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Social network analysis (SNA) has been gaining traction as a technique for quantitatively studying student
collaboration. We analyze networks, constructed from student self-reports of collaboration on homework as-
signments, in two courses from the University of Colorado Boulder and one course from the Colorado School of
Mines. All three courses occurred during the COVID-19 pandemic, which allows for a comparison between the
course at the Colorado School of Mines (in a fully remote format) with results from a previous pre-pandemic
study of student collaboration at the Colorado School of Mines (in a hybrid format). We compute nodal central-
ity measures and calculate the correlation between student centrality and performance. Results varied widely
between each of the courses studied. The course at the Colorado School of Mines had strong correlations be-
tween many centrality measures and performance which matched the patterns seen in the pre-pandemic study.
The courses at the University of Colorado Boulder showed weaker correlations, and one course showed nearly
no correlations at all between students’ connectivity to their classmates and their performance. Taken together,
the results from the trio of courses indicate that the context and environment in which the course is situated play
a more important role in fostering a correlation between student collaboration and course performance than the
format (remote, hybrid, in-person) of the course. Additionally, we conducted a short study on the effect that
missing nodes may have on the correlations calculated from the measured networks. This investigation showed
that missing nodes tend to shift correlations towards zero, providing evidence that the statistically significant
correlations measured in our networks are not spurious.

I. INTRODUCTION

A. Motivation

Many studies have demonstrated that interactive engage-
ment, which encourages learning through discussion and col-
laboration, improves student understanding of physics con-
cepts [1, 2]. Additionally, having a sense of belonging within
an academic community is associated with persistence and
achievement among students, especially among students from
underrepresented backgrounds [3, 4]. Homework assign-
ments in physics courses are one of the primary situations in
which students can collaborate and form bonds and a sense of
belonging, so studying the relationship between collaboration
on homework assignments, connection within a community,
and performance may shed light on effective ways to create
supportive environments within physics courses.

Social network analysis (SNA) provides a quantitative
method for analyzing how individuals can be connected to
a larger group. Key concepts related to network analysis are
discussed in more detail in Sec. I, but briefly, a social net-
work is a complex network (or graph) with individuals rep-
resented by nodes (or vertices), while connections between
individuals are represented by links (or edges). In a general
network both nodes and links carry weights (indicating char-
acteristics of an individual or the strength of a connection be-
tween individuals), and links can have a direction indicating
a non-reciprocal type of connection.

B. Background

SNA is an analytical tool that is gaining traction within
the field of physics education research (PER), and there is
a small but growing collection of studies examining students’
connections to their peers and how it relates to student ex-
periences and outcomes. For example, a pair of studies in-
vestigated whether students’ connection to their classmates
(measured via a series of surveys given periodically through-
out the semester) predicts their persistence within the intro-
ductory physics sequence [5, 6]. The first study found that
centrality (i.e., quantitative measures of a student’s level of
connectivity to other students; see Sec. II A for mathematical
definitions) was a good predictor of persistence. The second
study provided a more nuanced analysis that investigated so-
cial networks that developed in the physical classroom (the
in-class network) and networks that formed outside of the
physical classroom (the out-of class network) which incorpo-
rated collaboration on homework assignments. This second
study found that course grade was more correlated with per-
sistence for students with high final grades (or lack of persis-
tence for students with low final grades), and that centrality in
the out-of-class network was more correlated with persistence
for “middle-of-the-pack” students. With these observations,
they concluded that developing social connections outside of
the classroom either helped create, or reflected an already ex-
isting, commitment to their studies [6].

Additionally, SNA has been used to explore whether
changes in students’ feelings of self-efficacy in physics is re-
lated their connection to other students [7]. Though this study
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found that students left their introductory physics courses
with a lower average sense of self-efficacy, centrality within
the network predicted post-course self-efficacy after con-
trolling for pre-course self-efficacy. Furthermore, central-
ity measures were associated with various sources of self-
efficacy [7]. Another study used SNA to analyze student in-
teractions in a help-room setting and determined that the envi-
ronment was equitable because gender and ethnicity were not
predictors of participation [8]. SNA is a subdivision of the
larger field of network analysis which uses networks (graphs)
to analyze complex systems. Outside of the context of so-
cial interactions, networks have been used in PER to study
the patterns of student responses to multiple choice surveys
[9-11].

C. Prior Work

In a direct precursor to this study, Vargas et al. created
social networks from students’ reports of collaboration on
homework assignments in three upper-division courses at the
Colorado School of Mines (Mines). Various measures of a
student’s centrality within the network were then correlated
with performance on exams and homework assignments. In
all three courses, homework scores were positively corre-
lated with several centrality measures, but negatively corre-
lated with measures representing whether a student collabo-
rated with only a few versus many other students. The find-
ings suggested that students who collaborate both frequently
and with many others tended to perform better on graded as-
signments [12]. Another closely related study examined this
same connection between students’ performance and their
connections to their peers in a highly collaborative introduc-
tory physics course and also found a significant link between
students’ centrality and performance using regression analy-
sis [13].

The study presented in this article builds on the study
by Vargas et al. to examine the relationship between self-
reported student collaboration and performance during the
COVID-19 pandemic. Data was collected from one course at
Mines and two courses at the University of Colorado Boulder
(CU Boulder). This allows for a direct comparison between
networks from pre-pandemic and pandemic-affected courses
at Mines. Furthermore, the data collection in the CU Boulder
courses adds an additional perspective on student collabora-
tion by investigating a different student population and edu-
cational context.

In the following section, Sec. II, we discuss the method-
ology of the study beginning with a brief overview of key
network analytic concepts. Then the context and structure of
each of the courses in the study, data collection methods, and
our data analysis process are described. Next, in Sec. III, we
present our results and findings on the relationship between
students’ collaboration and performance. Then in Sec. IV,
we present a short study of random and simulated networks
to provide some perspective on our findings, particularly to

FIG. 1. Example of a complex network. Here the blue dots denote
nodes (or students) and lines between the notes represent links (or
edges). Directionality of the link is denoted by the direction of the
arrow on each link.

address possible impacts of missing data. We end in Sec. V
with conclusions, discussion of limitations, and future work.

