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ABSTRACT

Multi-task learning (MTL) is a framework that enforces multiple
learning tasks to share their knowledge to improve their general-
ization abilities. While shallow multi-task learning can learn task
relations, it can only handle pre-defined features. Modern deep
multi-task learning can jointly learn latent features and task shar-
ing, but they are obscure in task relation. Also, they pre-define
which layers and neurons should share across tasks and cannot
learn adaptively. To address these challenges, this paper proposes a
new multi-task learning framework that jointly learns latent fea-
tures and explicit task relations by complementing the strength of
existing shallow and deep multitask learning scenarios. Specifically,
we propose to model the task relation as the similarity between
tasks’ input gradients, with a theoretical analysis of their equiva-
lency. In addition, we innovatively propose a multi-task learning
objective that explicitly learns task relations by a new regularizer.
Theoretical analysis shows that the generalizability error has been
reduced thanks to the proposed regularizer. Extensive experiments
on several multi-task learning and image classification benchmarks
demonstrate the proposed method’s effectiveness, efficiency as well
as reasonableness in the learned task relation patterns.

CCS CONCEPTS

« Computing methodologies — Multi-task learning; Regular-
ization.
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1 INTRODUCTION

Multi-task learning (MTL, [9]) is an important research domain
based on the idea that the performance of one task can be improved
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using related tasks as inductive bias. While traditional shallow
MTL methods can fit the models for individual tasks and learn task
relations, they do not focus on generating features from scratch
and instead rely on pre-defined and explicit features [51]. More re-
cently, deep representation learning empowers MTL to go "deep" by
equipping it with the capacity to generate features while fitting the
tasks’ predictive models. Deep MTL is usually categorized accord-
ing to the ways of correlating tasks’ models into two major types:
hard-parameter sharing and soft-parameter sharing. Hard-parameter
sharing methods [28, 39, 53] essentially hard-code which part of
neurons or layers to share and which part does not for different
tasks instead of doing it adaptively. Moreover, they usually share
the layers for representation learning (e.g., convolutional layers)
but not those for decision making (e.g., fully-connected layers for
classification). On the other hand, soft-parameter sharing meth-
ods [12, 33, 48] do not require to hard-code the sharing pattern but
instead build individual models for each task and "softly" regularize
the relatedness among them. Hence, soft-parameter sharing has
better flexibility in learning the task relation, while may not be effi-
cient since its model parameters increase linearly with the number
of tasks. Hard-parameter sharing, by contrast, is more "concise" but
requires pre-define which parts are shared or not.

Therefore, although MTL is a long-lasting research domain, it
remains a highly challenging and open domain that requires signif-
icantly more efforts to address challenges such as the trade-off be-
tween model flexibility and conciseness of hard- and soft-parameter
sharing mentioned above. Although more recently, there have come
a few attempts trying to alleviate the dilemma, such as those regu-
larizing task relationships in task-specific layers in hard-parameter
sharing to achieve knowledge transfer in unshared layers [28] and
those adaptively learning which part to share or not by methods
like branching [18, 29] or Neural Architecture Search [44], the re-
search frontiers still suffer from several critical bottlenecks, includ-
ing (1) Difficulty in regularizing deep non-linear functions
of different tasks. Adaptively learning task relation requires reg-
ularizing different tasks’ predictive functions, which, however, are
much harder to achieve for nonlinear-nonparametric functions
since it requires regularizing in the whole continuous domain of
input. To work around it, existing works [28, 43] typically resort to
a reduced problem which is to regularize the neural network param-
eters. Notice that this reduction deviates from the original problem
and is over-restricted. For example, first, two neural networks with
different permutations of latent neurons can represent the same
function [8]. Moreover, even if they have different architectures,
they can still possibly represent the same function [23]. This gap
deteriorates the model’s generalizability and effectiveness. (2) Lack
of interpretability in joint feature generation and task rela-
tion learning. Despite incapability of generating features, shallow
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MTL enjoys good interpretability since they learn explicit task cor-
relations via how the hand-crafted features are utilized. However, in
deep MTL, the generated features do not have explicit meaning and
how the black-box models relate to each other is highly obscure. It
is imperative yet challenging to increase the interpretability of both
generated features and task relation. (3) Difficulty in theoretical
analysis. While there are fruitful theoretical analyses on shallow
MTL, such as on generalization error [4-6] and conditions for reg-
ularized MTL algorithms to satisfy representer theorems [2, 3],
similar analyses meet strong hurdles to be extended to deep MTL
due to the difficulty in reasoning about neural networks whose
feature space is given by layer-wise embeddings [47]. It is crucial
to enhance the theoretical analyses on the model capacity and
theoretical relation among different deep MTL models.

This paper proposes a new Saliency-Regularized Deep Multi-
task Learning (SRDML) framework to solve the challenges men-
tioned above. First, we reconsider the feature weights in traditional
linear multitask learning as the input gradient and then generalize
the feature learning into the non-linear situation by borrowing the
notion of saliency detection. Second, we recast the task relation
problem as the similarity among saliency regions across tasks so
as to regularize and infer the task relation. Third, to validate our
hypothesis, we have given a theoretical analysis of their equiv-
alency. Meanwhile, we also provide theoretical analysis on how
the proposed regularization helps reduce the generalization error.
Finally, we demonstrate our model’s effectiveness and efficiency
on synthetic and multiple large-scale real-world datasets under
comparison with various baselines.

2 RELATED WORK

Multi-task learning (MTL). Readers may refer to [11, 51] for
a more comprehensive survey on MTL. Before the popularity of
deep learning, traditional MTL usually focuses on hand-crafted
features and can be generally divided into two categories: 1). multi-
task feature learning, which aims to learn a shared/similar feature
selection, latent space, or model parameters [1, 14]. 2). multi-task
relation learning, which aims to quantify task relatedness via task
clustering [19, 22] or task co-variance [16, 52]. However, they rely
on hand-crafted features and the separation of feature generation
and task learning may result in sub-optimal performance.

