broadband irradiation in DCM

Table 3. Light-Accelerated Dichlorination

entry	conditions	time	yield (%)
1	r.t., >345 nm	60 m	60
2	r.t., >420 nm	60 m	60
3	r.t., >515 nm	60 m	46
4	r.t., dark	60 m	16
5	40 °C, dark	360 m	68

resulted in a dramatic increase in conversion rate compared to the dark control (entries 1–4). Chlorination of naphthalene is also enhanced by light to afford 1-chloronaphthalene (21). For example, the same conversion shown in Table 2 can be afforded in just 1 h using >345 nm.

To test for radical mechanisms, we evaluated *N*-tosyl diallylamine substrate **22**, which yielded cyclized product **23** (Scheme 4). This, and the need for two equivalents of **1** in dichlorinations, serves as strong evidence to support a Mn–Cl atom transfer radical mechanism, essentially the stoichiometric analogue to the one proposed by Lin and co-workers.¹² **4** is the

Scheme 4. Evidence For Radical Mechanism

Mn-containing byproduct of the dichlorination reactions in further support of this hypothesis. As such, it follows that inclusion of 4 may act as an inhibitor when Cl-atom transfer is reversible.^{24b} We confirmed this for light accelerated CH chlorination of naphthalene by inclusion of equimolar 1 and 4. This experiment resulted in a 50% reduction in product yield. To summarize, these observations support a radical mechanism involving stepwise Cl-atom transfer(s) from 1, as opposed to nucleophilic chloride or electrophilic chloronium transfer (SI).^{4,26}

To conclude, this report demonstrates that 1 is a convenient source of "MnCl₃" toward new coordination compounds and chlorination reactions. In regard to the former, we used 1 to prepare a unique MnCl₃ complex with relevance to *fac*-3-histidine coordination of Mn^{III} in biology. In regard to the latter, the halogen transfer with 1 is exceptionally convenient. The improved d.r. in substrates like 1-phenylcyclohexene over previous methods indicates the role of the ligand. The chlorine atom transfer step is light-accelerated, although further

optimization is needed to improve the efficiency of desirable light-induced process(es).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c08509.

Additional figures, experimental details, and NMR, FTIR, UV-vis spectra, and reaction data (PDF)

Accession Codes

CCDC 2196122 and 2196124—2196125 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request/cif, or by emailing data_request/ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

David C. Lacy — Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States; orcid.org/0000-0001-5546-5081; Email: DCLacy@Buffalo.edu

Authors

Ananya Saju — Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States

Justin R. Griffiths — Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States

Samantha N. MacMillan – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; oorcid.org/0000-0001-6516-1823

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c08509

Notes

The authors declare the following competing financial interest(s): A provisional patent application has been filed.

ACKNOWLEDGMENTS

NSF grant CHE-1847933, NIH-R21-GM141685-01, and the University at Buffalo (UB) provided support. A Q-exactive GC-Orbitrap tandem MS was purchased using NSF CHE-1919594 by the UB Chemistry Instrument Center (CIC). The Bruker Ascend-500 NMR spectrometer in the UB Magnetic Resonance Center was purchased with NSF CHE-2018160.

REFERENCES

- (1) Uson, R.; Rierra, V.; Ciriano, M. A.; Valderrama, M. Pentacoordinate neutral manganese(III) complexes. *Transition Met. Chem.* 1976, 1, 122–126.
- (2) Barber, M.; Linnett, J. W.; Taylor, N. H. The halides of the transition elements of the first long period. *J. Chem. Soc.* **1961**, 3323–3332.
- (3) (a) Wiberg, N.; Holleman, A. H.; Wiberg, E. Chapter XXVIII The Manganese Group. In *Inorganic Chemistry*, 1st ed.; Academic