II. METHODOLOGY

In this section we provide an introduction to relevant net-
work analytic concepts accessible to readers with no prior ex-
perience in network analysis. This includes centrality mea-
sures, which quantify a student’s connection to their peers
(Sec. IT A); the context of the courses from which data was
collected including course format, grading structure, and data
collection methods (Sec. II B 1 and Sec. II B 2); and our data
analysis process (Sec. II C).

A. Overview of key network analysis concepts

An example of a complex network is given in Fig. 1. In
general, links connecting two students have both a weight and
a direction. In the networks analyzed in this study, the weight
of the link represent the number of times the pair of students
reported working together while completing a homework as-
signment and the direction of the link indicates which student
was giving/receiving help, respectively. A network in which
the links have a direction is called a directed network.

The information about the links in a network is encoded
into an adjacency matrix. The adjacency matrix, A, is an
N x N matrix, where N is the number of nodes, and the ma-
trix elements, a;;, are the weights of the links that connect a
node ¢ with the node j. In a directed network, the adjacency
matrix is generally not symmetric since directed connections
between individuals are not necessarily reciprocal. Addition-
ally, nodes in a network may also contain information. In
our case, this information includes the homework and exam
grades of the student represented by the node.



FIG. 2. An isolated node with three inward links and two outward
links. This node has in-strength s; = 8, out-strength s, = 4, and
net-strength s, = 4.

From the networks, we calculate a number of centrality
measures, which quantify a node’s connection to the rest of
the network. Each centrality measure captures a different way
in which a node can be connected to the larger network, which
in turn can represent different ways in which the node may
contribute to the flow of information within the network. The
simplest of these centrality measures are the in-strength and
out-strength.

In-strength s; and out-strength s, quantify the total weight
of links terminating and beginning on a node, respectively.
The net-strength s, is simply the difference: s; — s,. For
example, the node in Fig. 2 has an in-strength of eight, an out-
strength of four, and a net-strength of four. In our networks,
the total number of times a student gave help to other students
over the course of the semester is that student’s out-strength.
The number of times they received help is their in-strength.

The in-disparity Y; and out-disparity Y, measure the non-
uniformity of a node’s inward and outward links, respectively,
and provide more information about the distribution of links
attached to a node. Nodes with large disparities tend to be
connected to very few other nodes within the network, re-
flecting the large disparity between the few, present connec-
tions to other nodes and the many non-existent connections.
A node’s disparity tends to decrease the more connections the
node has to other nodes, and is not defined for nodes without
connections. The in- and out-disparities differ from s; and
So. For example, it is possible for a node with a very strong
connection to just one other node to have large in- and out-
strengths and as well as large disparities. In contrast, a node
with many weak connections to other nodes may also have
large values for s; and s,, but small values for Y; and Y5.
So, for example, a student who has a strong connection to
a few other students will have large disparities and large in-
and out-strengths. Alternatively, a student with many rela-
tively weaker connections to other students will have smaller
disparities, but could also have large in- and out-strengths de-
pending on the sum of the strengths of the connections. For
the equations that describe how the disparity and the in-, out-,
and net-strength can be calculated from the adjacency matrix,

see the article by Vargas et al. [12].

The closeness ¢© and harmonic ¢” centralities measure
how close a node is to all the other nodes within a network.
The closeness centrality of node 7 is

H
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where N is the total number of nodes in the network, n is
the number of nodes reachable from node 7 (i.e., able to be
reached by traversing one-way links), and d;; is the short-
est distance between nodes ¢ and j. If node j is not reachable
from node %, then the d;; term is not considered in the sum and
the (n —1)/(N — 1) pre-factor scales the closeness centrality
by the number of reachable nodes. The distance d;; can be
related to link weights in a variety of ways (e.i., the distance
can some functional dependence on the link weight depend-
ing on the context of the network). We discuss our definition
of distance in more detail in Sec. II C; however, in our net-
work strong connections mean short distances. The formula
above for the closeness centrality was proposed by Wasser-
man and Faust specifically to account for the case of networks
in which some nodes are unreachable from others [14].
Another way to address the possibility of certain nodes be-
ing unreachable is to use the harmonic centrality which is

=3 L ()

where d;; is again the shortest distance between node 7 and
node j. If a node j is unreachable from node i, d;; is effec-
tively infinite and the term in the sum for this pair of nodes is
zero. Within the context of social networks, the closeness and
harmonic centralities capture the idea of ‘degrees of separa-
tion’. If a student has many connections to their classmates,
and if their connections also have many connections (and so
on) the first student will have high closeness and harmonic
centralities. Additionally, this means that for a student to be
unreachable from another, they must share zero mutual col-
laborators at all levels (i.e., not only do they share no mutual
collaborators, their mutual collaborators share no mutual col-
laborators, and so on).

With regards to directed networks, an important subtlety
of the closeness and harmonic centralities is that they can be
defined using either the shortest inward directed path or the
shortest outward directed path. For example, if a node n has
only outward directed links, it is not reachable from other
nodes in the network, but other nodes will be reachable from
n. In this case using the inward shortest paths to compute ¢
or ¢ will result in centralities of zero, but using the outward
paths will result in non-zero centralities. When discussing our
results in later sections, we will refer to the closeness and har-
monic centralities calculated using the inward shortest paths
as ¢“? and cf?, respectively, and the quantities calculated us-
ing the outward distances as ¢“° and ¢,



The last centrality measure we will consider is the be-
tweenness centrality. For a node 7, the betweenness centrality
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where o (J, k) is the number of distinct shortest paths between
nodes j and k, o(j, k|i) is the number of shortest paths be-
tween nodes j and k that pass through node i, V' is the set
of nodes in the network and the sum runs over all pairs of
nodes in the network (excluding pairs of nodes containing
node 7) [15]. Conceptually, the betweenness centrality quan-
tifies the extent to which a node is a hub that provides con-
nections between different regions within a network. So, a
student who collaborates with two (or more) tight-knit groups
which would otherwise be disconnected will have a large be-
tweenness centrality.