More recently, MTL takes advantage of the advancement of deep
neural networks which can directly take raw, complex data such as
images, audio, and texts and learn in an end-to-end manner. Deep
MTL integrates feature generation and task learning and simulta-
neously learns both of them [7]. In this domain, hard-parameter
sharing [34, 53] requires to hard-code which part of the network is
shared and which is not. Existing work usually shares the lower-
level layers for representation learning (e.g., convolutions) while
make higher-level layers (e.g., those for classification) separated
across tasks. Some existing works extend hard-parameter sharing by
considering Neural Architecture Search [13] like [29], [44], and [18].
soft-parameter sharing based method has better flexibility where
each task has its own models and regularization is used to enforce
task relatedness by aligning their model parameters [12, 33, 48]. To
achieve both hard-parameter sharing’s conciseness and efficiency
and soft-parameter sharing’s flexibility, some recent work [28, 43]
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Figure 1: Comparison over different MTL methods.

shares the representation learning layers while exploits task rela-
tions in task-specific layers.

Saliency detection. Saliency detection is to identify the most im-
portant and informative part of input features. It has been applied
to various domains including CV [17, 37], NLP [24, 35], etc. The
salience map approach is exemplified by [50] to test a network with
portions of the input occluded to create a map showing which parts
of the data actually have an influence on the network output. In [40],
a salience map can be created by directly computing the input gradi-
ent. Since such derivatives can miss important aspects of the infor-
mation that flows through a network, a number of other approaches
have been designed to propagate quantities other than gradients
through the network. In CV domain, Class Activation Mapping
(CAM, [55]) modifies image classification CNN architectures by re-
placing fully-connected layers with convolutional layers and global
average pooling [25], thus achieving class-specific feature maps.
Grad-CAM [38] generalizes CAM by visualizing the linear com-
bination of the last convolutional layer’s feature map activations
and label-specific weights, which are calculated by the gradient
of prediction score w.r.t the feature map activations. Grad-CAM
invokes different versions of backpropagation and/or activation,
which results in aesthetically pleasing, heuristic explanations of im-
age saliency. While there exist some other saliency-based methods
along this research line including Guided Propagation [42], Decon-
volutional Network [50], etc, they are designed only for specific
architectures like ReLU Network for Guided Propagation.

3 PROPOSED METHOD

In this section, we introduce our proposed Saliency-regularized
Deep Multi-task Learning (SRDML) method. We first review the
pros and cons for each MTL method and describe our main motiva-
tion, then formally introduce our model and its objective function.

3.1 Problem Formulation

Consider a multi-task learning problem with T tasks such that
a dataset {X,Y1,Y2, -+, Y7} is given with ii.d training samples

X = {Xit),xgt), ,x,(f)}, Y: = {yy),ygt), e ,y,(f)}, where n is

the sample size and (xgt), yl@ ) is a pair of input and label such that
xl(t) eXandygt) eR Vi=12---,nandt=1,2,---,T.
Mathematically, consider a predictor g which factorizes as g =
f o h, where "o" stands for functional composition. The function
h : X — RK is called the feature or representation extraction
part and is shared for all tasks, while f : RK — R is a function
defined on RK, a predictor specialized to each task at hand. K
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Figure 2: Illustrative examples of relation between saliency and task similarity. Left: Two tasks are to detect whether the man
is smiling and his mouth is open. The salient regions for two tasks are both around the mouth. Right: Two tasks are to detect
the horse and person. The salient regions are close to each other, indicating the potential similarity between the tasks.

here denotes the latent representation or feature-map dimensions.
Following existing work like [28, 39], we assume each task shares
the same input feature x, i.e., xD = x(M = ... = X<T), which is
very commonly seen in deep MTL problems such as multi-task
image classification task in computer vision domain.

Our goal is to build a deep architecture for learning multiple
tasks ylm =g:(x;), t =1,2,...,T which jointly generates seman-
tic features and learns task relation to correlate different tasks with
interpretability. This goal poses significant challenges to existing
work: 1). Directly regularizing the prediction function of differ-
ent tasks is extremely hard. Existing work considered a reduced
problem by regularizing the feature weights of different f; which is
over-restricted. 2). How to learn interpretable task relations with
deep/implicit features is still unclear. 3). Theoretical analysis is rare
in deep MTL due to the non-linear and non-parametric functions of
h and f. To jointly solve these challenges, we reconsider the feature
weights in shallow MTL as input gradient, i.e., df (x)/dx, x € RK,
and generalize the feature learning into the deep network by con-
sidering the saliency detection methods.

3.2 Motivations

We propose a simple framework that can innovatively achieve all
the goals, as shown in Figure 1.

To achieve model conciseness and efficiency as well as task
relatedness flexibility, we share the representation learning layers
and learn task relationships in task-specific layers. This is based on
important neuro-inspirations: human sensory organs and retina are
the same for all different tasks (meaning the convolution layers are
shared). On the other hand, the working memory will leverage the
long-term memory for each task and related tasks will have related
memory (i.e., model) and their relatedness can be considered as the
similarities of activation patterns for different tasks, namely the
similarity among the saliency maps for different tasks.

Then, the next question is how to regularize the relation among
different tasks, namely how to regularize the (dis)similarity of the
predictive functions of different tasks. As mentioned above, it is
problematic to directly regularize the neuron network parameters
due to their gap with the actual function. For example, neural net-
works with different architecture or neuron permutation could
represent the same function. Therefore, this motivates us to ex-
plore an innovative alternative so that we can more easily work
towards the space of functional. Specifically, we propose to regu-
larize first-order derivatives with respect to the input of different

tasks. This new strategy has two crucial merits: First, it is math-
ematically equivalent to directly regularize the function without
the gap in existing works mentioned above. Second, it also finds
inspiration from the saliency map domain and comes with strong
interpretability in how tasks correlate.