- Press, 2001; pp 1405–1430. (b) Cotton, S. A. Iron(III) chloride and its coordination chemistry. *J. Coord. Chem.* **2018**, *71*, 3415–3443.
- (4) (a) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Catalytic, stereoselective dihalogenation of alkenes: challenges and opportunities. *Angew. Chem., Int. Ed.* **2015**, *54*, 15642–15682. (b) Parisotto, S.; Azzi, E.; Lanfranco, A.; Renzi, P.; Deagostino, A. Recent progresses in the preparation of chlorinated molecules: electrocatalysis and photoredox catalysis in the spotlight. *Reactions* **2022**, *3*, 233–253.
- (5) Lingappa, U. F.; Monteverde, D. R.; Magyar, J. S.; Valentine, J. S.; Fischer, W. W. How Manganese Empowered Life with Dioxygen (and Vice Versa). *Free Radic. Biol. Med.* **2019**, *140*, 113–125.
- (6) Funk, H.; Kreis, H. Zur kenntnis des dreiwertigen mangans: Verbindungen des mangan(III)-chlorids mit aminen und einigen äthern. Z. Anorg. Allg. Chem. 1967, 349, 45–49.
- (7) Nachtigall, O.; Pataki, A.; Molski, M.; Lentz, D.; Spandl, J. Structure of manganese trichloride revisited synthesis, isolation, and crystal structure of MnCl₃(THF)₃. Z. Anorg. Allg. Chem. **2015**, 641, 1164–1168.
- (8) Rojas, Y.; Tadrosse, M.; Assaf, C.; Bernal, I.; Lalancette, R. A. Preparation and structural studies of manganese polychloride anions in three metal charge states [(II), (III), (IV)]—their stereochemistries. Struct. Chem. 2020, 31, 1309–1316.
- (9) Perlepes, S. P.; Blackman, A. G.; Huffman, J. C.; Christou, G. Complete carboxylate removal from [Mn₁₂O₁₂(OAc)₁₆(H₂O)₄] •2HOAc•4H₂O with Me₃SiCl: synthesis and characterization of polymeric [MnCl₃(bipy)]_n and an improved synthesis of (NEt₄)₂MnCl₅. *Inorg. Chem.* **1991**, *30*, 1665−1668.
- (10) Danopoulos, A. A.; Wilkinson, G.; Sweet, T.; Hursthouse, M. B. Synthesis and X-ray crystal structure of chloro tris(*tert*-butylimido)-manganese. *J. Chem. Soc., Chem. Commun.* **1993**, 495–496.
- (11) (a) Donnelly, K. D.; Fristad, W. E.; Gellerman, B. J.; Peterson, J. R.; Selle, B. J. Chlorination of alkenes by manganese(III) chloride species. Tetrahedron Lett. 1984, 25, 607-610. (b) Bellesia, F.; Ghelfi, F.; Pagnoni, U. M.; Pinetti, A. Chlorination of alkenes with manganese dioxide-trimethylchlorosilane. J. Chem. Res. 1989, 108-109. (c) Braja, G. H.; Chordia, M. D.; Basu, S.; Bahule, B. B.; Pore, V. S.; Naskar, D. Manganese-mediated stereoselective and chemoselective trans-dichlorination of alkenes with tetradecyltrimethylammonium permanganate-trimethylchlorosilane. J. Chem. Res. 1998, 8-9. (d) Richardson, P. F.; Markó, I. E. On the permanganate-mediated dichlorination of olefins. Synlett 1991, 1991, 733-736. (e) Bellesia, F.; Ghelfi, F.; Pagnoni, U. M.; Pinetti, A. Chlorination of alkenes with MnO₂-MnCl₂-acetyl chloride in dimethyl formamide. Synth. Commun. 1991, 21, 489-494. (f) Markó, I. E.; Richardson, P. R.; Bailey, M.; Maguire, A. R.; Coughlan, N. Selective manganese-mediated transformations using the combination: KMnO₄/Me₃SiCl. Tetrahedron Lett. 1997, 38, 2339-2342. (g) Boyes, A. L.; Wild, M. The manganese-mediated regioselective chlorination of allenes in synthetic approaches towards the spongistatins and halomon natural products. Tetrahedron Lett. 1998, 39, 6725-6728.
- (12) Fu, N.; Sauer, G. S.; Lin, S. Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources. *J. Am. Chem. Soc.* **2017**, *139*, 15548–15553.
- (13) Sauer, G. S.; Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 2018, 8, 5175–5187.
- (14) Dong, X.; Roeckl, J. L.; Waldvogel, S. R.; Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. *Science* **2021**, *371*, 507–514.
- (15) (a) Goodgame, D. M. L.; Cotton, F. A. Phosphine oxide complexes. Part V. Tetrahedral complexes of manganese(II) containing triphenylphosphine oxide, and triphenylarsine oxide as ligands. *J. Chem. Soc.* 1961, 3735–3741. (b) Tomita, K. Structure of dichlorobis(triphenylphosphine oxide)manganese(II). *Acta Crystallogr.* 1985, C41, 1832–1833.
- (16) Blackman, A. G.; Schenk, E. B.; Jelley, R. E.; Krenske, E. H.; Gahan, L. R. Five-Coordinate Transition Metal Complexes and the Value of τ_5 : Observations and Caveats. *Dalton Trans.* **2020**, 49, 14798–14806.