These centrality measures can be broken down into two
groups: local centrality measures which only consider a node
1 and the set of nodes directly connected to ¢, and global
centrality measures which depend on the structure of the en-
tire network. The in-strength, out-strength, net-strength, in-
disparity, and out-disparity are all local centrality measures
while the harmonic, closeness, and betweenness centralities
are global measures.

The final network analysis concept relevant to this study
(which was not considered in the previous study by Vargas et
al. [12]) is reciprocity [16, 17]. Reciprocity r is only mean-
ingful in directed graphs where the directed links can create
an imbalance in the connections between pairs of nodes. For
networks with weighted links Squartini ef al. present the def-
inition of the reciprocity which was used in this study:

P= (4)

where W is the total weight of all links in the network
which can be obtained by summing all the elements of the
adjacency matrix [18]. The quantity W* represents the total
weight of reciprocated links. The weight of reciprocal links
between a pair of nodes ¢ and 7 is defined as the minimum
of the “mirrored pair” (i.e., a matrix element and its partner
element in a position reflected across the diagonal) of matrix
elements: w;; = min(w;;,w;;). With this definition, the
total reciprocated weight W< is

W =33 . (5)
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The reciprocity r calculated in Eq. (4) represents the reci-
procity of the entire network. Conceptually, reciprocity mea-
sures the extent to which the connections between nodes are
bilateral within the entire network. If a network has few pairs
of bilateral links between nodes then the reciprocity will be

low, and as links within a network become more bilateral the
reciprocity approaches one. In our networks, reciprocity can
arise from one of two cases: either from a single student re-
porting both getting help from and giving help to a second
student, or from a pair of students both reporting getting (or
giving) help to each other.

B. Context
1. CU Boulder: Thermal Physics

The two CU Boulder courses from which data was
collected occurred during the fall 2020 and spring 2021
semesters. Both courses were an upper-division thermal
physics course and taught by the same instructor (BRW)
and occurred in a hybrid format with an option to attend
synchronous lectures either in-person or remotely and asyn-
chronous lecture recordings available. In both semesters, less
than 25% of the class opted to attend in person. Each course
had a total of 12 weekly homework assignments, with collab-
oration data collected from all but the first assignment.

In the fall 2020 iteration, data on student collaboration was
collected through a Qualtrics survey that students completed
upon submission of their weekly homework assignments. In
the spring 2021 semester, students reported their collabora-
tors directly on their homework solutions. The fall course
had three take-home midterm exams and a final with each
of the four exams comprising 15% of a student’s final grade.
The spring course had only two take-home midterms and a
final with each of the three exams comprising 20% of stu-
dent’s final grade. Students were allowed to submit revisions
on both homework assignments and exams for the opportu-
nity to earn back missing points. Students could earn back all
missing points on homework assignments but only a fraction
of missing points on exams.

Typically, on-sequence physics majors at CU Boulder take
this thermal physics course during the fall of their senior year.
This is reflected in the total enrollments of the two courses:
83 students took the course in the fall, and 55 took the course
in the spring. The process of obtaining consent for collec-
tion of student data decreased the number of students from
whom data was collected from 83 to 53 in the fall term and
55 to 48 in the spring term. We investigate the possible ef-
fects of this missing data in Sec. IV B. CU Boulder is a large,
predominantly white research institution with an undergrad-
uate population of roughly 30,000 students with roughly 110
physics majors and 25 engineering physics majors per class
year.

2. Colorado School of Mines: Math Methods

At Mines, collaboration data was collected from an
intermediate-level mathematical methods course covering



TABLE I. A summary of the results of the data collection on student collaboration. The final two columns directly compare the level of
student collaboration since the courses at Mines and CU Boulder had a different number of homework assignments.

Participating Total Reports of  Reports of Sum of edge  Reports per student links per student

students enrollment getting help giving Help weights in network  per assignment  per assignment
CU Boulder Fall 2020 53 83 777 691 1110 2.52 1.90
CU Boulder Spring 2021 48 55 378 335 495 1.35 .94
Mines Fall 2020 23 27 140 138 208 1.73 1.29

both analytical and numerical methods with significant pro-
gramming content, during the fall 2020 semester, which was
on-sequence with the normal curriculum at Mines. The
course was fully remote, synchronous, and taught by author
LDC. Students reported their collaborators directly on their
homework assignments, just as in the spring iteration of the
CU Boulder thermal physics course.

Graded assignments in the course consisted of seven five-
point homework assignments, a course project broken into
two six 7.5-point assignments across the semester, and 15
points of participation (for a total of 95 possible points). The
course had no exams. Mines students also had the opportu-
nity to submit homework revisions to receive points back.

A total of 27 students enrolled in the course, and 23 stu-
dents consented to the study. Mines is a medium research
institution with roughly 5,000 undergraduates, and about 60
physics majors per class year. See Table I for a summary of
the course participation.

C. Analysis

The first step in processing the collaboration data was to
create the adjacency matrix which encodes all students’ re-
ports of getting and giving help across the semester. For all
three courses, this adjacency matrix was built up assignment
by assignment. For each assignment, two separate matri-
ces were created: one containing all reports of getting help
(the “got-help” matrix) for the assignment, and one contain-
ing all reports of giving help (the “helped” matrix) for the
assignment. Each of these matrices representing the collabo-
ration on a single assignment contain only ones and zeros.
The helped matrix was transposed so that the direction of
links would match that of the got-help matrix. The got-help
and transposed-helped matrices were then combined using an
element-wise logical OR operation, which repeats the analy-
sis performed in the prior study by Vargas et al., to create one
“combined” matrix for each homework assignment [12]. Fi-
nally, the individual combined matrices for each assignment
were summed element-wise to create the “total” adjacency
matrix A, representing all collaboration during the course.
As a final step, the diagonal of the adjacency matrix was set
to zero to ignore any cases of a student reporting themself.