Key Merit 1: Regularizing task functions without theoretical
gap. Specifically, Theorem 1 below tells us that enforcing multiple
tasks to have similar input gradients is equivalent to encouraging
those tasks themselves to be similar.

THEOREM 1. Define F := {f € C' : f(0) = 0}, where C¥ is the
family of functions with k" -order continuous derivatives for any
non-negative integer k. Given fi, fo € ¥, we have:

fi=fo ifandonlyif f/(x)=f/(x), ¥xeX (1)
ProOF. Please refer to the appendix for the formal proof. O

Our analysis above allows us to regularize the prediction func-

tions of different tasks in the functional space instead of parameter
space. The assumption over function family ¥ := {f € C! : f(0) =
0} is reasonable in practice since an all-zero input x simply corre-
sponds to a "black" picture, and for any tasks we assume a black
picture contains no useful information and should be classified as
the negative sample (i.e., ground-truth label should be 0).
Key Merit 2: Inspiration from saliency map and enhance-
ment of interpretability. Evaluating task relation with derivative
similarity has justification from saliency perspective. A saliency
is a derivative of the prediction score w.r.t. input features, and it
denotes the semantic features that influence the prediction most. In
addition, similar tasks tend to have similar saliency, while dissimilar
tasks tend to have dissimilar saliency. As shown in Figure 2, we
enforce higher-level semantic features as saliency.

Many previous work have asserted that deeper representations in
a CNN capture higher-level visual constructs [7, 31]. Furthermore,
convolutional layers naturally retain spatial information which is
lost in fully connected layers, so we expect the last convolutional
layers to have the best compromise between high-level semantics
and detailed spatial information. By following a recent work called
Grad-CAM [38], we use the gradient information flowing into the
last convolutional layer of the CNN to capture the saliency map to
each neuron for a particular task or class of interests.

3.3 Objective Function

We first give a formal definition of saliency. For example, in com-
puter vision, given an input image I, a classification ConvNet f
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Figure 3: A high level overview of SRDML architecture.

predicts I belongs to class ¢ and produces the class score f.(I)
(abbrev. f;). Let A be the feature map activations of the last con-
volutional layer. We are curious about the rank of each pixel in A
based on their importance, which is referred to as saliency. The
relationship between f; and A is highly non-linear due to the non-
linearity in f. In this case, we use the first-order derivatives i.e.,
dfc/dA to approximate the saliency map, which basically reflects
the contributions of different pixels in A to the prediction f.
The objective function of SRDML is defined as follow:

T
i L h(X)),Y:), s.t.
h’ﬁfgfr}Tme t(fi(h(X)), Yo, s

Vi, j, dist(Vafi, Vafj) < &j ., Z ijsa

where i, j are task indexes with 1 < i < j < T, A = h(X) is the
feature map activations from the last convolutional layer of h, and
Vaf; is the first-order derivative of function f; with respect to A,
i.e., df;/0A. The dist(-) function here can be any distance measure
including commonly-used ones like #;, £, etc, and any potential
normalization on the input gradient can also be embeded in dist(-).

To adaptively learn the task relations, we introduce {&;;}1<j<j<T.
which is a set of learnable slack variables for each pair of tasks and
a is a hyperparameter for controlling the overall level of slack-
ing. Notice each ¢;; can only take non-negative value and this is
guaranteed by the inequality constraint and the non-negative norm.

Directly optimizing Eq. (2) could be difficult due to the constraint.
By utilizing Lagrangian method, we further transform Eq. (2) into
a regularized form as follow:

min 3 LiCAHOO)Y)
+A- Zl<i<j<T wij - dist(Vafi, Vafj) ®)

s.t,Vi,j, wij 20and lei<jsT wij > p

where {wjj}1<i<j<r is a set of learnable parameters to explicitly
model task relationship during the multi-task training, and A is the
regularization coefficient. Our Eq. (3) is motivated by the graph
regularization [15, 16], where each node corresponds to a specific
task and w;; represents the weight for the edge between task i
and task j, so a graph-structure task relationship can be adaptively
learned by SRDML. We rearrange the non-negative constraints over
o and apply normalization onto {w;j}1<i<j<7 to further simplify
the constraints as follow:

min 3 L0

@

1<i<j<T

h,fi

v )

Wij .
+1- leiqg 7 dist(Vafi Vafy)
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where W = 31<i<j<7 ij. Thanks to our normalization trick,

the overall objective of SRDML is differentiable and can be trained
in an end-to-end manner. We use standard gradient descent (e.g.,
Adam [20]) to solve Eq. (4), where we aim to learn multiple tasks
and the task relationship simultaneously. Although the normaliza-
tion trick introduced in Eq. (4) no longer guarantees that the hard
constraint of the lower bound of all w;; can be strictly satisfied, our
empirical results show that our normalization trick works well in
practice and SRDML can capture reasonable task relationship by
optimizing Eq. (4) with finetuned hyperparameters.

A general overview of our SRDML architecture can be found in
Figure 3. First, the input image is fed into a shared feature extractor
which in our case is implemented by a sequence of convolutional
layers. Right after the feature extraction process, we obtain a set
of flattened feature map (shown as the blue bar in Figure 3) which
contains high-level semantic information with respect to the origi-
nal image [38]. On top of the feature map, each task-specific head
will first calculate the saliency map with respect to its own predic-
tion. Based on the saliency map for all the tasks, the task similarity
can be calculated via some distance measure. Note that our overall
framework is differentiable and can be trained in an end-to-end
manner.