- (17) Philouze, C.; Henry, M.; Auger, N.; Vignier, D.; Lance, M.; Nierlich, M.; Girerd, J. J. Experimental and theoretical investigations of condensation and disproportionation of Mn(bpy)Cl₃(H₂O) in Aqueous Solution. Inorg. Chem. 1999, 38, 4-11.
- (18) Mantel, C.; Chen, H.; Crabtree, R. H.; Brudvig, G. W.; Pécaut, J.; Collomb, M. N.; Duboc, C. High-spin chloro mononuclear Mn^{III} complexes: a multifrequency high-field EPR study. ChemPhysChem 2005, 6, 541-546.
- (19) Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella, M.; Vitols, S. E.; Girerd, J. J. Synthesis, crystal structures, reactivity, andmagnetochemistry of a series of binuclear complexes of manganese(II), -(III), and -(IV) of biological relevance. The crystal structure of [LMn $^{\rm IV}(\mu\text{-O})_3 \mathrm{Mn^{IV}L}] (\mathrm{PF_6})_2 \bullet \mathrm{H_2O}$ containing an unprecedented short Mn···Mn distance of 2.296 Å. J. Am. Chem. Soc. **1988**, 110, 7398-7411.
- (20) Forshaw, A. P.; Smith, J. M.; Ozarowski, A.; Krzystek, J.; Smirnov, D.; Zvyagin, S. A.; Harris, T. D.; Karunadasa, H. I.; Zadrozny, J. M.; Schnegg, A.; Holldack, K.; Jackson, T. A.; Alamiri, A.; Barnes, D. M.; Telser, J. Low-spin hexacoordinate Mn(III): synthesis and spectroscopic investigation of homoleptic tris(pyrazolyl)borate and tris(carbene)borate complexes. Inorg. Chem. 2013, 52, 144-159.
- (21) Hossain, F.; Rigsby, M. A.; Duncan, C. T.; Milligan, P. L.; Lord, R. L.; Baik, M.-H.; Schultz, F. A. Synthesis, structure, and properties of low-spin manganese(III)-poly(pyrazolyl)borate complexes. Inorg. Chem. 2007, 46, 2596-2603.
- (22) Bryliakov, K. P.; Talsi, E. P. Active Sites and Mechanisms of Bioinspired Oxidation with H2O2, Catalyzed by Non-Heme Fe and Related Mn Complexes. Coord. Chem. Rev. 2014, 276, 73-96.
- (23) Our samples were never exposed to sunlight, only ambient fluorescent laboratory lighting.
- (24) (a) Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. Trap-free halogen photoelimination from mononuclear Ni(III) complexes. J. Am. Chem. Soc. 2015, 137, 6472-6475. (b) Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Halogen photoelimination from mononuclear nickel(III) complexes enabled by the secondary coordination sphere. Organometallics 2015, 34, 4766-4774. (c) Cagan, D. A.; Bím, D.; Silva, B.; Kazmierczak, N. P.; McNicholas, B. J.; Hadt, R. G. Elucidating the mechanism of excited-state bond homolysis in nickel-bipyridine photoredox catalysts. J. Am. Chem. Soc. 2022, 144, 6516-6531.
- (25) (a) Nielsen, M. K.; Shields, B. J.; Liu, J.; Williams, M. J.; Zacuto, M. J.; Doyle, A. G. Mild, redox-neutral formylation of aryl chlorides through the generation of chlorine radicals. Angew. Chem., Int. Ed. 2017, 56, 7191-7194. (b) Lian, P.; Long, W.; Li, J.; Zheng, Y.; Wan, X. Visible-light-induced vicinal dichlorination of alkenes through LMCT excitation of CuCl₂. Angew. Chem., Int. Ed. 2020, 59, 23603-23608.
- (26) Example of chloride transfer: Sarie, J. C.; Neufeld, J.; Daniliuc, C. G.; Gilmour, R. Catalytic vicinal dichlorination of unactivated alkenes. ACS Catal. 2019, 9, 7232-7237. Example of chloronium transfer: Snyder, S. A.; Treitler, D. S.; Brucks, A. P. Simple reagents for direct halonium-induced polyene cyclizations. J. Am. Chem. Soc. 2010, 132, 14303-14314. Example of both halonium and halide transfer: Lubaev, A. E.; Rathnayake, M. D.; Eze, F.; Bayeh-Romero, L. Catalytic chemo-, regio-, diastereo-, and enantioselective bromochlorination of unsaturated systems enabled by Lewis base-controlled chloride release. J. Am. Chem. Soc. 2022, 144, 13294-13301.

□ Recommended by ACS

C-C σ-Bond Oxidative Addition and Hydrofunctionalization by a Macrocycle-Supported Diiron Complex

Tianchang Liu, Neil C. Tomson, et al.

II II Y 26 2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 2

Tantalum η^2 -Vinyl Complexes Bearing an $[\eta^5:\sigma$ - $Me_2C(C_5H_4)(C_2B_{10}H_{10})]^{2-}$ Ligand: Syntheses and Structural **Characterizations**

Jingting Yang, Zuowei Xie, et al.

SEPTEMBER 09, 2022

ORGANOMETALLICS

READ **C**

Shvo-Type Metal-Ligand Cooperative Catalysts: Tethered η⁵-Oxocyclohexadienyl Ruthenium Complexes

Emmanuel Puig, Alain Igau, et al.

MAY 23, 2022

ORGANOMETALLICS

RFAD 17

Mechanistic Basis for the Iridium-Catalyzed Enantioselective **Allylation of Alkenyl Boronates**

Colton R. Davis, Joseph M. Ready, et al.

AUGUST 29, 2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ **C**

Get More Suggestions >