This total adjacency matrix can be used to directly com-
pute si, So, Sn, Yi, and Y;, for each node according to equations
which can be found in [12]. To compute the closeness, har-

monic, and betweenness centralities, the matrix of distances
d;; must first be calculated. Entries in A, range from zero
to eleven in the CU Boulder courses and from zero to seven
in the Mines course, and large values in Ay, represent a large
amount of collaboration between students. Large values in
Ao should correspond to short distances in d;;. To create
a d;; consistent with this relationship between collaboration
and distance, we took the reciprocal of the elements of Ay,
unless the element was zero in which case it remained zero.

The calculation of the closeness, harmonic, and between-
ness centralities was done using built-in functions from the
NetworkX python package. When calculating the closeness
and harmonic centralities in a directed network, the Net-
workX functions default to calculating ¢“* and c¢*. To calcu-
late ¢“° and ¢/°, the directions of all links in the adjacency
matrix are swapped which is accomplished, in practice, by
transposing the adjacency matrix.

The output of the functions that calculate the centrality
measures are dictionaries with the node label as the key and
the centrality measure of the node as the value. With the
dictionaries, the Pearson correlations between the centrality
measures and students’ homework and exam grades were di-
rectly calculated. The students in the CU Boulder courses
could submit revisions to exams to receive points back, but
we calculated correlations using the pre-revised exam scores.
Correlations with homework scores were calculated using
the post-revised grade as the pre-revised grade was never
recorded for these courses.

Only reports from students consenting to the study were
included in the construction of the social network. In some
instances, though, a student would report collaboration with
a student who had not consented to the study. In this case,
a node and appropriate links (depending on the reports from
consenting students) for the non-consenting student would be
added and included in the final network representing only in-
formation reported from the other, consenting student (i.e.,
collaboration reports submitted by non-consenting students
as part of the normal coursework were not included in the
data collection or the network). Thus, some non-consenting
students appear in the final networks, the presence of which
contributes to the centrality measures for other students in
the network. However, the non-consenting students were not
included in the calculations of correlations as data on their
course scores was not collected as part of the study.



III. RESULTS
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(c) Spring 2021 Thermal Physics at CU Boulder.

FIG. 3. Correlations between nodal centrality measures and student
performance in three pandemic-affected courses. Correlations
significant at the p < .05 level are indicated with filled markers.
The math methods course at Mines had no exams.

One of the main goals of this study was to compare the
networks and correlations between student centrality and per-
formance between courses taking place before the COVID-

19 pandemic and courses occurring during the pandemic. An
overview of the collected data in this study is provided in Ta-
ble L. In all three courses, students more often reported getting
help than giving help, though the difference was smallest by
far in the course at Mines. This observation cannot be com-
pared to the prior study since only aggregated adjacency ma-
trices remain from the prior study, but it suggests there may
be a different conceptualization about the nature of giving and
receiving help between students at Mines and CU Boulder.

Likewise, the frequency of reporting also cannot be directly
compared between the pre-pandemic and pandemic-affected
courses, but the density of the networks, in terms of the num-
ber of links per student per assignment present in the full net-
works can be compared. In the courses analyzed in the prior
study, the classical mechanics, electromagnetism, and quan-
tum mechanics courses had 1.4, 1.5, and 1.7 links per student
per assignment. Except for the spring 2021 thermal physics
course at CU Boulder, the level of collaboration occurring be-
tween students in the pandemic-affected courses is relatively
similar to the pre-pandemic courses (see Table I). In the fall
2020 course at CU Boulder and the course at Mines, students,
on average, gave or received help from more than one other
student on each assignment (see Table I). This may be un-
expected since the COVID-19 pandemic made face-to-face
collaboration more difficult between students; however, it is
also possible that students’ definition and threshold for re-
porting giving and receiving help may have changed due to
the pandemic and online modes of interaction became more
common.

The correlations between centrality measures and stu-
dent performance in the three pandemic-affected courses are
shown in Fig. 3. The results from the math methods course
at Mines very closely matched the patterns seen in the pre-
pandemic courses at Mines [12]. The fall 2020 course
at Mines had strong correlations between performance and
the in-strength, out-strength, closeness centrality, and har-
monic centrality. Furthermore, the non-significant correla-
tions between the net-strength and betweenness centrality
also matched the pre-pandemic findings. The largest dif-
ference between the pre-pandemic and pandemic-affected
courses at Mines is that during the COVID-19 pandemic,
the in-disparity and out-disparity were not correlated statisti-
cally significantly with performance (as they were in the prior
study). Among the three pre-pandemic courses, though, the
in- and out-disparities correlated negatively with performance
in two of the courses, but not the third (Quantum Mechanics).
The negative correlation suggested that students who collabo-
rated with many other students (as opposed to only few other
students) tended to get higher scores [12]. This replication of
the patterns from the pre-pandemic courses indicates that the
environment at Mines was largely able to preserve the con-
nection between collaboration and performance during the
pandemic despite the course being fully remote.

The fall 2020 iteration of the thermal physics course at CU

Boulder showed some of the same patterns as the courses
from Mines. The outward closeness centrality and outward



TABLE II. A summary of the application of the Bonferroni test to
the significance levels of the measured correlations between student
centrality (listed in the first column) and homework scores.
P-values for correlations that satisfy the Bonferroni test are
indicated in bold with asterisks, meaning that these correlations are
especially strong and resistant to a false positive analysis.

Correlation Correlation Value p-value
Mines s; .549 .0067
Mines s, 547 .0069

Mines ¢° 718 .00011*

Mines ¢©* 718 .00011*

Mines ¢7° .687 .00029*

Mines ¢ .687 .00029*

CU Fall s, 274 047

CU Fall ¢©° 430 .0013*

CU Fall ¢° 395 L0034

CU Spring s, -292 044

harmonic centrality were positively correlated with perfor-
mance on homework assignments and exams at the p < .05
level with performance on homework assignments, and the
out-strength (in addition to ¢“°and ¢°) was positively cor-
related with performance on homework assignments at the
p < .05 level. Since outward directed links from a node rep-
resent giving help to other students, the statistical significance
of only the outward oriented centrality measures indicates
that students who were a source of help close to many other
students in the course tended to get higher grades. This could
suggest that students doing well in the course were more able
to provide help to others, or that providing help to others (but
not receiving help) improves a student’s performance.