4 THEORETICAL ANALYSIS

In this section, we present the theoretical analyses of our SRDML
model. First, we prove that our proposed regularizer can help reduce
the generalization error. Second, we formally analyze the relation
between SRDML and other MTL methods. We put all formal proofs
in the appendix due to the limited space.

4.1 Generalization Error Bound

Here we show the generalization bound of our model. The major
contribution is we theoretically proved that our proposed regular-
ization term can help reduce the generalization error.

For simpler notation, define

Fea) ={f€FT:V1<i<j<T xekX,
dist(Vxfi, Vo fi) < €ij, Zl<i<j<T €ij < a}

where f = (fi, f2,- -+, fT) is the vectorization of each task’s func-
tion, and {€;;}1<i<j<T is a set of global slack variables. Hence, the
optimization problem of Eq. (2) can be simplified as

S S LGy @)

min —
heHfeFe(o) NT

®)

Before introducing the theorem, we make the following standard
assumptions over the loss function:

AssuMPTION 1 ([32]). The loss function L has values in [0, 1] and
has Lipschitz constant 1 in the first argument, i.e.: (1) L(y,y’) € [0,1]
@) Ly.y) <y, ¥y

Different Lipschitz constants can be absorbed in the scaling of the
predictors and different ranges than [0, 1] can be handled by a
simple scaling of our results.

DEFINITION 1 (EXPECTED RISK, EMPIRICAL RISK). Given any set
of function h, fi,- - -, fT, we denote the expected risk as:
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Eh fiu o f) = 7 2 B [ L RBOOL VT ()
Given the data Z = (X, Y), the empirical risk is defined as:
Ehfiv o frlD = 3 =3 L (fihGay”) ®)

DEFINITION 2 (GLOBAL OPTIMAL SOLUTION, OPTIMIZED SOLU-
TION). Denote (h*, f*) as the global optimal solution of the expected
risk:

(h*.f) = argmin &(h fi,---. fr) )
heH.feFe(a)
and denote (ﬁ}) as the optimized solution by minimizing the empiri-
cal risk: .
(hp = argmin E(h fi,-- . frl2) (10)
heH . feFe(a)

The following theorem provides theoretical guarantee of our

proposed regularizer’s effectiveness.

THEOREM 2 (GENERALIZATION ERROR (INFORMAL)). Letd > 0 and
U1, 42, . . ., uT be the probability measure on X X R. With probability
of at least 1 — § in the draw of Z = (X, Y) ~ Hthl U, we have:

G(H(X))

E(hp - &M f) < L=

i supp 1RX) | . [sln/®) an
nVnT nT

where c1, ¢y are universal constants, G(H (X)) is the Gaussian av-
erage defined as G(H (X)) = E[supj,cqy Zktiyktih(x;fﬂx;f], where
{Yksi} is 1i.d standard normal variables. L is the Laplacian matrix
of graph with T vertices and edge-weights {®;;}1<i<j<T, and Amin
is its smallest non-zero eigenvalue. B is any positive value that
satisfies the condition ZZj:lwij -dist>(Vaf;, Vafi) £ B2

Some remarks over Theorem 2: 1). The first term of the bound
can be interpreted as the cost of estimating the shared represen-
tation learning function h € H. This term is typically of order %
The last term contains the confidence parameter. According to [32]
the constant ¢ and ¢y are pretty large, so the last term typically
makes limited contribution in the bound. 2). The second or middle
term contains the cost of estimating task-specific predictors f € F,
and this term is typically of order \/LZ Here the positive constant

+c2B

B provides important insights into the relationship between our
proposed regularizer and the error bound. The smaller our regular-
ization term becomes, the smaller values B could take and in turn
reduces the second term in the bound. In general, our generalization
error result bounds the gap between the test error of the model
trained from finite samples and that trained from infinite data,
namely the theoretically optimal model/solution. In other words,
Theorem 2 provides theoretical guarantee for our performance on
actual test set.

4.2 Relation with Other MTL Frameworks

In this section, we mathematically elucidate the relation and differ-
ence between our proposed SRDML and other MTL methods, i.e.,
shallow MTL and deep MTL.

Natural generalization of shallow MTL. Following [51], tradi-
tional multi-task learning methods (i.e., linear model based MTL)
can be generally classified into two categories: multi-task feature

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Table 1: Attributes summary in CelebA and COCO.

Tid | CelebA COCO || Tid | CelebA COCO
1 ArchedEyebrows person 11 PaleSkin couch
2 BagsUnderEyes cat 12 Sideburns bed
3 BlackHair dog 13 Smiling dining table
4 BrownHair horse 14 WavyHair laptop
5 Chubby car 15 WearingLipstick ~ tv
6 DoubleChin truck 16 Young cell phone
7 Goatee bus 17 bottle
8 HeavyMakeup motorcycle 18 cup
9 MouthSlightlyOpen  bicycle 19 bowl
10 Mustache chair

learning and multi-task relation learning, with objective function
minyy @ L(W, b)+1/2-tr(WTO~'W) and minyy 5, 5 L(W, b)+1/2-
tr(WTE™ W), where © and 3 models the covariance between dif-
ferent features and tasks, respectively. For any regularization-based
shallow MTL defined as above, it can be formulated as a special
case under the general framework of SRDML, with identity fea-
ture extraction function h, linear task-specific function f and the
corresponding regularizer on the input gradients.

Relation with deep MTL. Define two hyperparameters: 1). The
coefficient of regularizer in SRDML A, and 2). the number of layers
¢ before which the model is shared cross tasks. When A equals 0 and
¢ is greater than 1 and less than L (total number of layers), SRDML
degenerates to hard-parameter sharing. On the other hand, when
¢ equals to 1 and A is greater than 0, our SRDML is equivalent to
soft-parameter sharing. Hence, both hard-parameter sharing and
soft-parameter sharing can be formally formulated as special cases
of our proposed SRDML framework.