The goal of this analysis was to compare patterns of corre-
lation in these courses to the pre-pandemic data; thus the anal-
ysis does not focus on the significance of individual correla-
tions, but rather the overall pattern of the correlations. How-
ever, multiple statistical tests were performed with this data,
introducing a risk of false positives (a type 1 error). To ad-
dress this possibility, we applied the conservative Bonferroni
test which effectively lowers the p-value threshold required to
reject a null hypothesis at the p < .05 level. The test divides
the initial p-value threshold (of .05) by the number of statisti-
cal tests performed which in this case was ten tests per course
for a stricter threshold of p < .005. Table II shows the results
of the application of this stricter criterion on the significance
levels of the correlations.

The nuances of this distinction between the inward
closeness/harmonic centralities and the outward close-
ness/harmonic centralities were not explored in the prior
study. Both before and during the pandemic, in the courses
at Mines the correlations for the inward and outward central-
ities were nearly identical rendering a discussion of the dis-
tinction somewhat irrelevant. In both courses at CU Boul-
der, however, different correlations were observed which in-
dicated that being a well-connected source of help was asso-

ciated with high performance.

To investigate the different correlations between the
inward-directed versus outward-directed closeness/harmonic
centralities and grades observed in the CU Boulder courses
(and lack of difference seen in the Mines courses, see Fig. 3)
we looked at the reciprocity of each network. Reciprocity
measures the degree to which a connection between nodes is
bi-directional (i.e., that an edge from node ¢ to node j has
a matching edge from j to ¢). Using the method proposed
by Squartini et. al. for calculating reciprocity in weighted
networks [18], we found that all networks were highly recip-
rocal.

The reciprocities calculated in Table III are higher than typ-
ically seen in social networks [16, 18]. In the case of the
Mines course, this finding appears consistent with the sym-
metry in the correlations between inward- versus outward-
directed closeness and harmonic centralities and grades. Be-
cause, if for every outward directed edge there is a corre-
sponding (equally weighted) inward edge, then the outward
shortest distances from a node to all other nodes will be iden-
tical to the inward shortest distances. The reciprocities in the
CU Boulder networks were lower than those for the Mines
network, though still relatively large. Despite these large re-
ciprocities, there is an asymmetry between the correlations
with the inward versus outward centrality measures.

Such a result may seem counter intuitive, but it is not unex-
pected since reciprocity within a directed network, in general,
is not related to the symmetry of its adjacency matrix [18, 19].
The larger asymmetry between students’ reports of receiving
versus giving help is a possible explanation for the asymmetry
in the correlations, but is not, by itself, sufficient to account
for the asymmetry since the networks simulated in Sec. IV
were constructed with an asymmetry in reporting, but did not
reproduce the asymmetry in the correlations. One possible
explanation for this lack of consistency in the correlations at
Mines and CU Boulder is a cultural difference in how stu-
dents define thresholds for giving and receiving help or in
how students collaborate at the two institutions.

Correlations between a student’s centrality and perfor-
mance were almost non-existent in the spring 2021 iteration
of the thermal physics course at CU Boulder. The only statis-
tically significant correlation was between the students’ net-
strength and exam performance. This correlation was nega-
tive, and since the net-strength is the in-strength minus the
out-strength, indicating that students who received more help

TABLE III. The reciprocity for each of the courses in the present
study. The reciprocity takes on values from 0 (for no reciprocity) to
1 (completely reciprocal). The method proposed by Squartini ez. al
was used to calculated the reciprocity taking edge weight into
account [18].

Course Weighted Reciprocity
Mines Fall 2020 990
CU Boulder Fall 2020 .861
CU Boulder Spring 2021 .848




than they gave tended to get lower scores on exams. This re-
sult appears consistent with and somewhat complementary to
the results from the fall iteration of the course that students
who provided help tended to perform better. Another fea-
ture of this course from the spring of 2021 was that it had
the least level of student interaction in terms of links and re-
ports per student (see Table I) and was the only course which
contained multiple, disconnected components'. This could
be a consequence of the course occurring in the off-sequence
semester, thus students in the spring semester course may be
less likely to know each other and less likely to have taken
prior courses together. Alternatively, students may have been
less engaged overall in the spring due to increased pandemic-
related burnout, an effect which may be compounded by the
large proportion of second semester seniors in the course who
were approaching graduation. All these possible explanations
are speculation; interviews with students in the course would
be necessary to provide more insight into these results.

Overall, these results show that the format of the course
(whether in-person, remote, or hybrid), does not appear to
dictate whether there will be a correlation between student
collaboration and performance. The environment at Mines
maintained the connection despite a fully remote instruction
format during the COVID-19 pandemic, while the hybrid in-
struction format at CU Boulder was not able to consistently
produce a connection despite having an option for in-person
lectures during both semesters. To determine whether the cor-
relation is just typically weaker at CU Boulder or whether
the variation in results between the spring and fall semesters
is due to on/off-sequence effects versus pandemic related
burnout more research would need to be done after a return
to normal instruction.

IV. STATISTICAL SIMULATIONS OF SOCIAL
NETWORKS

Networks are complex, non-linear objects. A small pertur-
bation in a network could have anywhere from a negligible to
a large affect on the network depending on the location and
nature of the perturbation. As in any experimental study, our
data collection is susceptible to random and statistical errors.
In particular, a cursory analysis of the consistency of student
reporting in this study indicates that students may have differ-
ent thresholds for what qualifies as giving or receiving help
which can result in either missing or spurious links. The ef-
fect of this inconsistency is partially addressed by combining
student reports using a logical OR operation as discussed in
Sec. I C, but as with any human subjects research, some level

! Individual components within a network are subsets of connected nodes
within a network that connected to each other, but completely discon-
nected from nodes in other components. The network in Fig. 1 has only
one component.
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FIG. 4. Distribution of edge weights in the fall 2020 CU Boulder
thermal physics course and in simulated networks. The height of
the bars is the log of the ratio of the number of links of a particular
weight to square of the number of nodes, i.e., the total number of
ordered pairs of nodes.

of human error is expected. Additionally, collaboration re-
ports from students who did not consent to the study were not
included in the construction of the social networks resulting
in both missing links and missing nodes.