5 EXPERIMENTS

In this section, we validate SRDML on both synthetic and real-
world datasets against state-of-the-art baselines, on various aspects
including performance, sensitivity, qualitative analysis and ablation
study. The experiments were performed on a 64-bit machine with
4-core Intel Xeon W-2123 @ 3.60GHz, 32GB memory and NVIDIA
Quadro RTX 5000.

5.1 Experimental Settings

Controlled Synthetic Dataset. We first check the validity of
SRDML on a controlled regression synthetic dataset. We gener-
ate T tasks (T = 12) and for each task i we generate m samples
(m = 100). The input data X; € R™*4 (d = 20) for each task i is
generated from X; ~ N (7;,I) with mean vector 7; and identity
covariance matrix I. Next, we generate feature weight W by the
following steps: 1) Generate two base feature weights. As shown
in Figure 4a, the first base feature weight (on the LHS column) cor-
responds to wi = (1;0) T and the second base feature weight (on
the RHS column) corresponds to wy = (0;1) T, where 1 and 0 each
denotes a 10-dimensional all-one and all-zero vector respectively. In
this way, w1 and wy can simulate two different regions in the input
X since the regions zeroed out by w will not be helpful in corre-
sponding tasks. 2) Generate task specific feature weight. Based on
w1 and wy, we further consider creating different levels of saliency
by multiplying the base feature weights by some magnitude pa-
rameter. Here we select 3 different magnitude parameters to create
different levels of saliency for each base feature weight, and for each
level of saliency we create two tasks which are basically twin tasks.
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Figure 4: Experimental results on synthetic dataset. (a): Ground-truth of each task’s feature weight. (b): Task relation learned
by our proposed SRDML. Tasks from different bases show strong independency (as in dark purple), tasks from the same bases
show clear similarities (as in light green), and each pair of twin tasks show very strong similarities (as in yellow). (c): The per-
formance improvement of SRDML over single task learning in RMSE (blue bar) and MAE (green bar). As shown, SRDML model
generally outperforms STL on the synthetic dataset by a large margin. (d): Sensitivity analysis on regularization coefficient.

For example, in Figure 4a, task 1 and task 2 are twin tasks which
share the same level of saliency, and the lightest blue color means
they are generated by the lowest magnitude parameter. We denote
each generated task-specific feature weight as w;, i € {1,2,---,T}.
The aforementioned logistics are basically symmetric for wy and
wy. 3) Add noise and create labels. We first inject some noise into
each task’s feature weight by randomly flipping the sign of the
value in some positions of each w;. The proportion of the flipped
positions is controlled to guarantee the overall pattern can be well
kept. Then, we generate the label for each task by Y; = X; - w; + €,
where €¢; ~ N(0,0.1 - I) is random normal noise.

Real-world Dataset. We evaluate the proposed method on 3 real-
world benchmarks with varying number of tasks and difficulty,
including: multi-task version of CIFAR-10 [21] (CIFAR-MTL), a
modified version of CelebA [27] and a modified version of MS-
COCO [26]. To follow our model’s assumption, all tasks are image
classification ones. For CIFAR-MTL, we follow existing work [36]
creating one task for each of the 10 classes in origianl CIFAR-10
dataset. There are 10 binary classification tasks with 2k training
samples and 1k testing samples per task. CelebA has 200 thousand
images of celebrity faces and each image is labeled with 40 facial
attributes. We follow existing work [54] selecting 16 attributes more
related to face appearance and ignore attributes around decoration
such as eyeglasses and hat for our experiments. We randomly se-
lected 30k training samples and include whole validation and test
set. For MS-COCO we select 19 types of objects and remove those
with too sparse labels. We include all images that contain at least
two of the 19 types of objects and randomly split them into training
and testing set by half. All results are reported on the test set. For hy-
perparameter tuning of our method, without further specification,
we applied grid search on the range of {1073,5 % 1073, ,0.5,1}
for the regularization coefficient.

Comparison Methods We compare SRDML with various existing
methods, including two baselines, three shallow and five deep sate-
of-the-art MTL methods:

o Practical Baselines: 1). Single Task Learning (STL) is to train a
separate predictor for each task independently. 2) Hard Parameter
Sharing (Hard-Share) considers a shared representation learning

backbone (e.g., convolutional layers in CNN) and task-specific
prediction head.

e Shallow MTL Methods: 1) Lasso [46] is an #;-norm regular-
ized method which introduce sparsity into the model to reduce
model complexity and feature learning, and that the parame-
ter controlling the sparsity is shared among all tasks. 2) Joint
Feature Learning (Lz1) [14] assumes the tasks share a set of com-
mon features that represent the relatedness of multiple tasks. 3)
Robust Multi-task Learning (RMTL) [10] method assumes that
some tasks are more relevant than others. It assumes that the
model W can be decomposed into a low rank structure L that
captures task-relatedness and a group-sparse structure S that
detects outliers.

e Deep MTL Methods: Multilinear Relationship Networks (MRNs)
places a tensor normal prior on task-specific layers of the deep
multi-task learning model [28]. 2) Multi-gate Mixture-of-Experts
(MMOoE) [30] adapt the Mixture-ofExperts (MoE) structure to
multi-task learning by sharing the expert submodels across all
tasks, while also having a gating network. 3) Progressive lay-
ered extraction (PLE) [45] separates shared components and task-
specific components explicitly and adopts a progressive routing
mechanism to extract and separate deeper semantic knowledge
gradually, improving efficiency of joint representation learning
and information routing across tasks in a general setup. 4) Multi-
task Learning as Multi-Objective Optimization (MGDA-UB) [39]
considers multi-task learning from optimization perspective by
using Pareto optimality and Multiple Gradient Descent Algo-
rithm. 5) Gradient Surgery for Multi-task Learning (PCGrad) [49]
aims to solve the problem of gradient interference by gradient
surgery, which is basically by gradient projection to make sure
the gradients of different tasks have direction smaller than 90°.