To better understand the significance of our findings given
the limitations of the data collection process, we conducted
analyses of random networks and the effect that removing
nodes from networks has on the correlations between central-
ity measures and performance. Due to the rather large pro-
portion of missing nodes in the fall 2020 course at CU Boul-
der, most of our analyses focus particularly on understanding
how the results from this semester’s course may have been
affected by missing nodes. As noted by a recent study on the
effects of missing data on robustness of centrality measures,
most applied network studies do little more than acknowledge
that measurement errors may have occurred [20]; so, in addi-
tion to better understanding the significance of our results, we
hope to expand the knowledge of, and introduce a practice of,
error analysis into social network research within the PER
field.

A. Simulated courses using random networks

To provide a deeper perspective, beyond the simple ap-
plication of a t-test, on the significance of our results, we
developed four methods for constructing random networks.
Real world networks, generally, are poorly modeled by ran-
dom networks [21], so we attempted to create models which
more closely matched the structure of the networks we mea-
sured. Simulating networks directly explores randomness in
networks and helps to demonstrate how our results compare
to ensembles of networks with similar characteristics, and
demonstrate that the results we reported in Sec. III are un-
likely to be due to random chance.

Data used to simulate the networks were taken from the fall



2020 CU Boulder thermal physics course as it was the course
with the largest enrollment but the smallest fraction of par-
ticipating students. While accumulating the network for this
course from the 11 homework assignments, all reports of get-
ting help were compiled into a “got-help” adjacency matrix.
A second matrix containing all the reports of helping another
student, the “helped” matrix, was also compiled. Elements
in these matrices had values between 0 and 11 (inclusive),
and the edge distribution represents the relative abundance of
each of the possible edge strengths between nodes.

The most basic method for simulating social networks,
which will be referred to as the Degree Match (DM) method,
used the edge distributions from the CU Boulder fall 2020
course’s got-help and helped matrices to construct simulated
got-help and helped matrices which matched the distribu-
tion of edge weights seen in the fall 2020 CU Boulder ther-
mal physics course. Then the simulated helped matrix was
transposed for the sake of directly matching the analysis per-
formed on the real networks. The two simulated adjacency
matrices were then combined using an element-wise maxi-
mum function to mimic the effect of using the logical OR op-
eration in the analysis of the real network data. As expected,
the DM method succeeded in matching the distribution of
edge weights seen in the measured networks (see Fig. 4).

The second method, which will be called the Multiple
Homeworks (MH) method, uses the simple probability that a
pair of students collaborated to create 11 pairs of got-helped
and helped adjacency matrices, one pair for each homework
assignment. Unlike the DM method, the matrices simulated
in the MH method only contain ones and zeros which were
pulled from a Bernoulli distribution. The helped matrices in
each pair was transposed to match the original analysis pro-
cess, then a logical OR operation was applied assignment-by-
assignment and the total network is created by accumulating
the combined helped/got-help adjacency matrices over all as-
signments. In further dissimilarity with the DMs method, the
MH method does not succeed in matching the distribution of
edge weights seen in the real networks. As can be seen in
Fig. 4, the MH method results in more low-weight links and
fewer high-weight links between nodes that what was seen in
the fall 2020 course at CU Boulder.

In both of these methods above, the helped and got-help
adjacency matrices were created from independent probabil-
ity distributions. However, as noted in Sec. III, our measured
networks were all highly reciprocal. Upon analysis of the
random networks generated with the MH and DM methods,
we found they lacked the level of reciprocity seen in the real
networks (see Fig. 5). This motivated the development of
our third and fourth methods to make our simulations better
match the real networks.

The Multiple Dependent (MD) method is identical to the
MH method except it only randomly generates 11 got-help
adjacency matrices (with the same probability of an edge
as the MH method) to simulate the 11 homework assign-
ments. Then, the helped adjacency matrices for each assign-
ment are generated depending on the respective got-help adja-
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FIG. 5. Distributions of reciprocities for each of the four random
network methods developed in this study. For each method, 1000
random networks were created.

cency matrix. If there was a got-help report between a pair of
students (i.e., student A reports getting help from student B)
there was a relatively large probability that there would also
be a matching report of helping between the students in the
helped matrix (specifically, student A would also report giv-
ing help to student B). If there was no report of getting help
between a pair of students, there was still a small probability
that a report of helping would exist. While this method better
matched the the level of reciprocity in the real network (see
Fig. 5), the MD method fails to match the edge distribution
seen in the real networks, just as with the MH method (see
Fig. 4).

Our final method, called the Direct Dependent (DD)
method, comes the closest to matching the level of reciprocity
seen in the real networks (see Fig. 4). The DD method cre-
ates a single got-help adjacency matrix representing reports
of getting help from across all homework assignments using
the same edge distribution as the DM method. However, sim-
ilar to the MD method, the adjacency matrix representing all
reports of giving help across the course is created based on
the got-help matrix. So, if there was a report of getting help
between a pair of students (say student A reports getting help
from student B), there was a high likelihood that there would
be a reciprocal report of giving help between the pair (i.e.,
student A would also have given help to student B). Similar
to the DM method, the DD method generated networks that
better matched the edge distribution of the real networks. A
summary of the key features of the methods are supplied in
Tab. IV.

These second two methods (MD and DD) required some
tuning of the dependent probabilities, but we were successful
in creating networks with the correct number of total students
reports of getting and giving help we saw in the real networks.
Furthermore, both methods greatly increased the reciprocity
we saw in the simulated networks, nearly to the level seen
in the real networks (see Fig. 5). Importantly, this finding
indicates that the reciprocity seen in the real networks is not a
consequence of combining student reports using a logical OR



operation, but rather a real signal that student collaboration
tends to be highly reciprocal since low reciprocity was seen
in the DM and MH networks despite the use of the logical OR
combination method.