Implementation Details. All shallow MTL methods are imple-
mented according to standard package MALSAR [56]. Deep MTL
methods and our SRDML are built based on VGG-16 [41], which
is a very popular architecture in computer vision. The convolu-
tional layers are followed by one fully connected layer with 128
hidden neurons and one classification layer for our SRDML. Each
model is trained by Adam [20]. For PCGrad, due to the fact that
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Table 2: Performance (%) on real-world large-scale multi-task learning datasets. Our proposed SRMTL outperforms most com-
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parison methods on all three datasets. Bold and underline score are for the best and second best methods, respectively.

Model CIFAR-MTL CelebA COCO

Accuracy AUC  Precision Recall { Accuracy AUC  Precision Recall { Accuracy AUC  Precision Recall
STL (Deep) 94.35 66.69 74,32 69.83 89.42 90.96 70.46 60.47 85.18 63.14 32.53 27.14
Hard-Share 94.70 95.56 76.30 72.28 89.24 91.38 71.40 58.84 85.11 73.68 37.43 19.84
Lasso 91.48 86.64 68.90 24.74 76.55 66.69 37.38 36.62 78.36 64.40 28.53 28.61
L21 91.50 87.58 68.01 29.32 76.09 66.12 37.11 36.13 75.07 65.02 28.95 27.34
RMTL 92.28 85.65 61.54 28.15 75.52 66.99 37.48 36.74 76.87 65.01 29.28 28.43
MRN 94.51 96.67 79.94 76.95 89.35 91.54 71.51 64.64 85.13 75.88 32.73 25.89
MMOoE 93.53 93.17 73.42 69.32 77.57 67.84 68.79 58.92 81.20 62.37 33.08 26.14
PLE 94.01 93.32 75.26 70.15 83.21 69.32 70.03 59.72 82.53 63.42 35.27 27.53
MGDA-UB 90.74 84.38 57.80 24.10 90.03 92.92 73.42 62.65 84.51 73.68 36.17 16.08
PCGrad 95.11 96.69 79.03 74.82 90.11 92.87 73.51 62.92 85.42 74.39 34.52 25.26
SRDML 9582 9643 8122 7593 90.15  92.95  73.87 6491 | 8568 7677 3582  28.73
SRDML (w/. PCGrad) 96.03 96.72 82.59 77.01 90.26 93.01 73.93 65.30 85.87 78.38 36.14 30.02

it is a gradient surgery method which is model-agnostic and can
be applied onto any deep MTL method, we report its performance
by combining it with the best baseline on each real-world dataset
(i.e., Hard-Share on CIFAR-MTL, MGDA-UB on CelebA, MRN on
COCO). In addition, we also consider applying PCGrad onto our
own method SRDML, resulting in two versions of our method,
namely SRDML and SRDML with PCGrad.

5.2 Experimental Results

Effectiveness on controlled synthetic dataset. The empirical
results on the regression synthetic dataset demonstrate that our
model can generally outperform single task learning and is capable
to capture the ground-truth task relations. Quantitative evaluation
in Figure 4c shows that SRDML can outperform single task learning
in general, which can be attributed to the effective knowledge shar-
ing between task-specific layers. In addition, the task relationship
pattern (i.e., w;i; in (4)) learned by SRDML as shown in Figure 4b
is accurate and reasonable, since tasks belong to different bases
are well-separated and meanwhile each pair of twin tasks shows
very strong correlation (corresponds to those yellow boxes). Within
each base, different pairs of twin tasks also show relatively strong
relationship due to the fact that they share the same base and only
differ in the magnitude.

Sensitivity analysis. The sensitivity of hyperparameter A in SRDML
on synthetic dataset is shown in Figure 4d. As can be seen, the op-
timal value for A is around 0.5 meansured by RMSE. The general
"U" shape is potentially reasonable because as A goes to infinity the
regularization term would dominate the overall objective function
while too small A will reduce the functionality of the regularizer
and finally degenerate to single task learning.

Effectiveness on real-world datasets.

o CIFAR-MTL: Table 2 shows the performance results of our pro-
posed SRDML and other baselines on CIFAR-MTL dataset. We
can make the following observations from the results. 1). Deep
multi-task learning models generally outperform shallow ones
by a great margin, which confirms the importance of learning
the deep representation features as well as the shared policy of
feature extraction part which allows knowledge transfer across

tasks. 2). Our proposed SRDML outperforms baselines in major-
ity of metrics and achieves comparable performance in rest. 3).
Combining with PCGrad can further improve the performance
of SRDML due to the mitigated negative transfer by gradient
surgery of PCGrad.

e CelebA: In this case, we tackle a larger and more challenging
benchmark, where we tailored the dataset to contain 16 binary
classification tasks with each one corresponding to a certain
human’s facial feature. As shown in Table 2, our model outper-
forms all comparison methods in majority of metrics, which is
attributed to the potential fact that the salient regions in some
tasks are close to those in the related tasks. For example, there
are two tasks to classify whether a celebrity’s beard is goatee
or mustache, respectively. For both tasks the salient regions are
highly overlapped around the mouth area (as can be seen in
Section "Saliency map visualization" in appendix) so enforcing
similar input gradients around the mouth area could improve the
knowledge transfer and achieve better performance.

e COCO: To evaluate our model under various settings, we con-
sider COCO which contains different types of objects like human,
animals, vehicles, furniture, etc, and each type object has varying
rate of occurrence. In Table 2, we report the task-average classi-
fication error with lower values indicating better performance.
As shown in Table 2, our proposed SRDML outperforms all the
baselines by a great margin. This experiment also validates the
effectiveness of our model when the number of tasks is relatively
large and the image context is complicated. Moreover, MMoE and
PLE perform generally not quite well probably due to the fact
that these two approaches are designed for multi-task learning
under recommender system scenario, which is not similar to that
in multi-task image classification, e.g., the number of tasks in our
case is much larger and hence more challenging.

Qualitative analysis. Here we demonstrate that SRDML can learn
reasonable task relations on challenging real-world dataset, by
visualizing the task weight matrix (i.e., w;; in (4)). As shown in
Figure 5, many highlighted task relations are intuitive. In CelebA,
our proposed SRDML successfully learned the similarity of tasks
sharing the same/similar regions around face, lie "Arched Eyebrow"
and "Bags Under Eyes"; "Black Hair", "Brown Hair" and "Wavy Hair";
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Figure 5: Visualization of task relation learned by SRDML on real-world dataset. Zoom in for detail.

Table 3: Sensitivity analysis on regularizer coefficient when
tasks are contradicting. Our regularizer coefficient can adap-
tively reduce to zero and avoid negative transfer.

A 1 0.1 0.01  0.001 0
RMSE. 2726 1.550 1.405 1.393 1.392
MAE. 2198 1.260 1.127 1.127 1.126

"Goatee", "Sideburns" and "mustache", etc. On the other hand, our
model can also learn reasonable task similarities in COCO, including
"cat" and "dog"; , "bus" and "bicycle"; "couch" and "bed", etc.
We also conduct quahtatlve analysis experiment on the saliency
map generated by our proposed SRDML on similar or related tasks.
Please refer to the appendix for the detail.

Adaptive regularizer on contradicting tasks. In this section,
we conducted another sensitivity analysis when all tasks compete
(we generate such synthetic dataset by following similar procedure
introduced in Section 5.1), and the results in Table 3 demonstrate the
efficacy of our regularization term which can adaptively decrease
the task-similarity weight to zero and avoid competition.

Effect of normalization on input gradient We add an experi-
ment on SRDML with normalizing the input gradients and compare
its results with our original method (e.g., without normalization)
on ALL 3 real-world dataset. As shown in Table 4, adding normal-
ization did not obviously change the performance in task-average
classification error. The task-average classification error decreased
by < 0.2% on CIFAR-MTL and increased by around 0.1% on CelebA
and COCO. One explanation is, for similar tasks like “Black hair”
and “Brown hair” in CelebA, we empirically observed that the mag-
nitude for the gradients was close to each other, which might limit
the point in applying gradient normalization in such case.
Ablation study. In this section, we present ablation study on the
task relation learning part in the regularizer. Specifically, we remove
the {®;jj}1<i<j<7 in (3) and the coefficient for each term in the
regularizer is just the hyperparameter A. We conduct experiments

"oteart " ",om

Table 4: Normalization of input gradient

CIFAR-MTL CelebA MS-COCO
SRDML w/o normalization 4.18 9.91 14.32
SRDML w/ normalization 4.02 10.03 14.41

on all three real-world dataset to see the difference and the results
are shown in Table 5.

Table 5: Ablation study on adaptive regularizer (Accuracy)

CIFAR-MTL CelebA MS-COCO
SRDML. (w/o regularizer) 94.92 89.74 85.18
SRDML. (w/. regularizer) 95.82 90.15 85.68

6 CONCLUSION

Learning interpretable task relation is challenging in multi-task
learning problem. In this paper, we proposed Saliency-regularized
Deep Multi-task Learning (SRDML) framework which regularizes
the input gradient of different tasks by saliency and achieves good
task relation interpretability. Instead of regularizing parameters
like existing work, we directly regularize in functional space which
allows better expressiveness. Theoretical analyses show that our
regularizer can help reduce the generalization error. Experiments
on multiple synthetic and real-world datasets demonstrate the effec-
tiveness and efficiency of our methods in various metrics, compared
with several comparison methods and baselines. The reasonable-
ness of the task relation learned by SRDML is also validated on
different challenging real-world datasets.
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A THEORETICAL PROOF

A.1 Proof of Theomre 1

ProoF. Suppose X C RK is an open set and fi.fp : X = R,
where both functions are differentiable and equal to zero at the
origin. "==": This direction is obvious, since two exactly the same
functions will have the same gradient at any input point. "&=":
Given Vfi(x) = Vfa(x), we know that dfi /ox, = dfa/ox, k =
1,2,---,K,Vx € X.Forarbitrary k, by 9fi /dx; = df2/x), we know
that 3 ¢ (1, - -+ X1, Xkt 1> - * > XK)> S-b f1 = foa+c. Meanwhile,
notice VI # k, dcr/dx; = 0 (otherwise, contradiction!) Hence,
dcy. = 0 and we know ¢ is a constant. Also, the value of ¢; does not
depend on k since for all k, [, we have fi — f2 = ¢; = ¢, thus there
exists a constant ¢ such that fi = f + c. Finally, by the boundary
condition that f1(0) = f2(0) = 0, we know that ¢ = 0, i.e., fi = f3,
which finishes the proof. O

A.2 Proof of Theorem 2

In this section, we provide the proof of our model’s generalization
error bound. First, we introduce some definitions and lemmas which
will be continuously used, and at the end of this section we present
the proof for Theorem 2.

In general, we will use y to denote a generic vector of i.i.d stan-
dard normal variables, whose dimension will be clear in context.
In addition, without further specification, we will use K, T, n to
denote the (flattened) dimension of the output space from the fea-
ture extraction function h, number of tasks, and number of training
samples, respectively. We denote the representation class for task-
specific function f and representation extraction function h as
and H, respectively. Two hypothesis classes here can be very gen-
eral, and the only assumption here is that Vf € ¥, f has Lipschitz
constant at most L, for any positive L.