B. Simulated removal of nodes

To investigate the effect of missing nodes within our net-
works, we simulated the removal of nodes from the Mines
network and from networks generated using the DD method
described in the previous section. This method was chosen
since it roughly matched the distribution of links seen in the
real network, and came closest to matching the reciprocity of
the real network. Nodes were missing from all networks, but
were most prevalent in the fall 2020 course at CU Boulder
which was missing nodes for 36% of the course’s total en-
rolled population. In this analysis, we consider there to be
a ‘true,” ‘complete’ network which accurately and precisely
represents student collaboration in a course. From the ‘true’
network we will remove nodes to make ‘reduced’ networks,
then see how the correlation between centrality and grades is
affected in the reduced networks.

Five different methods for dropping students from the net-
works were tested. Each method used a different probability
distribution to select students to drop from the network. Two
probability distributions determining a node’s likelihood to
be dropped were created based on grades: one where high-
performing students had a large probability of being dropped
and another which gave low-performing students a higher
likelihood of being removed. Two more distributions were
created based on centrality: one in which students with high
centrality were more likely to be dropped, and a second in
which students with low centrality were more likely to be
dropped. The final method removed students randomly, i.e.,
all students had the same probability of being removed.

Dropping nodes from the Mines network provides insight
into the effect removing nodes from a ‘complete’ network
which has a strong correlation between centrality and grades.
For each of the five methods described above, 1000 sets of
eight distinct nodes were selected for dropping from the net-
work to match the proportion of missing nodes from the fall
semester course at CU Boulder. The selected students were

TABLE IV. A summary of the key features of the four methods
developed to simulate networks of student collaboration. The row
for independent/dependent sub-networks refers to whether the
got-help and helped matrices were created independently or
whether the helped matrix depended on the got-help matrix.

Simulates multiple Single matrix for all

assignments assignments
Independent Multiple HWs Degree Match
sub-networks (MH) (DM)
Dependent Multiple Dependent Direct Dependent
sub-networks (MD) (DD)

2.5 4 —— Original correlation
—— Average correlation

—— Median correlation
2.0 A

1.5

1.0 A

0.5 1

0.0 -
0.0 0.2 0.4 0.6 0.8

Pearson r

(a) Histogram of correlations in reduced networks created by
preferentially dropping nodes with low grades from the Mines network.
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(b) Histogram of correlations in reduced networks created by
preferentially dropping nodes with low centrality from the Mines network.

FIG. 6. Histogram of correlations between grades and inward
harmonic centrality, ¢™'*, in networks created by dropping nodes
from the full Mines network. The red lines in each plot represent
the correlation between grades and inward harmonic centrality
measured in the original Mines network. The green and black lines
represent the mean and median correlation of the ensemble of
reduced networks. The blue bars represent the histogram of
correlations calculated from the networks in the ensemble.

dropped to create reduced networks, and the centralities for
the remaining nodes were recalculated. The new centralities
were then correlated with the grades of the students remaining
in the reduced network. The resulting distribution of correla-
tions in the 1000 reduced networks are shown in Fig. 6 for the
methods preferentially dropping students with low grades and
low centrality. We chose to show these plots since we sus-
pected that students with low grades or low centrality were
less likely to participate in the study, report their collabora-
tors, and more likely to be disconnected from the larger net-
work. The results in Fig. 6 represent the pattern seen in all
the five dropping methods since the all methods gave qualita-
tively similar results.

As can be seen in the histograms in Fig. 6, very few re-



duced networks had a correlation larger than the correlation
measured in the complete network (i.e., there are relatively
fewer counts above the red lines in the histograms). Further-
more, the median correlation splits the distribution of cor-
relations in half, so when removing nodes from the Mines
network there is an equal probability of getting a correlation
above or below the median. The median correlation among
the reduced networks falls below the original correlation, in-
dicating that removing nodes from a complete network with a
strong correlation between grades and centrality tends to de-
crease the correlation measured in a reduced network. Re-
moving nodes using the other three methods (high grades,
high centrality, and randomly) all produced similar results as
seen in Fig. 6.

To extend the analysis of the effect of missing nodes, a
similar dropping process was performed on random networks
generated using the DD method described in the previous
section. To create the probability distributions for dropping
nodes by grades, the homework scores from the fall 2020
CU Boulder thermal physics course were applied randomly
to the nodes of the simulated network. This process of ran-
domly assigning grades to nodes resulted in complete net-
works that typically did not have significant correlations be-
tween grades and centrality (specifically, the distribution of
correlations closely fit to a t-distribution centered at zero, as
would be naively expected). So, while dropping nodes from
the Mines network helped to show what happens when nodes
are removed from networks with statistically significant cor-
relations between grades and centrality, removing nodes from
‘complete’ networks without significant correlations helps
show the likelihood of us finding a spurious correlation in
the ‘reduced’ network.

Two approaches were taken to study the effect of missing
nodes from these simulated networks. First, a single net-
work was constructed (with 83 nodes), then 30 nodes were
dropped, and correlations re-calculated to directly mimic the
loss of nodes from the fall 2020 course at CU Boulder. This
approach was applied iteratively and allowed for a large num-
ber of simulated networks to be analyzed. The distribution
of resulting correlations in the reduced networks (after drop-
ping the most and least central student) are shown in Fig. 7.
The average and original correlations are not shown (as in
Fig. 6) since they were all nearly equal to zero. The distribu-
tion of correlations in the reduced networks also fit very well
to a t-distribution centered on zero, suggesting that dropping
students does not tend to produce a net shift the correlation
measured in the reduced networks.

The second approach more closely matched the process ap-
plied to the Mines network. In this approach, a single network
(of 83 nodes) was constructed, but instead of choosing only
one set of nodes to drop, 500 sets of 30 nodes were produced
and each set was dropped from the complete network to create
500 different reduced networks. New correlations were then
calculated in all of the reduced networks before repeating the
process with a new simulated complete network. This process
repeated for 500 random ‘complete’ networks. This method

—— Median correlation
—— t-distribution

(a) Preferentially dropping nodes with high centrality.