DEFINITION 3. Given a set V C R", define the Gaussian average
of V as:

n
G(V) = Esup(y,v) =EsupZy,-v,- (12)
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As mentioned in section 3.1 in main paper, we denote the feature
representation learning part as function h € H. As we will see later,
the complexity of representation class H is important in our proof
for the error bound, so we define a measure of its complexity by

Gaussian average.

DEFINITION 4. Given observed input data X € X", define a
random set H(X) € REKT" py

H(X) = {(h(x£)) : h e H}. (13)
The Gaussian average over H (X) can be defined accordingly as
K, T,n
G(H(X) =E[sup > ykeihi(xe1) %] (14)
heH It

The following lemmas are useful in our proof later, and we in-
troduce them here in advance.

LEMMA 1. VA, C € R™" gnd B € RMX™,

m n
tr(ATBC) = ZB,’j ZAiijk. (15)

ij k=1

Guangji Bai and Liang Zhao

LEMMA 2. Suppose X C RK is an open set, and two differentiable
functions fi, fo : X > R.Vx e X, if

3IB>0, st |[VA(X) - VAEX)| <B (16)
then
il +Ax) - fi(x)  falx + Ax) - fo(x)
pm | [Ax]] 1Ax]| <8 (7

Given everything above, we can prove our Theorem 2 with Mau-
rer et al. [32]. However, due to the limited space of appendix here,
we decide to put the formal proof for our Theorem 2 along with the
proof for everything above into the put link. Please refer to there
for the formal proof. Thanks!

A.3 Proof of Section 4.2

Natural generalization of shallow MTL

Proor. Basically, when the feature extraction function A is iden-

tity function and each task-specific function f;, t = 1,2,---, T are
linear functions, we know for any input x € X,
h(x) =x, Vfi(x) =ws, Vi (18)

where w; is the model parameter of linear model f;. Hence, denote
W = [wy; wo; - - - ; wr] and take the dist() function in (3) to be inner
product, by Lemma 1 we have }}; ; wij - dist(Vfi(x), Vfj(x)) =
2ijwij - (wi, wj) = tr(WTQW), where Q = (w;j). Let Q to be
either ©! or 7! as in section 4.2 can finish the proof.

m}

Relation with deep MTL

Proor. First, we define two hyperparameters:

o A: The coefficient of our regularizer in SRDML
e {: The index of the layer before which the model is shared
cross different tasks.

Case 1.If A = 0 and 1 < ¢ < L, where L (please differentiate
this L with that for Lipschitz constant) denotes the total number of
layers, our SRDML has no regularization and is simply equivalent
to hard-parameter sharing.

Case 2.If 1 > 0 and ¢ = 1, each layer in our SRDML is separate
for different tasks and the regularization is posed on all the layers,
which is equivalent to soft-parameter sharing.

O

B DETAILS ON SYNTHETIC DATASET
GENERATION

e “What are base feature weights”: Since we want to generate
tasks with different level of similarity in our synthetic dataset,
we achieved it by controlling the similarity in the feature
weight (i.e., w) of different tasks. The base feature weights
wi and wy are basically two vectors (with length equal to
number of features) for generating the feature weight vectors
for all the tasks. We call them “base” feature weight because
they serve as the base vector or unit vector for generating
all the tasks’ feature weights. In addition, w; and wy are
orthogonal and each has length 1 in any dimension.
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(a) goatee (c) no beard

(b) mustache

Figure 7: Saliency map generated by SRDML for beard tasks.
e “How are base feature weights used”: The base feature weights
are used to generate each task’s feature weight in the follow-
ing steps: 1) We choose which base the current task belongs
to. In our setting, we chose the first half of tasks to belong to
the first base (i.e., wi) and the second half of tasks to belong
to the second base (i.e., wz). Since two bases are orthogonal,
they can actually simulate two non-overlapping regions in
pictures which means tasks from different bases should not
be similar while those from the same base should be similar
since, they focus on the same region. 2) Within each base, we
multiply the base vector (i.e., w; and wy) by some positive
integers to generate the actual feature weight for the tasks.
For example, we multiply w; by integer 1, 2 and 3 to generate
the feature weight vectors for the first half of tasks.

C ADDITIONAL QUALITATIVE ANALYSIS
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(a) black hair
Figure 6: Saliency map generated by SRDML for hair tasks.

(b) brown hair
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We also conduct qualitative analysis experiment on the saliency
map generated by our proposed SRDML on similar or related tasks.
As can be seen in Figure 6 and Figure 7, our proposed SRDML
can generate saliency map focusing on similar regions for related
tasks. For example, the saliency map generated for "Black hair" and
"Brown hair" both generally overlap around the hair region of the
woman, and the saliency map generated for three types of beard
all overlap around the mouth and beard region of the man. Notice
that the quality of saliency itself is not the main focus of this paper,
but instead we are more interested in the task relation induced by
the saliency map similarity (i.e., saliency across tasks).

D EXTRA REMARKS ON THEOREM 2

In this section, we provide more remarks on our main theorem,
namely Theorem 2, for better understanding.

e The equation above bounds the gap between the test error of
the model trained from finite samples and that trained from
infinite data, namely the theoretically optimal model/solution.
In other words, Theorem 2 provides theoretical guarantee
for our performance on actual test error.

e In Equation 2-9, we assume all tasks share the same set of
X which is a very common case in Multi-task Learning on
image dataset. Theorem 2 does not need different tasks to
have different X(t), since p = piz = - -+ = ur = p is a special
case of the version in Theorem 2. Our current assumption
is actually a more general one and can handle the case in
Equation 2-9.
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