—— Median correlation
—— t-distribution

(b) Preferentially dropping nodes with low centrality.

FIG. 7. Histogram of correlations between grades and inward
harmonic centrality, ¢**, in networks simulated with the DD
method and 36% of nodes removed based on the nodes’ centrality.

allowed for a more detailed perspective on dropping nodes,
but fewer networks could be analyzed with this process. All
five methods for selecting nodes to drop were applied in this
analysis and in each case the result was similar: dropping
nodes tended to shift the correlation measured in the reduced
network towards zero, and the proportion of complete net-
works with a non-significant correlation that became reduced
networks with a significant correlation when dropping nodes
was less than three percent.

When taken together, the results from dropping nodes from
the Mines and simulated networks suggests that the statisti-
cally significant correlations between homework scores and
network centrality measured in the fall 2020 thermal physics
course at CU Boulder likely are not spurious results caused
by missing data.

V.  SUMMARY AND CONCLUSION

We collected data on student collaboration in two physics
courses at the University of Colorado Boulder and once
course at the Colorado School of Mines. The courses oc-



curred in the midst of the COVID-19 pandemic which al-
lowed for a partial comparison to the results of a prior study
which occurred before the implementation of remote and hy-
brid courses as a result of the pandemic. Social networks
were constructed based on students’ reports of giving and
receiving help on homework assignments throughout each
course. From the networks we calculated nodal centrality
measures which quantify the level of connection a student has
to the rest of their classmates.

When calculating the correlations between students’ cen-
trality and their performance on homework assignments and
exams we found different results in each of the courses.
The results from intermediate math methods course at Mines
closely matched the results from the pre-pandemic study:
there were statistically significant correlations between stu-
dents’ in-strength, out-strength, closeness centrality, and har-
monic centrality which indicates that students who collabo-
rate frequently and are closely connected to their peers tend
to get higher grades on homework assignments.

The courses at CU Boulder had less connection between
students’ centrality and course performance. Despite hav-
ing a higher density of links than the math methods course
at Mines, the fall 2020 thermal physics course at CU Boulder
only had statistically significant correlations between home-
work grade at the out-strength and the harmonic and close-
ness centralities calculated using the out-ward directed short-
est paths from a node (exam scores were only correlated with
the latter two centralities). This indicates that students who
tend to provide help to others, and are close sources of help to
their classmates tended to score better on the course’s home-
work assignments and exams. In the spring 2021 course at
CU Boulder, there was only a negative correlation between
exam score and net-strength (representing the net amount of
help given or received). This suggests that students receiv-
ing more help than they gave tended to score lower on this
course’s exams.

The consistency between the results found in this study and
the pre-pandemic results from Vargas et al. show that the
environment at Mines was able to preserve a connection be-
tween collaboration and course performance despite a fully
remote course format. When contrasted with the lack of con-
sistency in the results from hybrid courses at CU Boulder, this
study demonstrates that course context is important for creat-
ing a connection between student collaboration and perfor-
mance. For example, the on-sequence iteration of the thermal
physics course at CU Boulder did show some correlation be-
tween collaboration and performance, while the off-sequence
iteration showed nearly no correlation.

One of the primary limitations to this study stems from lim-
itations in the data collection process. This was specifically
a concern for the fall 2020 course at CU Boulder which was
missing roughly 36% of nodes representing student who did
not consent to the data collection process. To address pos-
sible effects caused by missing data, we constructed several
models for generating networks which resulted in one which
was able to match the edge distribution and reciprocity seen

in the measured networks. The simulated networks assumed
that the level of collaboration in the missing part of the net-
work matched the level seen in the measured networks. Sim-
ulations of random networks with this method corroborated
the results of the t-test which established the statistical signif-
icance of our findings.

The development of the network simulation models also
allowed for an investigation of the effect that removing nodes
from larger networks has on the correlations between cen-
trality and course performance. ‘Complete’ networks of 83
nodes were created and sets of 30 nodes were selected for
removal by various metrics. The removal of nodes tended
to shift correlations towards zero and resulted in a non-
significant correlation (in the complete network) to shift to
a significant correlation (in the reduced network) in less than
three percent of trials. A similar approach to dropping nodes
was applied to the measured network from the math meth-
ods course at Mines, which produced similar results: a ten-
dency to decrease correlations. These results suggest that the
statistically significant correlations measured in the fall 2020
course at CU Boulder reflect statistically significant correla-
tions in the complete network.

Though prior research in education shows that collabo-
rative interaction among students generally leads to better
learning outcomes (at least in part due to developing a stu-
dent’s sense of belonging), lacking a correlation between stu-
dent performance and centrality should not be considered a
necessarily undesirable feature. In the case of commuting
students, students who are working while attending school,
recently transferred students, or other situation in which stu-
dents are less able to collaborate with their peers, an ideal
course would overcome the obstacles faced by these stu-
dents’ disconnection from the course and result in learning
outcomes not dependent on a students’ ability to interact with
their classmates. Further research on the utility of high cen-
trality in the collaboration network of a course will benefit
from a validated assessment of students’ thermal physics un-
derstanding. This tool will help identify whether there are dif-
ferences in learning gains between courses of well-connected
versus more disconnected students.

Furthermore, future work on the analysis of student col-
laboration would benefit from qualitative interviews with stu-
dents to investigate their beliefs and conceptions of group
work. In particular, understanding students’ thresholds for re-
porting helping or being helped by other students, the range
of interactions that students have with their collaborators, and
whether or not students find collaboration to be helpful will
provide deeper insight into our results. Students’ qualitative
responses may shed light on what aspects of a course help to
create a correlation between collaboration and performance.
Furthermore, more data collection on in-person courses at CU
Boulder would establish whether collaboration is associated
with performance during regular instruction, or whether the
environment at CU Boulder generally tends to have a weaker
connection between student collaboration and performance.
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